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A Hardy space related to the
square root of the Poisson kernel

by

Jonatan Vasilis (Göteborg)

Abstract. A real-valued Hardy space H1
√ (T) ⊆ L1(T) related to the square root of

the Poisson kernel in the unit disc is defined. The space is shown to be strictly larger
than its classical counterpart H1(T). A decreasing function is in H1

√ (T) if and only if the

function is in the Orlicz space L log logL(T). In contrast to the case of H1(T), there is
no such characterization for general positive functions: every Orlicz space strictly larger
than L logL(T) contains positive functions which do not belong to H1

√ (T), and no Orlicz

space of type ∆2 which is strictly smaller than L1(T) contains every positive function
in H1

√ (T). Finally, we have a characterization of certain eigenfunctions of the hyperbolic

Laplace operator in terms of H1
√ (T).

1. Introduction. Let T denote the unit circle in R2, which we identify
with angles in R/2πZ. The classical real-valued Hardy space H1(T) can be
defined as the set of f ∈ L1(T) such that the radial maximal function P ∗f
is in L1(T). Here (P ∗f)(θ) = supr∈[0,1[ |(Pf)(r, θ)|, θ ∈ T, and Pf is the
Poisson extension of f , that is, (Pf)(r, θ) =

	
T P (r, θ − φ)f(φ) dφ for r ∈

[0, 1[ and θ ∈ T, where

P (r, θ) =
1

2π
· 1− r2

1− 2r cos θ + r2

is the Poisson kernel in the unit disc. We are instead interested in the space
corresponding to the square root of the Poisson kernel, defined as follows.
For f ∈ L1(T), r ∈ [0, 1[ and θ ∈ T we let P0(r, θ) =

√
P (r, θ) and define

(P0f)(r, θ) =
�

T
P0(r, θ − φ)f(φ) dφ,

(P0f)(r, θ) =
(P0f)(r, θ)
(P01)(r, 0)

,

(P∗0f)(θ) = sup
r∈[0,1[

|(P0f)(r, θ)|,
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where, as opposed to the classical case, we must normalize by dividing by
the radial function P01. A Hardy type space related to P∗0 is now defined
just as in the classical case.

Definition. The real-valued Hardy space H1
√ (T) is the subspace of

L1(T) consisting of functions f ∈ L1(T) such that P∗0f ∈ L1(T). A norm
‖ · ‖H1

√ (T) on H1
√ (T) is defined by ‖f‖H1

√ (T) = ‖P∗0f‖L1(T).

Our interest in studying how classical results change when the ordinary
Poisson operator P is replaced by P0 stems from the article [23] by Sjögren.
Classically, Fatou’s theorem on boundary convergence states that if f ∈
L1(T), then (Pf)(r, θ) → f(α) almost everywhere as (r, θ) → (1−, α) non-
tangentially, in the sense that |θ − α|/(1 − r) remains bounded. Replacing
P by P0, we get a similar result [23]: if f ∈ L1(T), then (P0f)(r, θ)→ f(α)
almost everywhere as (r, θ) → (1−, α) weakly tangentially, meaning that
|θ − α|/

(
(1− r) log

(
2

1−r
))

remains bounded. That is, the operator P0 allows
us to extend the approach region given by Fatou’s theorem—which is sharp
for P by a theorem due to Littlewood [13]. For P0 there are several results on
sharp approach regions for boundary functions f in other function spaces,
including Lp(T) for 1 ≤ p ≤ +∞ and weak Lp(T) for 1 < p < +∞; see
[2, 3, 19, 24]. There are also similar results in other settings [4, 5, 16, 20, 21,
22, 26].

Interest in the operator P0 itself comes from the fact that every eigen-
function of the hyperbolic Laplace operator, 1

4(1−r2)2∆, admits an integral
representation in terms of a power of the Poisson kernel [10, 12]. The expo-
nent is determined by the eigenvalue, and the square root is the case giving
the smallest possible eigenvalue with positive eigenfunctions.

Finally, note that f ∈ H1(T) obviously does not imply that |f | ∈ H1(T),
and that the same is true for H1

√ (T). That is, whether a function is in the
Hardy space or not may depend on cancellation between the positive and
the negative parts. Nevertheless, studying the positive functions—as we will
do—is of interest also in the classical case; see for instance [14].

2. Results. The space H1
√ (T) is strictly larger than its classical coun-

terpart H1(T), with the inclusion given by the following proposition.

Proposition 2.1. H1(T) ⊆ H1
√ (T), and there exists a constant C > 0

such that ‖f‖H1
√ (T) ≤ C‖f‖H1(T) for all f ∈ H1(T).

For positive functions f ∈ L1(T), f ≥ 0, it is well known in the classi-
cal case—see for instance [25] or [8, Section II.2]—that f ∈ H1(T) if and
only if f ∈ L logL(T). It is easy to see that this equivalence also holds if,
instead of positivity, we require that f ∈ L1(T) be decreasing, as defined in
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Proposition 2.2. Our next result states that in the case of H1
√ (T), a similar

equivalence—with an iterated logarithm—holds for decreasing functions.

Proposition 2.2. Assume that f ∈ L1(T). If both f(ζ+θ) and f(ζ−θ)
are decreasing functions of θ ∈ [0, π[ for some fixed ζ ∈ T, then f ∈ H1

√ (T)
if and only if f ∈ L log logL(T).

The Orlicz spaces L logL(T) and L log logL(T) are defined in the next
section.

The equivalence of Proposition 2.2 does not, however, extend to general
positive functions. In fact, our main result (Theorem 2.3) states that neither
implication can hold: although H1

√ (T) contains L logL(T), it contains no
strictly larger Orlicz space, and conversely, L1(T) is the smallest Orlicz space
of type ∆2 that contains all, or all positive, functions in H1

√ (T).

Theorem 2.3. Let Φ : [0,+∞[ → [0,+∞[ be a convex and increasing
function satisfying Φ(0) = 0 and Φ(x) → +∞ as x → +∞. Denote by
LΦ(T) the corresponding Orlicz space.

(i) If lim infx→+∞ Φ(x)/(x log x) = 0, then there exists a function f ∈
LΦ(T), f ≥ 0, such that f /∈ H1

√ (T).
(ii) If Φ is of type ∆2—that is, if Φ(2x) ≤ CΦ(x) for all sufficiently large

x—and lim supx→+∞ Φ(x)/x = +∞, then there exists a function
g ∈ H1

√ (T), g ≥ 0, such that g /∈ LΦ(T).

Just as in the classical case, the space H1
√ (T) does not change if we

a priori allow distributions rather than just L1(T)-functions in the definition.
That is, defining P∗0T for distributions T ∈ D′(T) in the obvious way (see
Section 4.3), we prove that P∗0T ∈ L1(T) implies that T is actually a function
in L1(T).

Proposition 2.4. Let T ∈ D′(T). If P∗0T ∈ L1(T) then T ∈ L1(T).

Finally, we have a characterization of certain eigenfunctions of the hy-
perbolic Laplace operator in terms of H1

√ (T).

Proposition 2.5. Let D be the unit disc in R2. If u ∈ C2(D) satisfies

(i) 1
4(1− r2)2∆u(r, θ) = −1

4u(r, θ) in D, and

(ii) u∗ ∈ L1(T), where u∗(θ) = sup
r∈[0,1[

|u(r, θ)|
(P01)(r, 0)

,

then there exists a function f ∈ H1
√ (T) such that u = P0f . Conversely, if

f ∈ H1
√ (T) then u = P0f defines a function satisfying (i) and (ii).
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3. Preliminaries. As usual we identify the unit circle T with angles in
R/2πZ, and we let |θ| denote the modulus of the representative for θ ∈ T
in the interval ]−π, π]. Unless otherwise specified, integration over subsets
of T is always with respect to the rotationally invariant arc measure of T,
normalized so that T has measure 2π. Suitably interpreted, this coincides
with ordinary Lebesgue measure on the real line, and we let |E| denote the
Lebesgue measure of a measurable set E ⊆ R. Identifying a measurable set
E ⊆ T with a subset in R, we have |E| =

	
E dθ, where the integration is

in T.
The symbol C will denote a sufficiently large, strictly positive but finite

constant whose exact value can change even within the same line. Similarly c
denotes a small, strictly positive constant; that is, c = C−1. Given functions
f and g satisfying cg ≤ f ≤ Cg pointwise, we write f ∼ g. For x ∈ R, we
let bxc denote the largest integer less than or equal to x.

In the introduction we defined the classical Hardy space H1(T) to be
the set of f ∈ L1(T) such that P ∗f ∈ L1(T). Equivalently, this space can be
defined in terms of atoms [6], namely

H1(T) =
{∑
j≥0

λjaj ;
∑
j≥0

|λj | < +∞ and a0, a1, . . . are atoms
}
,

where
∑

j≥0 λjaj converges in L1(T). An atom is a function a ∈ L∞(T)
which is either the constant 1

2π , or is such that for some interval I ⊆ T,

(i) supp a ⊆ I,
(ii) ‖a‖L∞(T) ≤ 1/|I|,

(iii)
	
T a(θ) dθ = 0.

A norm on H1(T) is defined by ‖f‖H1(T) = inf
∑

j≥0 |λj |, where the infimum
is over all atomic decompositions

∑
j≥0 λjaj of f .

By an Orlicz space on T, denoted LΦ(T), we mean the set of all mea-
surable functions f : T → R such that

	
T Φ(α|f(θ)|) dθ < +∞ for some

constant α > 0, where Φ : [0,+∞[→ [0,+∞[ is a given convex and increas-
ing function such that Φ(0) = 0 and Φ(x) → +∞ as x → +∞. As usual,
two functions in LΦ(T) are identified if they are equal almost everywhere.
Since Φ is increasing and convex it follows that the space LΦ(T) is a vector
space. We say that LΦ(T) and Φ are of type ∆2 if Φ(2x) ≤ CΦ(x) for all
sufficiently large x. In this case a measurable function f is in LΦ(T) if and
only if

	
T Φ(f(θ)) dθ < +∞. We refer to [18] for a background on Orlicz

spaces.
Two Orlicz spaces will be of particular interest to us: the classical space

L logL(T), which is the Orlicz space LΦ(T) with Φ(x) = x log(1 +x), x ≥ 0,
and the space L log logL(T), defined as follows.
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Definition. The space L log logL(T) is the Orlicz space LΦ(T) with
Φ(x) = x log

(
1 + log(1 + x)

)
, x ≥ 0.

Clearly, both spaces are of type ∆2 and are subspaces of L1(T).

4. Proofs

4.1. The inclusion H1(T) ⊆ H1
√ (T). The main step of the proof of

Proposition 2.1 is to show that the atoms have uniformly bounded norm in
H1

√ (T).

Lemma 4.1. There exists a constant C > 0 such that ‖a‖H1
√ (T) ≤ C for

all atoms a.

The normalizing factor (P01)(r, 0) satisfies

(P01)(r, 0) ∼ (1− r)1/2 log
(

2
1− r

)
(see [23]), valid for all r ∈ [0, 1[.

Proof of Lemma 4.1. If a is the constant atom, then obviously ‖P∗0a‖L1(T)

≤ C. Otherwise
	
T a(θ) dθ = 0 and there exist ζ ∈ T and s ∈ ]0, π] such that

supp a ⊆ {η ∈ T; |ζ − η| ≤ s} and ‖a‖L∞(T) ≤ 1/(2s). Without loss of
generality we may assume that ζ = 0.

To show that ‖P∗0a‖L1(T) ≤ C, we first consider integration over θ ∈ T
with |θ| ≤ 2s. We have |(P0a)(r, θ)| ≤ ‖a‖L∞(T) ≤ 1/(2s), and hence

�

|θ|≤2s

sup
r∈ [0,1[

|(P0a)(r, θ)| dθ ≤ C.

For the case when |θ| > 2s, we make use of the moment condition	
T a(φ) dφ = 0 by subtracting P0(r, θ) when estimating (P0a)(r, θ):

|(P0a)(r, θ)| = 1
(P01)(r, 0)

∣∣∣�
T

(P0(r, θ − φ)− P0(r, θ))a(φ) dφ
∣∣∣

≤ C

(1− r)1/2 log
(

2
1−r
) �

T
|P0(r, θ − φ)− P0(r, θ)| · |a(φ)| dφ.

Letting D2P0 denote the partial derivative of P0 with respect to the second
variable, the mean value theorem gives

|P0(r, θ − φ)− P0(r, θ)| = |(D2P0)(r, ξ)| · |φ|,
where |φ| ≤ s and ξ is some point on the shortest path between θ−φ and θ,
and since |φ| ≤ s < |θ|/2 we have |ξ| ∼ |θ|. Since

|(D2P0)(r, ξ)| = 1√
2π
· r(1− r2)1/2

|sin ξ|
(1− 2r cos ξ + r2)3/2
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we get

|(P0a)(r, θ)| ≤
�

T

Cs|sin ξ|
log
(

2
1−r
)
(1− 2r cos ξ + r2)3/2

· |a(φ)| dφ,

and if |ξ| < π/2, then |sin ξ| ∼ |ξ| ∼ |θ| and 1− cos ξ ∼ |ξ|2 ∼ |θ|2, so that

|(P0a)(r, θ)| ≤ Cs|θ|
log
(

2
1−r
)
((1− r)2 + cr|θ|2)3/2

�

T
|a(φ)| dφ ≤ Cs

|θ|2
.

If instead |ξ| ≥ π/2, then |(D2P0)(r, ξ)|/(P01)(r, 0) ≤ C for some universal
constant, so that |(P0a)(r, θ)| ≤ C

	
T |a(φ)| dφ ≤ C. In either case

�

|θ|>2s

sup
r∈ [0,1[

|(P0a)(r, θ)| dθ ≤ C.

Proof of Proposition 2.1. Let f ∈ H1(T). Then f has an atomic decom-
position f =

∑
k≥0 λkak, converging in L1(T), where (ak)k≥0 are atoms and

the weights satisfy
∑

k≥0 |λk| < +∞.
Suppose that we have proved that

(4.1) (P∗0f)(θ) ≤
∑
k≥0

|λk| · (P∗0ak)(θ)

almost everywhere. Then by monotone convergence and Lemma 4.1 we get

‖P∗0f‖L1(T) ≤
∑
k≥0

|λk| · ‖P∗0ak‖L1(T) ≤ C
∑
k≥0

|λk|,

where C does not depend on f , and taking the infimum over all atomic
representations of f yields the proposition. Hence it only remains to prove
inequality (4.1). The proof we give carries through for every weak type (1, 1)
operator T that pointwise satisfies |T (f + g)| ≤ |Tf | + |Tg| and |T (λf)| ≤
|λ| · |Tf | for all functions f, g and scalars λ ∈ R. That the radial maximal
function P∗0 is of weak type (1, 1) was proved in [23]; in fact this was shown
even for the weakly tangential maximal function.

We have, for N ∈ N,

(P∗0f)(θ) =
(
P∗0
∑
k≥0

λkak

)
(θ) = sup

r∈[0,1[

∣∣∣(P0

∑
k≥0

λkak

)
(r, θ)

∣∣∣
≤ sup

r∈[0,1[

( N∑
k=0

|λk| · |(P0ak)(r, θ)|+
∣∣∣(P0

∑
k>N

λkak

)
(r, θ)

∣∣∣)

≤
N∑
k=0

|λk| · (P∗0ak)(θ) +
(
P∗0
∑
k>N

λkak

)
(θ).
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Given ε > 0, we deduce by the weak type (1, 1) estimate that∣∣∣{θ ∈ T;
(
P∗0
∑
k>N

λkak

)
(θ) ≥ ε

}∣∣∣ ≤ C

ε

∥∥∥∑
k>N

λkak

∥∥∥
L1(T)

,

which converges to zero as N → +∞, that is,

P∗0
∑
k>N

λkak → 0 in measure

as N → +∞. Consequently there exists a subsequence (Nj)j≥1 such that
P∗0
∑

k>Nj
λkak → 0 almost everywhere as j → +∞. Hence inequality (4.1)

holds, and the proposition follows.

4.2. Decreasing functions and positive functions. Clearly, Propo-
sition 2.2 implies that H1

√ (T) is strictly larger than its classical counterpart
H1(T). For example, fix p ∈ ]1, 2] and let

f(φ) =
1

φ log(1/φ)p

for sufficiently small φ > 0, and zero otherwise. Then f is a positive and
decreasing function, and we see that f ∈ L log logL(T) \ L logL(T). Hence
by the proposition and the classical result, f ∈ H1

√ (T) \H1(T).

Proof of Proposition 2.2. Take f ∈ L1(T) as in the statement of the
proposition.

Without loss of generality, we may assume that ζ = 0. We may also
assume that f is positive, as we see by decomposing the function into
its positive and negative parts, f = f+ − f−. Now f+ is positive and
decreasing from 0, and f− is positive and decreasing from π, and obvi-
ously f ∈ L log logL(T) if and only if f+, f− ∈ L log logL(T). Furthermore,
f ∈ H1

√ (T) if and only if f+, f− ∈ H1
√ (T), which is easy to see since any

singularities of f+ and f− are separated, in fact even antipodal. Finally, we
may assume that the support of f is contained in [0, π]; the general case
follows easily from this special case.

Assume first that f ∈ L log logL(T). In the simple estimate

(P∗0f)(θ) ≤ sup
r∈[0,2/3]

(P0f)(r, θ) + sup
r∈]2/3,1[

(P0f)(r, θ)

≤ C‖f‖L1(T) + C sup
r∈]2/3,1[

1
log
(

1
1−r
) �

T

f(φ) dφ
(1− r) + |θ − φ|

,

the first term is obviously in L1(T).



214 J. Vasilis

Let t ∈ ]0, 1/3[. For almost all θ we have

1
log(1/t)

�

T

f(φ) dφ
t+ |θ − φ|

=
1

log(1/t)

|θ|/2�

0

f(φ) dφ
t+ |θ − φ|

+
1

log(1/t)

π�

|θ|/2

f(φ) dφ
t+ |θ − φ|

≤ 1
log(1/t)

· 1
t+ |θ|/2

|θ|/2�

0

f(φ) dφ+ Cf(|θ|/2)

≤ 2
|θ| log(2/|θ|)

|θ|/2�

0

f(φ) dφ+ Cf(|θ|/2),

where the last inequality follows by considering separately the cases |θ|/2 <
t < 1/3, in which case t 7→ t log(1/t) is increasing, and t ≤ |θ|/2. Hence, for
almost all θ,

(P∗0f)(θ) ≤ C‖f‖L1(T) + Cf(|θ|/2) +
2

|θ| log(2/|θ|)

|θ|/2�

0

f(φ) dφ,

where, of course, the first two terms are integrable. As for the third term,
we see that it is obviously integrable over large θ, say for |θ| > 2/e. For the
remaining range, |θ| ≤ 2/e, we have

�

|θ|≤2/e

1
|θ| log(2/|θ|)

|θ|/2�

φ=0

f(φ) dφ dθ = 2
1/e�

0

f(φ) log log(1/φ) dφ.

Now let g(φ) = f(φ) + 1/
√
φ, 0 < φ ≤ 1/e, which, being a finite sum of

L log logL(T) functions, satisfies the condition
	1/e
0 Φ(g(φ)) dφ < +∞ for

Φ(x) = x log(1 + log(1 + x)), x ≥ 0. Since 1/
√
φ ≤ g(φ), taking logarithms

gives

log log(1/φ) ≤ log log g(φ) + log 2 ≤ log(1 + log(1 + g(φ))) + log 2,

so that
1/e�

0

f(φ) log log(1/φ) dφ ≤
1/e�

0

Φ
(
g(φ)

)
dφ+ C‖f‖L1(T) < +∞.

Hence f ∈ H1
√ (T) and we have shown that L log logL(T) ⊆ H1

√ (T) when
restricted to positive and decreasing functions.

Conversely, suppose that f ∈ H1
√ (T). Without loss of generality we may

assume that ‖f‖L1(T) ≤ 1. Let t ∈ ]0, 1/2[ and |θ| < 1. Then

(P∗0f)(θ) ≥ c

log(1/t)

|θ|/2�

0

f(φ) dφ
t+ |θ − φ|

≥ c

log(1/t)

|θ|/2�

0

f(φ) dφ
t+ 3|θ|/2

,



A Hardy space 215

and choosing t = |θ|/2 we get

(P∗0f)(θ) ≥ c

log(2/|θ|)

|θ|/2�

0

f(φ) dφ
2|θ|

.

Since P∗0f ∈ L1(T) we may integrate over θ ∈ T with |θ| < 2/e and get

+∞ >
�

|θ|<2/e

1
|θ| log(2/|θ|)

|θ|/2�

φ=0

f(φ) dφ dθ = 2
1/e�

0

f(φ) log log(1/φ) dφ.

Now f(φ) ≤ 1/φ for almost all φ ∈ ]0, π], since

1 ≥ ‖f‖L1(T) ≥
φ�

0

f(θ) dθ ≥ f(φ)φ

for almost all φ in this interval. Thus

log(1 + log(1 + f(φ))) ≤ log(1 + log(1 + 1/φ)) ≤ C log log(1/φ)

where the last inequality holds for φ ∈ [0, 1/3], say, so that
1/3�

0

f(φ) log(1 + log(1 + f(φ))) dφ ≤ C
1/3�

0

f(φ) log log(1/φ) dφ < +∞.

Since f ∈ L1(T) is decreasing, we may extend the integration to all of T and
get f ∈ L log logL(T), which completes the proof of Proposition 2.2.

We now turn to the proof of Theorem 2.3, showing that both implications
in Proposition 2.2 may fail for positive functions which are not decreasing,
even if we consider a smaller or a larger Orlicz space. In the proof we will
construct the functions required for parts (i) and (ii) by forming linear com-
binations of indicator functions 1E . The weight α for 1E is chosen so that
Φ(α) · |E| is small compared to ‖P∗0 (α1E)‖L1(T) in part (i), and vice versa
in part (ii). The indicator functions we will use are given by the following
two lemmas.

Lemma 4.2. Let R ≥ 0 be a real number, ν ≥ 1 an integer and J ⊆ T
an interval. If 2ν ≥ R2 and |J | ≥ 2−R, then there exists a set E ⊆ J with
measure |E| = 2−ν−R−1 and whose indicator function 1E satisfies�

J

(P∗01E)(θ) dθ ≥ cν2−ν−R,

where c does not depend on ν, R, or J .

Lemma 4.3. Let R ≥ 0, ν ≥ 1 be real numbers and J ⊆ T an interval.
If 22ν−R is a strictly positive integer and |J | ≥ 2−R, then there exists a set
E ⊆ J with measure |E| = 2−2ν−R and whose indicator function 1E satisfies
‖P∗01E‖L1(T) ≤ C2−2ν , where C does not depend on ν, R, or J .
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Proof of Lemma 4.2. Without loss of generality we may assume that
ν ≥ 4 and that J = {θ ∈ T; 0 ≤ θ ≤ 2−R}. For f ∈ L1(T), t ∈ ]0, 1/2[ and
θ ∈ T we let

(Kf)(t, θ) =
1

log2(1/t)

�

|θ−φ|<1/2

f(φ) dφ
t+ |θ − φ|

,

(K∗f)(θ) = sup
t∈]0,1/2[

|(Kf)(t, θ)|.

Note that K∗f is measurable, and that (P∗0f)(θ) ≥ c(K∗f)(θ) if f ∈ L1(T)
with f ≥ 0.

We now recursively define dyadic sets Kµ and Iµ, µ ∈ N, such that at
step µ, the set Kµ is divided into intervals of length 2−R−2µ+1

, with the union
of every second interval forming Kµ+1, and the union of the rest forming
Iµ+1. More precisely, we let K0 = [0, 2−R−1], I0 = [2−R−1, 2−R] and for
µ ∈ N+,

Kµ =
⋃

0≤k<22µ−1

[
2k

22µ+R
,
2k + 1
22µ+R

]
∩Kµ−1, Iµ = Kµ−1 \Kµ.

Then Kµ = Kµ,1 ∪ · · · ∪ Kµ,Nµ and Iµ = Iµ,1 ∪ · · · ∪ Iµ,Nµ , where Kµ,k =
[2k/22µ+R, (2k + 1)/22µ+R] and Iµ,k = [(2k − 1)/22µ+R, 2k/22µ+R] (Fig. 1).
The number of connected components in Kµ or Iµ is Nµ = 22µ−µ−1, but we
will not need this fact.
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256

48
256

0

0

0

0

µ = 2

K0,1

K1,1 I1,1

K2,1 I2,1 K2,2 I2,2

µ = 0

1
4

2
4

1
2

1
16

3
16

4
16

2
16

µ = 1

µ = 3

Fig. 1. Level µ consists of 22µ−µ−1 intervals of each type, K and I, each having length
2−R−2µ

, where in the figure R = 0. The set E is chosen as Kν , the union of the K-
intervals at level ν, and the integral of P∗0 1E will be estimated from below by integrating
over I-intervals up to level ν.

Let E = Kν , which is a measurable subset of J with |E| = 2−ν−R−1, and
it remains to prove the desired lower bound on

	
J(P∗01E)(θ) dθ. For this we

fix µ ∈ N such that ν/2 ≤ µ < ν, and assume that θ ∈ Iµ. Letting k be such
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that Kµ−1,k ⊇ Iµ we have

(K∗1E)(θ) ≥ (K1E)(2−R−2µ , θ) ≥ (R+ 2µ)−1
�

Kµ∩Kµ−1,k

1E(φ) dφ
2−R−2µ + |θ − φ|

= (R+ 2µ)−1
∑
i

�

Kµ,i

1E(φ) dφ
2−R−2µ + |θ − φ|

,

where the sum is over those i for which Kµ,i ⊆ Kµ−1,k. In the integral over
Kµ,i we may—at the cost of a constant—replace 1E by its average value
2µ−ν over Kµ,i, using the fact that the kernel 1/(2−R−2µ + |θ − φ|) varies no
more than by a factor of two when φ varies in Kµ,i and θ is fixed. Thus we
find that

(K∗1E)(θ) ≥ c(R+ 2µ)−1 · 2µ−ν
�

Kµ∩Kµ−1,k

dφ

2−R−2µ + |θ − φ|

≥ c(R+ 2µ)−1 · 2µ−ν
�

Kµ−1,k

dφ

2−R−2µ + |θ − φ|
,

where, again at the cost of a constant, the integration has been extended to
all of Kµ−1,k. Since θ ∈ Kµ−1,k the quantity |θ − φ| will vary at least from 0
to |Kµ−1,k|/2 = 2−R−2µ−1−1 when we integrate over φ ∈ Kµ−1,k, so that

(K∗1E)(θ) ≥ c(R+ 2µ)−1 · 2µ−ν
2−R−2µ−1−1�

0

dψ

2−R−2µ + ψ

≥ c(R+ 2µ)−1 · 2µ−ν · 2µ ≥ c2µ−ν ,
where the last inequality follows since 2ν ≥ R2 and we have assumed that
µ ≥ ν/2. Integration over Iµ, which has measure |Iµ| = 2−R−µ−1, gives�

Iµ

(K∗1E)(θ) dθ ≥ c 2µ−ν · 2−R−µ−1.

Finally, using the fact that (Iµ)µ≥0 have pairwise disjoint interiors, we sum
over µ such that ν/2 ≤ µ < ν to get�

J

(K∗1E)(θ) dθ ≥ c 2−ν−R · ν,

which finishes the proof of Lemma 4.2.

Proof of Lemma 4.3. Without loss of generality we may assume that
J = {θ ∈ T ; 0 ≤ θ ≤ 2−R}. Let the operators K and K∗ be as in the proof
of Lemma 4.2. Henceforth we consider only positive f ∈ L1(T), f ≥ 0. Note
that K∗f is measurable and that

(4.2) (P∗0f)(θ) ≤ C‖f‖L1(T) + C(K∗f)(θ).
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We have
(K∗f)(θ) ≤ C sup

µ∈N+

(Kf)(2−2µ , θ),

since clearly (K∗f)(θ) ≤ C supN∈N+(Kf)(2−N , θ), and if 2µ−1 ≤ N < 2µ,
then

(Kf)(2−N , θ) =
1
N

�

|θ−φ|<1/2

f(φ) dφ
2−N + |θ − φ|

≤ 1
2µ−1

�

|θ−φ|<1/2

f(φ) dφ
2−2µ + |θ − φ|

= 2 · (Kf)(2−2µ , θ).

Furthermore, (K∗f)(θ) ≤ C supj≥1(Ljf)(θ), where

(Ljf)(θ) =
1
2j

�

|θ−φ|<2−2j−1

f(φ) dφ
2−2j + |θ − φ|

, j ∈ N+,

since

2µ · (Kf)(2−2µ , θ) =
�

|θ−φ|<1/2

f(φ) dφ
2−2µ + |θ − φ|

=
µ−1∑
j=1

�

2−2j≤|θ−φ|<2−2j−1

f(φ) dφ
2−2µ + |θ − φ|

+
�

|θ−φ|<2−2µ−1

f(φ) dφ
2−2µ + |θ − φ|

≤
µ−1∑
j=1

�

2−2j≤|θ−φ|<2−2j−1

f(φ) dφ
|θ − φ|

+
�

|θ−φ|<2−2µ−1

f(φ) dφ
2−2µ + |θ − φ|

≤ 2
µ∑
j=1

2j · (Ljf)(θ).

Let M = 22ν−R, where ν and R are as in the statement of the lemma, and

E =
M−1⋃
k=0

[k2−2ν , k2−2ν + 2−2ν+1
],

which is a measurable subset of J having measure |E| = 2−2ν−R.
We now estimate Lj1E , j ∈ N+, and consider first the case when j ≤ bνc.

In this case the kernel of Lj satisfies (2−2j + |ψ + δ|)−1 ∼ (2−2j + |ψ|)−1 for
ψ ∈ T and |δ| ≤ 2−2ν , so that

(Lj1E)(θ) ≤ 1
2j

�

T

1E(φ) dφ
2−2j + |θ − φ|

= 2−j
M−1∑
k=0

k2−2ν+2−2ν+1�

k2−2ν

dφ

2−2j + |θ − φ|
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≤ C 2−j
M−1∑
k=0

2−2ν+1+2ν
(k+1)2−2ν�

k2−2ν

dφ

2−2j + |θ − φ|

= C 2−2ν−j
2−R�

0

dφ

2−2j + |θ − φ|
≤ C 2−2ν−j

2−R�

0

dψ

2−2j + ψ

= C 2−2ν−j log(1 + 22j−R) ≤ C 2−2ν .

Consider now the case j ≥ bνc+ 3. Obviously (Lj1E)(θ) ≤ C, where C does
not depend on j, and since (Lj1E)(θ) = 0 if dist(θ,E) ≥ 2−2ν+1

we see that
(Lj1E)(θ) ≤ C1 eE(θ) for all θ ∈ T, where again C does not depend on j, and

Ẽ =
M−1⋃
k=0

[k2−2ν − 2−2ν+1
, k2−2ν + 2 · 2−2ν+1

].

Thus (Lj1E)(θ) ≤ C(2−2ν + 1 eE(θ)) for all j ∈ N+ except j = bνc + 1 and
j = bνc+ 2. By inequality (4.2) we then get

‖P∗01E‖L1(T) ≤ C|E|+ C(2−2ν + |Ẽ|) + ‖Lbνc+11E‖L1(T)
+ ‖Lbνc+21E‖L1(T)

≤ C 2−2ν ,

since ‖Lj1E‖L1(T) ≤ C‖1E‖L1(T) by Young’s inequality for convolutions,
where C does not depend on j = bνc+ 1, bνc+ 2. The proof of Lemma 4.3
is complete.

Remark. The referee made the interesting observation that the con-
structions in the proofs of Lemmas 4.2 and 4.3 are, quite unexpectedly,
similar to the constructions used to prove the Talagrand example for ball
packings (see [11]).

Proof of Theorem 2.3. Let φ(x) = Φ(x)/x for x > 0.
(i) There exists a continuous function ψ such that ψ(t)2−2ψ(t) = t for

all sufficiently small t > 0, and ψ(t) → +∞ as t → 0+. In fact, ψ(t) =
−aW−1(−bt), where a, b > 0 are constants and W−1 is a branch of the
Lambert W function (see [7]).

Since lim infx→+∞ φ(x)/log x = 0 by assumption, we may for each k ∈
N+ pick αk > 1 such that φ(αk)/logαk ≤ 1/k. We also assume that αk is
chosen so large that ψ

(
1
αkk

)
≥ k. Let νk =

⌊
ψ
(

1
αkk

)⌋
and Rk = ψ

(
1
αkk

)
.

Since
∑

k≥1 2−Rk < 2π, we may pick pairwise disjoint intervals (Jk)k≥1 with
|Jk| = 2−Rk . Using Lemma 4.2 with J = Jk, ν = νk and R = Rk—which for
k ≥ 7 clearly satisfy the conditions of the lemma—we get subsets Ek of Jk
satisfying |Ek| = 2−νk−Rk−1 and

	
Jk

(P∗01Ek)(θ) dθ ≥ cνk2−νk−Rk .
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Now let f =
∑

k≥7 αk1Ek , which is measurable, and note that, since
αk = 22Rk/(Rkk) by the definition of Rk and ψ,

�

T
Φ(f(θ)) dθ =

∑
k≥7

αkφ(αk) · 2−νk−Rk−1

≤
∑
k≥7

αk ·
logαk
k
· 2−νk−Rk−1

=
∑
k≥7

22Rk

Rkk
· 1
k
· log

(
22Rk

Rkk

)
· 2−νk−Rk−1 ≤

∑
k≥7

C

k2
< +∞,

and hence f ∈ LΦ(T). On the other hand,
�

T
(P∗0f)(θ) dθ ≥

∑
k≥7

�

Jk

αk(P∗01Ek)(θ) dθ ≥ c
∑
k≥7

αkνk2−νk−Rk

≥ c
∑
k≥7

1
k

= +∞,

so that f /∈ H1
√ (T).

(ii) Since lim supx→+∞ φ(x) = +∞ by assumption, we may for each
k ∈ N+ pick αk > 4 such that φ(αk) ≥ k3. Let νk = log2 log2(k2αk) and
Rk = 2 log2(k)− εk, where εk ∈ [0, 1[ is chosen so that 2νk − Rk ∈ N. Since∑

k≥1 2−Rk < 2π we may pick pairwise disjoint intervals (Jk)k≥1 with |Jk| =
2−Rk . Using Lemma 4.3 with J = Jk, ν = νk and R = Rk—which clearly
satisfy the conditions of the lemma—we get subsets Ek of Jk satisfying
|Ek| = 2−2νk−Rk and ‖P∗01Ek‖L1(T) ≤ C2−2νk .

Let g =
∑

k≥1 αk1Ek , which is clearly integrable, and note that g ∈
H1

√ (T), since

‖P∗0g‖L1(T) ≤
∑
k≥1

αk‖P∗01Ek‖L1(T) ≤ C
∑
k≥1

αk2−2νk = C
∑
k≥1

1
k2

< +∞,

where the first inequality follows by monotone convergence. However,
�

T
Φ(g(θ)) dθ =

∑
k≥1

αkφ(αk)·2−2νk−Rk ≥
∑
k≥1

αk ·k3· 1
k2αk

·2
εk

k2
≥
∑
k≥1

1
k

= +∞,

so that g /∈ LΦ(T), since LΦ(T) is of class ∆2.

4.3. Distributions and eigenfunctions. We defined H1
√ (T) to be the

set of f ∈ L1(T) for which P∗0f ∈ L1(T). However, just as in the classical
case of H1(T), this space does not change if we a priori allow f to be a
distribution, in the following sense. Given a distribution T ∈ D′(T) we
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define, for r ∈ [0, 1[ and θ ∈ T,

(P0T )(r, θ) = T (P0(r, θ − · )),
(P0T )(r, θ) = T (P0(r, θ − · )),

(P∗0T )(θ) = sup
r∈[0,1[

|(P0T )(r, θ)|,

where P0(r, θ) = P0(r, θ)/(P01)(r, 0) is the normalized kernel.
In the proofs of Propositions 2.4 and 2.5 we will use Alaoglu’s theorem in

the separable case. Let C(T) be the set of continuous functions on T. The set
C(T)∗ of bounded linear functionals on C(T) is identified with the set M(T)
of complex Radon measures on T, equipped with the norm ‖µ‖ = |µ|(T),
where |µ| is the total variation of µ ∈M(T). Then for any family (Ar)r∈[0,1[

of operators in C(T)∗ with uniformly bounded operator norm, we may take
a sequence (rn)n≥1 in [0, 1[ and a measure µ ∈M(T) such that rn → 1 and
Arn → µ vaguely as n→ +∞, that is,

lim
n→+∞

Arn(f) =
�

T
f(θ) dµ(θ)

for all f ∈ C(T).
The proof of Proposition 2.4 is essentially the same as in the classical

case (see for instance [9, Theorem 6.4.3]). Basically we show that there exists
a sequence (rn)n≥1 such that (P0T )(rn, · ) converges both to T in D′(T) and
to some measure, a measure which is then shown to be absolutely continuous
with respect to the arc measure on T.

Proof of Proposition 2.4. If r∈ [0, 1[ is fixed we may interpret (P0T )(r, · )
as an element in C(T)∗ by letting, for f ∈ C(T),

((P0T )(r, · ))(f) =
�

T
(P0T )(r, θ)f(θ) dθ,

and we see that |((P0T )(r, · ))(f)| ≤ ‖f‖L∞(T)‖P∗0T‖L1(T).

Take (rn)n≥1 in [0, 1[ and µ∈M(T) with rn→ 1 and (P0T )(rn, · )→ µ
vaguely as n→ +∞. Both the measure µ and the function (P0T )(r, · ), for
fixed r ∈ [0, 1[, are interpreted as distributions in the usual way. We now
proceed to show that µ = T by first proving that (P0T )(r, · )→ T in D′(T)
as r → 1−. That is, we show that for every f ∈ D(T) we have

(4.3) lim
r→1−

((P0T )(r, · ))(f) = T (f).

Since ((P0T )(r, · ))(f) = (T ∗ P0(r, · ))(f) = T (f ∗ P0(r, · )) we only have
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to show that f ∗ P0(r, · )→ f in D(T) as r → 1−. However, for all α ∈ N,

|∂α(f ∗ P0(r, · ))(θ)− ∂αf(θ)| = |((∂αf − ∂αf(θ)) ∗ P0(r, · ))(θ)|

≤ C

log
(

2
1−r
) �

T

|∂αf(φ)− ∂αf(θ)|
(1− r) + |θ − φ|

dφ

≤ C

log
(

2
1−r
) �

T

‖∂α+1f‖L∞(T) · |θ − φ|
0 + |θ − φ|

dφ

=
C‖∂α+1f‖L∞(T)

log
(

2
1−r
) → 0

as r → 1−, and equation (4.3) follows. Hence if f ∈ D(T) we see that	
T f dµ = limn→+∞

	
T(P0T )(rn, θ)f(θ) dθ = T (f), so that µ = T .

It only remains to show that µ is absolutely continuous with respect to
Lebesgue measure. Take E ⊆ T with |E| = 0. Fix a closed set F ⊆ E and
let ε > 0. Since P∗0µ ∈ L1(T) there exists δ > 0 such that |

	
A P

∗
0µdθ| < ε

for all A ⊆ T with |A| < δ. Let, by outer regularity of Lebesgue measure,
U ⊇ E be an open set having |U | < δ. Using Lusin’s theorem we get a
continuous function f ∈ C(T) satisfying |µ|(f 6= 1F ) < ε, ‖f‖L∞(T) ≤ 1 and
supp f ⊆ U .

Now µ(F ) =
	
T f dµ+

	
T(1F − f) dµ, where∣∣∣�

T
(1F − f) dµ

∣∣∣ ≤ 2|µ|(f 6= 1F ) < 2ε,

and ∣∣∣�
T
f dµ

∣∣∣ = lim
n→+∞

∣∣∣�
T

(P0µ)(rn, θ)f(θ) dθ
∣∣∣

≤ lim sup
n→+∞

�

T
|(P0µ)(rn, θ)| · |f(θ)| dθ ≤

�

U

(P∗0µ)(θ) · 1 dθ < ε,

since |U | < δ. Hence |µ(F )| < 3ε, and since ε > 0 is arbitrary, it follows
that µ(F ) = 0. Noting that µ and |µ| have the same null sets, we find that
|µ|(F ) = 0, and by inner regularity |µ|(E) = 0, showing that µ(E) = 0.
Consequently µ is absolutely continuous with respect to Lebesgue measure,
and Proposition 2.4 follows from the Radon–Nikodym theorem.

By [10, Theorem 1.7], any function satisfying condition (i) in Proposi-
tion 2.5 can be represented as P0T—defined in the obvious way—for an
analytic functional T . We will not need this general result, but Proposi-
tion 2.5 follows easily from its proof. However, for completeness we instead
give an essentially self-contained proof of our special case. Although the
method of proof is the same as in [10], our proof does not employ the more
general theory used there. In passing, we also mention that an eigenfunction
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is represented by a distribution T ∈ D′(T) if and only if it grows at most
exponentially with the hyperbolic distance to the origin [1, 15].

Proof of Proposition 2.5. The converse statement is trivial. On the other
hand, if u ∈ C2(D) satisfies conditions (i) and (ii) of the proposition, then
we define a family of bounded linear functionals Ar ∈ C(T)∗, r ∈ [0, 1[, by

Ar(g) =
1

(P01)(r, 0)

�

T
u(r, θ)g(θ) dθ for g ∈ C(T).

Now |Ar(g)| ≤ ‖u∗‖L1(T)‖g‖L∞(T), so we may take a sequence (rk)k≥1 in
[0, 1[ and a measure µ ∈ M(T) such that rk → 1 and Ark → µ vaguely as
k → +∞.

Hence to finish the proof we only need to show that P0µ = u, since in that
case dµ = fdθ for some f ∈ H1

√ (T) by Proposition 2.4 and condition (ii).
Expanding u(r, · ) in a Fourier series, u(r, θ) =

∑
n cn(r)einθ, we first show

that there exist constants an such that cn(r)einθ = anfn(r, θ), where

fn(r, θ) =
1

2π

�

T
P0(r, θ − φ)einφ dφ.

Note that both (r, θ) 7→ cn(r)einθ = 1
2π (u(r, · ) ∗ ein·)(θ) and fn satisfy

1
4

(1− r2)2∆v(r, θ) = −1
4
v(r, θ),(4.4)

v(r, θ) = einθv(r, 0).(4.5)

Also observe that (P0(r, · )/(P01)(r, 0))r∈[0,1[ is an approximation of the
identity, in the sense that for every g ∈ C(T) we have

(4.6) (P0g)(r, 0) =
1

(P01)(r, 0)

�

T
P0(r, φ)g(φ) dφ→ g(0)

as r → 1−. In fact, for each ε > 0 there exists δ ∈ ]0, π[ such that
|g(φ)− g(0)| < ε for |φ| ≤ δ, thus

|(P0g)(r, φ)− g(0)| = |(P0(g − g(0)))(r, φ)|

≤ ε+
2‖g‖L∞(T)

(P01)(r, 0)

�

|φ|>δ

P0(r, φ) dφ

≤ ε+
Cδ‖g‖L∞(T)

log
(

2
1−r
) ,

where the last term tends to zero as r → 1−. Consequently, fn(R, 0)
6= 0 for all sufficiently large R ∈ ]0, 1[, with n fixed. For such R we de-
fine constants dR by cn(R) = dRfn(R, 0). Then cn(R)einθ = dRfn(R, θ)
for all θ ∈ T, because of (4.5). Applying the strong maximum principle
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to (r, θ) 7→ (cn(r)einθ − dRfn(r, θ))/f0(r, θ) (see for instance [17, Theo-
rem 2.10]), we deduce that cn(r)einθ = dRfn(r, θ) for all r ∈ [0, R] and
θ ∈ T. Obviously dR cannot depend on R, allowing us to pick an = dR.

Since P0(r, θ − φ) =
∑

n fn(r, θ)e−inφ, it suffices to show µ(e−in·) = an
in order to prove that P0µ = u. However, by the vague convergence,

µ(e−in·) = lim
k→+∞

1
(P01)(rk, 0)

�

T
u(rk, φ)e−inφ dφ = lim

k→+∞

2πcn(rk)
(P01)(rk, 0)

= lim
k→+∞

2πanfn(rk, 0)
(P01)(rk, 0)

= lim
k→+∞

an
(P01)(rk, 0)

�

T
P0(rk, φ)einφ dφ = an,

where the last equality follows from (4.6).
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