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Quantification of the reciprocal Dunford–Pettis property

by

Ondřej F. K. Kalenda and Jiř́ı Spurný (Praha)

Abstract. We prove in particular that Banach spaces of the form C0(Ω), where Ω
is a locally compact space, enjoy a quantitative version of the reciprocal Dunford–Pettis
property.

1. Introduction. A Banach space X is said to have the Dunford–
Pettis property if, for any Banach space Y , every weakly compact operator
T : X → Y is completely continuous. Further, X is said to have the recip-
rocal Dunford–Pettis property if, for any Banach space Y , every completely
continuous operator T : X → Y is weakly compact.

Let us recall that T is weakly compact if the image under T of the unit
ball of X is relatively weakly compact in Y . Further, T is completely contin-
uous if it maps weakly convergent sequences to norm convergent ones, or,
equivalently, if it maps weakly Cauchy sequences to norm Cauchy (hence
norm convergent) ones.

In general, these two classes of operators are incomparable. For example,
the identity on `2 is weakly compact (due to reflexivity of `2) but not com-
pletely continuous. On the other hand, the identity on `1 is completely
continuous (by the Schur property) and not weakly compact.

It is obvious that reflexive spaces have the reciprocal Dunford–Pettis
property (as any operator with reflexive domain is weakly compact) and
that the Schur property implies the Dunford–Pettis property (as any oper-
ator defined on a space with the Schur property is completely continuous).
Moreover, the space L1(µ) has the Dunford–Pettis property for any non-
negative σ-additive measure µ (see [13, Theorem 1] or [14, pp. 61–62]). The
space C0(Ω), where Ω is a locally compact space, has both the Dunford–
Pettis property and the reciprocal Dunford–Pettis property (see [13, p. 153,
Theorem 4]).
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In the present paper we investigate quantitative versions of the recipro-
cal Dunford–Pettis property. It is a kind of continuation of a recent paper
[15] where quantification of the Dunford–Pettis property is studied. It is
also related to many results on quantitative versions of certain theorems
and properties. In particular, quantitative versions of Krein’s theorem were
studied in [7, 10, 11, 5], quantitative versions of Eberlein–Šmulyan and Gant-
macher theorems were investigated in [2], a quantitative version of James’
compactness theorem was proved in [4, 12], quantification of weak sequential
continuity and of the Schur property was addressed in [16, 17].

The main idea behind quantitative versions is an attempt to replace the
respective implication by an inequality. So, in the case of the reciprocal
Dunford–Pettis property we will try to replace the implication

T is completely continuous ⇒ T is weakly compact

by an inequality of the form

measure of weak non-compactness of T

≤ C ·measure of non-complete-continuity of T.

We will use the same quantities as in [15] and in addition some equivalent
ones.

In [15] it is proved, in particular, that both L1(µ) spaces and C0(Ω)
spaces enjoy the strongest possible version of quantitative Dunford–Pettis
property. In the present paper, we show that C0(Ω) spaces also have a
quantitative version of the reciprocal Dunford–Pettis property.

2. Preliminaries. In this section we define the quantities used in the
present paper and recall some known relationships between them. Most of
the quantities we investigate are taken from [15] but we will need a few
more.

We will need to measure how far a given operator is from being weakly
compact, completely continuous or Mackey compact.

Our results are true both for real and complex spaces. In the real case
sometimes better constants are obtained. By F we will denote R or C, de-
pending on whether we consider real or complex spaces.

2.1. Measuring non-compactness of sets. In this subsection we
define measures on non-compactness, weak non-compactness and Mackey
non-compactness of sets. We start by recalling the Hausdorff measure of
non-compactness in metric spaces and one of its equivalents.

Let (X, ρ) be a metric space. If A,B ⊂ X are two non-empty sets, their
non-symmetrized Hausdorff distance is defined by

d̂(A,B) = sup{dist(x,B) : x ∈ A}.
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The Hausdorff measure of non-compactness of a non-empty set A ⊂ X is
defined by

χ(A) = inf{d̂(A,F ) : F ⊂ X finite}.
Then χ(A) = 0 if and only if A is totally bounded. In case (X, ρ) is complete
this is equivalent to relative compactness of A. We will need the following
“absolute” equivalent:

χ0(A) = inf{d̂(A,F ) : F ⊂ A finite}.
The quantity χ0(A) depends only on the metric structure of A itself, not on
the space X where it is embedded. It is easy to check that

(2.1) χ(A) ≤ χ0(A) ≤ 2χ(A)

for any non-empty set A ⊂ X.
If X is a Banach space and A ⊂ X a non-empty bounded set, we define

the following two measures of weak non-compactness of A:

ω(A) = inf{d̂(A,K) : K ⊂ X weakly compact},

wkX(A) = d̂(A
w∗
, X).

The quantity ω(A) is the De Blasi measure of weak non-compactness intro-
duced in [6] and later investigated for example in [3, 2, 15]. The quantity
wkX(A) was used (with various notations) for example in [7, 8, 10, 11, 12,
2, 1, 5, 4]. These two quantities are not equivalent (see [3, 2, 15]), while
there are several other natural quantities equivalent to the second one (see
the papers quoted above). In general we have the inequalities

(2.2) wkX(A) ≤ ω(A) ≤ χ(A)

for any non-empty bounded subset A ⊂ X. These inequalities are easy, the
first one is proved for example in [2]. The second one is obvious as finite sets
are weakly compact.

Although the quantities ω(A) and wkX(A) are not equivalent in general,
in some spaces they are equal. In particular, by [15, Proposition 10.2 and
Theorem 7.5] we have

(2.3) X = c0(Γ) or X = L1(µ) for a non-negative σ-additive measure µ

⇒ wkX(A) = ω(A) whenever A ⊂ X is bounded.

We continue by measuring Mackey non-compactness. Let X still be a
Banach space. Suppose that A ⊂ X∗ is a non-empty bounded set. Let us
recall that the Mackey topology on X∗ is the topology of uniform conver-
gence on weakly compact subsets of X. Moreover, the Mackey topology is
complete, hence relatively compact subsets coincide with totally bounded
ones. So, A is relatively Mackey compact if and only if

A|L = {x∗|L : x∗ ∈ A}
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is totally bounded in `∞(L) for each weakly compact set L ⊂ X. This
inspires the following definition:

χm(A) = sup{χ0(A|L) : L ⊂ BX weakly compact}.

This quantity measures Mackey non-compactness in the sense that χm(A) =
0 if and only if A is relatively Mackey compact.

2.2. Measuring non-compactness of operators. Let T : X → Y
be a bounded operator. Since T is compact (resp. weakly compact) if and
only if TBX is relatively compact (resp. relatively weakly compact) in Y , it
is natural to measure (weak) non-compactness of T by a quantity applied
to TBX . To simplify the notation we set

χ(T ) = χ(TBX), χ0(T ) = χ0(TBX),

ω(T ) = ω(TBX), wkY (T ) = wkY (TBX).

Similarly, if Y = Z∗ for a Banach space, we set

χm(T ) = χm(TBX).

There are quantitative versions of Schauder’s and Gantmacher’s theo-
rems on compactness and weak compactness of the dual operators. More
precisely, if T : X → Y is a bounded linear operator, we have

1
2χ(T ∗) ≤ χ(T ) ≤ 2χ(T ∗), 1

2χ0(T
∗) ≤ χ0(T ) ≤ 2χ0(T

∗),(2.4)
1
2 wkX∗(T ∗) ≤ wkY (T ) ≤ 2 wkX∗(T ∗),(2.5)

the quantities ω(T ) and ω(T ∗) are incomparable in general.(2.6)

The first part of (2.4) follows from [9], the second part follows for example
from Lemma 4.4 below applied to the identity operator on X and A = BX .
The assertion (2.5) follows from [2, Theorem 3.1]. The last assertion is proved
in [3, Theorem 4].

2.3. Measuring non-complete-continuity. In this subsection we in-
troduce two quantities which measure how far an operator is from being
completely continuous. The first one is that used in [15] and it is based on
the definition of complete continuity given in the introduction. Let us start
by defining a quantity measuring how far a given sequence is from being
norm-Cauchy.

Let (xk) be a bounded sequence in a Banach space. Following [17, 15]
we set

ca(xk) = inf
n∈N

sup{‖xk − xl‖ : k, l ≥ n}.

It is clear that ca(xk) = 0 if and only if (xk) is norm-Cauchy.
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Further, let T : X → Y be a bounded operator between Banach spaces.
Following [15] we set

cc(T ) = sup{ca(Txk) : (xk) is a weakly Cauchy sequence in BX}.
It is clear that T is completely continuous if and only if cc(T ) = 0.

We will need one more equivalent quantity. This is inspired by an equiva-
lent description of completely continuous operators. The operator T is com-
pletely continuous if and only if TL is norm-compact for any weakly compact
set L ⊂ X. Such operators are sometimes called Dunford–Pettis, so we will
use the following notation:

ccDP(T ) = sup{χ0(TL) : L ⊂ BX weakly compact}.
The two quantities are equivalent. More precisely, we have

(2.7) ccDP(T ) ≤ cc(T ) ≤ 2 ccDP(T ).

Let us provide a proof. Suppose that ccDP(T ) > c > 0. Fix a weakly
compact set L ⊂ BX with χ0(TL) > c. It is easy to construct by induction
a sequence (yk) in TL with ‖yk − yl‖ > c for any 1 ≤ l < k. Let xk ∈ L
be such that Txk = yk. By weak compactness of L we can without loss of
generality suppose that (xk) is weakly convergent and hence weakly Cauchy.
Since ca(Txk) ≥ c, we get cc(T ) ≥ c. This completes the proof of the first
inequality.

To show the second one, suppose cc(T ) > c > 0. Let (xk) be a weakly
Cauchy sequence in BX with ca(Txk) > c. We can find two sequences (mk)
and (nk) of natural numbers such that for each k ∈ N we have mk < nk
< mk+1 and ‖Txnk

− Txmk
‖ > c. Set yk = 1

2(xnk
− xmk

). Then (yk) is a
weakly null sequence in BX and hence L = {yk : k ∈ N} ∪ {0} is a weakly
compact subset of BX .

We claim that χ0(TL) ≥ c/2. Suppose not. Then there is a finite set

F ⊂ TL with d̂(TL, F ) < c/2. Since F is finite, there is h ∈ F and a
subsequence (ykl) such that ‖Tykl−h‖ < c/2 for each l ∈ N. Since (Tykl−h)
weakly converges to −h, we get ‖h‖ ≤ c/2, so h = 0. (Any other element of
TL has norm strictly greater than c/2.)

So, ‖Tykl‖ < c/2 for each l ∈ N. But this contradicts the choice of (yk).
Therefore χ0(TL) ≥ c/2 and so ccDP(T ) ≥ c/2. This completes the proof

of the second inequality.

3. Main results. Our first main result is the following theorem which
says that C0(Ω) spaces enjoy a quantitative version of the reciprocal Dun-
ford–Pettis property. The formulation combines this result with a result of
[15] on the quantitative Dunford–Pettis property. We thus find that for oper-
ators defined on a C0(Ω) space, weak compactness and complete continuity
are quantitatively equivalent.
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Theorem 3.1. Let X = C0(Ω), where Ω is a Hausdorff locally compact
space. Let Y be any Banach space and T : X → Y be a bounded linear
operator. Then

1

4π
wkY (T ) ≤ cc(T ) ≤ 4 wkY (T ).

More precisely,

1

4π
wkY (T ) ≤ 1

2π
wkX∗(T ∗) =

1

2π
ω(T ∗) ≤ ccDP(T )(3.1)

≤ cc(T ) ≤ 2ω(T ∗) = 2 wkX∗(T ∗) ≤ 4 wkY (T ).

In the case of real-valued functions the constant π in the above inequalities
can be everywhere replaced by 2.

This theorem says, in particular, that the quantities cc(T ), wkY (T ),
wkX∗(T ∗) and ω(T ∗) are equivalent for any bounded linear operator T :
C0(Ω)→ Y .

The first inequality and the last one follow from (2.5). The two equalities
follow from (2.3) as C0(Ω)∗ is of the form L1(µ). The inequality cc(T ) ≤
2ω(T ∗) follows from [15, Theorem 5.2] as C0(Ω) has the Dunford–Pettis
property. The inequality ccDP(T ) ≤ cc(T ) follows from (2.7).

Finally, the main new result is the inequality 1
2πω(T ∗) ≤ ccDP(T ), which

follows from Theorems 4.1 and 5.1 below.
It is natural to ask whether also the quantity ω(T ) is equivalent to the

remaining ones. The answer is positive in case Ω is scattered. Indeed, then
X∗ is isometric to `1(Ω) and hence we can use [15, Theorem 8.2].

In general the answer is negative as witnessed by the following example.

Example 3.2. There is a separable Banach space Y such that for any
uncountable separable metrizable locally compact space Ω there is a sequence
(Tn) of bounded operators Tn : C0(Ω)→ Y such that

lim
n→∞

wkY (Tn)

ω(Tn)
= lim

n→∞

cc(Tn)

ω(Tn)
= 0.

This example is proved in Section 6 below.

4. Complete continuity and Mackey compactness. In this section
we prove a quantitative version of a particular case of [13, Lemma 2]. The
cited lemma implies that an operator T : X → Y is completely continuous
if and only if its adjoint T ∗ is Mackey-compact (i.e., T ∗(BY ∗) is relatively
Mackey compact in X∗). A quantitative version is the following theorem.

Theorem 4.1. Let X and Y be Banach spaces and T : X → Y an
operator. Then

1

2
χm(T ∗) ≤ ccDP(T ) ≤ 2χm(T ∗).
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The proof of this theorem is done by a refinement of the arguments
in [13]. The first tool used in [13] is the Arzelà–Ascoli theorem. We will use
its quantitative version for a special case of 1-Lipschitz functions on a metric
space. It is contained in the following lemma.

Lemma 4.2. Let (M,ρ) be a metric space and A ⊂ `∞(M) be a bounded
set formed by 1-Lipschitz functions. Then χ0(A) ≤ 2χ0(M).

Proof. Fix arbitrary c > χ0(M) and ε > 0. Then there is a finite set

F ⊂ M such that d̂(M,F ) < c. Let us define the mapping Φ : A → FF by
Φ(f) = f |F for f ∈ A. Let us equip FF with the `∞ norm. Then Φ(A) is a
bounded subset of FF , so it is also totally bounded (as F is finite). It follows

that there is a finite set B ⊂ A such that d̂(Φ(A), Φ(B)) < ε.

We will show that d̂(A,B) ≤ 2c+ε. To this end take an arbitrary f ∈ A.
By the choice of B there is some g ∈ B with ‖Φ(f) − Φ(g)‖ < ε. Fix an
arbitrary x ∈M . We can find x0 ∈ F with ρ(x0, x) < c. Then

|f(x)− g(x)| ≤ |f(x)− f(x0)|+ |f(x0)− g(x0)|+ |g(x0)− g(x)|
≤ ρ(x, x0) + ‖Φ(f)− Φ(g)‖+ ρ(x0, x) < 2c+ ε.

Hence ‖f−g‖ < 2c+ε, so dist(f,B) < 2c+ε. Since f ∈ A is arbitrary, we

get d̂(A,B) ≤ 2c+ ε, in particular χ0(A) ≤ 2c+ ε. Finally, since c > χ0(M)
and ε > 0 are arbitrary, we get χ0(A) ≤ 2χ0(M).

The next lemma is a quantitative version of a part of [13, Lemma 3]. It
is formulated in a very abstract setting.

Lemma 4.3. Let A be a non-empty set, and B a non-empty bounded
subset of `∞(A). Let ϕ : A→ `∞(B) be defined by

ϕ(a)(b) = b(a), a ∈ A, b ∈ B.
Then

1

2
χ0(B) ≤ χ0(ϕ(A)) ≤ 2χ0(B).

Proof. It is clear that ϕ(A) is a bounded subset of `∞(B). Moreover,
it is formed by 1-Lipschitz functions. Indeed, let a ∈ A be arbitrary. Fix
b1, b2 ∈ B. Then

|ϕ(a)(b1)− ϕ(a)(b2)| = |b1(a)− b2(a)| ≤ ‖b1 − b2‖.
So, by Lemma 4.2 we have

χ0(ϕ(A)) ≤ 2χ0(B).

To show the second inequality, let us define a canonical embedding ψ : B →
`∞(ϕ(A)) by

ψ(b)(ϕ(a)) = b(a), b ∈ B, a ∈ A.
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This is a well-defined mapping. Indeed, if a1, a2 ∈ A are such that ϕ(a1) =
ϕ(a2), then for any b ∈ B we have

b(a1) = ϕ(a1)(b) = ϕ(a2)(b) = b(a2).

Moreover, ψ is an isometry of B onto ψ(B). Indeed, let b1, b2 ∈ B be arbi-
trary. Then

‖ψ(b1)− ψ(b2)‖ = sup{|ψ(b1)(x)− ψ(b2)(x)| : x ∈ ϕ(A)}
= sup{|ψ(b1)(ϕ(a))− ψ(b2)(ϕ(a))| : a ∈ A}
= sup{|b1(a)− b2(a)| : a ∈ A} = ‖b1 − b2‖.

It follows that ψ(B) is isometric to B. Moreover, ψ(B) is a bounded subset
of `∞(ϕ(A)) consisting of 1-Lipschitz functions (the argument is the same
as the one used above in the proof of the first inequality). Hence, using
Lemma 4.2 we get

χ0(B) = χ0(ψ(B)) ≤ 2χ0(ϕ(A)).

This completes the proof.

The next lemma is a quantitative version of [13, Lemma 2] applied to a
single set rather than to a family of sets.

Lemma 4.4. Let T : X → Y be an operator between Banach spaces.
Let A ⊂ X be a bounded set. Let ψ : X∗ → `∞(A) denote the restriction
mapping. Then

1

2
χ0(TA) ≤ χ0(ψ(T ∗BY ∗)) ≤ 2χ0(TA).

Proof. Let us denote by κ the canonical embedding of Y into `∞(BY ∗).
Let us define an embedding ϕ : BY ∗ → `∞(κ(TA)) by

ϕ(y∗)(κ(y)) = y∗(y), y ∈ TA, y∗ ∈ BY ∗ .

Using Lemma 4.3 and the fact that κ is an isometry, we obtain

1

2
χ0(TA) ≤ χ0(ϕ(BY ∗)) ≤ 2χ0(TA).

Further, ψ(T ∗BY ∗) is isometric to ϕ(BY ∗). Indeed, the mapping

α : ϕ(BY ∗)→ ψ(T ∗BY ∗)

defined by

α(ϕ(y∗)) = ψ(T ∗y∗), y∗ ∈ BY ∗ ,

is an onto isometry. Let y∗1, y
∗
2 ∈ BY ∗ be arbitrary. Then

‖ψ(T ∗y∗1)− ψ(T ∗y∗2)‖ = sup{|(T ∗y∗1)(a)− (T ∗y∗2)(a)| : a ∈ A}
= sup{|y∗1(Ta)− y∗2(Ta)| : a ∈ A}
= ‖ϕ(y∗1)− ϕ(y∗2)‖.
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It follows that α is a well-defined isometry. Moreover, it is clear that it is
surjective. Hence we get χ0(ψ(T ∗BY ∗)) = χ0(ϕ(BY ∗)). So,

1

2
χ0(TA) ≤ χ0(ψ(T ∗BY ∗)) ≤ 2χ0(TA),

and the proof is complete.

Now we are ready to prove the theorem.

Proof of Theorem 4.1. The inequalities follow from Lemma 4.4 by taking
the supremum over all weakly compact sets A ⊂ BX .

5. Weak compactness and Mackey compactness in spaces of
measures. In this section,Ω will denote a locally compact space andM(Ω)
will be the space of all finite Radon measures on Ω equipped with the total
variation norm and considered as the dual space to C0(Ω). We will consider
simultaneuously the real version (i.e., C0(Ω) are real-valued functions and
M(Ω) are signed measures) and complex version (i.e., C0(Ω) are complex
functions and M(Ω) are complex measures) of these spaces.

We will prove a quantitative version of a result of [13] saying that in
M(Ω) weakly compact sets coincide with Mackey compact ones. In [13] this
result is hidden in the Corollary to Theorem 2 on page 149 and in the first
two lines on page 150. The promised quantitative version is the following
theorem.

Theorem 5.1. Let A ⊂M(Ω) be a bounded set. Then

1

2
χm(A) ≤ ω(A) ≤ πχm(A).

In the case of real measures, the constant π can be replaced by 2.

The first step towards the proof is a quantitative version of a modification
of [13, Theorem 2]. In the cited theorem several conditions equivalent to
weak compactness of a subset of M(Ω) are summarized. We will prove
quantitative versions of some of them and of some others. They are contained
in the proposition below.

Let us comment on this result a bit. The second quantity is inspired
by condition (2) of [13, Theorem 2]. The first inequality follows directly
from [13]. The third quantity is inspired by condition (3) of the cited theo-
rem. The second inequality is easy and is done by copying the corresponding
proof from [13].

It is also easy to quantify the implication (3)⇒(4) from [13], but we have
not been able to quantify the last implication saying that the condition (4)
implies weak compactness. Instead, we used the fourth quantity. The proof
of the third inequality required a new idea. The last inequality is proved
using technics from [15].
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Proposition 5.2. Let A be a bounded subset of M(Ω). Then

ω(A)

≤

sup
{

lim sup
k→∞

sup
µ∈A

∣∣∣� fk dµ∣∣∣ : (fk) is a weakly null sequence in BC0(Ω)

}

≤

sup

{
lim sup
k→∞

sup
µ∈A
|µ(Uk)| :

(Uk) is a sequence of

pairwise disjoint open subsets of Ω

}

≤
sup

{
lim sup
k→∞

sup
µ∈A
|µ(Fk)| :

(Fk) is a sequence of

pairwise disjoint compact subsets of Ω

}
≤

1

π
ω(A).

In the real case the constant 1/π can be replaced by 1/2.

Proof. The first two inequalites follow easily from [13]. Indeed, let (fk)
be any weakly null sequence in BC0(Ω). Fix an arbitrary c > ω(A). Then
there is a weakly compact set H ⊂M(Ω) such that A ⊂ H + cB, where B
denotes the unit ball of M(Ω). By [13, Theorem 2],

lim
�
fk dµ = 0 uniformly for µ ∈ H.

Thus

lim sup
k→∞

sup
µ∈A

∣∣∣� fk dµ∣∣∣ ≤ lim sup
k→∞

sup
µ∈H+cB

∣∣∣� fk dµ∣∣∣
≤ lim sup

k→∞

(
sup
µ∈H

∣∣∣� fk dµ∣∣∣+ c sup
µ∈B

∣∣∣� fk dµ∣∣∣)
≤ lim sup

k→∞

(
sup
µ∈H

∣∣∣� fk dµ∣∣∣+ c
)

= c.

Since c > ω(A) is arbitrary, we get

lim sup
k→∞

sup
µ∈A

∣∣∣� fk dµ∣∣∣ ≤ ω(A),

so the first inequality follows.
Let us show the second inequality. If the third quantity is zero, the

inequality is obvious. So, suppose that the quantity is strictly positive and
fix an arbitrary smaller positive constant c. Then there is a sequence (Uk)
of pairwise disjoint open sets in Ω and a sequence (µk) in A such that
|µk(Uk)| > c for each k ∈ N. For each k ∈ N we can find a continuous
function fk : Ω → [0, 1] supported by a compact subset of Uk such that



Reciprocal Dunford–Pettis property 271∣∣	 fk dµk∣∣ > c. Since (fk) is a bounded sequence in C0(Ω) which pointwise
converges to zero, it is weakly null. This completes the proof of the second
inequality.

Let us proceed with the third inequality. Obviously, it is enough to prove
the following lemma.

Lemma 5.3. Let (µk) be a bounded sequence in M(Ω), let (Fk) be a
sequence of pairwise disjoint compact subsets of Ω. Let c > 0 be such that
|µk(Fk)| > c for each k ∈ N. Then for any ε > 0 there is a subsequence (µkn)
and a sequence (Un) of pairwise disjoint open subsets such that |µkn(Un)| >
c− ε for each n ∈ N.

Proof. Let (µk), (Fk) and c satisfy the assumptions. Let ε > 0. Set

γ = sup{‖µk‖ : k ∈ N}

and find N ∈ N with 1/N < ε/γ. We will construct by induction for each
n ∈ N a natural number kn, sets Mn of natural numbers and an open set
Un ⊂ Ω such that the following conditions are satisfied for each n ∈ N:

• kn ∈Mn,
• Mn+1 ⊂Mn \ {kn}, Mn+1 is infinite,
• |µk|(Fk ∩ Un) < ε/2n for each k ∈Mn+1,
• Un ∩ Uj = ∅ for j < n,
• |µkn(Un)| > c− ε.

We start by setting M1 = N.

Suppose that n ∈ N and that we have already constructed Mj for j ≤ n
and kj , Uj for j < n. Since Mn is infinite, we can fix a subset H ⊂ Mn

of cardinality 2nN . We can find open sets (Vh)h∈H with pairwise disjoint
closures such that Fh ⊂ Vh for each h ∈ H.

For any k ∈ Mn \H there is some h(k) ∈ H such that |µk|(Fk ∩ Vh(k))
< ε/2n. Fix kn ∈ H such that

Mn+1 = {k ∈Mn \H : h(k) = kn}

is infinite.

By the induction hypothesis we have |µkn |(Fkn ∩ Uj) < ε/2j for any
j < n. It follows that |µkn(Fkn \

⋃
j<n Uj)| > c− ε. It follows that there is a

compact set L ⊂ Fkn \
⋃
j<n Uj with |µkn(L)| > c − ε. Finally, we can find

an open set Un such that

• L ⊂ Un ⊂ Vkn ,
• Un ∩ Uj = ∅ for j < n,
• |µkn(Un)| > c− ε.

This completes the induction step and the lemma is proved.
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Now we come back to the proof of Proposition 5.2. It remains to prove
the last inequality. If ω(A) = 0, it is trivial. Suppose that ω(A) > 0 and fix
an arbitrary c ∈ (0, ω(A)). We will proceed in three steps.

In the first step we reduce the problem to a statement on L1 spaces
on a finite measure space. Since M(Ω) is an L1 space on a σ-additive
non-negative measure (infinite, of course), by [15, Theorem 7.5] there is
a sequence (µk) in A such that dist(clustM(Ω)∗∗(µk),M(Ω)) > c. Set µ =∑∞

k=1 2−k|µk|. Then µ is a finite measure and L1(µ) is canonically isomet-
rically embedded intoM(Ω) onto a subspace containing the sequence (µk).
Set Ã = {µk : k ∈ N}. By [15, Proposition 7.1], the quantity ω(Ã) is the same
in M(Ω) as in the subspace identified with L1(µ). In particular ω(Ã) > c
in L1(µ).

The second step will be the following lemma.

Lemma 5.4. Let µ be a finite σ-additive non-negative measure and Ã ⊂
L1(µ) be a bounded subset satisfying ω(Ã) > c > 0. Then for any ε > 0 there
is a sequence (fk) in Ã and a sequence (Hk) of pairwise disjoint measurable
sets satisfying

	
Hk
|fk| > c− ε for each k ∈ N.

Proof. We will use the construction from the proof of [15, Proposi-
tion 7.1]. Let B denote the unit ball of L∞(µ). Then B is a weakly com-

pact subset of L1(µ) and hence d̂(Ã, αB) ≥ ω(Ã) > c for each α > 0. Set

γ = sup{‖f‖ : f ∈ Ã}. We will construct by induction positive numbers αk
and functions fk ∈ Ã such that

• dist(fk, αkB) > c,
• αk+1 > αk,
•
	
E |fj | dµ < ε/2k whenever j ≤ k and µ(E) ≤ γ/αk+1.

Set α1 = 1. Having αk, we can find fk ∈ Ã satisfying the first condition.
Further, by absolute continuity we can find αk+1 > αk such that the third
condition is satisfied. This completes the construction.

Set Ek = {t : |fk(t)| > αk}. Then�

Ek

|fk| dµ ≥
�

Ek

(|fk| − αk) dµ = dist(fk, αkB) > c.

Further, µ(Ek) ≤ ‖fk‖/αk ≤ γ/αk. It follows that for any j < k we have�

Ek

|fj | dµ <
ε

2k−1
.

Finally, set Hk = Ek \
⋃
n>k En. Then (Hk) is a sequence of pairwise

disjoint measurable sets and�

Hk

|fk| dµ ≥
�

Ek

|fk| dµ−
∑
n>k

�

En

|fk| dµ > c− ε.

This completes the proof.
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Now we return to the proof of Proposition 5.2. Using the first step and the
above lemma we obtained, given ε > 0, a sequence (µk) in A (a subsequence
of the sequence chosen in the first step) and a sequence (Hk) of pairwise
disjoint sets which are measurable for each µk such that |µ|(Hk) > c− ε.

As the third step we will use the following lemma.

Lemma 5.5. Let µ be a finite complex measure. Let H be a measurable
set with |µ|(H) > d > 0. Then there is a measurable subset H̃ ⊂ H with
|µ(H̃)| > d/π.

If µ is real-valued, H̃ can be found to satisfy |µ(H̃)| > d/2.

Proof. The real-valued case is easy using the Hahn decomposition µ =
µ+ − µ−.

Let us prove the general case. Since |µ|(H) > d, there are pairwise dis-
joint measurable sets D1, . . . , Dp ⊂ H such that

∑p
j=1 |µ(Dj)| > d. By [20,

Lemma 6.3] there is a subset J ⊂ {1, . . . , p} such that |
∑

j∈J µ(Dj)| > d/π.

It is enough to take H̃ =
⋃
j∈J Dj .

Now we are ready to finish the proof. Find µk-measurable sets H̃k ⊂
Hk with |µk(H̃k)| > (c− ε)/π and then a compact subset Fk ⊂ H̃k with
|µk(Fk)| > (c− ε)/π.

In the case of real measures we can obtain |µk(Fk)| > (c− ε)/2. This
completes the proof of the last inequality.

The last lemma of this section is a quantitative version of [13, p. 134,
Corollary to Lemma 3].

Lemma 5.6. Let X be a Banach space and A ⊂ X∗ a bounded set. Then

1

8
χm(A) ≤ sup

{
lim sup
k→∞

sup
x∗∈A

|x∗(xk)| :
(xk) is a weakly null

sequence in BX

}
≤ χm(A).

Proof. Let (xk) be a weakly null sequence in BX . Set L = {0} ∪
{xk : k ∈ N}. Then L is a weakly compact subset of BX , so χ0(A|L) ≤
χm(A). Let ε > 0 be arbitrary. Then there is a finite set F ⊂ A such that

d̂(A|L, F |L) < χm(A) + ε. For each k ∈ N we have

sup
x∗∈A

|x∗(xk)| ≤ sup
x∗∈F

|x∗(xk)|+ χm(A) + ε.

Since

lim
k→∞

sup
x∗∈F

|x∗(xk)| = 0,

we get

lim sup
k→∞

sup
x∗∈A

|x∗(xk)| ≤ χm(A) + ε.

Since ε > 0 is arbitrary, this completes the proof of the second inequality.
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Let us prove the first one. If χm(A) = 0, the inequality is obvious. So,
suppose that χm(A) > c > 0. Fix a weakly compact set L ⊂ BX such that
χ0(A|L) > c. Let ϕ : X → `∞(A) be the canonical mapping defined by

ϕ(x)(x∗) = x∗(x), x ∈ X, x∗ ∈ A.
Further, let us define ϕ0 : L→ `∞(A|L) by

ϕ0(x)(x∗|L) = x∗(x), x ∈ L, x∗ ∈ A.
It is clear that ϕ0 is well defined and that ϕ0(L) is isometric to ϕ(L). By
Lemma 4.3 we have χ0(ϕ0(L)) > c/2, hence also χ0(ϕ(L)) > c/2. Therefore,
we can construct by induction a sequence (xk) in L such that

‖ϕ(xk)− ϕ(xl)‖ > c/2, 1 ≤ l < k.

Since L is weakly compact, we can suppose without loss of generality that
the sequence (xk) weakly converges to some x ∈ L. Then

‖ϕ(xk)− ϕ(x)‖ > c/4

for all k ∈ N with at most one exception. So, suppose without loss of gener-
ality that it holds for each k ∈ N. Hence, if we set yk = 1

2(xk −x), then (yk)
is a weakly null sequence in BX and

sup
x∗∈A

|x∗(yk)| = ‖ϕ(yk)‖ > c/8.

This completes the proof of the first inequality.

Finally, we are ready to prove the theorem.

Proof of Theorem 5.1. Let A ⊂M(Ω) be a bounded set. It follows from
Proposition 5.2 and Lemma 5.6 that

1
8χm(A) ≤ ω(A) ≤ πχm(A).

The second inequality is the announced one, the first one still needs to be
improved. So, suppose that ω(A) < c. Fix H ⊂ M(Ω) weakly compact

such that d̂(A,H) < c. Then H is a bounded subset of M(Ω) satisfying
ω(H) = 0, hence also χm(H) = 0 (we apply the above inequality to H).

Given L ⊂ BC0(Ω) weakly compact and ε > 0, there is a finite set

F ⊂ H such that d̂(H|L, F |L) < ε. Then clearly d̂(A|L, F |L) < c + ε, so
χ(A|L) ≤ c+ ε. By (2.1) we get χ0(A|L) ≤ 2(c+ ε).

It follows that χm(A) ≤ 2c, so χm(A) ≤ 2ω(A). This completes the proof
of the first inequality.

6. Proof of Example 3.2. Let ∆ = {−1, 1}N be the Cantor space. Let
Ω be an uncountable separable metrizable locally compact space. Denote
by K its one-point compactification. Then K is an uncountable metrizable
compact space, therefore C(K) is isomorphic to C(∆) by Milyutin’s theo-
rem [18] (see, e.g., [19, Theorem 2.1]). So, C0(Ω), which is a hyperplane in
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C(K), is isomorphic to a hyperplane in C(∆). Since hyperplanes in C(∆)
are isomorphic to C(∆), we can conclude that C0(Ω) is isomorphic to C(∆).

Fix an onto isomorphism Q : C0(Ω)→ C(∆). Then

1

‖Q−1‖
BC(∆) ⊂ Q(BC0(Ω)) ⊂ ‖Q‖BC(∆),

and hence for any bounded operator T : C(∆)→ Y we have

cc(TQ) ≤ ‖Q‖ cc(T ),

wkY (TQ) = wkY (TQ(BC0(Ω))) ≤ wkY (T (‖Q‖BC(∆))) = ‖Q‖wkY (T ),

ω(TQ) = ω(TQ(BC0(Ω))) ≥ ω
(
T

(
1

‖Q−1‖
BC(∆)

))
=

1

‖Q−1‖
ω(T ).

It follows that it is enough to restrict ourselves to the case Ω = ∆.

Let µ denote the product probability measure on ∆. That is, µ is the
countable power of the uniform probability measure 1

2(δ1 + δ−1) on the
two-point set {−1, 1}. Let us define an equivalent norm ‖ · ‖n on C(∆) by

‖f‖n =
1

n
‖f‖+

�

∆

|f | dµ, f ∈ C(∆).

Set Yn = (C(∆), ‖ · ‖n) and let

Y =
(⊕
n∈N

Yn

)
c0

be the c0-sum of the spaces Yn.

Let Qn : C(∆)→ Yn be the identity mapping, In : Yn → Y the canonical
inclusion made by completing by zeros and Pn : Y → Yn be the canonical
projection. Let us define Tn = InQn. Then Tn is an operator from C(∆)
to Y . The proof will be completed if we show that

1

4π
wkY (Tn) ≤ cc(Tn) ≤ 2

n
, ω(Tn) ≥ 1

2
.

The first inequality follows from Theorem 3.1. Let us show the second one.
Let (fk) be a weakly Cauchy sequence in BC(∆). Then the sequence (fk)
pointwise converges to a (not necessarily continuous) function f . Since the
sequence is uniformly bounded, the Lebesgue dominated convergence theo-
rem shows that

lim
k→∞

�

∆

|fk − f | dµ = 0.

In particular, (fk) is Cauchy in the norm of L1(µ). Thus, given ε > 0 there
is k0 ∈ N such that whenever k, l ≥ k0 we have ‖fk − fl‖L1(µ) < ε, hence

‖fk − fl‖n =
1

n
‖fk − fl‖+

�

∆

|fk − fl| dµ <
2

n
+ ε.



276 O. F. K. Kalenda and J. Spurný

It follows that for each n ∈ N we have

ca(Tnfk) = ca(Qnfk) ≤ 2/n+ ε.

Since ε > 0 is arbitrary and (fk) is an arbitrary weakly Cauchy sequence in
BC(∆), we obtain cc(Tn) ≤ 2/n.

We finish by proving the third inequality. We will prove it by contradic-
tion. Suppose that ω(Tn) < c < 1/2. Let us fix a weakly compact set L0 ⊂ Y
with d̂(Tn(BC(∆)), L0) < c. Since Tn(BC(∆)) ⊂ In(Yn), we have

d̂(Qn(BC(∆)), Pn(L0)) ≤ d̂(Tn(BC(∆)), L0) < c.

Set L = Pn(L0). Then L is a weakly compact subset of Yn.
For any k ∈ N let πk : ∆ → {−1, 1} be the projection on the kth

coordinate. It is a continuous function from BC(∆). So, there is yk ∈ L such
that ‖yk−Qn(πk)‖n < c. Since L is weakly compact, there is a subsequence
(ykj ) weakly converging to some y ∈ L. Set fkj = Q−1n (ykj ). Since Qn
is an isomorphism, the sequence (fkj ) is weakly convergent in C(∆). So
it is uniformly bounded and pointwise convergent, hence by the Lebesgue
dominated theorem it is Cauchy in the L1 norm. Let 0 < ε < 1− 2c. Fix j0
such that for i, j ≥ j0 we have�

∆

|fki − fkj | dµ < ε.

Fix i > j ≥ j0. Then

1 =
�

∆

|πki − πkj | dµ ≤
�

∆

|πki − fki | dµ+
�

∆

|fki − fkj | dµ+
�

∆

|fkj − πkj | dµ

< ‖Qn(πki)− yki‖n + ε+ ‖ykj −Qn(πkj )‖n < 2c+ ε,

which is a contradiction completing the proof.

7. Final remarks and open questions. The first natural question is
the following one:

Question. Are the constants in the inequalities in Theorem 3.1 opti-
mal?

Another natural problem concerns other spaces with the reciprocal Dun-
ford–Pettis property.

Question. Is there a Banach space which enjoys the reciprocal Dun-
ford–Pettis property but not a quantitative version?

By a quantitative version we mean the existence of a constant C such
that the inequality

wkY (T ) ≤ C · cc(T )

holds for any operator T : X → Y .



Reciprocal Dunford–Pettis property 277

Let us remark that for the Dunford–Pettis property there is a quantita-
tive version which is automatically satisfied (see [15, Theorem 5.2]). We do
not know whether a similar thing holds for the reciprocal Dunford–Pettis
property. Our proofs strongly used the structure of C0(Ω) spaces.

Let us explain what seems to be a difference between these two proper-
ties.

It follows from [13, Proposition 1] that

(7.1) X has the Dunford–Pettis property

⇔ any weakly compact subset of X∗ is Mackey compact.

Futher, [13, Proposition 8] implies that

(7.2) X has the reciprocal Dunford–Pettis property

⇔ any Mackey compact subset of X∗ is weakly compact.

Hence, suppose that X has the Dunford–Pettis property. Then any
bounded set A ⊂ X∗ satisfies χm(A) ≤ 2ω(A) (see the final part of the
proof of Theorem 5.1). And this yields an automatic quantitative version of
the Dunford–Pettis property.

We are not able to proceed similarly for the reciprocal Dunford–Pettis
property. If X has the reciprocal Dunford–Pettis property and A ⊂ X∗ is
bounded, we do not know how to control ω(A) by χm(A). We know that
any Mackey compact is weakly compact, thus, if we define

ωm(A) = inf{d̂(A,H) : H ⊂ X∗ Mackey compact},
we obtain ω(A) ≤ ωm(A). But it is not clear whether ωm(A) can be con-
trolled by χm(A). (Conversely, χm(A) ≤ 2ωm(A) by the final part of the
proof of Theorem 5.1.) This inspires the following question:

Question. Is the quantity ωm defined above equivalent to χm?

For X = C0(Ω) it is the case by Theorem 5.1. But the proof essentially
used the structure of X. We do not know the answer for general Banach
spaces.
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GAČR P201/12/0290.

References

[1] C. Angosto and B. Cascales, The quantitative difference between countable compact-
ness and compactness, J. Math. Anal. Appl. 343 (2008), 479–491.

[2] C. Angosto and B. Cascales, Measures of weak noncompactness in Banach spaces,
Topology Appl. 156 (2009), 1412–1421.

[3] K. Astala and H.-O. Tylli, Seminorms related to weak compactness and to Tauberian
operators, Math. Proc. Cambridge Philos. Soc. 107 (1990), 367–375.

http://dx.doi.org/10.1016/j.jmaa.2008.01.051
http://dx.doi.org/10.1016/j.topol.2008.12.011
http://dx.doi.org/10.1017/S0305004100068638


278 O. F. K. Kalenda and J. Spurný
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[17] O. F. K. Kalenda and J. Spurný, On a difference between quantitative weak sequen-
tial completeness and the quantitative Schur property, Proc. Amer. Math. Soc. 140
(2012), 3435–3444.

[18] A. A. Milyutin, Isomorphism of the spaces of continuous functions over compact sets
of the cardinality of the continuum, Teor. Funktsĭı Funktsional. Anal. i Prilozhen. 2
(1966), 150–156 (in Russian).

[19] H. P. Rosenthal, The Banach spaces C(K), in: Handbook of the Geometry of Banach
Spaces, Vol. 2, North-Holland, Amsterdam, 2003, 1547–1602.

[20] W. Rudin, Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.

Ondřej F. K. Kalenda, Jǐŕı Spurný
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