On class A operators

by

SUNGEUN JUNG, EUNGIL KO and MEE-JUNG LEE (Seoul)

Abstract. We show that every class A operator has a scalar extension. In particular, such operators with rich spectra have nontrivial invariant subspaces. Also we give some spectral properties of the scalar extension of a class A operator. Finally, we show that every class A operator is nonhypertransitive.

1. Introduction. Let \(H \) be a complex separable Hilbert space and let \(\mathcal{L}(H) \) denote the algebra of all bounded linear operators on \(H \). If \(T \in \mathcal{L}(H) \), we write \(\sigma(T) \), \(\sigma_{\text{ap}}(T) \), and \(\sigma_e(T) \) for the spectrum, the approximate point spectrum, and the essential spectrum, respectively, and write \(r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\} \) for the spectral radius of \(T \). An operator \(T \in \mathcal{L}(H) \) is said to be \(p \)-hyponormal if \((TT^*)^p \leq (T^*T)^p \), where \(0 < p < \infty \). In particular, \(1 \)-hyponormal operators and \(\frac{1}{2} \)-hyponormal operators are called hyponormal operators and semi-hyponormal operators, respectively.

An arbitrary operator \(T \in \mathcal{L}(H) \) has a unique polar decomposition \(T = U|T| \), where \(|T| = (T^*T)^{1/2} \) and \(U \) is a partial isometry satisfying \(\ker U = \ker |T| = \ker T \) and \(\ker U^* = \ker T^* \). Associated with \(T \) is the operator \(|T|^{1/2}U|T|^{1/2} \) called the Aluthge transform of \(T \), and denoted throughout this paper by \(\widehat{T} \). For every \(T \in \mathcal{L}(H) \), the sequence \(\{\widehat{T}^{(n)}\} \) of Aluthge iterates of \(T \) is defined by \(\widehat{T}^{(0)} = T \) and \(\widehat{T}^{(n+1)} = \widehat{T}^{(n)} \) for every positive integer \(n \) (see [2], [15], and [16]).

An operator \(T \in \mathcal{L}(H) \) is said to be \(w \)-hyponormal if \(|\widehat{T}| \geq |T| \geq |\widehat{T}^*| \) (see [3]), and paranormal if \(\|Tx\|^2 \leq \|T^2x\|\|x\| \) for all \(x \in H \). We say that \(T \in \mathcal{L}(H) \) is normaloid if \(\|T\| = r(T) \). It is well-known that every \(p \)-hyponormal operator is \(w \)-hyponormal and that every \(w \)-hyponormal operator is normaloid. Furuta–Ito–Yamazaki ([12]) introduced the following interesting class of Hilbert space operators.

2010 Mathematics Subject Classification: Primary 47B20; Secondary 47A11.

Key words and phrases: class A operator, scalar extension, invariant subspace, nonhypertransitive.
Definition 1.1. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to belong to class A if it satisfies the condition $|T^2| \geq |T|^2$.

It is known from [12] that
\[
\{\text{hyponormal operators}\} \subset \{p\text{-hyponormal operators}\} \quad (0 < p \leq 1) \\
\subset \{\text{class A operators}\} \\
\subset \{\text{paranormal operators}\} \\
\subset \{\text{normaloid operators}\}.
\]

There is a vast literature concerning class A operators ([11]–[14], [27], [28], etc.). By a simple computation one can show that a weighted shift belongs to class A if and only if it is hyponormal. In [11], T. Furuta gives several examples of class A operators, including the following.

Example 1.2 ([11]). Let
\[
A = \begin{pmatrix} 1 & 7 \\ 7 & 5 \end{pmatrix}^2 \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}^2
\]
be operators on \mathbb{R}^2, and let $\mathcal{H}_n = \mathbb{R}^2$ for all positive integers n. Consider the operator $T_{A,B}$ on $\bigoplus_{n=1}^{\infty} \mathcal{H}_n$ defined by
\[
T_{A,B} = \begin{pmatrix} \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & B & 0 & 0 & 0 & \cdots \\ \vdots & 0 & B & \hat{0} & 0 & \cdots \\ \vdots & 0 & 0 & B & 0 & \cdots \\ \vdots & 0 & 0 & 0 & A & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]
where the hat indicates the position of the $(0,0)$ element in the matrix. Then $T_{A,B}$ is a class A operator, but is not p-hyponormal for any p.

An operator $S \in \mathcal{L}(\mathcal{H})$ is called scalar of order m if it possesses a spectral distribution of order m, i.e. a continuous unital morphism of topological algebras
\[
u : C_0^m(\mathbb{C}) \to \mathcal{L}(\mathcal{H})
\]
such that $\nu(z) = S$, where as usual z stands for the identity function on C_0^m, the complex-valued continuously differentiable functions of order m, $0 \leq m \leq \infty$. An operator is said to be subscalar of order m if it is similar to the restriction of a scalar operator of order m to an invariant subspace.

In 1984, M. Putinar [24] showed that every hyponormal operator has a scalar extension. In 1987, his theorem was used to show that hyponormal operators with thick spectra have nontrivial invariant subspaces, a result due to S. Brown (see [7]). In this paper we generalize those theorems to the context of class A operators. In fact, we show that every class A operator is
We denote \(\sigma_z \) in a neighborhood of \(f \) analytic function \(z \) valued extension property at operator is nonhypertransitive. Let \(L(NHT) = \) hypertransitive operator problem we consider the spectral properties of the scalar extension of a class A operator. Finally, has nonempty interior has a nontrivial invariant subspace. Also we give some subscalar of order 12. In particular, every class A operator whose spectrum on a Hilbert space with the property (SVEP) if it has the single-valued extension property at every \(z \) operator \(T \) (see [1]).

2. Preliminaries. An operator \(T \in \mathcal{L}(\mathcal{H}) \) is said to have the single-valued extension property at \(z_0 \) if for every neighborhood \(D \) of \(z_0 \) and any analytic function \(f : D \to \mathcal{H} \) with \((T - z)f(z) \equiv 0 \), we have \(f(z) \equiv 0 \). An operator \(T \in \mathcal{L}(\mathcal{H}) \) is said to have the single-valued extension property (or SVEP) if it has the single-valued extension property at every \(z \) in \(\mathbb{C} \). For an operator \(T \in \mathcal{L}(\mathcal{H}) \) with SVEP and for \(x \in \mathcal{H} \) we can consider the set \(\rho_T(x) \) of elements \(z_0 \) in \(\mathbb{C} \) such that there exists an analytic function \(f(z) \) defined in a neighborhood of \(z_0 \), with values in \(\mathcal{H} \), which satisfies \((T - z)f(z) \equiv x \). We denote \(\sigma_T(x) = \mathbb{C} \setminus \rho_T(x) \) and \(\mathcal{H}_T(F) = \{ x \in \mathcal{H} : \sigma_T(x) \subset F \} \), where \(F \) is a subset of \(\mathbb{C} \). An operator \(T \in \mathcal{L}(\mathcal{H}) \) is said to have Dunford’s property (\(\mathcal{C} \)) if \(\mathcal{H}_T(F) \) is closed for each closed subset \(F \) of \(\mathbb{C} \). An operator \(T \in \mathcal{L}(\mathcal{H}) \) is said to have the property (\(\beta \)) if for every open subset \(G \) of \(\mathbb{C} \) and every sequence \(f_n : G \to \mathcal{H} \) of \(\mathcal{H} \)-valued analytic functions such that \((T - z)f_n(z) \) converges uniformly to 0 in norm on compact subsets of \(G \), \(f_n(z) \) converges uniformly to 0 in norm on compact subsets of \(G \). It is well-known that

\[
\text{Property (\(\beta \)) } \Rightarrow \text{ Dunford’s property (\(\mathcal{C} \)) } \Rightarrow \text{ SVEP.}
\]

An operator \(T \in \mathcal{L}(\mathcal{H}) \) with SVEP is said to have the decomposition property (\(\delta \)) (or simply the property (\(\delta \))) if \(\mathcal{H} = \mathcal{H}_T(U) + \mathcal{H}_T(V) \) for every open cover \(\{U, V\} \) of \(\mathbb{C} \). It is well-known that the adjoint of a bounded linear operator on a Hilbert space with the property (\(\beta \)) has the property (\(\delta \)) (see [II]).

Let \(z \) be the coordinate in \(\mathbb{C} \), and let \(d\mu(z) \), or simply \(d\mu \), denote the planar Lebesgue measure. Let \(U \) be a bounded open subset of \(\mathbb{C} \). We shall denote by \(L^2(U, \mathcal{H}) \) the Hilbert space of measurable functions \(f : U \to \mathcal{H} \) such that

\[
\|f\|_{2,U} = \left(\int_U \|f(z)\|^2 \, d\mu(z) \right)^{1/2} < \infty.
\]

We denote the space \(L^2(U, \mathcal{H}) \cap H(U, \mathcal{H}) \) by \(A^2(U, \mathcal{H}) \), where \(H(U, \mathcal{H}) \) is the Fréchet space of analytic (holomorphic) \(\mathcal{H} \)-valued functions on \(U \). Then \(A^2(U, \mathcal{H}) \) is a closed subspace of the \(L^2(U, \mathcal{H}) \), and the orthogonal projection of \(L^2(U, \mathcal{H}) \) onto this space will be denoted by \(P \).

Now, we introduce a special Sobolev type space. Let \(U \) be a bounded open subset of \(\mathbb{C} \) and \(m \) be a fixed nonnegative integer. Then the Sobolev space \(W^m(U, \mathcal{H}) \) is the space of functions \(f \in L^2(U, \mathcal{H}) \) whose derivatives
\(\bar{\partial} f, \bar{\partial}^2 f, \ldots, \bar{\partial}^m f \) in the sense of distributions still belong to \(L^2(U, \mathcal{H}) \). Endowed with the norm
\[
\|f\|_{W^m}^2 = \sum_{i=0}^{m} \|\bar{\partial}^i f\|_{2, U}^2,
\]
\(W^m(U, \mathcal{H}) \) becomes a Hilbert space contained continuously in \(L^2(U, \mathcal{H}) \). The linear operator \(M \) of multiplication by \(z \) on \(W^m(U, \mathcal{H}) \) is continuous and it has a spectral distribution \(u \) of order \(m \) defined by the following relation: for \(\varphi \in C_0^m(\mathbb{C}) \) and \(f \in W^m(U, \mathcal{H}) \), \(u(\varphi) f = \varphi f \). Hence \(M \) is a scalar operator of order \(m \).

3. Main results.

In this section, we show that every class A operator has a scalar extension. For this, we begin with the following lemma which is the key step to prove our main theorem.

Lemma 3.1. Let \(T \in L(\mathcal{H}) \) be a class A operator and let \(D \) be any bounded disk containing \(\sigma(T) \). Define the map \(V : \mathcal{H} \to H(D) \) by
\[
Vh = \widetilde{1} \otimes h \ (\equiv 1 \otimes h + (T - z)W^{12}(D, \mathcal{H})),
\]
where \(H(D) = W^{12}(D, \mathcal{H})/(T - z)W^{12}(D, \mathcal{H}) \) and \(1 \otimes h \) denotes the constant function sending \(z \in D \to h \). Then \(V \) is one-to-one and has closed range.

Proof. Let \(h_n \in \mathcal{H} \) and \(f_n \in W^{12}(D, \mathcal{H}) \) be sequences which satisfy
\[
\lim_{n \to \infty} \|(T - z)f_n + 1 \otimes h_n\|_{W^{12}} = 0.
\]
Then by the definition of the norm of the Sobolev space, (3.1) implies that
\[
\lim_{n \to \infty} \| (T - z)\bar{\partial}^i f_n \|_{2, D} = 0
\]
for \(i = 1, \ldots, 12 \). From (3.2) we get
\[
\lim_{n \to \infty} \| (T^2 - z^2)\bar{\partial}^i f_n \|_{2, D} = 0
\]
for \(i = 1, \ldots, 12 \). Let \(T^2 = U_2|T^2| \) and \(\widehat{T^2} = V|\widehat{T^2}| \) be the polar decompositions of \(T^2 \) and \(\widehat{T^2} \), respectively. Since \(\widehat{T^2}|T^2|^{1/2} = |T^2|^{1/2}T^2 \) and \(\widehat{T^2}^{(2)}|\widehat{T^2}|^{1/2} = |\widehat{T^2}|^{1/2}\widehat{T^2} \), we have
\[
\lim_{n \to \infty} \| (T^2 - z^2)\bar{\partial}^i |T^2|^{1/2} f_n \|_{2, D} = 0,
\]
\[
\lim_{n \to \infty} \| (\widehat{T^2}^{(2)} - z^2)\bar{\partial}^i |\widehat{T^2}|^{1/2} |T^2|^{1/2} f_n \|_{2, D} = 0,
\]
for \(i = 1, \ldots, 12 \). Since \(T \) belongs to class A, from \([13] \), \(T^2 \) is a \(w \)-hyponormal operator, and so \(\widehat{T^2} \) is semi-hyponormal and \(\widehat{T^2}^{(2)} \) is hyponormal by the definition of a \(w \)-hyponormal operator and \([3] \). Hence, it follows from (3.4)
that
\[(3.5) \lim_{n \to \infty} \| (\hat{T}^2(2) - z^2)^* \bar{\partial} |T^2|^{1/2} |T^2|^{1/2} f_n \|_{2,D} = 0 \]
for \(i = 1, \ldots, 12 \). By Theorem 3.1 of [18], there exists a constant \(C_D \) such that
\[(3.6) \| (I - P) \bar{\partial} |T^2|^{1/2} |T^2|^{1/2} f_n \|_{2,D} \]
\[\leq C_D \sum_{j=2+i}^{4+i} \| (\hat{T}^2(2) - z^2)^* \bar{\partial} |T^2|^{1/2} |T^2|^{1/2} f_n \|_{2,D} \]
for \(i = 0, 1, \ldots, 8 \), where \(P \) denotes the orthogonal projection of \(L^2(D, \mathcal{H}) \) onto the Bergman space \(A^2(D, \mathcal{H}) \). From (3.5) and (3.6), we obtain
\[(3.7) \lim_{n \to \infty} \| (I - P) \bar{\partial} |T^2|^{1/2} |T^2|^{1/2} f_n \|_{2,D} = 0 \]
for \(i = 1, \ldots, 8 \). Thus, by (3.4) and (3.7),
\[(3.8) \lim_{n \to \infty} \| (\hat{T}^2(2) - z^2) P \bar{\partial} |T^2|^{1/2} |T^2|^{1/2} f_n \|_{2,D} = 0 \]
for \(i = 1, \ldots, 8 \). Since \(\hat{T}^2(2) \) is hyponormal, it has the property (\(\beta \)). Hence
\[(3.9) \lim_{n \to \infty} \| P \bar{\partial} |T^2|^{1/2} |T^2|^{1/2} f_n \|_{2,D_0} = 0 \]
for \(i = 1, \ldots, 8 \), where \(\sigma(T) \subset D_0 \subset D \). From (3.7) and (3.9), we get
\[(3.10) \lim_{n \to \infty} \| \hat{T}^2 |T^2|^{1/2} |T^2|^{1/2} \bar{\partial} f_n \|_{2,D_0} = 0 \]
for \(i = 1, \ldots, 8 \). Since \(\hat{T}^2 |T^2|^{1/2} = |T^2|^{1/2} T^2 \), from (3.3) and (3.10) we obtain
\[(3.11) \lim_{n \to \infty} \| z^4 \bar{\partial} f_n \|_{2,D_0} = 0 \]
for \(i = 1, \ldots, 8 \). By Theorem 3.1 of [18], there exists a constant \(C_{D_0} \) such that
\[(3.12) \| (I - P) f_n \|_{2,D_0} \leq C_{D_0} \sum_{i=4}^{8} \| z^4 \bar{\partial} f_n \|_{2,D_0}. \]
By (3.11) and (3.12), it follows that
\[(3.13) \lim_{n \to \infty} \| (I - P) f_n \|_{2,D_0} = 0. \]
Combining (3.13) with (3.1), we have
\[\lim_{n \to \infty} \| (T - z) P f_n + 1 \otimes h_n \|_{2,D_0} = 0. \]
Let \(\Gamma \) be a curve in \(D_0 \) surrounding \(\sigma(T) \). Then
\[\lim_{n \to \infty} \| P f_n(z) + (T - z)^{-1} (1 \otimes h_n)(z) \| = 0\]
uniformly for all \(z \in \Gamma \). Applying the Riesz–Dunford functional calculus, we obtain
\[
\lim_{n \to \infty} \left\| \frac{1}{2\pi i} \int_{\Gamma} Pf_n(z) \, dz + h_n \right\| = 0.
\]
But by Cauchy’s theorem, \(\frac{1}{2\pi i} \int_{\Gamma} Pf_n(z) \, dz = 0 \). Hence
\[
\lim_{n \to \infty} \| h_n \| = 0.
\]
So, \(V \) is one-to-one and has closed range.

Now we are ready to show that every class A operator has a scalar extension.

Theorem 3.2. Every class A operator in \(\mathcal{L}(\mathcal{H}) \) is subscalar of order 12.

Proof. Let \(T \in \mathcal{L}(\mathcal{H}) \) be a class A operator, let \(D \) be an arbitrary bounded open disk in \(\mathbb{C} \) that contains \(\sigma(T) \) and consider the quotient space
\[
H(D) = W^{12}(D, \mathcal{H})/(T - z)W^{12}(D, \mathcal{H})
\]
endowed with the Hilbert space norm. The class of a vector \(f \) or an operator \(S \) on \(H(D) \) will be denoted by \(\tilde{f} \), respectively \(\tilde{S} \). Let \(M \) be multiplication by \(z \) on \(W^{12}(D, \mathcal{H}) \). As noted at the end of Section 2, \(M \) is a scalar operator of order 12 and has a spectral distribution \(u \). Since the range of \(T - z \) is invariant under \(M \), \(\tilde{M} \) is well-defined. Moreover, consider the spectral distribution \(u : C_0^{12}(\mathbb{C}) \to \mathcal{L}(W^{12}(D, \mathcal{H})) \) defined by the following relation: for \(\varphi \in C_0^{12}(\mathbb{C}) \) and \(f \in W^{12}(D, \mathcal{H}) \), \(u(\varphi)f = \varphi f \). Then the spectral distribution \(u \) of \(M \) commutes with \(T - z \), and so \(\tilde{M} \) is still a scalar operator of order 12 with \(\tilde{u} \) as a spectral distribution. Consider the operator \(V : \mathcal{H} \to H(D) \) given by \(Vh = 1 \otimes h \) and denote the range of \(V \) by \(\text{ran} V \). Since
\[
VTh = 1 \otimes Th = z \otimes h = \tilde{M}(1 \otimes h) = \tilde{M}Vh
\]
for all \(h \in \mathcal{H} \), we have \(VT = \tilde{M}V \). In particular, \(\text{ran} V \) is invariant under \(\tilde{M} \). Furthermore, it is closed by Lemma 3.1 and hence it is a closed invariant subspace of the scalar operator \(\tilde{M} \). Since \(T \) is similar to the restriction \(\tilde{M}|_{\text{ran} V} \), and \(\tilde{M} \) is a scalar operator of order 12, \(T \) is subscalar of order 12.

Theorem 3.2 has the following corollary.

Corollary 3.3.

(i) Every \(p \)-hyponormal or \(w \)-hyponormal operator is subscalar.

(ii) If \(T \in \mathcal{L}(\mathcal{H}) \) is a class A operator, then \(f(T) \) is subscalar for every function \(f \) analytic on a neighborhood of \(\sigma(T) \).

Proof. (i) Since every \(p \)-hyponormal and every \(w \)-hyponormal operator belongs to class A by Section 1, the assertion follows from Theorem 3.2.
(ii) Let T be a class A operator and let f be an analytic function on a neighborhood of $\sigma(T)$. With the same notations as in the proof of Theorem 3.2, we have $Vf(T) = f(\tilde{M})V$. Thus $f(T)$ is subscalar.

Recall from [6] that an operator $T \in \mathcal{L}(\mathcal{H})$ is said to be power regular if $\lim_{n \to \infty} \|T^n h\|^{1/n}$ exists for every $h \in \mathcal{H}$.

Corollary 3.4.

(i) Every class A operator satisfies the property (β), Dunford’s property (C), and the single-valued extension property.

(ii) Every class A operator is power regular.

Proof. (i) Let $T \in \mathcal{L}(\mathcal{H})$ be a class A operator. It suffices to prove that T has the property (β). Since the property (β) is transmitted from an operator to its restrictions to closed invariant subspaces, we are reduced by Theorem 3.2 to the case of a scalar operator of order 12. Since every scalar operator has the property (β) (see [24]), T has the property (β).

(ii) Let $T \in \mathcal{L}(\mathcal{H})$ be a class A operator. Since T is subscalar of order 12 from Theorem 3.2, it is the restriction of a scalar operator of order 12 to one of its closed invariant subspaces. Since a scalar operator is power regular and all restrictions of power regular operators to their invariant subspaces clearly remain power regular, T is power regular.

Recall that an operator $X \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ is called a quasiaffinity if it has trivial kernel and dense range. An operator $S \in \mathcal{L}(\mathcal{H})$ is said to be a quasi-affine transform of $T \in \mathcal{L}(\mathcal{K})$ if there is a quasiaffinity $X \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ such that $XS = TX$. Furthermore, S and T are quasisimilar if there are quasiaffinities X and Y such that $XS = TX$ and $SY = YT$.

Corollary 3.5. Let C and D in $\mathcal{L}(\mathcal{H})$ belong to class A. If C and D are quasisimilar, then $\sigma(C) = \sigma(D)$ and $\sigma_e(C) = \sigma_e(D)$.

Proof. Since C and D satisfy the property (β) from Corollary 3.4, the assertion follows from [25].

Next we will give some applications of Theorem 3.2 including a partial solution of the invariant subspace problem for class A operators. Moreover, the following theorem is a generalization of S. Brown’s theorem and Berger’s theorem (see [7] and [5]).

Theorem 3.6. Let $T \in \mathcal{L}(\mathcal{H})$ be a class A operator.

(i) If $\sigma(T)$ has nonempty interior in \mathbb{C}, then T has a nontrivial invariant subspace.

(ii) There exists a positive integer K such that for all positive integers $k \geq K$, T^{2k} has a nontrivial invariant subspace.
Proof. (i) This follows from Theorem 3.2 and [9].
(ii) From [13], T^2 is a w-hyponormal operator. Therefore, by [5] there exists a positive integer K such that for all positive integers $k \geq K$, T^{2k} has a nontrivial invariant subspace. □

Next we study some spectral properties of the scalar extension of a class A operator.

Theorem 3.7. Let $T \in \mathcal{L}(\mathcal{H})$ be a class A operator. With the notation of the proof of Theorem 3.2, $\sigma_{\tilde{M}}(Vh) = \sigma_T(h)$ for each $h \in \mathcal{H}$.

Proof. Let $h \in \mathcal{H}$. If $\lambda_0 \in \rho_T(h)$, then there is an \mathcal{H}-valued analytic function g defined on a neighborhood U of λ_0 such that $(T - \lambda)g(\lambda) = h$ for all $\lambda \in U$. Then

$$(\tilde{M} - \lambda)Vg(\lambda) = V(T - \lambda)g(\lambda) = Vh$$

for all $\lambda \in U$. Hence $\lambda_0 \in \rho_{\tilde{M}}(Vh)$. That is, $\rho_{\tilde{M}}(Vh) \supset \rho_T(h)$.

Conversely, suppose $\lambda_0 \in \rho_{\tilde{M}}(Vh)$. Then there exists an $H(D)$-valued analytic function \tilde{f} on some neighborhood U of λ_0 such that $(\tilde{M} - \lambda)\tilde{f}(\lambda) = Vh$ for all $\lambda \in U$. Let $f \in H(U, W^{12}(D, \mathcal{H}))$ be a holomorphic lifting of \tilde{f} and fix $\zeta \in U$. Then $h - (\zeta - z)f(\zeta, z) \in (T - z)W^{12}(D, \mathcal{H})$. Therefore, there is a sequence $\{g_n\} \subset H(U, W^{12}(D, \mathcal{H}))$ such that

$$\lim_{n \to \infty} ||h - (\zeta - z)f(\zeta, z) - (T - z)g_n(\zeta, z)||_{W^{12}} = 0$$

with respect to $z \in U$. Then

$$\lim_{n \to \infty} ||h - (T - z)f_n||_{W^{12}} = 0$$

where $f_n(z) := g_n(z, z)$ for $z \in U$. From the proof of Lemma 3.1 (cf. (3.13)), we obtain

$$\lim_{n \to \infty} ||(I - P)f_n||_{2, U_0} = 0$$

where U_0 is an open neighborhood of λ_0 with $U_0 \subset U$, and so

$$\lim_{n \to \infty} ||h - (T - z)Pf_n||_{2, U_0} = 0.$$
Conversely, note that if $U \subset \mathbb{C}$ is any open disk containing $\sigma(T)$ and M is multiplication by z on $W^{12}(U, \mathcal{H})$, then $\sigma(\tilde{M}) \subset \sigma(M) \subset U$. From this property, if $\lambda \in \rho(T)$, then we can choose an open disk D so that $\tilde{M} - \lambda$ is invertible. Since this algebraic property is independent of the choice of D, we get $\sigma(\tilde{M}) \subset \sigma(T)$.

Recall that a closed subspace of \mathcal{H} is said to be hyperinvariant for T if it is invariant under every operator in the commutant $\{T\}'$ of T. An operator $T \in \mathcal{L}(\mathcal{H})$ is decomposable provided that, for each open cover $\{U, V\}$ of \mathbb{C}, there exist closed T-invariant subspaces Y, Z of \mathcal{H} such that $\mathcal{H} = Y + Z$, $\sigma(T|_{Y}) \subset U$, and $\sigma(T|_{Z}) \subset V$. Here, $T|_{Y}$ denotes the restriction of T to Y.

Theorem 3.9. Let $T \in \mathcal{L}(\mathcal{H})$ be a class A operator and let $T \neq zI$ for all $z \in \mathbb{C}$. If S is a decomposable quasiaffine transform of T or $\lim_{n \to \infty} \|T^{n}h\|^{1/n} < \|T\|$ for some nonzero $h \in \mathcal{H}$, then T has a nontrivial hyperinvariant subspace.

Proof. If S is a decomposable quasiaffine transform of T, then there exists a quasiaffinity X such that $XS = TX$ where S is decomposable. If T has no nontrivial hyperinvariant subspace, we may assume that $\sigma_{p}(T) = \emptyset$ and $\mathcal{H}_{T}(F) = \{0\}$ for each closed set F proper in $\sigma(T)$ by Lemma 3.6.1 of [19]. Let $\{U, V\}$ be an open cover of \mathbb{C} with $\sigma(T) \setminus U \neq \emptyset$ and $\sigma(T) \setminus V \neq \emptyset$. If $x \in \mathcal{H}_{S}(U)$, then $\mathcal{H}_{S}(x) \subset U$. So there exists an analytic \mathcal{H}-valued function f defined on $\mathbb{C} \setminus U$ such that $(S - z)f(z) \equiv x$ for all $z \in \mathbb{C} \setminus U$. Hence $(T - z)xf(z) = X(S - z)f(z) = Xx$ for all $z \in \mathbb{C} \setminus U$. Thus $\mathbb{C} \setminus U \subset \rho_{T}(Xx)$, which implies that $Xx \in \mathcal{H}_{T}(U)$, i.e., $X\mathcal{H}_{S}(U) \subset \mathcal{H}_{T}(U)$. Similarly, $X\mathcal{H}_{S}(V) \subset \mathcal{H}_{T}(V)$. Then since S is decomposable,

$$X\mathcal{H} = X\mathcal{H}_{S}(U) + X\mathcal{H}_{S}(V) \subseteq \mathcal{H}_{T}(U) + \mathcal{H}_{T}(V) = \{0\}.$$

But this is a contradiction. So T has a nontrivial hyperinvariant subspace.

Now suppose that $\lim_{n \to \infty} \|T^{n}h\|^{1/n} < \|T\|$ for some nonzero $h \in \mathcal{H}$. Since T is a class A operator,

$$\|Tx\|^{2} = \langle \|T^{2}x, x\rangle \leq \|T^{2}\| \|x\| \|x\| \leq \|T^{2}x\| \|x\|$$

for every $x \in \mathcal{H}$. This implies that

$$\|T^{n}x\|^{2} = \|TT^{n-1}x\|^{2} \leq \|T^{2}T^{n-1}x\| \|T^{n-1}x\| = \|TT^{n+1}x\| \|T^{n-1}x\|$$

for every positive integer n and every $x \in \mathcal{H}$. Hence, Proposition 4.6 and a remark in [6] imply that T has a nontrivial hyperinvariant subspace.

The following proposition provides the concrete structure of a compact class A operator.

Proposition 3.10. Let $T \in \mathcal{L}(\mathcal{H})$ be a class A operator. If T is compact, then $T = B \oplus C \oplus (-C)$ where B and C are normal.
Proof. If $T \in \mathcal{L}(\mathcal{H})$ is a class A operator, then T^2 is w-hyponormal from [13]. Since T^2 is compact, it is normal by [3]. Hence T is a square root of a normal operator, and so by [26] we get the following form:

$$T = B \oplus \begin{pmatrix} C & D \\ 0 & -C \end{pmatrix}$$

where B and C are normal and D is a positive one-to-one operator commuting with C. Since T is also normal by [14], D must be 0, completing the proof.

If $T \in \mathcal{L}(\mathcal{H})$ and $x \in \mathcal{H}$, then $\{T^nx\}_{n=0}^\infty$ is called the orbit of x under T, and is denoted by $O(x,T)$. If $O(x,T)$ is dense in \mathcal{H}, then x is called a hypercyclic vector for T. An operator $T \in \mathcal{L}(\mathcal{H})$ is called hypertransitive if every nonzero vector in \mathcal{H} is hypercyclic for T. Denote the set of all nonhypertransitive operators in $\mathcal{L}(\mathcal{H})$ by (NHT). The hypertransitive operator problem is the question whether $(NHT) = \mathcal{L}(\mathcal{H})$. The following theorem shows that every class A operator belongs to (NHT).

Theorem 3.11. If $T \in \mathcal{L}(\mathcal{H})$ is a class A operator, then it is nonhypertransitive.

Proof. If T is not a quasiaffinity, then $\sigma_p(T) \cup \sigma_p(T^*) \neq \emptyset$. Hence T has a nontrivial invariant subspace, and so $T \in (NHT)$. On the other hand, suppose that T is a quasiaffinity. Then so is T^2. Since T^2 is w-hyponormal from [13], $\hat{T}^2(2)$ is hyponormal. Set $S = \hat{T}^2$. Since $\hat{S} = \hat{T}^2(2)$ is not hypercyclic from [17], there exists a nonzero vector $x \in \mathcal{H}$ such that $O(x,\hat{S})$ is not dense in \mathcal{H}. Let $S = U|S|$ be the polar decomposition of S. Since $U|S|^{1/2}\hat{S} = SU|S|^{1/2}$,

$$S(U|S|^{1/2}O(x,\hat{S})) = U|S|^{1/2}(\hat{S}O(x,\hat{S})) \subseteq U|S|^{1/2}O(x,\hat{S}).$$

Since T^2 is a quasiaffinity, so is S. Hence $|S|$ is a quasiaffinity and U is unitary. Therefore, $U|S|^{1/2}O(x,\hat{S})$ is not dense in \mathcal{H}. So $S \in (NHT)$. By the same argument as above, we can show that $T^2 \in (NHT)$. By [4] or [16], $T \in (NHT)$.

Corollary 3.12. If $T \in \mathcal{L}(\mathcal{H})$ is an invertible class A operator, then T and T^{-1} have a common nontrivial invariant closed set.

Proof. This follows from the proof of Theorem 3.11 and [17].

The following theorem, based on the method of [10], gives a necessary and sufficient condition for hypercyclicity of the adjoint of a class A operator.

Theorem 3.13. If $T \in \mathcal{L}(\mathcal{H})$ belongs to class A, then T^* is hypercyclic if and only if $\sigma_T(x) \cap \mathbb{D} \neq \emptyset$ and $\sigma_T(x) \cap (\mathbb{C} \setminus \mathbb{D}) \neq \emptyset$ for all nonzero $x \in \mathcal{H}$, where $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$.
Proof. Suppose that T^* is hypercyclic. Then by Proposition 2.3 of [10], it is enough to show that $\sigma(T)$ meets both \mathbb{D} and $\mathbb{C} \setminus \mathbb{D}$. Let $S = T|_M$ for some closed T-invariant subspace M and let x be a hypercyclic vector for T^*. Since $(S^*)^n Px = P(T^*)^n x$ for each nonnegative integer n where P is the orthogonal projection of \mathcal{H} onto M, $\{(S^*)^n(Px)\}^\infty_{n=0} = P(\{(T^*)^n x\}^\infty_{n=0}) = P(\mathcal{H}) = M$, i.e., Px is hypercyclic for S^*. Since S belongs to class A and S^* is hypercyclic, $r(S) = \|S\| = \|S^*\| > 1$ as mentioned in [23]. Hence, we have $\sigma(T) \cap (\mathbb{C} \setminus \mathbb{D}) \neq \emptyset$. On the other hand, in order to prove $\sigma(S) \cap \mathbb{D} \neq \emptyset$, assume that $\sigma(S) \subset \mathbb{C} \setminus \mathbb{D}$. Since S^{-1} is a class A operator by [11] and $\sigma(S^{-1}) \subset \mathbb{D}$, it follows that $\|S^{-1}\| = r(S^{-1}) \leq 1$. Since S^* is hypercyclic and invertible, $(S^*)^{-1}$ is hypercyclic by [23], and so $\|S^{-1}\| = \|(S^*)^{-1}\| > 1$ by [23], which is a contradiction. Therefore, $\sigma(S) \cap \mathbb{D} \neq \emptyset$.

Conversely, suppose that $\sigma_T(x) \cap \mathbb{D} \neq \emptyset$ and $\sigma_T(x) \cap (\mathbb{C} \setminus \mathbb{D}) \neq \emptyset$ for all nonzero $x \in \mathcal{H}$. Then we get $\mathcal{H}_T(\mathbb{C} \setminus \mathbb{D}) = (0)$ and $\mathcal{H}_T(\mathbb{D}) = (0)$. Since T has the property (β) by Corollary 3.4, T^* has the property (δ). Thus, by Proposition 2.5.14 in [20], we infer that both $\mathcal{H}_{T^*}(\mathbb{D})$ and $\mathcal{H}_{T^*}(\mathbb{C} \setminus \mathbb{D})$ are dense in \mathcal{H}. By using Theorem 3.2 in [10], T^* is hypercyclic.

Acknowledgements. This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST)(2009-0093125).

References

Relations between two inequalities \((B^\frac{r}{2} A^p B^\frac{r}{2})^\frac{p}{r+r} \geq B^r\) and \(A^p \geq (A^\frac{r}{2} B^r A^\frac{r}{2})^\frac{p}{r+r}\) and their applications, Integral Equations Operator Theory 44 (2002), 442–450.

V. Matache, Operator equations and invariant subspaces, Matematiche (Catania) 49 (1994), 143–147.

Sungeun Jung, Eungil Ko, Mee-Jung Lee
Department of Mathematics
Ewha Women’s University
120-750 Seoul, Korea
E-mail: ssung105@ewhain.net
eiko@ewha.ac.kr
meejung@ewhain.net

Received September 22, 2009
Revised version January 18, 2010 (6697)