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Optimality of the range for which equivalence between
certain measures of smoothness holds

by

Z. Ditzian (Edmonton)

Abstract. Recently it was proved for 1 < p < ∞ that ωm(f, t)p, a modulus of

smoothness on the unit sphere, and eKm(f, tm)p, a K-functional involving the Laplace-
Beltrami operator, are equivalent. It will be shown that the range 1 < p <∞ is optimal;
that is, the equivalence ωm(f, t)p ≈ eKm(f, tr)p does not hold either for p = ∞ or for
p = 1.

1. Introduction and notations. The moduli of smoothness ωm(f, t)p
(see [Di,99]) are given by

(1.1) ωm(f, t)Lp(Sd−1) = ωm(f, t)p = sup
ρ∈Ot

‖∆m
ρ f‖Lp(Sd−1)

where Sd−1 = {xxx = (x1, . . . , xd) : x2
1 + · · · + x2

d = 1}, Ot = {ρ ∈ SO(d) :
ρxxx · xxx ≥ cos t for all xxx ∈ Sd−1}, SO(d) is the group of orthogonal matri-
ces whose determinant equals 1, ∆ρf(xxx) ≡ f(ρxxx) − f(xxx) and ∆m

ρ f(xxx) ≡
∆ρ(∆m−1

ρ f(xxx)).
The K-functional K̃m(f, tm)p is given by

K̃m(f, tm)p = K̃m(f, tm)Lp(Sd−1)(1.2)

= inf(‖f − g‖Lp(Sd−1) + tm‖(−∆̃)m/2g‖Lp(Sd−1))

where the infimum is taken on all g such that (−∆̃)m/2g ∈ Lp(Sd−1), and
∆̃ is the Laplace–Beltrami operator given by

(1.3)
∆̃f(xxx) = ∆F (xxx), xxx ∈ Sd−1,

F (xxx) = f

(
xxx

|xxx|

)
, ∆ =

∂2

∂x2
1

+ · · ·+ ∂2

∂x2
d

.

We recall that

(1.4) Hk = {ϕk : ∆̃ϕk = −k(k + d− 2)ϕk}, k = 0, 1, . . . ,
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Pkf is the projection of f on Hk (in the L2(Sd−1) sense) and

(1.5) (−∆̃)αf =
∞∑
k=1

(k(k + d− 2))α/2Pkf for α 6= 0, α ∈ R.

It was proved in [Da-Di-Hu] (and for even m in [Di,07]) that ωm(f, t)p ≈
K̃m(f, tm)p for 1 < p <∞; that is,

(1.6) C−1K̃m(f, tm)p ≤ ωm(f, t)p ≤ CK̃m(f, tm)p, 1 < p <∞.

Here we show that the second inequality of (1.6) does not hold for p = ∞
or p = 1. The first inequality of (1.6) was proved for even m and 1 ≤ p ≤ ∞
in [Da-Di-Hu, Th. 9.1] (and for even d and m and many other spaces in
[Da-Di]).

The main result of this paper is summarized by the next theorem.

Theorem 1.1. The inequality

ωm(f, t)p ≤ CK̃m(f, tm)p

fails for p = 1 and p =∞ for any m = 1, 2, . . . .

This failure means that for any integer m and any constant C there
exist f ∈ L1(Sd−1) (for p = 1) and f ∈ L∞(Sd−1) (for p = ∞) for which
the inequality is not valid in the range 0 < t ≤ t0.

2. A counterexample for L∞. For L∞(Sd−1), d ≥ 3 and m = 2 we
use the function

(2.1) f(x, y, u1, . . . , ud−3, z) =
{

(x2 − y2) log(x2 + y2), x 6= 0, y 6= 0,
0 otherwise,

which is clearly in L∞(Sd−1). We recall (see [Er, Chapter XI] and [Vi, Ch.
IX, p. 494]) that

(2.2)
r−2∆̃f = ∆f − r−d+1 ∂

∂r

(
rd−1 ∂f

∂r

)
,

r = (x2 + y2 + u2
1 + · · ·+ u2

d−3 + z2)1/2,

where ∆ is the Laplacian. Straightforward calculation yields

∆f =
10(x2 − y2)
x2 + y2

− 4(x4 − y4)
(x2 + y2)2

=
6(x2 − y2)
x2 + y2

and |∆f | ≤ 6.
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We express f in polar coordinates given by (see [Er, Ch. XI] and [Vi, Ch.
IX, p. 435])

(2.3)

z = r cos θ1,
ud−3 = r sin θ1 cos θ2,

...
u1 = r sin θ1 · · · sin θd−3 cos θd−2,

x = r sin θ1 · · · sin θd−2 cosϕ,
y = r sin θ1 · · · sin θd−2 sinϕ,

where 0 ≤ θi ≤ π for 1 ≤ i ≤ d − 2 and 0 ≤ ϕ ≤ 2π. (Clearly, for d = 3,
u1, . . . , ud−3 do not exist.) Hence

f(r, θ1, . . . , θd−2, ϕ) = r2 cos 2ϕ sin2 θ1 · · · sin2 θd−2 log r2 sin2 θ1 · · · sin2 θd−2.

Straightforward computation implies that (for r = 1)∣∣∣∣r−d+1 ∂

∂r

(
rd−1 ∂f

∂r

)∣∣∣∣
is smaller than

C(1 + sin2 θ1 . . . sin2 θd−2|log(sin2 θ1 · · · sin2 θd−2)|),

which is bounded for all θi. The above, together with (2.2), implies that ∆̃f
is bounded on Sd−1 (when r = 1) and hence

(2.4) K̃2(f, t2)∞ ≤ C1t
2 for f of (2.1).

We will now show that f given in (2.1) satisfies

(2.5) ω2(f, t)∞ ≥ C2t
2|log t|.

Choosing the point ζζζ = (x, y, . . . , z) = (0, . . . , 0,−1) and the transformation
(rotation)

(2.6) ρ =



cos t 0 . . . 0 sin t
1 0

0
. . .

1
− sin t 0 . . . 0 cos t


,

we have
f(ρζζζ)− 2f(ζζζ) + f(ρ−1ζζζ) = 2 sin2 t log sin2 t,

which establishes (2.5). Therefore, for L∞(Sd−1), d ≥ 3 and m = 2 the right
hand inequality of (1.6) is not valid.
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To show that the right hand inequality of (1.6) fails for m = 1 we assume
that it does not fail and hence, for f ∈ C2 and ρ ∈ Ot,

|∆ρf | ≤ Ct‖(−∆̃)1/2f‖L∞(Sd−1).

Iterating the above will cause a contradiction with (2.5). We note that, for
f ∈ C2(Sd−1),

K̃1(f, t)∞ ≤ Ct‖(−∆̃)1/2f‖∞ and K̃2(f, t2)∞ ≤ Ct2‖(−∆̃)f‖∞.
To our knowledge the case m = 2 does not imply the failure of the right

hand inequality of (1.6) for all m. For even m, we set m = 2` and use the
function

(2.7) f2`(x, y, u1, . . . , ud−3, z) =
{
P`(x, y) log(x2 + y2), x 6= 0, y 6= 0,
0, otherwise,

with

(2.8) P`(x, y) =
∑̀
k=0

akx
2(`−k)y2k, P`(cosϕ, sinϕ) = cos 2`ϕ,

where the coefficients ak are determined by P`(cosφ, sinφ) = cos 2`φ. In
Section 4 we show that using the Taylor formula, we will obtain

(2.9) ω2`(f2`, t)∞ ≥ C2`t
2`|log t| for 0 < t < t0,

and using iteration of (2.2) and some delicate computation, we will obtain

(2.10) K̃(f2`, t
2`)∞ ≤ C∗2`t2`.

Combining the inequalities (2.9) and (2.10) implies

(2.11) ω2`(f2`, t)∞ ≥ A2`K̃2`(f2`, t
2`)∞|log t| for 0 < t < t0.

For odd m we use (2.9) and (2.10) with ` = m and follow exactly the
considerations for m = 1.

We note that for L∞(Rd) (or L∞(T d)) one has

(2.12) C−1Km(f, tm)p ≤ ωm(f, t)p ≤ CKm(f, tm)p, 1 < p <∞,
where translations in Rd (not elements of SO(d)) are used in the definition
of ωm(f, t)p, and the Laplacian (instead of the Laplace–Beltrami operator)
is used in the definition of Km(f, tm)p. For d ≥ 2 and p =∞ the right hand
inequality of (2.12) fails because of the failure of the estimate of the Riesz
transform (see [St]). The example given in (2.1) or (2.7) can be modified by

(2.13) f∗2`(x, y, u1, . . . , ud−3, z)

= f2`(x, y, u1, . . . , ud−3, z)ψ(x2 + y2 + u2
1 + · · ·+ u2

d−3 + z2)

where

ψ(r2) =
{

1, |r2| ≤ 1,
0, |r2| ≥ 2,
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ψ ∈ C∞ and r2 = x2+y2+· · ·+z2. The function f∗2` will provide an example
for the failure of (2.12) for d ≥ 2, p = ∞ and m = 2` (when d = 2, z is
eliminated). Following previous arguments, a contradiction can establish the
above contention (on the failure of (2.12)) for odd m and p =∞.

3. The failure of the inequality for L1. For L1(Sd−1), d ≥ 3, we
prove the failure of the right hand inequality of (1.6) by contradiction. We
assume ωm(H, t)1 ≤ CK̃m(H, tm)1 for all H ∈ L1(Sd−1). Setting H =
(−∆̃)−m/2g for g ∈ L1(Sd−1) satisfying P0g = 0 (i.e.

	
Sd−1 g(x) dx = 0),

one has ‖∆m
ρ {(−∆̃)−m/2g}‖L1(Sd−1) ≤ Ctm‖g‖L1(Sd−1) for all ρ ∈ Ot where

(−∆̃)−m/2f is given by (1.5). We note that ∆ρ is not a multiplier operator
but that it still commutes with powers of −∆̃, i.e. with (−∆̃)α (α ∈ R).
As established in the last section, for any M > 0 we have a function f ∈
L∞(Sd−1) (and in fact f ∈ Cm(Sd−1)), t > 0 and ρ ∈ Ot such that

‖∆m
ρ f‖L∞(Sd−1) ≥Mtm‖(−∆̃)m/2f‖L∞(Sd−1)

and hence for F = (−∆̃)m/2f (for which P0F = 0),

‖∆m
ρ (−∆̃)−m/2F‖L∞(Sd−1) ≥Mtm‖F‖L∞(Sd−1).

We may now choose G ∈ L1(Sd−1) with ‖G‖L1(Sd−1) = 1 so that

〈G,∆m
ρ (−∆̃)−m/2F 〉 ≥ ‖∆m

ρ (−∆̃)−m/2F‖L∞(Sd−) − ε

where 〈ϕ,ψ〉 =
	
Sd−1 ϕ(x)ψ(x) dx.

For g = G− P0G which satisfies ‖g‖L1(Sd−1) ≤ 2 and P0g = 0 we have

〈∆m
ρ−1{(−∆̃)m/2g}, F 〉 ≤ Ctm‖g‖L1(Sd−1)‖F‖L∞(Sd−1) ≤ 2Ctm‖F‖L∞(Sd−1)

as ρ−1 ∈ Ot if ρ ∈ Ot. However,

〈∆m
ρ−1{(−∆̃)−m/2g}, F 〉 = 〈g,∆m

ρ {(−∆̃)−m/2F}〉 = 〈G,∆m
ρ {(−∆̃)−m/2F}〉

≥ ‖∆m
ρ {(−∆̃)−m/2F}‖L∞(Sd−1) − ε

≥Mtm‖F‖L∞(Sd−1) − ε,

and this causes a contradiction for M > 3C.
For L1(Rd) or L1(T d) (d ≥ 2) the same argument for the corresponding

failure of (2.12) follows and in fact in this case both ∆m
h f and (−∆)−m/2f

are multiplier operators which naturally commute.

4. Proof of the inequality (2.11) for ` ≥ 2. Using the description of
f2` in polar coordinates, i.e.

f2` = r2` cos 2`ϕ sin2` θ1 · · · sin2` θd−1 log r2 sin2 θ1 · · · sin2 θd−2,
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we have

r2r−d+1 ∂

∂r

(
rd−1 ∂

∂r
f2`

)
= 2`(2`+ d− 2)f2` + [(2`+ d− 2) + 2`]r2` cos 2ϕ` sin2` θ1 · · · sin2` θd−2.

To compute ∆̃ we also calculate ∆f2`:

∆f2` =
((

∂2

∂x2
+

∂2

∂y2

)
P`(x, y)

)
log(x2 + y2) + 2

∂

∂x
P`(x, y)

2x
x2 + y2

+ 2
∂

∂y
P`(x, y)

2y
x2 + y2

+ P`(x, y)
8

x2 + y2
.

We now observe that (
∂2

∂x2
+

∂2

∂y2

)
P`(x, y) = 0.

This is shown using the two-dimensional description, i.e. x = ρ cosψ, y =
ρ sinψ,

P`(x, y) = ρ2` cos 2`ψ and
∂2

∂x2
+

∂2

∂y2
=

∂2

∂ρ2
+ ρ−1 ∂

∂ρ
+ ρ2 ∂2

∂ψ2
,

which imply((
∂

∂x

)2

+
(
∂

∂y

)2)
P`(x, y)

= 2`(2`− 1)ρ2`−2 cos 2`ψ + 2`ρ2`−2 cos 2`ψ − (2`)2ρ2`−2 cos 2`ψ.

As x2+y2 = r2 sin2 θ1 · · · sin2 θd−2 and P`(x, y) is a homogeneous polynomial
of degree 2` in x and y, we can write

r2∆f2` = r2`Q`(cosψ, sinϕ, sin θ1 sin θ2 · · · sin θd−2)

= r2`Q∗` (cosϕ, sinϕ)(sin θ1 · · · sin θd−2)2`−2

where Q∗` is a polynomial in cosϕ and sinϕ.
Therefore, ∆̃`−1r2`Q`(cosϕ, sinϕ, sin θ1 · · · sin θd) is bounded using the

description of ∆̃ in polar coordinates as given in [Er, Ch. XI] (see also
[Da-Di-Hu, (2.6)] and [Vi, (6), p. 494]). Similarly, ∆̃`−1r2` cos 2`ϕ sin2` θ1 · · ·
sin2` θd−2 is also bounded. To examine 2`(2`+ d− 1)∆̃`−1f2` we follow the
above procedure and obtain, after `− 1 iterations, a constant times f2` plus
other terms which are bounded. We note that f2` is bounded (when r = 1)
and hence ‖∆̃`f2`‖L∞(Sd−1) ≤ C, which implies (2.10). We now use ρ of (2.6)
and ζζζ = (0, 0, . . . , 0,−1) and note that ‖∆2`

ρ f2`‖L∞(Sd−1) ≥ |∆2`
ρ f2`(ρζζζ)|.

Using a0 = 1 (with aj of (2.8)), which follows by setting ϕ = 0 and then
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using the Taylor formula, we have

|∆2`
ρ f2`(ρ`+1ζζζ) =

∣∣∣∣ ∑̀
j=−`

(−1)j
(

2`
`+ j

)
f2`(ρj+1+`ζζζ)

∣∣∣∣
=
∣∣∣∣ ∑̀
j=−`

(−1)j
(

2`
`+ j

)
(sin2`(j + 1 + `)t) log sin2(j + 1 + `)t

∣∣∣∣
= C1t

2`

∣∣∣∣( ∂

∂t

)2`

((sin2` t) log sin2 t)t=η

∣∣∣∣
where η is in [t, (2`+ 1)t]. Since sin t log sin2 t is bounded, we have∣∣∣∣( ∂

∂t

)2`

(sin2` t) log sin2 t

∣∣∣∣
t=η

= (2`)! cos2` η log sin2 η + g(η)

where g(η) is bounded. Therefore, for small t, g(η) is insignificant compared
with |cos2` η log sin2 η|. This concludes the proof of (2.9), which, together
with (2.10), implies (2.11).
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