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On class A operators

by

Sungeun Jung, Eungil Ko and Mee-Jung Lee (Seoul)

Abstract. We show that every class A operator has a scalar extension. In particular,
such operators with rich spectra have nontrivial invariant subspaces. Also we give some
spectral properties of the scalar extension of a class A operator. Finally, we show that
every class A operator is nonhypertransitive.

1. Introduction. Let H be a complex separable Hilbert space and let
L(H) denote the algebra of all bounded linear operators on H. If T ∈
L(H), we write σ(T ), σap(T ), and σe(T ) for the spectrum, the approxi-
mate point spectrum, and the essential spectrum, respectively, and write
r(T ) = sup{|λ| : λ ∈ σ(T )} for the spectral radius of T . An operator T ∈
L(H) is said to be p-hyponormal if (TT ∗)p ≤ (T ∗T )p, where 0 < p <∞. In
particular, 1-hyponormal operators and 1

2 -hyponormal operators are called
hyponormal operators and semi-hyponormal operators, respectively.

An arbitrary operator T ∈ L(H) has a unique polar decomposition T =
U |T |, where |T | = (T ∗T )1/2 and U is a partial isometry satisfying kerU =
ker |T | = kerT and kerU∗ = kerT ∗. Associated with T is the operator
|T |1/2U |T |1/2 called the Aluthge transform of T , and denoted throughout
this paper by T̂ . For every T ∈ L(H), the sequence {T̂ (n)} of Aluthge

iterates of T is defined by T̂ (0) = T and T̂ (n+1) = ̂̂
T (n) for every positive

integer n (see [2], [15], and [16]).
An operator T ∈ L(H) is said to be w-hyponormal if |T̂ | ≥ |T | ≥ |T̂ ∗|

(see [3]), and paranormal if ‖Tx‖2 ≤ ‖T 2x‖ ‖x‖ for all x ∈ H. We say
that T ∈ L(H) is normaloid if ‖T‖ = r(T ). It is well-known that every
p-hyponormal operator is w -hyponormal and that every w -hyponormal op-
erator is normaloid. Furuta–Ito–Yamazaki ([12]) introduced the following
interesting class of Hilbert space operators.
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Definition 1.1. An operator T ∈ L(H) is said to belong to class A if
it satisfies the condition |T 2| ≥ |T |2.

It is known from [12] that

{hyponormal operators} ⊂ {p-hyponormal operators} (0 < p ≤ 1)
⊂ {class A operators}
⊂ {paranormal operators}
⊂ {normaloid operators}.

There is a vast literature concerning class A operators ([11]–[14], [27], [28],
etc.). By a simple computation one can show that a weighted shift belongs
to class A if and only if it is hyponormal. In [11], T. Furuta gives several
examples of class A operators, including the following.

Example 1.2 ([11]). Let A = ( 17 7
7 5 )2 and B = ( 1 0

0 4 )2 be operators on
R2, and let Hn = R2 for all positive integers n. Consider the operator TA,B
on
⊕∞

n=1Hn defined by

TA,B =



. . .
...

...
...

...
...

· · · B 0 0 0 0 · · ·
· · · 0 B 0̂ 0 0 · · ·
· · · 0 0 B 0 0 · · ·
· · · 0 0 0 A 0 · · ·
· · · 0 0 0 0 A · · ·

...
...

...
...

...
. . .


where the hat indicates the position of the (0, 0) element in the matrix. Then
TA,B is a class A operator, but is not p-hyponormal for any p.

An operator S ∈ L(H) is called scalar of order m if it possesses a spectral
distribution of order m, i.e. a continuous unital morphism of topological
algebras

u : Cm0 (C)→ L(H)

such that u(z) = S, where as usual z stands for the identity function on
Cm0 , the complex-valued continuously differentiable functions of order m,
0 ≤ m ≤ ∞. An operator is said to be subscalar of order m if it is similar
to the restriction of a scalar operator of order m to an invariant subspace.

In 1984, M. Putinar [24] showed that every hyponormal operator has a
scalar extension. In 1987, his theorem was used to show that hyponormal
operators with thick spectra have nontrivial invariant subspaces, a result
due to S. Brown (see [7]). In this paper we generalize those theorems to the
context of class A operators. In fact, we show that every class A operator is
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subscalar of order 12. In particular, every class A operator whose spectrum
has nonempty interior has a nontrivial invariant subspace. Also we give some
spectral properties of the scalar extension of a class A operator. Finally,
we consider the hypertransitive operator problem, i.e., the question whether
(NHT) = L(H) (defined later). In particular, we show that every class A
operator is nonhypertransitive.

2. Preliminaries. An operator T ∈ L(H) is said to have the single-
valued extension property at z0 if for every neighborhood D of z0 and any
analytic function f : D → H with (T − z)f(z) ≡ 0, we have f(z) ≡ 0. An
operator T ∈ L(H) is said to have the single-valued extension property (or
SVEP) if it has the single-valued extension property at every z in C. For an
operator T ∈ L(H) with SVEP and for x ∈ H we can consider the set ρT (x)
of elements z0 in C such that there exists an analytic function f(z) defined
in a neighborhood of z0, with values in H, which satisfies (T − z)f(z) ≡ x.
We denote σT (x) = C \ ρT (x) and HT (F ) = {x ∈ H : σT (x) ⊂ F}, where F
is a subset of C. An operator T ∈ L(H) is said to have Dunford’s property
(C) if HT (F ) is closed for each closed subset F of C. An operator T ∈ L(H)
is said to have the property (β) if for every open subset G of C and every
sequence fn : G→ H of H-valued analytic functions such that (T − z)fn(z)
converges uniformly to 0 in norm on compact subsets of G, fn(z) converges
uniformly to 0 in norm on compact subsets of G. It is well-known that

Property (β) ⇒ Dunford’s property (C) ⇒ SVEP.

An operator T ∈ L(H) with SVEP is said to have the decomposition property
(δ) (or simply the property (δ)) if H = HT (U)+HT (V ) for every open cover
{U, V } of C. It is well-known that the adjoint of a bounded linear operator
on a Hilbert space with the property (β) has the property (δ) (see [1]).

Let z be the coordinate in C, and let dµ(z), or simply dµ, denote the
planar Lebesgue measure. Let U be a bounded open subset of C. We shall
denote by L2(U,H) the Hilbert space of measurable functions f : U → H
such that

‖f‖2,U =
( �
U

‖f(z)‖2 dµ(z)
)1/2

<∞.

We denote the space L2(U,H) ∩ H(U,H) by A2(U,H), where H(U,H) is
the Fréchet space of analytic (holomorphic) H-valued functions on U . Then
A2(U,H) is a closed subspace of the L2(U,H), and the orthogonal projection
of L2(U,H) onto this space will be denoted by P .

Now, we introduce a special Sobolev type space. Let U be a bounded
open subset of C and m be a fixed nonnegative integer. Then the Sobolev
space Wm(U,H) is the space of functions f ∈ L2(U,H) whose derivatives
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∂̄f, ∂̄2f, . . . , ∂̄mf in the sense of distributions still belong to L2(U,H). En-
dowed with the norm

‖f‖2Wm =
m∑
i=0

‖∂̄if‖22,U ,

Wm(U,H) becomes a Hilbert space contained continuously in L2(U,H). The
linear operator M of multiplication by z on Wm(U,H) is continuous and it
has a spectral distribution u of order m defined by the following relation: for
ϕ ∈ Cm0 (C) and f ∈ Wm(U,H), u(ϕ)f = ϕf . Hence M is a scalar operator
of order m.

3. Main results. In this section, we show that every class A operator
has a scalar extension. For this, we begin with the following lemma which
is the key step to prove our main theorem.

Lemma 3.1. Let T ∈ L(H) be a class A operator and let D be any
bounded disk containing σ(T ). Define the map V : H → H(D) by

V h = 1̃⊗ h (≡ 1⊗ h+ (T − z)W 12(D,H)),

where H(D) = W 12(D,H)/(T − z)W 12(D,H) and 1 ⊗ h denotes the con-
stant function sending z ∈ D to h. Then V is one-to-one and has closed
range.

Proof. Let hn ∈ H and fn ∈W 12(D,H) be sequences which satisfy

(3.1) lim
n→∞

‖(T − z)fn + 1⊗ hn‖W 12 = 0.

Then by the definition of the norm of the Sobolev space, (3.1) implies that

(3.2) lim
n→∞

‖(T − z)∂̄ifn‖2,D = 0

for i = 1, . . . , 12. From (3.2) we get

(3.3) lim
n→∞

‖(T 2 − z2)∂̄ifn‖2,D = 0

for i = 1, . . . , 12. Let T 2 = U2|T 2| and T̂ 2 = V |T̂ 2| be the polar de-
compositions of T 2 and T̂ 2, respectively. Since T̂ 2|T 2|1/2 = |T 2|1/2T 2 and

T̂ 2
(2)
|T̂ 2|1/2 = |T̂ 2|1/2T̂ 2, we have

(3.4)

 lim
n→∞

‖(T̂ 2 − z2)∂̄i|T 2|1/2fn‖2,D = 0,

lim
n→∞

‖(T̂ 2
(2)
− z2)∂̄i|T̂ 2|1/2|T 2|1/2fn‖2,D = 0,

for i = 1, . . . , 12. Since T belongs to class A, from [13], T 2 is a w -hyponormal

operator, and so T̂ 2 is semi-hyponormal and T̂ 2
(2)

is hyponormal by the
definition of a w -hyponormal operator and [3]. Hence, it follows from (3.4)
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that

(3.5) lim
n→∞

‖(T̂ 2
(2)
− z2)∗∂̄i|T̂ 2|1/2|T 2|1/2fn‖2,D = 0

for i = 1, . . . , 12. By Theorem 3.1 of [18], there exists a constant CD such
that

(3.6) ‖(I − P )∂̄i|T̂ 2|1/2|T 2|1/2fn‖2,D

≤ CD
4+i∑
j=2+i

‖(T̂ 2
(2)
− z2)∗∂̄j |T̂ 2|1/2|T 2|1/2fn‖2,D

for i = 0, 1, . . . , 8, where P denotes the orthogonal projection of L2(D,H)
onto the Bergman space A2(D,H). From (3.5) and (3.6), we obtain

(3.7) lim
n→∞

‖(I − P )∂̄i|T̂ 2|1/2|T 2|1/2fn‖2,D = 0

for i = 1, . . . , 8. Thus, by (3.4) and (3.7),

(3.8) lim
n→∞

‖(T̂ 2
(2)
− z2)P ∂̄i|T̂ 2|1/2|T 2|1/2fn‖2,D = 0

for i = 1, . . . , 8. Since T̂ 2
(2)

is hyponormal, it has the property (β). Hence

(3.9) lim
n→∞

‖P ∂̄i|T̂ 2|1/2|T 2|1/2fn‖2,D0 = 0

for i = 1, . . . , 8, where σ(T ) ( D0 ( D. From (3.7) and (3.9), we get

(3.10) lim
n→∞

‖ |T̂ 2|1/2|T 2|1/2∂̄ifn‖2,D0 = 0

for i = 1, . . . , 8. Since T̂ 2|T 2|1/2 = |T 2|1/2T 2, from (3.3) and (3.10) we obtain

(3.11) lim
n→∞

‖z4∂̄ifn‖2,D0 = 0

for i = 1, . . . , 8. By Theorem 3.1 of [18], there exists a constant CD0 such
that

(3.12) ‖(I − P )fn‖2,D0 ≤ CD0

8∑
i=4

‖z4∂̄ifn‖2,D0 .

By (3.11) and (3.12), it follows that

(3.13) lim
n→∞

‖(I − P )fn‖2,D0 = 0.

Combining (3.13) with (3.1), we have

lim
n→∞

‖(T − z)Pfn + 1⊗ hn‖2,D0 = 0.

Let Γ be a curve in D0 surrounding σ(T ). Then

lim
n→∞

‖Pfn(z) + (T − z)−1(1⊗ hn)(z)‖ = 0
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uniformly for all z ∈ Γ . Applying the Riesz–Dunford functional calculus, we
obtain

lim
n→∞

∥∥∥∥ 1
2πi

�

Γ

Pfn(z) dz + hn

∥∥∥∥ = 0.

But by Cauchy’s theorem, 1
2πi

	
Γ Pfn(z) dz = 0. Hence

lim
n→∞

‖hn‖ = 0.

So, V is one-to-one and has closed range.

Now we are ready to show that every class A operator has a scalar
extension.

Theorem 3.2. Every class A operator in L(H) is subscalar of order 12.

Proof. Let T ∈ L(H) be a class A operator, let D be an arbitrary
bounded open disk in C that contains σ(T ) and consider the quotient space

H(D) = W 12(D,H)/(T − z)W 12(D,H)

endowed with the Hilbert space norm. The class of a vector f or an operator
S on H(D) will be denoted by f̃ , respectively S̃. Let M be multiplication by
z on W 12(D,H). As noted at the end of Section 2, M is a scalar operator of
order 12 and has a spectral distribution u. Since the range of T−z is invariant
under M , M̃ is well-defined. Moreover, consider the spectral distribution u :
C12

0 (C) → L(W 12(D,H)) defined by the following relation: for ϕ ∈ C12
0 (C)

and f ∈ W 12(D,H), u(ϕ)f = ϕf . Then the spectral distribution u of M
commutes with T − z, and so M̃ is still a scalar operator of order 12 with
ũ as a spectral distribution. Consider the operator V : H → H(D) given by
V h = 1̃⊗ h and denote the range of V by ranV . Since

V Th = 1̃⊗ Th = z̃ ⊗ h = M̃(1̃⊗ h) = M̃V h

for all h ∈ H, we have V T = M̃V . In particular, ranV is invariant under M̃ .
Furthermore, it is closed by Lemma 3.1, and hence it is a closed invariant
subspace of the scalar operator M̃ . Since T is similar to the restriction
M̃ |ranV , and M̃ is a scalar operator of order 12, T is subscalar of order 12.

Theorem 3.2 has the following corollary.

Corollary 3.3.

(i) Every p-hyponormal or w-hyponormal operator is subscalar.
(ii) If T ∈ L(H) is a class A operator, then f(T ) is subscalar for every

function f analytic on a neighborhood of σ(T ).

Proof. (i) Since every p-hyponormal and every w -hyponormal operator
belongs to class A by Section 1, the assertion follows from Theorem 3.2.
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(ii) Let T be a class A operator and let f be an analytic function on
a neighborhood of σ(T ). With the same notations as in the proof of Theo-
rem 3.2, we have V f(T ) = f(M̃)V . Thus f(T ) is subscalar.

Recall from [6] that an operator T ∈ L(H) is said to be power regular if
limn→∞ ‖Tnh‖1/n exists for every h ∈ H.

Corollary 3.4.

(i) Every class A operator satisfies the property (β), Dunford’s property
(C), and the single-valued extension property.

(ii) Every class A operator is power regular.

Proof. (i) Let T ∈ L(H) be a class A operator. It suffices to prove that T
has the property (β). Since the property (β) is transmitted from an operator
to its restrictions to closed invariant subspaces, we are reduced by Theorem
3.2 to the case of a scalar operator of order 12. Since every scalar operator
has the property (β) (see [24]), T has the property (β).

(ii) Let T ∈ L(H) be a class A operator. Since T is subscalar of order 12
from Theorem 3.2, it is the restriction of a scalar operator of order 12 to one
of its closed invariant subspaces. Since a scalar operator is power regular
and all restrictions of power regular operators to their invariant subspaces
clearly remain power regular, T is power regular.

Recall that an operator X ∈ L(H,K) is called a quasiaffinity if it has
trivial kernel and dense range. An operator S ∈ L(H) is said to be a quasi-
affine transform of T ∈ L(K) if there is a quasiaffinity X ∈ L(H,K) such
that XS = TX. Furthermore, S and T are quasisimilar if there are quasi-
affinities X and Y such that XS = TX and SY = Y T .

Corollary 3.5. Let C and D in L(H) belong to class A. If C and D
are quasisimilar, then σ(C) = σ(D) and σe(C) = σe(D).

Proof. Since C and D satisfy the property (β) from Corollary 3.4, the
assertion follows from [25].

Next we will give some applications of Theorem 3.2 including a partial
solution of the invariant subspace problem for class A operators. Moreover,
the following theorem is a generalization of S. Brown’s theorem and Berger’s
theorem (see [7] and [5]).

Theorem 3.6. Let T ∈ L(H) be a class A operator.

(i) If σ(T ) has nonempty interior in C, then T has a nontrivial invari-
ant subspace.

(ii) There exists a positive integer K such that for all positive integers
k ≥ K, T 2k has a nontrivial invariant subspace.
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Proof. (i) This follows from Theorem 3.2 and [9].
(ii) From [13], T 2 is a w -hyponormal operator. Therefore, by [5] there

exists a positive integer K such that for all positive integers k ≥ K, T 2k has
a nontrivial invariant subspace.

Next we study some spectral properties of the scalar extension of a class
A operator.

Theorem 3.7. Let T ∈ L(H) be a class A operator. With the notation
of the proof of Theorem 3.2, σfM (V h) = σT (h) for each h ∈ H.

Proof. Let h ∈ H. If λ0 ∈ ρT (h), then there is an H-valued analytic
function g defined on a neighborhood U of λ0 such that (T −λ)g(λ) = h for
all λ ∈ U . Then

(M̃ − λ)V g(λ) = V (T − λ)g(λ) = V h

for all λ ∈ U . Hence λ0 ∈ ρfM (V h). That is, ρfM (V h) ⊃ ρT (h).
Conversely, suppose λ0 ∈ ρfM (V h). Then there exists an H(D)-valued

analytic function f̃ on some neighborhood U of λ0 such that (M̃ −λ)f̃(λ) =
V h for all λ ∈ U . Let f ∈ H(U,W 12(D,H)) be a holomorphic lifting of f̃
and fix ζ ∈ U . Then h−(ζ−z)f(ζ, z) ∈ (T − z)W 12(D,H). Therefore, there
is a sequence {gn} ⊂ H(U,W 12(D,H)) such that

lim
n→∞

‖h− (ζ − z)f(ζ, z)− (T − z)gn(ζ, z)‖W 12 = 0

with respect to z ∈ U . Then

lim
n→∞

‖h− (T − z)fn‖W 12 = 0

where fn(z) := gn(z, z) for z ∈ U . From the proof of Lemma 3.1 (cf. (3.13)),
we obtain

lim
n→∞

‖(I − P )fn‖2,U0 = 0

where U0 is an open neighborhood of λ0 with U0 ( U , and so

lim
n→∞

‖h− (T − z)Pfn‖2,U0 = 0.

This implies h ∈ (T − z)H(U0,H). Since T has the property (β) from
Corollary 3.4, the operator T − z has closed range on H(U0,H). Thus h ∈
(T − z)H(U0,H), i.e., λ0 ∈ ρT (h).

Corollary 3.8. Let T ∈ L(H) be a class A operator. With the notation
of the proof of Theorem 3.2, σ(T ) = σ(M̃).

Proof. Since σT (h) = σfM (V h) for all h ∈ H by Theorem 3.7, σT (h) ⊂
σ(M̃) for all h ∈ H. Hence

⋃
{σT (h) : h ∈ H} ⊂ σ(M̃). Since T has the

single valued extension property by Corollary 3.4, it follows that σ(T ) =⋃
{σT (h) : h ∈ H} ⊂ σ(M̃).
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Conversely, note that if U ⊂ C is any open disk containing σ(T ) and M
is multiplication by z on W 12(U,H), then σ(M̃) ⊂ σ(M) ⊂ U . From this
property, if λ ∈ ρ(T ), then we can choose an open disk D so that M̃ − λ is
invertible. Since this algebraic property is independent of the choice of D,
we get σ(M̃) ⊂ σ(T ).

Recall that a closed subspace of H is said to be hyperinvariant for T if it
is invariant under every operator in the commutant {T}′ of T . An operator
T ∈ L(H) is decomposable provided that, for each open cover {U, V } of C,
there exist closed T -invariant subspaces Y , Z of H such that H = Y + Z,
σ(T |Y ) ⊂ U , and σ(T |Z) ⊂ V . Here, T |Y denotes the restriction of T to Y .

Theorem 3.9. Let T ∈ L(H) be a class A operator and let T 6= zI for all
z∈C. If S is a decomposable quasiaffine transform of T or limn→∞ ‖Tnh‖1/n
< ‖T‖ for some nonzero h ∈ H, then T has a nontrivial hyperinvariant
subspace.

Proof. If S is a decomposable quasiaffine transform of T , then there
exists a quasiaffinity X such that XS = TX where S is decomposable. If T
has no nontrivial hyperinvariant subspace, we may assume that σp(T ) = ∅
and HT (F ) = {0} for each closed set F proper in σ(T ) by Lemma 3.6.1 of
[19]. Let {U, V } be an open cover of C with σ(T )\U 6= ∅ and σ(T )\V 6= ∅. If
x ∈ HS(U), then σS(x) ⊂ U . So there exists an analytic H-valued function
f defined on C \ U such that (S − z)f(z) ≡ x for all z ∈ C \ U . Hence
(T − z)Xf(z) = X(S − z)f(z) = Xx for all z ∈ C \ U . Thus C \ U ⊂
ρT (Xx), which implies thatXx ∈ HT (U), i.e.,XHS(U) ⊂ HT (U). Similarly,
XHS(V ) ⊂ HT (V ). Then since S is decomposable,

XH = XHS(U) +XHS(V ) ⊆ HT (U) +HT (V ) = {0}.
But this is a contradiction. So T has a nontrivial hyperinvariant subspace.

Now suppose that limn→∞ ‖Tnh‖1/n < ‖T‖ for some nonzero h ∈ H.
Since T is a class A operator,

‖Tx‖2 = 〈|T |2x, x〉 ≤ 〈|T 2|x, x〉 ≤ ‖ |T 2|x‖ ‖x‖ ≤ ‖T 2x‖ ‖x‖
for every x ∈ H. This implies that

‖Tnx‖2 = ‖TTn−1x‖2 ≤ ‖T 2Tn−1x‖ ‖Tn−1x‖ = ‖Tn+1x‖ ‖Tn−1x‖
for every positive integer n and every x ∈ H. Hence, Proposition 4.6 and a
remark in [6] imply that T has a nontrivial hyperinvariant subspace.

The following proposition provides the concrete structure of a compact
class A operator.

Proposition 3.10. Let T ∈ L(H) be a class A operator. If T is com-
pact, then T = B ⊕ C ⊕ (−C) where B and C are normal.
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Proof. If T ∈ L(H) is a class A operator, then T 2 is w-hyponormal
from [13]. Since T 2 is compact, it is normal by [3]. Hence T is a square root
of a normal operator, and so by [26] we get the following form:

T = B ⊕

(
C D

0 −C

)
where B and C are normal and D is a positive one-to-one operator com-
muting with C. Since T is also normal by [14], D must be 0, completing the
proof.

If T ∈ L(H) and x ∈ H, then {Tnx}∞n=0 is called the orbit of x under T ,
and is denoted by O(x, T ). If O(x, T ) is dense in H, then x is called a hyper-
cyclic vector for T . An operator T ∈ L(H) is called hypertransitive if every
nonzero vector in H is hypercyclic for T . Denote the set of all nonhypertran-
sitive operators in L(H) by (NHT). The hypertransitive operator problem is
the question whether (NHT) = L(H). The following theorem shows that
every class A operator belongs to (NHT).

Theorem 3.11. If T ∈ L(H) is a class A operator, then it is nonhyper-
transitive.

Proof. If T is not a quasiaffinity, then σp(T ) ∪ σp(T ∗) 6= ∅. Hence T
has a nontrivial invariant subspace, and so T ∈ (NHT). On the other hand,
suppose that T is a quasiaffinity. Then so is T 2. Since T 2 is w-hyponormal

from [13], T̂ 2
(2)

is hyponormal. Set S = T̂ 2. Since Ŝ = T̂ 2
(2)

is not hy-
percyclic from [17], there exists a nonzero vector x ∈ H such that O(x, Ŝ)
is not dense in H. Let S = U |S| be the polar decomposition of S. Since
U |S|1/2Ŝ = SU |S|1/2,

S(U |S|1/2O(x, Ŝ)) = U |S|1/2(ŜO(x, Ŝ)) ⊆ U |S|1/2O(x, Ŝ).

Since T 2 is a quasiaffinity, so is S. Hence |S| is a quasiaffinity and U is
unitary. Therefore, U |S|1/2O(x, Ŝ) is not dense in H. So S ∈ (NHT). By
the same argument as above, we can show that T 2 ∈ (NHT). By [4] or [16],
T ∈ (NHT).

Corollary 3.12. If T ∈ L(H) is an invertible class A operator, then
T and T−1 have a common nontrivial invariant closed set.

Proof. This follows from the proof of Theorem 3.11 and [17].

The following theorem, based on the method of [10], gives a necessary
and sufficient condition for hypercyclicity of the adjoint of a class A operator.

Theorem 3.13. If T ∈ L(H) belongs to class A, then T ∗ is hypercyclic
if and only if σT (x)∩D 6= ∅ and σT (x)∩ (C \D) 6= ∅ for all nonzero x ∈ H,
where D = {z ∈ C : |z| < 1}.
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Proof. Suppose that T ∗ is hypercyclic. Then by Proposition 2.3 of [10], it
is enough to show that σ(T ) meets both D and C\D. Let S = T |M for some
closed T -invariant subspace M and let x be a hypercyclic vector for T ∗.
Since (S∗)nPx = P (T ∗)nx for each nonnegative integer n where P is the
orthogonal projection of H onto M, {(S∗)n(Px)}∞n=0 = P ({(T ∗)nx}∞n=0) =
P (H) = M, i.e., Px is hypercyclic for S∗. Since S belongs to class A and
S∗ is hypercyclic, r(S) = ‖S‖ = ‖S∗‖ > 1 as mentioned in [23]. Hence, we
have σ(T )∩ (C \D) 6= ∅. On the other hand, in order to prove σ(S)∩D 6= ∅,
assume that σ(S) ⊂ C \ D. Since S−1 is a class A operator by [11] and
σ(S−1) ⊂ D, it follows that ‖S−1‖ = r(S−1) ≤ 1. Since S∗ is hypercyclic
and invertible, (S∗)−1 is hypercyclic by [23], and so ‖S−1‖ = ‖(S∗)−1‖ > 1
by [23], which is a contradiction. Therefore, σ(S) ∩ D 6= ∅.

Conversely, suppose that σT (x) ∩ D 6= ∅ and σT (x) ∩ (C \ D) 6= ∅ for all
nonzero x ∈ H. Then we get HT (C \ D) = (0) and HT (D) = (0). Since T
has the property (β) by Corollary 3.4, T ∗ has the property (δ). Thus, by
Proposition 2.5.14 in [20], we infer that both HT ∗(D) and HT ∗(C \ D) are
dense in H. By using Theorem 3.2 in [10], T ∗ is hypercyclic.
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