A conditional quasi-greedy basis of l_{1}

by

S. J. Dilworth and David Mitra (Columbia, SC)

Abstract

We show that the Lindenstrauss basic sequence in l_{1} may be used to construct a conditional quasi-greedy basis of l_{1}, thus answering a question of Wojtaszczyk. We further show that the sequence of coefficient functionals for this basis is not quasi-greedy.

1. Introduction. In what follows, $\left\{e_{i}\right\}_{i=1}^{\infty}$ denotes the standard unit vector basis of l_{1}. In [5], the following concept was studied:

Definition. Let \mathfrak{X} be a Banach space with dual \mathfrak{X}^{*} and let $\left(x_{i}, x_{i}^{*}\right)_{i \in F}$ be a fundamental biorthogonal system in $\mathfrak{X} \times \mathfrak{X}^{*}$ with $\inf _{i \in F}\left\|x_{i}\right\|>0$ and $\sup _{i \in F}\left\|x_{i}^{*}\right\|<\infty$. For $m \in \mathbb{N}$, define the operator \mathcal{G}_{m} by

$$
\mathcal{G}_{m}(x)=\sum_{i \in A} x_{i}^{*}(x) x_{i}
$$

where $A \subset F$ is a set of cardinality m such that $\left|x_{i}^{*}(x)\right| \geq\left|x_{k}^{*}(x)\right|$ whenever $i \in A$ and $k \notin A$ (note that A depends on x and may not be unique; nevertheless, \mathcal{G}_{m} is well defined). Then $\left(x_{i}, x_{i}^{*}\right)_{i \in F}$ is a quasi-greedy system provided that the operators \mathcal{G}_{m} satisfy

$$
\lim _{m} \mathcal{G}_{m}(x)=x \quad \text { for each } x \in \mathfrak{X}
$$

Equivalently, by [5, Theorem 1], $\left(x_{i}, x_{i}^{*}\right)_{i \in F}$ is a quasi-greedy system if there exists a constant C so that for every $x \in \mathfrak{X}$ and for every $m \in \mathbb{N}$, we have

$$
\left\|\mathcal{G}_{m}(x)\right\| \leq C\|x\|
$$

If $\left\{x_{i}\right\}_{i=1}^{\infty}$ is, in addition, basic, it will be said to be a quasi-greedy basis. A sequence $\left\{z_{i}\right\}_{i=1}^{\infty}$ is unconditional for constant coefficients if there exist positive numbers c and C such that

$$
c\left\|\sum_{i=1}^{m} z_{i}\right\| \leq\left\|\sum_{i=1}^{m} \varepsilon_{i} z_{i}\right\| \leq C\left\|\sum_{i=1}^{m} z_{i}\right\|
$$

for any positive integer m and for any sequence of signs $\left\{\varepsilon_{i}\right\}_{i=1}^{m}$.

[^0]Remark. By [5, Proposition 2] a quasi-greedy basis is necessarily unconditional for constant coefficients.

In [5], Wojtaszczyk shows that, for $1<p<\infty$, the space l_{p} has a conditional quasi-greedy basis. Since, by the Remark, a quasi-greedy basis of l_{1} is quite close to being equivalent to $\left\{e_{i}\right\}_{i=1}^{\infty}$, and since $\left\{e_{i}\right\}_{i=1}^{\infty}$ is the unique normalized unconditional basis of l_{1} up to equivalence [3], it is of interest to find a conditional quasi-greedy basis of l_{1}. In particular, the existence of such a basis would show that l_{1} does not have a unique (up to equivalence) normalized basis that is unconditional for constant coefficients. In this note, we show that indeed such a basis exists.

Our example is derived from the basic sequence constructed by Lindenstrauss in [2]. This is a monotone, conditional basic sequence in l_{1} whose closed linear span is an \mathcal{L}_{1}-space with no unconditional basis. We denote this sequence by $\left\{x_{i}\right\}_{i=1}^{\infty}$ and its associated sequence of coefficient functionals by $\left\{x_{i}^{*}\right\}_{i=1}^{\infty}$. They are defined as follows: For $i \in \mathbb{N}$,

$$
x_{i}=e_{i}-\frac{1}{2}\left(e_{2 i+1}+e_{2 i+2}\right) .
$$

Considering x_{i}^{*} as an element of $l_{\infty} /\left[x_{i}\right]^{\perp}$, we write $x_{i}^{*}=y_{i}^{*}+\left[x_{i}\right]^{\perp}$ where the $y_{i}^{*} \in l_{\infty}$ are as defined by Holub and Retherford (see [1]): For each $i \in \mathbb{N}$, let α_{i} be the finite sequence of positive integers defined by the following conditions:
(1) $\alpha_{i}(1)=i$.
(2) $\alpha_{i}(j)=\alpha_{i}(j-1)-\left(\left[\alpha_{i}(j-1) / 2\right]+1\right)$ for admissible $j<i$ (that is, such that $\left.\alpha_{i}(j)>0\right)$, where $[k]$ denotes the greatest integer less than or equal to k.

Then y_{i}^{*} is defined by

$$
y_{i}^{*}=\sum_{j=1}^{\left|\alpha_{i}\right|}\left(\frac{1}{2}\right)^{j-1} e_{\alpha_{i}(j)} .
$$

Thus, for example,

$$
\begin{aligned}
& y_{1}^{*}=(1,0, \ldots) \\
& y_{2}^{*}=(0,1,0, \ldots) \\
& y_{3}^{*}=\left(\frac{1}{2}, 0,1,0, \ldots\right) \\
& y_{4}^{*}=\left(\frac{1}{2}, 0,0,1,0, \ldots\right) \\
& y_{5}^{*}=\left(0, \frac{1}{2}, 0,0,1,0, \ldots\right) \\
& y_{6}^{*}=\left(0, \frac{1}{2}, 0,0,0,1,0, \ldots\right), \\
& y_{7}^{*}=\left(\frac{1}{4}, 0, \frac{1}{2}, 0,0,0,1,0, \ldots\right), \\
& y_{8}^{*}=\left(\frac{1}{4}, 0, \frac{1}{2}, 0,0,0,0,1,0,0, \ldots\right) .
\end{aligned}
$$

The properties of $\left\{x_{i}\right\}_{i=1}^{\infty}$ which we shall use in what follows are summarized in the following fact (see [2], [3], and, also, [4]):

FACT. The sequence $\left\{x_{i}\right\}_{i=1}^{\infty}$ satisfies:
(1) $\left\{x_{i}\right\}_{i=1}^{\infty}$ is a monotone basic sequence ([4, p. 455]).
(2) $\left[x_{i}\right]$ has no unconditional basis ([4, p. 455]).
(3) For $n \in \mathbb{N}$, there exists an isomorphism T_{n} from $\left[x_{i}: 1 \leq i \leq n\right]$ onto l_{1}^{n} satisfying $\left\|T_{n}\right\|\left\|T_{n}^{-1}\right\| \leq 2$ ([3, Ex. 8.1]).
2. Results. We now construct the basis heralded in the Introduction. To do this, it suffices by [5, Proposition 3] to construct such a basis in a space isomorphic to l_{1}. Towards this end, define, for each $n \in \mathbb{N}$,

$$
F_{n}=\left[x_{i}: 1 \leq i \leq n\right] .
$$

Let

$$
\mathfrak{X}=\left(\sum_{i=1}^{\infty} \oplus F_{i}\right)_{1} .
$$

We claim that the natural basis $\left\{\widetilde{x}_{i}\right\}_{i=1}^{\infty}$ of \mathfrak{X} obtained from the x_{i} 's is the desired sequence. Indeed, it follows from the Fact that $\left\{\widetilde{x}_{i}\right\}_{i=1}^{\infty}$ is a monotone, conditional basis of \mathfrak{X}, and that \mathfrak{X} is isomorphic to l_{1}. Moreover, assuming for the moment that $\left\{x_{i}\right\}_{i=1}^{\infty}$ is quasi-greedy, for $m \in \mathbb{N}$ and $y=\sum y_{i} \in \mathfrak{X}$, we have

$$
\left\|\mathcal{G}_{m}(y)\right\| \leq \sup _{k \in K_{m}} \sum_{i=1}^{\infty}\left\|\mathcal{G}_{k(i)}\left(y_{i}\right)\right\| \leq C \sum_{i=1}^{\infty}\left\|y_{i}\right\|=C\|y\|,
$$

where C is as in the Definition, $K_{m}=\left\{k: \mathbb{N} \rightarrow \mathbb{N} \cup\{0\}: \sum_{i=1}^{\infty} k(i)=m\right\}$, and $\mathcal{G}_{0}(x)=0$ for each $x \in \mathfrak{X}$ (note that the operators \mathcal{G}_{j} appearing in the above inequality are defined with respect to two different sequences). Thus, the fact that $\left\{\widetilde{x}_{i}\right\}_{i=1}^{\infty}$ is quasi-greedy will be a consequence of the following theorem.

Theorem. The sequence $\left\{x_{i}\right\}_{i=1}^{\infty}$ satisfies

$$
\begin{equation*}
3\left\|\sum_{i \in S_{1} \cup S_{2}} \alpha_{i} x_{i}\right\| \geq\left\|\sum_{i \in S_{1}} \alpha_{i} x_{i}\right\| \tag{1}
\end{equation*}
$$

whenever S_{1} and S_{2} are disjoint finite subsets of \mathbb{N} with

$$
\begin{equation*}
\min _{i \in S_{1}}\left|\alpha_{i}\right| \geq \max _{i \in S_{2}}\left|\alpha_{i}\right| . \tag{2}
\end{equation*}
$$

Proof. For $A \subseteq \mathbb{N}$ and $x \in l_{1}$, we denote by $P_{A} x$ the vector in l_{1} whose j th coordinate is $x(j)$ if $j \in A$ and zero otherwise. Let S_{1}, S_{2}, and $\left\{\alpha_{i}\right\}_{i \in S_{1} \cup S_{2}}$ be as above. Set

$$
x=\sum_{i \in S_{1}} \alpha_{i} x_{i} \quad \text { and } \quad y=\sum_{i \in S_{2}} \alpha_{i} x_{i}
$$

and define the sets

$$
\begin{aligned}
A_{0} & =\left\{j \in \mathbb{N}: \sum_{i \in S_{1}} x_{i}(j)=1\right\} \\
B_{0} & =\left\{j \in \mathbb{N}: \sum_{i \in S_{1}} x_{i}(j)=-1 / 2\right\} \\
C_{0} & =\left\{j \in \mathbb{N}: \sum_{i \in S_{1}} x_{i}(j)=1 / 2\right\}
\end{aligned}
$$

First, we concentrate our attention on B_{0}. We define the sets

$$
\begin{aligned}
W_{1} & =\left\{i \in S_{2}: x_{i}(j)=1 \text { for some } j \in B_{0}\right\} \\
A_{1} & =\left\{j \in A_{0}: x_{i}(j)=-1 / 2 \text { for some } i \in W_{1}\right\}, \\
B_{1} & =\left\{j \notin A_{0}: x_{i}(j)=-1 / 2 \text { for some } i \in W_{1}\right\}
\end{aligned}
$$

Finally, set

$$
y_{0}=x \quad \text { and } \quad y_{1}=\sum_{i \in W_{1}} \alpha_{i} x_{i}
$$

Note that A_{1}, B_{1}, B_{0}, and C_{0} are mutually disjoint. We also see from the triangle inequality that

$$
\begin{equation*}
\left\|P_{B_{0}} y_{0}\right\| \leq\left\|P_{B_{0}}\left(y_{0}+y_{1}\right)\right\|+\left\|P_{B_{0}} y_{1}\right\| \tag{3}
\end{equation*}
$$

But, since $\left\|P_{B_{0}} y_{1}\right\|=\left\|P_{A_{1}} y_{1}\right\|+\left\|P_{B_{1}} y_{1}\right\|$, we deduce from (3) that

$$
\begin{equation*}
\left\|P_{B_{0}}\left(y_{0}+y_{1}\right)\right\|+\left\|P_{B_{1}} y_{1}\right\| \geq\left\|P_{B_{0}} y_{0}\right\|-\left\|P_{A_{1}} y_{1}\right\| \tag{*}
\end{equation*}
$$

Concentrating our attention now on the set B_{1}, we let

$$
\begin{aligned}
W_{2} & =\left\{i \in S_{2}: x_{i}(j)=1 \text { for some } j \in B_{1}\right\} \\
A_{2} & =\left\{j \in A_{0}: x_{i}(j)=-1 / 2 \text { for some } i \in W_{2}\right\} \\
B_{2} & =\left\{j \notin A_{0}: x_{i}(j)=-1 / 2 \text { for some } i \in W_{2}\right\}
\end{aligned}
$$

Set

$$
y_{2}=\sum_{i \in W_{2}} \alpha_{i} x_{i}
$$

Then $A_{1}, A_{2}, B_{1}, B_{2}, B_{0}$, and C_{0} are mutually disjoint and, as above, we have

$$
\begin{equation*}
\left\|P_{B_{1}}\left(y_{1}+y_{2}\right)\right\|+\left\|P_{B_{2}} y_{2}\right\| \geq\left\|P_{B_{1}} y_{1}\right\|-\left\|P_{A_{2}} y_{2}\right\| \tag{*}
\end{equation*}
$$

In general, at the l th step of the induction, we set

$$
\begin{aligned}
W_{l} & =\left\{i \in S_{2}: x_{i}(j)=1 \text { for some } j \in B_{l-1}\right\} \\
A_{l} & =\left\{j \in A_{0}: x_{i}(j)=-1 / 2 \text { for some } i \in W_{l}\right\} \\
B_{l} & =\left\{j \notin A_{0}: x_{i}(j)=-1 / 2 \text { for some } i \in W_{l}\right\}
\end{aligned}
$$

Set

$$
y_{l}=\sum_{i \in W_{l}} \alpha_{i} x_{i}
$$

Then the sets $A_{j}, B_{j}(1 \leq j \leq l), B_{0}$, and C_{0} are mutually disjoint, and we have

$$
\begin{equation*}
\left\|P_{B_{l-1}}\left(y_{l-1}+y_{l}\right)\right\|+\left\|P_{B_{l}} y_{l}\right\| \geq\left\|P_{B_{l-1}} y_{l-1}\right\|-\left\|P_{A_{l}} y_{l}\right\| . \tag{*}
\end{equation*}
$$

This process must end at some stage k with $W_{k+1}=\emptyset$. Summing the inequalities $(*)$ so obtained and simplifying, we obtain

$$
\begin{equation*}
\sum_{i=1}^{k}\left\|P_{B_{i-1}}\left(y_{i-1}+y_{i}\right)\right\|+\left\|P_{B_{k}} y_{k}\right\| \geq\left\|P_{B_{0}} y_{0}\right\|-\sum_{i=1}^{k}\left\|P_{A_{i}} y_{i}\right\| \tag{4}
\end{equation*}
$$

But, for each $i=0,1, \ldots, k$, we have $B_{i} \cap \operatorname{supp} y_{j}=\emptyset$ for $j \notin\{i, i+1\}$. Moreover, the mutually disjoint sets $A_{i}(i=1, \ldots, k)$ are contained in A_{0}. Recalling that $y_{0}=x$, by these two observations the inequality (4) reduces to

$$
\begin{equation*}
\sum_{i=0}^{k}\left\|P_{B_{i}}(x+y)\right\| \geq\left\|P_{B_{0}} x\right\|-\left\|P_{A_{0}} y\right\| \tag{5}
\end{equation*}
$$

Since the sets $C_{0}, A_{0}, B_{0}, B_{1}, B_{2}, \ldots, B_{k}$ are mutually disjoint, we have

$$
\|x+y\| \geq\left\|P_{A_{0}}(x+y)\right\|+\sum_{i=0}^{k}\left\|P_{B_{i}}(x+y)\right\|+\left\|P_{C_{0}}(x+y)\right\|
$$

and so, using (5), we obtain

$$
\begin{equation*}
\|x+y\| \geq\left\|P_{A_{0}}(x+y)\right\|-\left\|P_{A_{0}} y\right\|+\left\|P_{B_{0}} x\right\|+\left\|P_{C_{0}} x\right\| . \tag{6}
\end{equation*}
$$

Using (2) we have $\left\|P_{A_{0}}(x+y)\right\| \geq\left\|P_{A_{0}} y\right\|$, and thus (6) implies

$$
\begin{equation*}
\|x+y\| \geq\left\|P_{B_{0}} x\right\|+\left\|P_{C_{0}} x\right\| \tag{7}
\end{equation*}
$$

Also, by (2), we have $2\left\|P_{A_{0}}(x+y)\right\| \geq\left\|P_{A_{0}} x\right\|$; thus,

$$
\begin{equation*}
2\|x+y\| \geq\left\|P_{A_{0}} x\right\| \tag{8}
\end{equation*}
$$

Since $\|x\|=\left\|P_{A_{0}} x\right\|+\left\|P_{B_{0}} x\right\|+\left\|P_{C_{0}} x\right\|$, we may now obtain (1) by adding the inequalities (7) and (8).

REmark. We note that the sequence of coefficient functionals for $\left\{\widetilde{x}_{i}\right\}_{i=1}^{\infty}$ is not quasi-greedy. To see this, it is enough to show that $\left\{x_{i}^{*}\right\}_{i=1}^{\infty}$ is not quasi-greedy. Towards this end, note that

$$
\begin{equation*}
\left\|\sum_{i=1}^{2^{n+1}-2}(-1)^{i} x_{i}^{*}\right\| \leq\left\|\sum_{i=1}^{2^{n+1}-2}(-1)^{i} y_{i}^{*}\right\|=1 \tag{9}
\end{equation*}
$$

However, defining

$$
\left\{\alpha_{n}\right\}_{n=1}^{\infty}=\left\{1,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \ldots\right\}
$$

and

$$
z_{n}=\sum_{i=1}^{2^{n+1}-2} \alpha_{i} x_{i}=e_{1}+e_{2}+\sum_{i=1}^{2^{n+1}-2} \frac{1}{2^{n+1}} e_{2 \cdot\left(2^{n+1}-2\right)-1+i}
$$

we obtain

$$
\begin{equation*}
\left\|\sum_{i=1}^{2^{n+1}-2} x_{i}^{*}\right\| \geq \frac{1}{\left\|z_{n}\right\|}\left|\sum_{i=1}^{2^{n+1}-2} x_{i}^{*}\left(z_{n}\right)\right|=\frac{1}{4}\left\langle\sum_{i=1}^{2^{n+1}-2} x_{i}^{*}, e_{1}+e_{2}\right\rangle=\frac{n}{2} \tag{10}
\end{equation*}
$$

It follows from (9), (10), and the Remark of the Introduction that $\left\{x_{i}^{*}\right\}_{i=1}^{\infty}$ is not quasi-greedy.

Acknowledgements. The authors thank Professor Wojtaszczyk for providing them with a preprint of his paper [5].

References

[1] J. R. Holub and J. R. Retherford, Some curious bases for c_{0} and $C[0,1]$, Studia Math. 34 (1970), 227-240.
[2] J. Lindenstrauss, On a certain subspace of l_{1}, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 539-542.
[3] J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in \mathcal{L}_{p}-spaces and their applications, Studia Math. 29 (1968), 275-326.
[4] I. Singer, Bases in Banach Spaces, Vol. I, Grundlehren Math. Wiss. 154, Springer, New York, 1970.
[5] P. Wojtaszczyk, Greedy algorithm for general biorthogonal systems, J. Approx. Theory, to appear.

Department of Mathematics University of South Carolina Columbia, SC 29208, U.S.A.
E-mail: dilworth@math.sc.edu mitra@math.sc.edu

[^0]: 2000 Mathematics Subject Classification: Primary 46B15.

