
STUDIA MATHEMATICA 215 (1) (2013)

On a simultaneous selection theorem

by

Takamitsu Yamauchi (Matsue)

Abstract. Valov proved a general version of Arvanitakis’s simultaneous selection the-
orem which is a common generalization of both Michael’s selection theorem and Dugundji’s
extension theorem. We show that Valov’s theorem can be extended by applying an argu-
ment by means of Pettis integrals due to Repovš, Semenov and Shchepin.

1. Introduction. All spaces considered in this paper are assumed to be
completely regular and Hausdorff. For a space X and a linear topological
space E, let C(X,E) denote the linear space of all continuous mappings
from X to E. For a space Y , let 2Y denote the power set of Y . For a subset
A of a linear topological space E, let conv(A) denote the closed convex hull
of A. A mapping Φ : X → 2Y is said to be lower semicontinuous (l.s.c. for
short) if for every open subset V of Y , the set {x ∈ X : Φ(x) ∩ V 6= ∅} is
open in X. As a common generalization of Michael’s convex-valued selection
theorem [9] and Dugundji’s simultaneous extension theorem [5], Arvanitakis
[1, Theorem 1.1] established the following simultaneous selection theorem.

Theorem 1.1 (Arvanitakis [1]). Let X be a paracompact k-space, Y a
completely metrizable space, E a locally convex complete linear topological
space and Φ : X → 2Y \ {∅} an l.s.c. mapping. Then there exists a linear
mapping S : C(Y,E)→ C(X,E) such that
(1.1) S(f)(x) ∈ conv(f(Φ(x))) for every x ∈ X and f ∈ C(Y,E).

Furthermore, S is continuous when both C(Y,E) and C(X,E) are equipped
with the uniform topology or the topology of uniform convergence on compact
sets.

Let Cb(X,E) denote the set of all bounded continuous mappings from X
to E. Valov [22, Theorem 1.2] proved that the assumption in Theorem 1.1
that X is a k-space can be dropped if C(Y,E) and C(X,E) are replaced
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with Cb(Y,E) and Cb(X,E), respectively, or if E is a Banach space. His
proof is based on the existence of a barycenter map introduced by Banakh
[2] and that of a perfect Milyutin mapping due to Repovš, Semenov and
Shchepin [18].

In this note, we show that the assumption in Theorem 1.1 of X being
a k-space can be dropped and that of E being complete can be relaxed
(see Theorem 2.5). Our proof is based on an argument by means of Pettis
integrals due to Repovš, Semenov and Shchepin [18].

Let R denote the space of real numbers with the usual topology. The
covering dimension of a normal space X is denoted by dimX. For undefined
notions we refer to [6] or [19].

2. Proof of the main result. For a space X, let βX denote the Stone–
Čech compactification of X and P (βX) the set of all regular Borel probabil-
ity measures on βX. For µ ∈ P (βX), let suppµ denote the support of µ, that
is, the intersection of all closed subsets F of βX such that µ(βX\F ) = 0. Put
Pβ(X) = {µ ∈ P (βX) : suppµ ⊂ X}. Let Cb(X) denote the Banach space
Cb(X,R) with the sup-norm and Cb(X)∗ its dual. Then, for µ ∈ Pβ(X), the
mapping Lµ : Cb(X)→ R defined by

Lµ(f) =
�

βX

βf dµ =
�

suppµ

f dµ, f ∈ Cb(X),

is a continuous linear functional on Cb(X), where βf is the unique continuous
extension of f to βX. Since each µ ∈ Pβ(X) is a regular measure on βX,
the correspondence µ 7→ Lµ is an injection on Pβ(X) into Cb(X)∗. Thus, we
may assume that Pβ(X) is a subset of Cb(X)∗ and endow Pβ(X) with the
relative topology induced by the weak∗ topology on Cb(X)∗. Then, a basic
neighborhood of µ ∈ Pβ(X) is of the form{

ν ∈ Pβ(X) :
∣∣∣ �

suppµ

fi dµ−
�

supp ν

fi dν
∣∣∣ < ε, i ∈ {1, . . . , n}

}
,

where f1, . . . , fn ∈ Cb(X) and ε > 0.
Let E be a locally convex linear topological space in which every closed

convex hull of a compact subset is compact (for example, a quasi-complete
space, see [7, §20, 6 (3)]). Then, for every µ ∈ Pβ(X) and f ∈ C(X,E), and
every compact subset C of X, there exists the Pettis integral

	
C f dµ which

is the unique element of E satisfying�

C

f dµ ∈ µ(C) conv(f(C)),(2.1)

λ
( �
C

f dµ
)
=

�

C

(λ ◦ f) dµ(2.2)

for each λ ∈ E∗ (see [19, Theorem 3.27]).
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For spaces Z and X, a continuous surjection p : Z → X is said to be
zero-dimensional if each fiber p−1(x), x ∈ X, is zero-dimensional. Note that
if p is a zero-dimensional perfect mapping, then dim p−1(x) = 0 for each
x ∈ X (see [6, Theorem 6.2.7]). A continuous surjection p : Z → X is called
aMilyutin mapping if there exists a continuous mapping ν : X → Pβ(Z) such
that supp ν(x) ⊂ p−1(x) for each x ∈ X. Milyutin mappings were introduced
by Pełczyński [15] under the name of “mappings with a regular averaging
operator”, and the name “Milyutin mapping” was introduced by Shchepin
[20] (see also [16], [17], [21]). Following [18], we shall define a continuous
linear mapping by means of zero-dimensional perfect Milyutin mappings
(see also [16, Theorem 4.1], [17, A §3]).

Lemma 2.1. Let Z and X be spaces, p : Z → X a zero-dimensional
perfect Milyutin mapping, ν : X → Pβ(Z) a continuous mapping associated
with p and E a locally convex linear topological space in which every closed
convex hull of a compact subset is compact. For h ∈ C(Z,E), define T (h) :
X → E by

T (h)(x) =
�

p−1(x)

h dν(x), x ∈ X.(2.3)

Then T (h) is continuous.

To show Lemma 2.1, we shall apply the following fact.

Fact 2.2. Let Z be a space and C its compact subspace satisfying dimC
= 0. Then, for every collection V of open subsets of Z which covers C, there
exists a finite disjoint collection G of open subsets of Z which refines V and
covers C.

Proof. We give the proof for the sake of completeness (for a normal
space and its closed subspace, see [3, §22]). Let V be a collection of open
subsets of Z which covers C. Since C is compact and dimC = 0, we have
a finite collection W of open subsets of Z such that C ⊂

⋃
W , W refines

V and the collection {W ∩ C : W ∈ W } is disjoint. For each z ∈ C,
we can take a unique W (z) ∈ W and an open subset U(z) of Z so that
z ∈ U(z) ⊂ U(z) ⊂ W (z) since Z is completely regular. Choose a finite
set {z1, . . . , zk} ⊂ C such that C ⊂

⋃k
j=1 U(zj). For each W ∈ W , put

UW =
⋃
{U(zj) : W (zj) = W , j ∈ {1, . . . , k}}. Then we have UW ⊂ W . By

putting GW = UW \
⋃
W ′ 6=W UW ′ for each W ∈ W , we have the required

finite disjoint collection G = {GW :W ∈ W }.
Proof of Lemma 2.1. Our proof is based on the idea in [17, A §3.4]. Let

h ∈ C(Z,E), x0 ∈ X and W a neighborhood of the origin of E. Take a
convex symmetric neighborhood V of the origin such that 4V ⊂ W . Then
V = {h−1(h(z) + V ) : z ∈ p−1(x0)} is a collection of open subsets of Z
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which covers p−1(x0). Since p−1(x0) is compact and dim p−1(x0) = 0, by
Fact 2.2, there exists a finite disjoint collection G = {G1, . . . , Gn} of open
subsets of Z which refines V and covers p−1(x0). For each i ∈ {1, . . . , n},
choose ai ∈ p−1(x0) such that Gi ⊂ h−1(h(ai) + V ). Then

h(Gi) ⊂ h(ai) + V.(2.4)

Put Ki = p−1(x0) ∩ Gi. Then Ki = p−1(x0) \
⋃
j 6=iGj , which is compact

and Ki ⊂ Gi. Thus, since Z is completely regular and Hausdorff, there
exists a continuous function si : Z → [0, 1] such that Ki ⊂ Int s−1i (1) ⊂
s−1i ((0, 1]) ⊂ Gi. Put Ui = Int s−1i (1). Then p−1(x0) ⊂

⋃n
i=1 Ui. Since p is a

closed mapping, we may take a neighborhood N of x0 such that p−1(N) ⊂⋃n
i=1 Ui. Since ν is continuous, there exists a neighborhood O of x0 such that

(2.5)
( �

p−1(x)

si dν(x)−
�

p−1(x0)

si dν(x0)
)
h(ai)

=
( �

supp ν(x)

si dν(x)−
�

supp ν(x0)

si dν(x0)
)
h(ai) ∈

1

n
V

for each x ∈ O and i ∈ {1, . . . , n}.
We claim that T (h)(x)−T (h)(x0) ∈W for each x ∈ N∩O. To show this,

let x ∈ N∩O. For each i ∈ {1, . . . , n}, we have supp ν(x)∩(Gi\Ui) = ∅ since
supp ν(x) ⊂ p−1(x) ⊂

⋃n
i=1 Ui and Gi ∩

⋃
j 6=i Uj = ∅. Also, p−1(x) \ Gi ⊂

s−1i (0) and Ui ⊂ s−1i (1). Thus,�

p−1(x)

si dν(x) =
�

p−1(x)\Gi

si dν(x) +
�

Gi\Ui

si dν(x) +
�

Ui

si dν(x)(2.6)

=
�

Ui

si dν(x) = ν(x)(Ui).

Since
∑n

i=1 ν(x)(Ui) = ν(x)(p−1(x)) = 1 and V is convex, by applying (2.4)
and (2.6), we obtain

T (h)(x) =
�

p−1(x)

h dν(x) =

n∑
i=1

�

Ui∩p−1(x)

h dν(x)

∈
n∑
i=1

ν(x)(Ui ∩ p−1(x)) conv(h(Ui ∩ p−1(x)))

⊂
n∑
i=1

ν(x)(Ui)(h(ai) + V ) ⊂
n∑
i=1

ν(x)(Ui)h(ai) + V

=

n∑
i=1

( �

p−1(x)

si dν(x)
)
h(ai) + V .
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Similarly,

T (h)(x0) ∈
n∑
i=1

( �

p−1(x0)

si dν(x0)
)
h(ai) + V .

Thus, by (2.5),

T (h)(x)− T (h)(x0) ∈
n∑
i=1

( �

p−1(x)

si dν(x)−
�

p−1(x0)

si dν(x0)
)
h(ai) + 2V

⊂
n∑
i=1

1

n
V + 2V ⊂ 4V ⊂W.

Hence T (h) : X → E is continuous.

We have the following analogue of [22, Proposition 2.2].

Lemma 2.3. Let Z, X, p, ν and E be as in Lemma 2.1. Let T : C(Z,E)
→ C(X,E) be the linear mapping defined by (2.3). Then:

(i) T (h)(x) ∈ conv(h(p−1(x))) for each x ∈ X and h ∈ C(Z,E),
(ii) T (g ◦ p) = g for each g ∈ C(X,E), and
(iii) T is continuous when both C(Z,E) and C(X,E) are equipped with

the uniform topology or the topology of uniform convergence on com-
pact sets.

Proof. (i) follows from (2.3) and (2.1) since ν(x)(p−1(x)) = 1.
For (ii), let g ∈ C(X,E). Then for each x ∈ X and λ ∈ E∗,

λ(T (g ◦ p)(x))) = λ
( �

p−1(x)

(g ◦ p) dν(x)
)
=

�

p−1(x)

(λ ◦ g ◦ p) dν(x)

= λ(g(x))
�

p−1(x)

dν(x) = λ(g(x))ν(x)(p−1(x)) = λ(g(x)).

Since E∗ separates points in E, we have T (g◦p)(x) = g(x), which shows (ii).
For (iii), we show T is continuous with respect to the topology of uniform

convergence on compact sets. Let h ∈ C(Z,E), K a compact subset of X
and W a convex neighborhood of the origin of E. Since p : Z → X is a
perfect mapping, p−1(K) is a compact subset of Z. Let k ∈ C(Z,E) be such
that k(z)− h(z) ∈W for each z ∈ p−1(K).

To complete the proof, it suffices to show that T (k)(x) − T (h)(x) ∈ W
for each x ∈ K. For a contradiction, assume T (k)(x′) − T (h)(x′) /∈ W for
some x′ ∈ K. By a separation theorem (see [19, Theorem 3.4]), there exists
λ ∈ E∗ such that supλ(W ) < λ(T (k)(x′) − T (h)(x′)). Put c = supλ(W ).
Then for each z ∈ p−1(x′)(⊂ p−1(K)), we have k(z)− h(z) ∈W , and hence
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λ(k(z)− h(z)) ≤ c for each z ∈ p−1(x′). Thus,

c < λ(T (k)(x′)− T (h)(x′)) = λ
( �

p−1(x′)

k dν(x′)−
�

p−1(x′)

h dν(x′)
)

=
�

p−1(x′)

(λ ◦ (k − h)) dν(x′) ≤
�

p−1(x′)

c dν(x′) = c ν(x)(p−1(x′)) = c.

This is a contradiction. Thus T is continuous with respect to the topology
of uniform convergence on compact sets. Similarly, we can show that T is
continuous with respect to the uniform topology.

The following theorem is essentially proved by Michael [10, Theorem 1.2],
[11, Theorem2] (see also [17, Theorem (2.4)∗]).

Theorem 2.4 (Michael [10], [11]). Let Z be a paracompact space with
dimZ = 0, Y a metrizable space and ϕ : Z → 2Y an l.s.c. mapping with
nonempty complete values for some compatible metric on Y . Then ϕ admits
a continuous selection.

Now we have the main theorem.

Theorem 2.5. Let X be a paracompact space, Y a metrizable space,
Φ : X → 2Y an l.s.c. mapping with nonempty complete values for some com-
patible metric on Y and E a locally convex linear topological space in which
every closed convex hull of a compact subset is compact. Then there exists a
linear mapping S : C(Y,E) → C(X,E) satisfying (1.1). Furthermore, S is
continuous when both C(Y,E) and C(X,E) are equipped with the uniform
topology or the topology of uniform convergence on compact sets.

Proof. Our proof is the same as that of [22, Theorem 1.2]. We present it
here for the sake of completeness. According to [18, Theorem 1.4] (see also
[17, Theorem (3.9)]), there exists a paracompact space Z with dimZ = 0 and
a Milyutin mapping p : Z → X. Then the mapping ϕ : Z → 2Y defined by
ϕ(z) = Φ(p(z)) is an l.s.c. mapping with nonempty complete values for some
compatible metric on Y . According to Theorem 2.4, ϕ admits a continuous
selection g : Z → Y . Let T : C(Z,E) → C(X,E) be the linear mapping
defined by (2.3). Define S : C(Y,E)→ C(X,E) by S(f) = T (f ◦ g) for each
f ∈ C(Y,E). Since g is a selection of ϕ, we have g(p−1(x)) ⊂ Φ(x) for each
x ∈ X. Thus, by (i) in Lemma 2.3, we have

S(f)(x) = T (f ◦ g)(x) ∈ conv(f(g(p−1(x)))) ⊂ conv(f(Φ(x))).

The continuity of S follows from that of T and g.

Remark 2.6. If Y in Theorem 2.5 is completely metrizable, then the
assumption that the values of Φ are complete for some compatible metric
on Y can be dropped. Indeed, let X and Φ be as in Theorem 2.5, Y a
complete metric space and Φ : X → 2Y \ {∅} an l.s.c. mapping. Then the
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mapping Φ : X → 2Y \ {∅} defined by Φ(x) = Φ(x) for x ∈ X is l.s.c.
and complete-valued. Thus, by Theorem 2.5 replacing Φ with Φ, we obtain
a linear mapping S : C(Y,E)→ C(X,E) such that

S(f)(x) ∈ conv(f(Φ(x))) = conv(f(Φ(x)))

for all x ∈ X and f ∈ C(Y,E).
Hence Theorem 2.5 is an extension of Theorem 1.1.

3. Applications. Applying Theorem 2.5, we have another proof of the
following theorems due to Michael [13, Theorem 1.2], [12, Theorem 1.3].

Theorem 3.1 (Michael [13]). Let X be a paracompact space, E a locally
convex linear topological space in which every closed convex hull of a compact
subset is compact and Y a metrizable subset of E. Let Φ : X → 2Y be an l.s.c.
mapping with nonempty complete values for some compatible metric on Y .
Then there exists a continuous f : X → E such that f(x) ∈ conv(Φ(x)) for
every x ∈ X.

Proof. By Theorem 2.5, there exists a linear mapping S : C(Y,E) →
C(X,E) satisfying (1.1). Let i : Y → E be the inclusion mapping. Then the
mapping f = S(i) ∈ C(X,E) is as required.

Theorem 3.2 (Michael [12]). Let X and Y be metric spaces and p :
X → Y a surjective open mapping such that p−1(y) is complete for every
y ∈ Y . Let E be a locally convex linear topological space in which every closed
convex hull of a compact subset is compact, and let C(X,E) and C(Y,E) be
endowed with the topology of uniform convergence on compact sets. Then
there exists a continuous linear mapping S : C(X,E)→ C(Y,E) such that

S(f)(y) ∈ conv(f(p−1(y)))

for every f ∈ C(X,E) and y ∈ Y .

Proof. Since p : X → Y is an open mapping, Φ : Y → 2X defined by
Φ(y) = p−1(y) for y ∈ Y is an l.s.c. mapping with nonempty complete values.
Thus the conclusion follows from Theorem 2.5.

Remark 3.3. By [12, Example 1.4], the assumption in Theorem 3.2 that
every p−1(y) is complete cannot be dropped. Thus, in Theorem 2.5, the
assumption that Φ is compete-valued is necessary.

For a space Y , let C (Y ) denote the set of all nonempty compact subsets
of Y and put C ′(Y ) = C (Y ) ∪ {Y }. The weight of a space Y is denoted by
w(Y ). For a metrizable space Y and an l.s.c. mapping Φ : X → 2Y \ {∅},
a triple (Z, g, ϕ) is called an l.s.c. weak factorization of Φ [4, 14] if Z is a
metrizable space with w(Z) ≤ w(Y ), g : X → Z is a continuous mapping
and ϕ : Z → C (Y ) is an l.s.c. mapping such that ϕ(g(x)) ⊂ Φ(x) for every
x ∈ X. For an infinite cardinal τ , a space X is said to be τ -collectionwise
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normal if for every discrete collection F of closed subsets of X with |F | ≤ τ ,
there exists a disjoint collection {UF : F ∈ F} of open subsets of X such
that F ⊂ UF for each F ∈ F . A space X is collectionwise normal if X
is τ -collectionwise normal for every τ . It is well-known that a space X is
normal if and only if X is ω-collectionwise normal, where ω is the smallest
infinite cardinal.

Corollary 3.4. Let X be a τ -collectionwise normal space, Y a com-
pletely metrizable space with w(Y ) ≤ τ , Φ : X → C ′(Y ) an l.s.c. mapping
and E a locally convex linear topological space in which every closed con-
vex hull of a compact subset is compact. Then there exists a linear mapping
S : C(Y,E)→ C(X,E) satisfying (1.1). Furthermore, S is continuous when
both C(Y,E) and C(X,E) are equipped with the uniform topology or the
topology of uniform convergence on compact sets.

Proof. By [4] (see also [14, Lemma 3.6 and Theorem 5.1]), Φ admits a
weak factorization (Z, g, ϕ). In view of Theorem 2.5 for ϕ : Z → C (Y ), there
exists a linear mapping T : C(Y,E)→ C(Z,E) such that

T (f)(z) ∈ conv(f(ϕ(z))) for every z ∈ Z and f ∈ C(Y,E).

Then the mapping S : C(Y,E) → C(X,E) defined by S(f) = T (f) ◦ g for
f ∈ C(Y,E) is as required.

We have the following corollary analogous to [8, Theorem 1].

Corollary 3.5. Let X be a τ -collectionwise normal space, A a com-
pletely metrizable subspace of X with w(A) ≤ τ , and E a locally convex
linear topological space in which every closed convex hull of a compact sub-
set is compact. Then there exists a linear mapping S : C(A,E) → C(X,E)
such that S(f) is an extension of f and S(f)(X) ⊂ conv(f(A)) for every
f ∈ C(A,E). Furthermore, S is continuous when both C(A,E) and C(X,E)
are equipped with the uniform topology or the topology of uniform convergence
on compact sets.

Proof. As in [22, §3], define Φ : X → 2A by Φ(x) = {x} if x ∈ A and
Φ(x) = A, otherwise. Then Φ is l.s.c. and Φ(x) ∈ C ′(A) for each x ∈ X.
Thus, by Corollary 3.4, we have a linear mapping S : C(A,E) → C(X,E)
satisfying (1.1) with Y replaced by A. This S is as required.
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