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Spectraloid operator polynomials, the
approximate numerical range and an

Eneström–Kakeya theorem in Hilbert space

by

Jan Swoboda (Bonn) and Harald K. Wimmer (Würzburg)

Abstract. We study a class of operator polynomials in Hilbert space which are spec-
traloid in the sense that spectral radius and numerical radius coincide. The focus is on
the spectrum in the boundary of the numerical range. As an application, the Eneström–
Kakeya–Hurwitz theorem on zeros of real polynomials is generalized to Hilbert space.

1. Introduction. For many purposes the Eneström–Kakeya theorem
([31, p. 137], [37, p. 4], [9, p. 12], [38, p. 255]) is an effective criterion to test
whether a real polynomial has all its zeros in the unit disk. It can be stated
as follows.

Theorem 1.1. Let

(1.1) h(z) =
m−1∑
j=0

ajz
j

be a real polynomial such that

(1.2) 0 < a0 ≤ a1 ≤ · · · ≤ am−1.

Then all zeros λ of h(z) satisfy |λ| ≤ 1.

The theorem has numerous applications, which range from asymptotics
of partial sums of power series [11] or a local-global stability principle for
discrete-time systems [28] to coding theory [13], the economic theory of de-
preciation and reinvestment [41], stability analysis of delay filters [36] and
models of high energy collisions [10] in physics. In this paper we are con-
cerned with an extension of the Eneström–Kakeya theorem to operators in
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Hilbert space, which is different from the ones given by Furuta and Naka-
mura [21] and by Fujii and Kubo [18]. Our starting point is a sharper version
of Theorem 1.1, which goes back to Hurwitz [26] (see also [1], [2]). We use
the following notation, which later will be extended to operator polynomials.
For a complex polynomial p(z) we define

σ(p) = {λ ∈ C; p(λ) = 0} and r(p) = max{|λ|; λ ∈ σ(p)}.

Let π+
m−1 denote the set of all real polynomials p(z) =

∑m−1
j=0 ajz

j satisfying
(1.2).

Theorem 1.2 ([26]). Let h(z) = a0 + a1z + · · · + am−1z
m−1 be a real

polynomial with

(1.3) 0 < a0 = a1 = · · · = ar1−1 < ar1 = ar1+1 = · · · = ar2−1 < · · ·
< ars = ars+1 = · · · = am−1.

Then r(h) ≤ 1. Set k = gcd(r1, . . . , rs,m). Then r(h) = 1 if and only if
k > 1. In that case

0 < a0 = · · · = ak−1 ≤ ak = · · · = a2k ≤ · · · ≤ am−k = · · · = am−1,

and
h(z) = (1 + z + · · ·+ zk−1)p(zk), p ∈ π+

`−1, ` = m/k,

and p(z) has no zeros λ with |λ| = 1. The zeros of h(z) on the unit circle
are simple, and they are the nontrivial kth roots of unity, e2νπi/k, ν =
1, . . . , k − 1.

To prove Theorem 1.2 one can assume that am−1 = 1, and then use a
multiplier z−1 and consider the polynomial g(z) = (z−1)h(z). Set a−1 = 0.
Then

g(z) = zm −
m−1∑
j=0

(aj − aj−1)zj ,

and σ(g) = σ(h)∪{1}. Therefore (1.2) implies g(z) = zm−
∑m−1

j=0 cjz
j with

c0 > 0, cj ≥ 0, j = 1, . . . ,m− 1, and

(1.4)
m−1∑
j=0

cj = 1.

Because of (1.4) it is more convenient to deal with g(z) instead of the poly-
nomial h(z) in (1.1). Therefore in this paper the focus is on operator poly-
nomials of the form

(1.5) G(z) = Izm −
m−1∑
j=0

Cjz
j ,
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where the coefficients Cj are bounded, positive semidefinite operators on
a Hilbert space. We shall extend the following theorem to operator poly-
nomials, and then generalize Theorem 1.2 to Hilbert spaces.

Theorem 1.3 ([26], [1], [35, p. 92]). Let

g(z) = zm − (cm−1z
m−1 + · · ·+ c1z + c0)

be a real polynomial, g(z) 6= zm. Set c−1 = 0. Let t ∈ {0, . . . ,m− 1} be such
that ct > 0 and cj = 0 if j < t. Suppose

cj ≥ 0, j = 0, . . . ,m− 1, and
m−1∑
j=t

cj ≤ 1.

Then:

(i) r(g) ≤ 1.
(ii) r(g) = 1 if and only if 1 ∈ σ(g), i.e.

∑m−1
j=0 cj = 1.

(iii) The zeros of g(z) on the unit circle (if any) are simple.
(iv) Suppose r(g) = 1. Define

d = gcd({j; ct+j 6= 0, j = 0, . . . ,m−t−1}∪{m−t}), ` = (m−t)/d.
Then

(1.6) {λ; g(λ) = 0, |λ| = 1} = {e2νπi/d; ν = 0, . . . , d− 1},
and

(1.7) g(z) = zt
[
z`d −

`−1∑
j=0

cjdz
jd
]

= zt(zd − 1)p(zd)

with r(p(zd)) < 1. In particular, if c0 > 0 then the zeros of g(z) are
mth roots of unity.

The content of the paper is as follows. In Section 2 we recall basic con-
cepts of spectral theory of operators in Hilbert space such as residual spec-
trum and approximate point spectrum. We define analogous concepts for
the set σ(B) = {λ ∈ C; 0 ∈ σ(B(λ))} of characteristic values of operator
polynomials

(1.8) B(z) =
m∑
j=0

Bjz
j ∈ L(H)[z].

Moreover, we introduce approximate characteristic values of B(z) and cor-
responding approximate Jordan chains. In Section 3 we investigate the ap-
proximate numerical range of operator polynomials. It will be shown that
the residual spectrum on the boundary of the numerical range is empty if
the coefficients of B(z) in (1.8) are selfadjoint. In Section 4 we deal with op-
erator polynomials (1.5) assuming Cj = C∗j , Cj ≥ 0 (positive semidefinite),
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and
∑m−1

j=0 Cj ≤ I. We shall prove that σ(G) is contained in the closed unit
disk. Special attention will be given to the characteristic values of G(z) on
the unit circle ∂D. It will be shown that they lie on the boundary of the
numerical range of G(z). Hence it will follow from results of Section 3 that
characteristic values on ∂D are in the normal approximate spectrum of G(z),
and that they are approximately semisimple. Moreover, ∂D does not con-
tain residual characteristic values of G(z). However, residual characteristic
values may well exist in the interior of the unit disk, as we shall illustrate
by an example. In Section 5 we extend the Eneström–Kakeya theorem to
Hilbert space.

2. The spectrum, definitions and notation. Let D = {z ∈ C;
|z| < 1} be the open unit disk and ∂D = {z ∈ C; |z| = 1} the unit circle
of the complex plane. The set of nonnegative real numbers will be denoted
by R≥. Let Em = {ζ ∈ C; ζm = 1} be the group of mth roots of unity. If
ζ ∈ Em then ord ζ will denote the order of ζ.

Let H be a complex Hilbert space and SH = {x ∈ H; ‖x‖ = 1} its unit
sphere, and let L(H) be the algebra of bounded linear operators on H. If
v ∈ H then v∗ ∈ H∗ is defined by v∗(u) = 〈v, u〉 for all u ∈ H. If T ∈ L(H)
then T ∗ denotes the adjoint of T . We say that an operator T ∈ L(H) is
positive semidefinite (T ≥ 0) if T is selfadjoint and satisfies 〈x, Tx〉 ≥ 0
for all x ∈ H. If 〈x, Tx〉 > 0 for all x ∈ H, x 6= 0, then we write T > 0.
A selfadjoint operator T will be called strictly positive definite (T � 0) if

〈x, Tx〉 ≥ δ〈x, x〉 for some δ > 0.

It follows from [5, p. 244, (57.16)] that T � 0 if and only if T > 0 and T is
invertible. If T ≥ 0 then (see [40, p. 314], [43, p. 63]) there exists a unique
positive semidefinite square root, and if T is strictly positive definite then
T 1/2 � 0. Let S, T ∈ L(H) be selfadjoint. We write S ≥ T if S−T ≥ 0 and
S � T if S − T � 0.

Let σ(T ) be the spectrum of T ∈ L(H) and let

σP (T ) = {λ ∈ C; λI − T is not injective}
be the point spectrum of T . A complex number λ is called an approximate
eigenvalue of T if for all ε > 0 there exists a u ∈ H such that

‖(λI − T )u‖ < ε‖u‖.
The set σA(T ) of approximate eigenvalues of T is the approximate point
spectrum of T (see [6], [24, p. 54], [5, p. 241], [34, p. 413], [20, p. 81]). We say
that a sequence v = (vν) ∈ HN is an approximate eigenvector corresponding
to λ if

(2.1) lim
ν→∞

(λI − T )vν = 0 and v 6= 0 (null sequence).
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If convenient, one can assume ‖vν‖ = 1, ν ∈ N. Evidently, σP (T ) ⊆ σA(T ).
Let

σR(T ) = {λ ∈ C; λI − T is injective and range(λI − T ) 6= H}

be the residual spectrum of T . Then (see e.g. [34, p. 413])

(2.2) σ(T ) = σA(T ) ∪ σR(T ).

It is known ([39, p. 194], [15, p. 161]) that

(2.3) σR(T ) ⊆ σP (T ∗).

The following notation will be useful. Let u = (uν), v = (vν) ∈ HN. We
write

u =̂ v if lim
ν→∞

(uν − vν) = 0.

Then u =̂ 0 denotes a null sequence. Let

(2.4) H[z] =
{
f : C→ H; f(z) =

k∑
i=0

fiz
i, fi ∈ H, k ∈ N0

}
.

If p(z) = (pν(z)), q(z) = (qν(z)) ∈ (H[z])N then we write

p(z) =̂ q(z) if lim
ν→∞

pν(z) = lim
ν→∞

qν(z) for all z ∈ C.

According to (2.1) we have λ ∈ σA(T ) if and only if (λI − T )v =̂ 0 for some
v ˆ6= 0. We define

KerA(λI − T ) = {v ∈ HN; (λI − T )v =̂ 0},

and we write KerA(λI − T ) =̂ {0} if λ /∈ σA(T ).
Let H be finite-dimensional, say H = Cn, and let T ∈ Cn×n. The ascent

of an eigenvalue λ of T is the smallest integer ` such that Ker (λI−T )`+1 =
Ker (λI − T )`. An eigenvalue λ with ascent 1 is called semisimple [12]. In
that case we have

Ker (λI − T )2 = Ker(λI − T ),

and the space Cn splits into T -invariant subspaces V and W such that

Cn = V ⊕W and T|V = λI, λ /∈ σ(T|W ).

If H is an arbitrary Hilbert space, we say that λ ∈ σA(T ) is approximately
semisimple if

(2.5) KerA (λI − T )2 = KerA(λI − T ).

It is easy to see that the identity (2.5) can be described in terms of pairs
(v, w) ∈ HN ×HN satisfying (2.7) below.
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Lemma 2.1. Let λ ∈ σA(T ).

(i) We have (2.5) if and only if

(2.6) KerA

(
λI − T 0
I λI − T

)
=
{(

v

w

)
; v =̂ 0, (λI − T )w =̂ 0

}
.

(ii) Conversely, KerA(λI−T ) ( KerA (λI−T )2 if and only if there exist
sequences v, w ∈ HN such that

(2.7) (λI − T )v =̂ 0, v ˆ6= 0, (λI − T )w =̂ v.

We call the pair (v, w) in (2.7) an approximate Jordan chain of length 2.
Note that the sequence v is an approximate eigenvector. Hence λ is approxi-
mately semisimple if and only if the corresponding approximate eigenvectors
cannot be extended to approximate Jordan chains of length 2.

If there exists a sequence v ∈ HN such that v ˆ6= 0, and (λI − T )v =̂ 0
and (λI − T )∗v =̂ 0, then λ is called a normal approximate eigenvalue of T
(see e.g. [16], [19], [30]). The case where (λI − T )v =̂ 0 is equivalent to
(λI − T )∗v =̂ 0 is of special interest. First consider H = Cn and T ∈ Cn×n.
Then

(2.8) Ker (λI − T )∗ = Ker(λI − T )

is equivalent to
[range(λI − T )]⊥ = Ker(λI − T ).

Hence (2.8) holds if and only if

(2.9) Cn = Ker(λI − T ) ⊥© range(λI − T ),

or equivalently, if and only if there exists a unitary operator U such that

U∗TU =
(
λI 0
0 T2

)
, λ /∈ σ(T2).

Lemma 2.2. Let λ ∈ σA(T ). If

KerA(λI − T ) = KerA (λI − T )∗

then λ is approximately semisimple.

Proof. Suppose w ∈ KerA (λI − T )2. Then

0 =̂ (λI − T )[(λI − T )w] = (λI − T )∗(λI − T )w.

Therefore ‖(λI − T )w‖2 =̂ 0. Hence (λI − T )w =̂ 0, and we have (2.5).

Let L(H)[z] be defined in accordance with (2.4). Then B(z) ∈ L(H)[z]
is an operator polynomial of degree m if

(2.10) B(z) =
m∑
j=0

Bjz
j ,
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and B0, . . . , Bm ∈ L(H), Bm 6= 0. Set B∗(z) =
∑m

j=0B
∗
j z
j . We extend the

notion of spectrum from operators T ∈ L(H) to operator polynomials (2.10)
with invertible leading coefficient Bm. We define

σ(B) = {λ ∈ C; B(λ) is not invertible} = {λ ∈ C; 0 ∈ σ(B(λ))},

and r(B) = sup{|λ|; λ ∈ σ(B)}, and

σM (B) = {λ; 0 ∈ σM (B(λ))} for M ∈ {P,A,R}.

Thus λ ∈ σA(B) if and only if

(2.11)
m∑
j=0

Bjλ
jv =̂ 0

for some sequence v ∈ HN, v ˆ6= 0. Adapting a notion of [4] we call the
elements of σA(B) approximate characteristic values of B(z). If (2.11) holds
then we say that v is an approximate eigenvector of B(z) corresponding to λ.
For operator polynomials we define (approximate) semisimplicity in terms
of Jordan chains. Let λ ∈ σA(B). If v, w ∈ HN are sequences such that

B(λ)v =̂ 0, v ˆ6= 0, B′(λ)v +B(λ)w =̂ 0,

then (v, w) is called an approximate Jordan chain of length 2 of B(z) cor-
responding to λ. Thus, all approximate Jordan chains of λ have length 1 if
and only if

(2.12) KerA

(
B(λ) 0
B′(λ) B(λ)

)
=
{(

v

w

)
; v =̂ 0, B(λ)w =̂ 0

}
.

(We refer to [4] or [27] for a study of Jordan chains of operator polynomials.)
If B(z) = λI − T then (2.12) reduces to (2.6). We say that λ is approxi-
mately semisimple if there are no corresponding approximate Jordan chains
of length 2.

In our examples we shall deal with `2 = `2(C), the complex Hilbert space
of square summable sequences. Let e1 = (1, 0, 0, . . . )T , e2 = (0, 1, 0, , . . . )T ,
etc., be the standard orthonormal basis of `2. Define e = (eν)ν∈N.

Example 2.3. Consider H = `2 and G(z) = z3I − (C2z
2 + C1z + C0)

with

C0 = C1 = diag(1/2, 1/3, 1/4, . . . ), C2 = I − 2C0 = diag(0, 1/3, 2/4, . . . ).

Then G(0) = G′(0) = C0 implies

lim
ν→∞

G(0)eν = 0 and lim
ν→∞

(G′(0)eν +G(0)eν) = 0.

Hence (e, e) is an approximate Jordan chain of length 2 corresponding to
0 ∈ σ(G).
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Let λ ∈ σA(B), and suppose B(λ)v =̂ 0 and B(λ)∗v =̂ 0 for some v ˆ6= 0.
Then the approximate characteristic value λ will be called normal, and v is
a corresponding normal approximate eigenvector. To illustrate the preceding
concepts we consider a monic operator polynomial of degree 2.

Example 2.4. Let H = `2 and consider G(z) = z2I − (C1z + C0) with

C1 = diag(1/2, 1/3, 1/4, 1/5, . . . ) and C0 = diag(0, 1/3, 2/4, 3/5, . . . ).

Then C1 ≥ 0, C0 ≥ 0, and C0 = I − 2C1. Moreover, C0 + C1 = I − C1 ≤ I.
From G(1) = C1 and G(−1) = 3C1 it follows that e is a normal approximate
eigenvector of G(z) corresponding to 1 and to −1. But ±1 /∈ σP (G). Set
pν(z) = [(z − 1)− 1/ν]eν and p(z) = (pν(z)). Then G(z)e =̂ (z + 1)p(z).

The following proposition extends Lemma 2.2.

Proposition 2.5. Let λ ∈ σA(B) be such that

(2.13) KerAB(λ) = KerAB(λ)∗.

Then λ is approximately semisimple if

(2.14) lim
ν→∞

v∗νB
′(λ)vν 6= 0

for all v = (vν) ∈ KerAB(λ), v ˆ6= 0.

Proof. Suppose v, w ∈ HN and

B(λ)v =̂ 0, v ˆ6= 0, B′(λ)v +B(λ)w =̂ 0.

Then limν→∞ v
∗
νB
′(λ)vν = 0, in contradiction to (2.14).

If B(z) = zI − T and T ∈ L(H), then B′(z) = I. This implies (2.14) for
all λ ∈ C, and we recover Lemma 2.2.

3. The approximate numerical range. For an operator polynomial
B(z) ∈ L(H)[z] we define the approximate numerical range WA(B) and the
numerical range W (B) as

WA(B) = {λ ∈ C; lim
ν→∞

y∗νB(λ)yν = 0 for some y = (yν) ∈ HN, y ˆ6= 0}

and
W (B) = {λ ∈ C; y∗B(λ)y = 0 for some y ∈ H, y 6= 0}.

For polynomial matrices B(z) ∈ Cn×n[z] the concept of numerical range was
first studied systematically in [29] and investigated further in [32], [17], [33].
If B(z) = zI − T and T ∈ L(H), then WA(B) and W (B) are equal to

FA(T ) = {λ ∈ C; λ = limx∗νTxν for some (xν) ∈ HN, ‖xν‖ = 1, ν ∈ N}
and

F (T ) = {λ ∈ C; λ = x∗Tx for some x ∈ H, ‖x‖ = 1}
= {x∗Tx; x ∈ H, ‖x‖ = 1},
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respectively. The set F (T ) is known as the numerical range (or field of
values) of T . By the Toeplitz–Hausdorff theorem F (T ) is convex (see e.g.
[22, p. 4], [3, p. 388]). According to [29] the set W (B) is bounded if and only
if 0 /∈ F (Bm). Let

w(B) = sup{|λ|; λ ∈W (B)}

be the numerical radius of B(z). Evidently,

(3.1) σA(B) ⊆WA(B).

The next example shows that, in general, W (B) is a proper subset of WA(B).

Example 3.1. Consider H = `2, and

T = diag(1/2, 2/3, 3/4, . . . )

and B(z) = zI − T . Let e = (eν). Then e ∈ (SH)N and B(1)e =̂ 0. Hence
1 ∈ σA(B), and therefore 1 ∈ WA(B). Let u = (u1, u2, . . . , )T ∈ `2. Then∑∞

k=1 |uk|2 = 1 implies u∗Tu < 1. Hence 1 /∈W (B).

The following theorem provides an intrinsic characterization of W (B).
We point out a general result of [7] on the closure of the numerical range of
operators in Banach spaces and we also refer to corresponding comments in
[5, p. 329].

Proposition 3.2. We have WA(B) = W (B).

Proof. Let us first show that WA(B) ⊆W (B). Suppose λ ∈WA(B) and
let (vν) ∈ (SH)N be a corresponding sequence with limν→∞ v

∗
νB(λ)vν = 0.

The sequences (v∗νBjvν), j = 0, . . . ,m, are bounded. We can assume that
the limits βj = limν→∞ v

∗
νBjvν , j = 0, . . . ,m, exist. Hence

βj = v∗νBjvν + εjν and lim
ν→∞

εjν = 0.

Define

bν(z) =
m∑
j=0

v∗νBjvνz
j , ν ∈ N, and b(z) =

m∑
j=0

βjz
j .

Then bν(z) =
∑

j(βj − εjν)zj , and b(λ) = 0. Zeros of a complex polynomial
vary continuously with its coefficients (see e.g. [8, p. 230]). Hence, there
exists a sequence (λν) such that

bν(λν) = 0, |λ− λν | < δν , and lim
ν→∞

δν = 0.

Because of bν(λν) = v∗νB(λν)vν we have λν ∈ W (B). Therefore λ =
limν→∞ λν ∈W (B).

We turn to the inclusion W (B) ⊆ WA(B). Let λ ∈ W (B) and λν ∈
W (B), ν ∈ N, be such that limν→∞ λν = λ. For each ν we have a vν ∈ SH
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such that v∗νB(λν)vν = 0. Hence

|v∗νB(λ)vν | ≤ |v∗ν(B(λ)−B(λν))vν |+ |v∗νB(λν)vν |
≤ ‖B(λ)−B(λν)‖+ |v∗νB(λν)vν |.

We conclude that limν→∞ v
∗
νB(λ)vν = 0, that is, λ ∈WA(B).

From Proposition 3.2 we get ∂WA(B) = ∂W (B) and ∂FA(T ) = ∂F (T ).
Moreover,

(3.2) w(B) = sup{|λ|; λ ∈WA(B)},
and if W (B) is bounded then

(3.3) w(B) = max{|λ|; λ ∈WA(B)}.
It is known (see e.g. [20, p. 97]) that the spectrum of T is contained in

the closure of F (T ). A corresponding result holds for operator polynomials.

Lemma 3.3. We have σ(B) ⊆WA(B) and r(B) ≤ w(B).

Proof. From (2.2) we obtain σ(B) = σA(B)∪σR(B). Therefore, by (3.1),
it suffices to prove σR(B) ⊆ WA(B). Suppose λ ∈ σR(B), that is, 0 ∈
σR(B(λ)). Then (2.3) implies 0 ∈ σP (B(λ)∗), that is, λ̄ ∈ σP (B∗). Hence
λ̄ ∈WA(B∗). This is equivalent to λ ∈WA(B).

We say that the operator polynomial B(z) is spectraloid if

(3.4) w(B) = r(B).

If B(z) = zI − T , T ∈ L(H), then (3.4) is equivalent to w(T ) = r(T ), and
the operator T is spectraloid in the sense of [23, p. 176], [22, p. 150], [20,
p. 99].

In the following we are concerned with approximate characteristic values
of B(z) lying on the boundary of W (B). We need an extension of The-
orem 1.1 of [32], which will be proved along the lines of [32]. If zi ∈ C,
i = 1, 2, 3, then [z1, z2, z3] shall denote the triangle with vertices z1, z2, z3.
The interior of a set M will be denoted by intM .

Lemma 3.4. If λ ∈ ∂W (B) then 0 ∈ ∂F (B(λ)).

Proof. Let us show first that 0 is not an interior point of FA(B(λ)).
Suppose there exists a disk U(0, ε) = {w ∈ C; |w| < ε} such that U(0, ε) ⊆
FA(B(λ)). Then there exist zi ∈ U(0, ε), i = 1, 2, 3, such that 0 is an interior
point of the triangle [z1, z2, z3]. We have

zi = lim
ν→∞

x∗iνB(λ)xiν

for some sequence (xiν) ∈ (SH)N, i = 1, 2, 3. Set ziν = x∗iνB(λ)xiν , ν ∈ N,
i = 1, 2, 3. Then 0 is in the interior of the triangle

[z1ν , z2ν , z3ν ] ⊆ U(0, ε)
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if ν is sufficiently large, ν ≥ ν0. By assumption, λ is a boundary point of
W (B). Therefore there exists a sequence (λk)k∈N such that limk→∞ λk = λ
and

(3.5) λk /∈W (B), k ∈ N.

Then
lim
k→∞

x∗iνB(λk)xiν = x∗iνB(λ)xiν = ziν , i = 1, 2, 3.

Hence, if ν ≥ ν0 and k is sufficiently large, k ≥ k0, then 0 is in the interior
of

[x∗1νB(λk)x1ν , x
∗
2νB(λk)x2ν , x

∗
3νB(λk)x3ν ].

We have
x∗iνB(λk)xiν ∈ F (B(λk)), i = 1, 2, 3.

Since F (B(λk)) is convex it follows that 0 ∈ F (B(λk)) for k ≥ k0. Hence
x∗B(λk)x = 0 for some x 6= 0, that is, λk ∈W (B), in contradiction to (3.5).

From λ ∈ ∂W (B) it follows that λ ∈ W (B) = WA(B). Hence 0 ∈
FA(B(λ)). Then 0 /∈ intFA(B(λ)) implies 0 ∈ ∂FA(B(λ)) = ∂F (B(λ)).

In the case where H is finite-dimensional the following proposition can
be found in [25, p. 235].

Proposition 3.5. If λ ∈ ∂F (T ) ∩ σA(T ) then

KerA(λI − T ) = KerA (λI − T )∗,(3.6)
Ker(λI − T ) = Ker (λI − T )∗.(3.7)

Proof. If (λI − T )y = 0, y 6= 0, then v = (vν), vν = y, ν ∈ N, is
an approximate eigenvector of T . Hence it suffices to prove (3.6), and to
consider λ = 0. Suppose (3.6) does not hold. Then there exists a sequence
x = (xν) with x∗νxν = 1, ν ∈ N, such that Tx =̂ 0 and y = T ∗x ˆ6= 0. If
y = (yν) then limν→∞ y

∗
νxν = 0. Since the sequences (y∗νyν), (y∗νTyν) and

(x∗νTyν) are bounded we can assume right away that they are convergent.
Set vν = λxν + µyν . Then

(3.8) v∗νvν = |λ|2 + |µ|2y∗νyν + (λ̄µx∗νyν + µ̄λy∗νxν)

and

lim
ν→∞

v∗νTvν = lim
ν→∞

(λ̄µx∗νTyν + µ̄µy∗νTyν) = lim
ν→∞

(λ̄µy∗νyν + µ̄µy∗νTyν).

Set c = limν→∞ ‖yν‖. Then c > 0. Let limν→∞ y
∗
νTyν = τc2. Then

(3.9) lim
ν→∞

v∗νTvν = c2(λ̄µ+ µ̄µτ).

Define

G = {v = λx+ µy; λ, µ ∈ C, v = (vν), ‖vν‖ = 1, ν ∈ N}.
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Then
V = { lim

ν→∞
v∗νTvν ; v ∈ G} ⊆ FA(T ).

From (3.8) and (3.9) we obtain

V = {c2(λ̄µ+ µ̄µτ); |λ|2 + c2|µ|2 = 1}.

Thus u ∈ V if and only if

u = (λ, cµ)∗
(

0 c

0 τ

)(
λ

cµ

)
and |λ|2 + |cµ|2 = 1. Set M = ( 0 c

0 τ ). Then V = F (M). If τ = 0 then (see [22,
Chapter 1.1]) the set F (M) is a disk with center 0 and radius c/2. If τ 6= 0
then F (M) is an ellipse with foci at 0 and τ and minor axis c. Therefore 0 is
an interior point of FA(T ). Hence 0 /∈ ∂FA(T ). Because of ∂FA(T ) = ∂F (T )
this is a contradiction.

We now assume B(z) = B∗(z) such that

(3.10) B∗j = Bj , j = 0, . . . ,m,

in (2.11).

Lemma 3.6. If B(z) = B∗(z) then each of the sets W (B) and WA(B)
is symmetric with respect to the real axis.

Proof. Because of WA(B) = W (B) we only have to show that λ ∈W (B)
implies λ ∈ W (B). Let x ∈ H, x 6= 0, be such that x∗B(λ)x = 0. Thus
λ ∈ W (B). Define b(z) =

∑m
j=0 x

∗Bjxz
j . Then (3.10) implies b(z) ∈ R[z].

Hence b(λ) = 0 yields b(λ) = 0, that is, λ ∈W (B).

Theorem 3.7. Assume B(z) = B∗(z).

(i) Let λ ∈ ∂W (B). Then λ /∈ σR(B), i.e.

(3.11) σR(B) ∩ ∂W (B) = ∅.

(ii) If λ ∈ ∂W (B) ∩ σ(B) then

(3.12) KerAB(λ) = KerAB(λ)∗ and KerB(λ) = KerB(λ)∗.

Proof. (i) Suppose there exists an element λ ∈ σR(B) ∩ ∂W (B). Then
0 ∈ σR(B(λ)), and λ ∈ ∂W (B∗). Hence (2.3) implies 0 ∈ σP (B(λ)∗) and
Lemma 3.4 implies 0 ∈ ∂F (B(λ)∗). Then (3.7) in Proposition 3.5 yields
0 ∈ σP (B(λ)). This is a contradiction, since the sets σP (B) and σR(B) are
disjoint. Therefore we have (3.11).

(ii) If λ ∈ σ(B) lies on the boundary of W (B) then (3.11) and (2.2) imply
λ ∈ σA(B), i.e. 0 ∈ σA(B(λ)). Thus (3.12) follows from Proposition 3.5.
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4. Semidefinite coefficients. Let

(4.1) G(z) = Izm − (Cm−1z
m−1 + · · ·+ C1z + C0)

be a monic operator polynomial with selfadjoint positive semidefinite coef-
ficients Cj ∈ L(H), j = 0, . . . ,m− 1.

4.1. The numerical radius. We first deal with w(G).

Theorem 4.1. G(z) is spectraloid, i.e. w(G) = r(G).

Proof. Let λ ∈ WA(G). Consider a corresponding sequence v = (vν) ∈
HN, v ˆ6= 0, with

(4.2) lim
ν→∞

v∗νG(λ)vν = lim
ν→∞

v∗ν

[
λmI −

m−1∑
j=0

Cjλ
j
]
vν = 0

and

(4.3) v∗νvν = 1, ν ∈ N.
Define cjν = v∗νCjvν , j = 0, . . . ,m− 1. The sequences

(4.4) (cjν), j = 0, . . . ,m− 1,

are bounded. We can choose a suitable subsequence of (vν) such that the
corresponding subsequences in (4.4) are convergent. Hence we may assume
that the limits

(4.5) c
(v)
j = lim

ν→∞
cjvν , j = 0, . . . ,m− 1,

exist. Define

(4.6) g(v)(z) = zm − (c(v)m−1z
m−1 + · · ·+ c

(v)
1 z + c

(v)
0 ).

Then (4.2) is equivalent to g(v)(λ) = 0. Note that g(v)(z) ∈ R[z] and

(4.7) c
(v)
j ≥ 0, j = 0, . . . ,m− 1.

Set ρ = w(G). Assume
∑m−1

j=0 Cj 6= 0. Then G(z) 6= Izm and ρ > 0. Because
of (3.3) we have λ ∈ WA(G) for some λ with |λ| = ρ. Let v = (vν) ∈ HN,
v ˆ6= 0, be a corresponding sequence such that (4.2) holds, and let g(v)(z) be
the polynomial in (4.6). Then g(v)(λ) = 0. Because of (4.7) there exists a
unique positive root ρ̂ of g(v)(z), and r(g(v)) = ρ̂ (see e.g. [38, p. 243], [37,
p. 3]). Then ρ̂ = ρ. Otherwise we would have w(G) ≥ ρ̂ > ρ. Hence

(4.8) g(v)(ρ) = lim
ν→∞

v∗νG(ρ)vν = 0,

and therefore ρ ∈ WA(G). Suppose y∗G(ρ)y < 0 for some y 6= 0. If u ∈ R>

is sufficiently large then y∗G(u)y > 0. Hence y∗G(s)y = 0 for some s > ρ,
and we would have w(G) > ρ. Therefore we obtain G(ρ) ≥ 0. Hence (4.8)
yields limν→∞G(ρ)vν = 0. Thus v = (vν) is an approximate eigenvector
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of G(z) corresponding to ρ. Hence ρ ∈ σA(G). Therefore ρ ≤ r(G). Then
r(G) ≤ w(G) implies r(G) = w(G).

Theorem 4.2. The numerical radius of G(z) satisfies w(G) ≤ 1 if and
only if G(1) ≥ 0, i.e.

(4.9)
m−1∑
j=0

Cj ≤ I.

Proof. Let ρ = w(G). We know that G(ρ) ≥ 0. Hence, if 0 < ρ ≤ 1, then

I ≥
m−1∑
j=0

Cjρ
j−m ≥

m−1∑
j=0

Cj ,

which proves (4.9). Now let λ ∈ WA(G) and let v = (vν) ∈ HN, v ˆ6= 0,
be a corresponding sequence such that (4.2) holds, and let g(v)(z) be the
polynomial in (4.6). Then g(v)(λ) = 0. If (4.9) holds then

(4.10)
m−1∑
j=0

c
(v)
j ≤ 1.

Hence Theorem 1.3 (i) yields |λ| ≤ 1, and therefore w(G) ≤ 1.

Corollary 4.3. We have w(G) = 1 if and only if

(4.11) G(1) ≥ 0 and KerAG(1) 6= {0},

or equivalently, if and only if

(4.12)
m−1∑
j=0

Cj ≤ I and KerA
(
I −

m−1∑
j=0

Cj

)
6= {0}.

Proof. We know from the proof of Theorem 4.1 that w(G) = 1 implies
(4.11). Conversely, if (4.11) holds, then w(G) ≤ 1 (by Theorem 4.2), and
1 ∈ σA(G). Hence w(G) ≤ 1 ≤ r(G) yields w(G) = 1.

There is no loss of generality if we deal with operator polynomials G(z)
with w(G) = 1. Let 0 < w(G) = ρ. Define G̃(z) = ρ−mG(ρz). Then
G̃(z) = ρ−mG(ρz). Therefore W (G̃) = ρ−1W (G) and σ(G̃) = ρ−1σ(G),
and w(G̃) = r(G̃) = 1. If G̃(z) = Izm −

∑m−1
j=0 C̃jz

j , then C̃j = ρ−(m−j)Cj ,
j = 0, . . . ,m− 1. The coefficients of G̃(z) have the following properties:

C̃j ≥ 0, j = 0, . . . ,m− 1,
m−1∑
j=0

C̃j ≤ I.

Corollary 4.4. We have w(G) = min{s; s ≥ 0, G(s) ≥ 0}.
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Proof. Set q= min{s; s ∈ R≥, G(s)≥ 0}. Let ρ=w(G). Then G(ρ)≥ 0.
Hence q ≤ ρ. Suppose G(s) ≥ 0. Then Theorem 4.2 implies ρ ≤ s, and we
obtain q ≥ ρ. Hence q = ρ. Note that G(s) ≥ 0 for all s ≥ ρ.

Corollary 4.5. If
∑m−1

j=0 Cj � I then w(G) < 1.

Proof. The assumption implies that the inequality in (4.10) is strict.
Thus g(v)(1) =

∑m−1
j=0 c

(v)
j < 1. Therefore |λ| < 1 for all λ ∈ WA(G). Since

WA(G) is closed we obtain w(G) < 1.

In general, the inequality
∑m−1

j=0 Cj < I is not sufficient for w(G) < 1.

Example 4.6. Let H = `2 and

C0 = diag(1/2, 2/3, 3/4, 4/5, . . . ).

Then 0 < C0 < I, and the inequality C0 � I is not satisfied. Consider
G(z) = zI − C0. Then

I − C0 = diag(1/2, 1/3, . . . , 1/k, . . . ) > 0

implies w(G) ≤ 1. We have noted in Example 3.1 thatG(1)e = (I−C0)e =̂ 0.
Hence 1 ∈ σA(G), and w(G) = 1.

4.2. The spectrum on the unit circle. In this section we consider
operator polynomials with r(G) = w(G) = 1. Thus we assume

(4.13) Cj ≥ 0, j = 0, . . . ,m− 1,
m−1∑
j=0

Cj ≤ I,

and

(4.14) KerA
(
I −

m−1∑
j=0

Cj

)
6= {0}.

Hence σ(G) ∩ ∂D 6= ∅. Let v = (vν) ∈ HN, v ˆ6= 0, be given. We define

M(v) = {µ; µ ∈ ∂D, G(µ)v =̂ 0}.
Then M(v) consists of those approximate characteristic values µ of G(z)
which lie on the unit circle and have v as a corresponding approximate
eigenvector. In the proof of Theorem 4.1 we have seen that w(G) = ρ = 1,
and |λ| = 1 and G(λ)v =̂ 0 imply G(1)v =̂ 0. Hence we have M(v) 6= ∅ if
and only if

(4.15) G(1)v =
(
I −

m−1∑
j=0

Cj

)
v =̂ 0, v ˆ6= 0.

We may assume that v is a sequence satisfying (4.3) and that the limits (4.5)
exist. If λ ∈ σA(G) and v is a corresponding approximate eigenvector then
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G(λ)v =̂ 0 implies Cjv ˆ6= 0 for some j, 0 ≤ j ≤ m− 1. Let tv be defined by

(4.16) C0v =̂ · · · =̂ Ctv−1v =̂ 0, and Ctvv
ˆ6= 0.

Note that C0 � 0 implies tv = 0. We now describe the structure of M(v)
and generalize Theorem 1.3(iv).

Theorem 4.7. Assume (4.15). Set

(4.17) dv = gcd({j; Ctv+jv ˆ6= 0, j = 0, . . . ,m− tv − 1} ∪ {m− tv}).
Then M(v) = Edv .

Proof. Let g(v)(z) = zm−
∑m−1

j=0 c
(v)
j zj be the polynomial in (4.6). Then

λ ∈M(v) implies g(v)(λ) = 0. From (4.16) it follows that c(v)t > 0, c(v)j = 0,
if j < t. We apply Theorem 1.3(iv) to determine the unimodular roots of
g(v)(z). Set

d̂v = gcd({j; c(v)tv+j
6= 0, j = 0, . . . ,m− tv − 1} ∪ {m− tv}).

Then (1.6) yields Ed̂v = {λ; g(v)(λ) = 0, |λ| = 1}. Because of Cj ≥ 0 we

have c
(v)
j = limν→∞ v

∗
νCjvν = 0 if and only if limν→∞Cjvν = 0. Hence

d̂v = dv, and therefore M(v) ⊆ Edv .
To prove the inclusion Edv ⊆M(v), we first note that (4.16) and (4.17)

imply

(4.18) G(z)v =̂ ztv
[
z`dvI −

`−1∑
j=0

Cjdvz
jdv
]
v.

If λ ∈ Edv then λdv = 1, and therefore (4.18) yields G(λ)v = G(1)v. Then
(4.15) implies G(λ)v =̂ 0. Hence λ ∈M(v).

The assumption r(G) = w(G) = 1 implies that approximate character-
istic values of G(z) on the unit circle are on the boundary of the numerical
range of G(z). Therefore we can take advantage of results of Section 3. An
immediate consequence of Theorem 3.7(i) is the following.

Theorem 4.8. If λ ∈ σ(G) and |λ| = 1, then λ /∈ σR(G), i.e.

σR(G) ∩ ∂D = ∅.
Thus, if the spectrum of G(z) on the unit circle is nonempty then its

elements are approximate characteristic values. The next theorem shows
that all of them are approximately normal and semisimple.

Theorem 4.9. If λ ∈ σ(G) and |λ| = 1, then

(4.19) KerAG(λ) = KerAG(λ)∗ and KerG(λ) = KerG(λ)∗,

and λ is approximately semisimple.
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Proof. The identities (4.19) are taken from Theorem 3.7(ii). We apply
Proposition 2.5 to show that λ is approximately semisimple. Assume that
v = (vν) is such that (4.3) holds and that the limits c(v)j in (4.5) exist.
Let g(v)(z) be the corresponding polynomial (4.6). It follows from The-
orem 1.3(iii) that λ is a simple root of g(v)(z). Hence (g(v))′(λ) 6= 0. Therefore
limν→∞ v

∗
νG
′(λ)vν 6= 0, which amounts to condition (2.14).

We record two observations, which will be used later.

Lemma 4.10.

(i) If C0 � 0 then σ(G) ∩ ∂D ⊆ Em, where m = degG.
(ii) If C0 � 0 and C1 � 0 then σ(G) ∩ ∂D ⊆ {1}.
Proof. Suppose σ(G) ∩ ∂D 6= ∅, that is, 1 ∈ σA(G). Let v be an approx-

imate eigenvector corresponding to 1. Then C0 � 0 implies tv = 0. Hence
dv |m, and therefore M(v) ⊆ Edv ⊆ Em. If Cj � 0, j = 0, 1, then dv = 1.
Hence M(v) = {1}.

In Example 2.4 we considered a polynomial G(z) = z2I−(zC1 +C0) and
extracted a factor z+ 1 from G(z)e ∈ H[z]. A general factorization result is
given in (4.20) below. It extends the identity (1.7) in Theorem 1.3(iv).

Theorem 4.11. Suppose G(1)v =̂ 0, v ˆ6= 0. Let tv and dv be defined by
(4.16) and (4.17), respectively. If m− tv = `dv then

(4.20) G(z)v =̂ ztv(zdv − 1)p(zdv),

where p(z) = (pν(z)) is a sequence in H[z] and

(4.21) p(λdv) ˆ6= 0 if |λ| = 1.

Proof. In (4.18) we have seen that G(z)v =̂ ztv [Iz`dv −
∑`−1

j=0Cjdvz
jdv ]v.

Hence G(z)v =̂ ztvq(zdv) for some sequence q(z) = (qν(z)) in H[z]. If
λdv − 1 = 0 then G(λ)v =̂ 0, and we obtain q(z) = (zdv − 1)p(z). It re-
mains to show that the sequence p(zdv) in (4.20) satisfies (4.21). Suppose
p(λdv) =̂ 0 for some λ ∈ ∂D. Then λ ∈ M(v) and therefore λ ∈ Edv , i.e.
λdv − 1 = 0. Hence G(λ)v =̂ G′(λ)v =̂ 0. Then (v, v) would be an approxi-
mate Jordan chain of length 2 corresponding to λ. Hence λ ∈ σA(G) ∩ ∂D
would not be approximately semisimple, in contradiction to Theorem 4.9.

4.3. An operator polynomial with nonempty residual spectrum.
We have seen in Theorem 4.8 that the residual spectrum of G(z) on the
unit circle is empty. In this section we construct an operator polynomial of
the form (4.1) with the properties (4.13) and (4.14), which has a residual
spectrum (contained in the open unit disk).

Example 4.12. Let H = `2. We construct a monic operator polynomial

G(z) = Iz3 − (C2z
2 + C1z + C0) ∈ L(H)[z]
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with selfadjoint positive semidefinite coefficients Cj satisfying

(4.22) C2 + C1 + C0 = I

such that

(4.23) σR(G) ∩ D 6= ∅,
i.e. such that there exists a λ ∈ D with 0 ∈ σR(G(λ)). Let

S+ : (z1, z2, z3, . . .) 7→ (0, z1, z2, , . . .)

be the right shift and

S− : (z1, z2, z3, . . .) 7→ (z2, z3, z4, . . .)

the left shift on `2. It is known (see [34, p. 420]) that D ⊆ σR(S+). In
particular, 0 ∈ σR(S+). This can be seen as follows. The map S+ : `2 → `2
is injective, and range(S+) = 〈e1〉⊥ is not dense in `2. Set

U =
1
2

(S+ + S−) and V =
1
2

(S+ − S−).

Then S∗+ = S− implies U∗ = U and (iV )∗ = iV . Clearly, U + V = S+. Let
0 < α < 1

2 . Define d(z) = z3 − [(1− 2α)z2 + (2α− 2α2)z + 2α2] and

D(z) = Iz3 − (D2z
2 +D1z +D0) = d(z)I.

Then λ = −(1 + i)α is a root of d(z), and

d(z) = (z − λ)(z − λ̄)(z − 1) = (z2 + 2αz + 2α2)(z − 1).

From D(1) = 0 it follows that

(4.24) D2 +D1 +D0 = I.

Set κ = 1 + 2α+ 2α2. The polynomials

p(z) = z2 + 2αz − (1 + 2α) and q(z) =
1 + α

α
z2 − 1

α
z − 1

satisfy

(4.25) p(1) = q(1) = 0, p(λ) = −κ, q(λ) = iκ.

Define
E(z) = E2z

2 + E1z + E0 = p(z)U + q(z)iV

such that
E0 = −(1 + 2α)U − iV,

E1 = 2αU − 1
α
iV,

E2 = U +
(

1
α

+ 1
)
iV.

Then (4.25) implies

(4.26) E2 + E1 + E0 = 0
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and

(4.27) E(λ) = p(λ)U + q(λ)iV = −κU + iκiV = −κS+.

We consider the operator polynomial

G(z) = D(z)− εE(z), ε > 0.

The coefficients of G(z) have the form Cj = Dj − εEj , j = 0, 1, 2. Because
0 < α < 1/2 the operators

D0 = 2α2I, D1 = 2α(1− α)I, D2 = (1− 2α)I

are strictly positive definite. The operators Ej are self-adjoint. We assume
that ε > 0 is sufficiently small such that Cj � 0, j = 0, 1, 2. From (4.24) and
(4.26) we obtain (4.22). To prove (4.23) we evaluate G(z) at the point λ.
From D(λ) = 0 and (4.27) we deduce that G(λ) = εκS+, and consequently
0 ∈ σR(G(λ)).

Let us determine the spectrum of G(z) on the unit circle. From (4.22)
it follows that 1 ∈ σ(G). Because of C0 � 0 and C1 � 0 we can apply
Lemma 4.10, and we see that 1 is the only element of σ(G) that lies on the
unit circle.

5. The Eneström–Kakeya theorem in Hilbert space. Theorems 1.1
and 1.2 have been extended to matrix polynomials ([14], [42]). In this section
we obtain more general results for operator polynomials.

Theorem 5.1. Let

(5.1) H(z) = Am−1z
m−1 + · · ·+A1z +A0

be an operator polynomial with selfadjoint coefficients Aj ∈ L(H). Assume

(5.2) Am−1 � 0, Am−1 ≥ Am−2 ≥ · · · ≥ A0 ≥ 0.

Then:

(i) r(H) ≤ 1 and 1 /∈ σ(H).
(ii) The residual spectrum of H(z) on the unit circle is empty.
(iii) If λ ∈ σ(H) and |λ| = 1, then KerAH(λ) = KerAH(λ)∗ and λ is

approximately semisimple.
(iv) Suppose A0 � 0. Then λ ∈ σ(H) and |λ| = 1 imply λm = 1.

Proof. (i) From Am−1 � 0 it follows that A1/2
m−1 � 0, and therefore

R := A
−1/2
m−1 ∈ L(H), R = R∗. Set Ãj = R∗AjR, j = 0, . . . ,m− 1. Then

R∗H(z)R = Izm−1 +
m−2∑
j=0

Ãjz
j .

Thus, it suffices to consider (5.1) with Am−1 = I and

I ≥ Am−2 ≥ · · · ≥ A0 ≥ 0.
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As in the case of the polynomial h(z) in (1.1) one can use the multiplier z−1.
Define G(z) = (z − 1)H(z). Then G(z) = Izm −

∑m−1
j=0 Cjz

j , and C0 = A0,
and Cj = Aj − Aj−1 ≥ 0, j = 1, . . . ,m − 1, and C0 + · · · + Cm−1 = I, and
1 ∈ σP (G). Moreover,

(5.3) σ(G) = σ(H) ∪ {1}.

From Corollary 4.3 we get r(G) = w(G) = 1. Hence (5.3) implies r(H) ≤ 1.
Let us show that 1 /∈ σ(H). Because of (5.2) we have H(1) =

∑m−1
j=0 Aj � 0.

Hence H(1) has a bounded inverse and therefore 0 /∈ σ(H(1)).
It is obvious that (ii) follows from (4.8). For (iii) we refer to Theorem 4.9,

and (iv) is a consequence of Lemma 4.10(i).

We now extend Theorem 1.2 to a result on operator polynomials. We
focus on an approximate eigenvector v of H(z). With regard to (1.3) we
make the assumptions

A0v =̂ · · · =̂ Ar1−1v, Ar1−1v ˆ6= Ar1v,

(5.4) Ar1v =̂ · · · =̂ Ar2−1v, Ar2−1v ˆ6= Ar2v, . . . ,

Ars−1v ˆ6= Arsv, Arsv =̂ · · · =̂ Am−1v.

Theorem 5.2. Suppose the coefficients of H(z) satisfy

Am−1 � 0 and Am−1 ≥ Am−2 ≥ · · · ≥ A0 � 0.

Let λ ∈ σ(H) and |λ| = 1, and let v be a corresponding approximate eigen-
vector. Let r1, . . . , rs be given by (5.4). Define k = gcd(r1, . . . , rs,m). Then
λk = 1, and

H(z)v =̂ (1 + z + · · ·+ zk−1)p(zk),

where p(z) = (pν(z)) ⊆ H[z] is a sequence with

(5.5) lim
ν→∞

pν(λk) 6= 0 if |λ| = 1.

Proof. Again, we can assume Am−1 = I, and pass from H(z) to G(z).
The coefficients of G(z) satisfy (5.2). Therefore (5.4) is equivalent to

{1, . . . , r1 − 1, r1 + 1, . . . , r2 − 1, . . . , rs + 1 . . . ,m− 1}
= {j; 0 ≤ j ≤ m− 1, Cjv =̂ 0},

and we have {j; 0 ≤ j ≤ m− 1, Cjv ˆ6= 0} = {r1, . . . , rs}. Hence

k = gcd({j; 0 ≤ j ≤ m− 1, Cjv ˆ6= 0} ∪ {m}).

Then Theorem 4.11 and tv = 0 yield

G(z)v =̂ (z − 1)H(z)v =̂ (zk − 1)p(zk) =̂ (z − 1)(1 + z + · · ·+ zk−1)p(zk).

Finally, (4.21) implies that the sequence p(zk) = (pν(zk)) satisfies (5.5).
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