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Operators with absolute continuity properties:
an application to quasinormality
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Jan Stochel (Kraków)

Abstract. An absolute continuity approach to quasinormality which relates the op-
erator in question to the spectral measure of its modulus is developed. Algebraic char-
acterizations of some classes of operators that emerge in this context are found. Various
examples and counterexamples illustrating the concepts of the paper are constructed by
using weighted shifts on directed trees. Generalizations of these results that cover the case
of q-quasinormal operators are established.

1. Introduction. The notion of a quasinormal operator, i.e., an opera-
tor with commuting factors in its polar decomposition, has been introduced
by Arlen Brown in [2] (the unbounded case has been taken up in [21]). Such
operators form a bridge between normal and subnormal operators. Quasi-
normal operators have been found to be useful in many constructions of
operator theory, e.g., when dealing with the question of subnormality (see
[4, 9, 21] for the general case and [10] for the case of composition operators).

In the present paper we develop an absolute continuity approach to quasi-
normality of unbounded operators. On the way we characterize wider classes
of operators that seem to be of independent interest. First we prove that a
closed densely defined Hilbert space operator A is quasinormal if and only if
〈E(·)Af,Af〉 � 〈E(·)|A|f, |A|f〉 for every vector f in the domain D(A) of A
(the symbol � means absolute continuity), where E is the spectral measure
of the modulus |A| of A (see Theorem 3.1).

One may ask whether reversing the above absolute continuity implies the
quasinormality of A. In general the answer is negative (cf. Examples 8.2–8.4).

Another question is: assuming more, namely that the Radon–Nikodym
derivative of 〈E(·)|A|f, |A|f〉 with respect to 〈E(·)Af,Af〉 is bounded by a
constant c which does not depend on f ∈ D(A), is it true that A is quasi-
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normal? We shall prove that the answer is affirmative for c ≤ 1 and negative
for c > 1 (cf. Theorem 5.1 and Section 8). The case of c > 1 leads to a
new class of operators, called weakly quasinormal, which are characterized
by means of the strong commutant of their moduli (cf. Theorem 4.3). Let us
remark that operators which satisfy the reversed absolute continuity condi-
tion can be completely characterized in the language of operator theory (cf.
Theorem 4.4).

The absolute continuity approach is implemented in the context of
weighted shifts on directed trees (cf. Theorem 7.2; the concept of a weighted
shift on a directed tree has been developed in [5]). This enables us to illus-
trate the theme of this article by various examples and to show that there
is no relationship between the hyponormality class and the classes of oper-
ators studied in the present paper (cf. Section 8). Finally, we will provide
some generalizations of our main results which cover the case of the so-called
q-quasinormal operators (cf. Section 9).

2. Notation and terminology. In what follows, C stands for the set
of all complex numbers. We denote by Z+, N and R+ the sets of nonnegative
integers, positive integers and nonnegative real numbers, respectively. The
symbol B(R+) stands for the σ-algebra of all Borel subsets of R+. Given
two finite positive Borel measures µ and ν on R+, we write µ � ν if µ is
absolutely continuous with respect to ν; if this is the case, then dµ/dν stands
for the Radon–Nikodym derivative of µ with respect to ν. We denote by χY
the characteristic function of a set Y . The symbol t stands for disjoint union
of sets.

Let A be an operator in a complex Hilbert space H (all operators con-
sidered in this paper are assumed to be linear). Denote by D(A), R(A),
A∗ and Ā the domain, the range, the adjoint and the closure of A (in
case they exist). If A is closed and densely defined, then |A| stands for
the square root of the positive selfadjoint operator A∗A (for the neces-
sary facts concerning unbounded operators we refer the reader to [1, 24]).
For two operators S and T in H, we write S ⊆ T if D(S) ⊆ D(T ) and
Sf = Tf for all f ∈ D(S). The C∗-algebra of all bounded operators A in
H such that D(A) = H is denoted by B(H). The symbol IH stands for the
identity operator on H. We write LinF for the linear span of a subset F
of H.

We now recall a description of the strong commutant of a normal oper-
ator.

Theorem 2.1 ([1, Theorem 6.6.3]). Let A be a normal operator in H,
i.e., A is closed densely defined and A∗A = AA∗. If T ∈ B(H), then TA ⊆
AT if and only if T commutes with the spectral measure of A.
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A densely defined operator S in H is said to be subnormal if there exists
a complex Hilbert space K and a normal operator N in K such that H ⊆ K
(isometric embedding) and Sh = Nh for all h ∈ D(S). A densely defined op-
erator T in H is said to be hyponormal if D(T ) ⊆ D(T ∗) and ‖T ∗f‖ ≤ ‖Tf‖
for all f ∈ D(T ). It is well-known that subnormal operators are hyponor-
mal, but not conversely. Recall that subnormal (hyponormal) operators are
closable and their closures are subnormal (hyponormal). We refer the reader
to [15, 7, 19] and [20, 21, 22, 23] for elements of the theory of unbounded
hyponormal and subnormal operators, respectively.

3. An absolute continuity approach to quasinormality. Following
[21] (see also [2] for the case of bounded operators), we say that a closed
densely defined operator A in a complex Hilbert space H is quasinormal if
A commutes with the spectral measure E of |A|, i.e., E(σ)A ⊆ AE(σ) for
all σ ∈ B(R+). The ensuing fact is well-known (use [21, Proposition 1] and
Theorem 2.1).

(3.1) A closed densely defined operator A in H is quasinormal if and only if
U |A| ⊆ |A|U , where A = U |A| is the polar decomposition of A.

Note that quasinormal operators are hyponormal (indeed, since A ⊆
|A|U , we get U∗|A| ⊆ A∗, which implies hyponormality). In fact, quasinormal
operators are always subnormal (see [21, Theorem 2] for the general case; the
bounded case can be deduced from [2, Theorem 1]). The reverse implication
does not hold. For more information on quasinormal operators we refer the
reader to [2, 3] (bounded operators) and [21, 11] (unbounded operators).

Now we show that quasinormality can be characterized by means of ab-
solute continuity.

Theorem 3.1. Let A be a closed densely defined operator in H and E
be the spectral measure of |A|. Then the following three conditions are equiv-
alent:

(i) A is quasinormal,
(ii) 〈E(σ)Af,Af〉 = 〈E(σ)|A|f, |A|f〉 for all σ ∈ B(R+) and f ∈ D(A),
(iii) 〈E(·)Af,Af〉 � 〈E(·)|A|f, |A|f〉 for every f ∈ D(A).

Proof. (i)⇒(ii). Let A = U |A| be the polar decomposition of A. By
(3.1) and Theorem 2.1, we have UE(·) = E(·)U . Since P := U∗U is the
orthogonal projection of H onto R(|A|), we see that P |A| = |A|. Combining
all this together, we get

〈E(σ)Af,Af〉 = 〈E(σ)|A|f, P |A|f〉
= 〈E(σ)|A|f, |A|f〉, σ ∈ B(R+), f ∈ D(A).

(ii)⇒(iii). Obvious.
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(iii)⇒(i). Fix finite systems σ1, . . . , σn ∈ B(R+) and f1, . . . , fn ∈ D(A).
Then there exist finite systems J1, . . . , Jn ⊆ {1, . . . ,m} and σ′1, . . . , σ

′
m ∈

B(R+) such that σ′k ∩ σ′l = ∅ for all k 6= l, and σi =
⋃
j∈Ji σ

′
j for all

i ∈ {1, . . . , n}. Set f ′j =
∑n

i=1 χJi(j)fi for j ∈ {1, . . . ,m}. Then we have∥∥∥ n∑
i=1

E(σi)Afi

∥∥∥2 =
∥∥∥ n∑
i=1

∑
j∈Ji

E(σ′j)Afi

∥∥∥2(3.2)

=
∥∥∥ n∑
i=1

m∑
j=1

χJi(j)E(σ′j)Afi

∥∥∥2
=
∥∥∥ m∑
j=1

E(σ′j)A
( n∑
i=1

χJi(j)fi

)∥∥∥2
=

m∑
j=1

〈E(σ′j)Af
′
j , Af

′
j〉.

Arguing as above, we get∥∥∥ n∑
i=1

E(σi)|A|fi
∥∥∥2 =

m∑
j=1

〈E(σ′j)|A|f ′j , |A|f ′j〉.(3.3)

Since E(σ)|A| ⊆ |A|E(σ) for all σ ∈ B(R+), we have

R(|A|) = Lin{E(σ)|A|f : σ ∈ B(R+), f ∈ D(A)}.(3.4)

Combining (3.2) and (3.3) with (iii), we deduce that for all finite systems
σ1, . . . , σn ∈ B(R+) and f1, . . . , fn ∈ D(A) the following implication holds:

n∑
i=1

E(σi)|A|fi = 0 ⇒
n∑
i=1

E(σi)Afi = 0.

This together with (3.4) implies that the map T̃0 : R(|A|)→ H given by

(3.5) T̃0

( n∑
i=1

E(σi)|A|fi
)

=
n∑
i=1

E(σi)Afi,

σi ∈ B(R+), fi ∈ D(A), n ∈ N,

is well-defined and linear. Substituting n = 1 and σ1 = R+ into (3.5), we see
that T̃0|A| = A. This yields

‖T̃0(|A|f)‖ = ‖Af‖ =
∥∥|A|f∥∥, f ∈ D(A),

which means that T̃0 is an isometry. Let T0 : R(|A|)→ H be a unique isomet-
ric and linear extension of T̃0. Define the operator T ∈ B(H) by Tf = T0Pf
for f ∈ H, where P ∈ B(H) is the orthogonal projection of H onto R(|A|).
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In view of (3.5), T is an extension of T0 such that

A = T |A|,(3.6)
TE(σ)|A| = E(σ)A, σ ∈ B(R+).(3.7)

Since T0 is an isometry, we infer from the definition of T that N(T ) =
N(|A|) = N(A). This implies that T is a partial isometry and A = T |A| is
the polar decomposition of A. Since

TE(σ)(|A|f)
(3.7)
= E(σ)Af

(3.6)
= E(σ)T (|A|f), σ ∈ B(R+), f ∈ D(A),

we deduce that TE(σ)|R(|A|) = E(σ)T |R(|A|) for all σ ∈ B(R+). As N(|A|)
reduces E and T |N(|A|) = 0, we conclude that T commutes with the spectral
measure E of |A|. By Theorem 2.1, we have T |A| ⊆ |A|T , which together
with (3.1) completes the proof.

4. A characterization of weak quasinormality. We say that a closed
densely defined operator A in a complex Hilbert space H is weakly quasinor-
mal if there exists c ∈ R+ such that

〈E(σ)|A|f, |A|f〉 ≤ c〈E(σ)Af,Af〉, σ ∈ B(R+), f ∈ D(A),(4.1)

where E is the spectral measure of |A| (or equivalently: for every f ∈ D(A),
〈E(·)|A|f, |A|f〉 � 〈E(·)Af,Af〉 and d〈E(·)|A|f, |A|f〉/d〈E(·)Af,Af〉 ≤ c
almost everywhere with respect to 〈E(·)Af,Af〉). The smallest such c will
be denoted by cA. It is worth mentioning that the constant cA is always
greater than or equal to 1 whenever the operator A is nonzero. As proved in
Theorem 5.1, a nonzero closed and densely defined operator A is quasinormal
if and only if it is weakly quasinormal with cA = 1.

Our goal in this section is to characterize weak quasinormality of un-
bounded operators. We begin with a technical lemma.

Lemma 4.1. Let T ∈ B(H) be a contraction whose restriction to a closed
linear subspace K of H is isometric. Then T ∗Tk = k for all k ∈ K.

Proof. Denote by T |K : K → H the restriction of T to K. Since (T |K)∗ =
PKT

∗ and T |K is an isometry, we have PKT ∗T |K = IK. This and ‖T‖ ≤ 1
yield

‖k‖ = ‖PKT ∗Tk‖ ≤ ‖T ∗Tk‖ ≤ ‖k‖, k ∈ K,
which implies that T ∗Tk ∈ K and thus T ∗Tk = k for all k ∈ K.

Below we show that Lemma 4.1 is not true if T is not a contraction.

Example 4.2. Let K be a nonzero complex Hilbert space and let H :=
K ⊕ K. Take T =

[
A B
C D

]
∈ B(H) with A,B,C,D ∈ B(K). Then T |K⊕{0}

is an isometry if and only if A∗A + C∗C = IK. It is also easily seen that
T ∗T (K⊕{0}) ⊆ K⊕{0} if and only if B∗A+D∗C = 0. Substituting K = C
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and A = C = 1/
√

2, and taking B,D ∈ C such that B +D 6= 0, we see that
T |K⊕{0} is an isometry and T ∗T (K⊕{0}) 6⊆ K⊕{0}. Hence, by Lemma 4.1,
T is not a contraction, independently of whether B and D are large or small
numbers.

Now we are ready to characterize weak quasinormality. We will show in
Section 8 that there exist weakly quasinormal operators A with cA > 1 which
are not hyponormal (and thus not quasinormal).

Theorem 4.3. Let A be a closed densely defined operator in H and let
c ∈ R+. Then the following two conditions are equivalent:

(i) A is weakly quasinormal with cA ≤ c,
(ii) there exists T ∈ B(H) such that

TA = |A|, T |A| ⊆ |A|T and ‖T‖ ≤
√
c.(4.2)

Moreover, the following assertions are valid:

(iii) if A is weakly quasinormal and A 6= 0, then cA ≥ 1,
(iv) if A is weakly quasinormal, then the operator T in (ii) can be chosen

so that R(T ) = R(|A|) and ‖T‖ =
√
cA,

(v) if T ∈ B(H) satisfies (4.2), then T |R(A)
: R(A) → H is an isom-

etry, T (R(A)) = R(|A|) and the partial isometry U in the polar
decomposition of A takes the form U = PT ∗, where P ∈ B(H) is
the orthogonal projection of H onto R(A).

Proof. Let E be the spectral measure of |A|.
(i)⇒(ii). Without loss of generality we can assume that c = cA. Arguing

as in the proof of the implication (iii)⇒(i) of Theorem 3.1, we deduce that
for all finite systems σ1, . . . , σn ∈ B(R+) and f1, . . . , fn ∈ D(A),∥∥∥ n∑

i=1

E(σi)|A|fi
∥∥∥2 ≤ c∥∥∥ n∑

i=1

E(σi)Afi

∥∥∥2.(4.3)

Define the closed vector space H0 by

H0 = Lin{E(σ)Af : σ ∈ B(R+), f ∈ D(A)}.
It follows from (4.3) that there exists a unique bounded linear map T0 : H0 →
H such that ‖T0‖ ≤

√
c and

T0E(σ)A = E(σ)|A|, σ ∈ B(R+).(4.4)

Define the operator T ∈ B(H) by Tf = T0Qf for f ∈ H, where Q ∈ B(H)
is the orthogonal projection of H onto H0. Then T is an extension of T0 such
that ‖T‖ ≤

√
c. Substituting σ = R+ into (4.4), we get

TA = |A|.(4.5)
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Applying (4.4) twice yields

(4.6) TE(σ)(E(τ)Af) = TE(σ ∩ τ)Af = E(σ ∩ τ)|A|f
= E(σ)E(τ)|A|f = E(σ)T (E(τ)Af), f ∈ D(A), σ, τ ∈ B(R+).

Hence TE(σ)|H0 = E(σ)T |H0 for all σ ∈ B(R+). Since H0 reduces the
spectral measure E and T |H	H0 = 0, we obtain TE(·) = E(·)T . Applying
Theorem 2.1, we get T |A| ⊆ |A|T . By (4.4), the definition of T and E(·)|A| ⊆
|A|E(·), we have

R(T ) = R(T0) ⊆ R(|A|).(4.7)

It follows from (4.5) that

‖T (Af)‖ =
∥∥|A|f∥∥ = ‖Af‖, f ∈ D(A).(4.8)

Thus the operator T |R(A)
: R(A) → H is an isometry. Since TA = |A|, we

see that

R(|A|) = T (R(A)) ⊆ R(T )
(4.7)
⊆ R(|A|),

which means that R(T ) = R(|A|).
(ii)⇒(i). Let P ∈ B(H) be the orthogonal projection of H onto R(A)

and let U := PT ∗. If h ∈ H, then

h ∈ N(U) ⇔ 〈PT ∗h,Af〉 = 0 for all f ∈ D(A)

⇔ 〈h, TAf〉 = 0 for all f ∈ D(A)

(4.2)⇔ 〈h, |A|f〉 = 0 for all f ∈ D(A)

⇔ h ∈ H 	R(|A|) = N(|A|) = N(A),

which shows that N(U) = N(A). Using the equality TA = |A| and arguing
as in (4.8), we see that the operator T |R(A)

: R(A)→ H is an isometry and

T (R(A)) = R(|A|). This implies that IR(A)
= PT ∗T |R(A)

(see the proof of
Lemma 4.1). Thus

A = PT ∗TA
(4.2)
= PT ∗|A| = U |A|.

This and the equalities N(U) = N(A) = N(|A|) imply that A = U |A| is the
polar decomposition of A, which proves (v).

It follows from (4.2) and Theorem 2.1 that

〈E(σ)|A|f, |A|f〉 = 〈E(σ)TAf, TAf〉 = ‖TE(σ)Af‖2(4.9)
≤ c〈E(σ)Af,Af〉, σ ∈ B(R+), f ∈ D(A),

which shows that A is weakly quasinormal and cA ≤ c.
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(iii) If A 6= 0 satisfies (4.1), then substituting σ = R+ into (4.1) yields∥∥|A|f∥∥2 ≤ c‖Af‖2 = c
∥∥|A|f∥∥2, f ∈ D(A),

which gives (iii).
It only remains to prove (iv). Assume that (i) holds. It follows from the

proof of (i)⇒(ii) that there exists T ∈ B(H) such that (4.2) holds with
c = cA, i.e., ‖T‖ ≤

√
cA, and R(T ) = R(|A|). Now applying the reverse

implication (ii)⇒(i) with c = ‖T‖2, we get cA ≤ ‖T‖2. This completes the
proof.

Reversing the absolute continuity in Theorem 3.1(iii) leads to a new class
of operators that is essentially wider than the class of weakly quasinormal
operators (cf. Section 8). The new class can be characterized as follows.

Theorem 4.4. Let A be a closed densely defined operator in H and E be
the spectral measure of |A|. Then the following two conditions are equivalent:

(i) 〈E(·)|A|f, |A|f〉 � 〈E(·)Af,Af〉 for every f ∈ D(A),
(ii) there exists a (unique) linear map T0 : H0 → R(|A|) such that (1)

T0A = |A| and T0E(σ)|H0 = E(σ)T0 for all σ ∈ B(R+), where

H0 = Lin
{
E(σ)Af : σ ∈ B(R+), f ∈ D(A)

}
.

Moreover, the following assertion holds for any c ∈ R+:

(iii) A is weakly quasinormal with cA ≤ c if and only if T0 is bounded
and ‖T0‖ ≤

√
c, where T0 is as in (ii).

Proof. (i)⇒(ii). Arguing as in the proof of the implication (iii)⇒(i) of
Theorem 3.1, we show that the following implication holds for all finite sys-
tems σ1, . . . , σn ∈ B(R+) and f1, . . . , fn ∈ D(A):

n∑
i=1

E(σi)Afi = 0 ⇒
n∑
i=1

E(σi)|A|fi = 0.

This, combined with the fact that E(σ)|A| ⊆ |A|E(σ) for all σ ∈ B(R+),
implies that the map T0 : H0 → R(|A|) given by

(4.10) T0

( n∑
i=1

E(σi)Afi

)
=

n∑
i=1

E(σi)|A|fi,

σi ∈ B(R+), fi ∈ D(A), n ∈ N,

is well-defined and linear. Substituting n = 1 and σ1 = R+ into (4.10), we
see that T0A = |A|. Arguing as in (4.6) with T0 in place of T , we verify that
T0E(σ)|H0 = E(σ)T0|H0 for all σ ∈ B(R+).

(1) Note that R(A) ⊆H0 and E(σ)H0 ⊆H0 for all σ ∈ B(R+).
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It is clear that any linear map T0 : H0 → R(|A|) with the properties
specified by (ii) must satisfy (4.10), and as such is unique.

(ii)⇒(i). If f ∈ D(A) and σ ∈ B(R+) are such that 〈E(σ)Af,Af〉 = 0,
then E(σ)Af = 0, and thus

〈E(σ)|A|f, |A|f〉 = 〈E(σ)T0Af, T0Af〉 = ‖T0E(σ)Af‖2 = 0,

which gives (i).
Now we justify the “moreover” part of the conclusion. If A is weakly

quasinormal with cA ≤ c and T ∈ B(H) is as in Theorem 4.3(ii), then
clearly (use Theorem 2.1) T |H0 = T0, which implies the boundedness of T0
and gives ‖T0‖ ≤

√
c. Conversely, if T0 is bounded and ‖T0‖ ≤

√
c, then by

mimicking the argument used in (4.9) with T0 in place of T , we see that A
is weakly quasinormal with cA ≤ c. This completes the proof.

Remark 4.5. It is worth mentioning that if A is a closed densely defined
operator in H which is not weakly quasinormal and which satisfies the con-
dition (i) of Theorem 4.4 (see Section 8 for constructions of such operators),
then the operator T0 appearing in (ii) of Theorem 4.4 is unbounded and it
extends the isometric operator T0|R(A) (for the latter, consult (4.8)).

5. Quasinormality revisited. In this short section we show that quasi-
normality is completely characterized by the inequality (4.1) with c = 1.
Recall that if A is a nonzero weakly quasinormal operator, then cA ≥ 1 (see
Theorem 4.3(iii)).

Theorem 5.1. Let A be a nonzero closed densely defined operator in H.
Then the following two conditions are equivalent:

(i) A is quasinormal,
(ii) A is weakly quasinormal with cA = 1.

Proof. (i)⇒(ii). Apply Theorem 3.1.
(ii)⇒(i). By Theorem 4.3 there exists an operator T ∈ B(H) that satis-

fies (4.2) with c = 1. Then, by the assertion (v) of Theorem 4.3, the operator
T |R(A)

: R(A)→ H is an isometry. Since ‖T‖ ≤ 1, we infer from Lemma 4.1
that IR(A)

= T ∗T |R(A)
. This and the equality TA = |A| yield

A = T ∗TA = T ∗|A|.(5.1)

By (4.2) and Theorem 2.1, the operator T ∗ commutes with the spectral
measure E of |A|. Hence, the fact that E(·)|A| ⊆ |A|E(·) yields

E(σ)A
(5.1)
= E(σ)T ∗|A| = T ∗E(σ)|A| ⊆ T ∗|A|E(σ)

(5.1)
= AE(σ)

for all σ ∈ B(R+), which means that A is quasinormal.
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6. Boundedness of weakly quasinormal operators. Taking a quick
look at Corollary 7.4 would suggest that if A is a quasinormal operator,
then R(A) ⊆ D(|A|α) for every positive real α. However, as shown below,
this is not necessarily the case. In fact, if A is an unbounded quasinormal
operator, then R(A) 6⊆ D(|A|α) for every positive real α. The particular
case of α ≥ 1 can be deduced from [18, Lemma A.1] and [12, Theorem
3.3] (because D(|A|α) ⊆ D(|A|) = D(A) ⊆ D(A∗) for α ≥ 1). It is worth
pointing out that there are unbounded closed densely defined Hilbert space
operators A such that R(A) ⊆ D(|A|) (cf. [12]).

Proposition 6.1. If A is a weakly quasinormal operator in H such that
R(A) ⊆ D(|A|α) for some positive real α, then A ∈ B(H).

Proof. First we show that

D(|A|) = D(|A|1+α).(6.1)

The inclusion “⊇” is always true (cf. [18, Lemma A.1]). To prove the reverse
inclusion, take f ∈ D(|A|). Denote by E the spectral measure of |A|. Since
A is weakly quasinormal, we get�

σ

x2〈E(dx)f, f〉 = 〈E(σ)|A|f, |A|f〉 ≤ cA〈E(σ)Af,Af〉, σ ∈ B(R+).

This and the assumption R(A) ⊆ D(|A|α) imply that
∞�

0

x2(1+α)〈E(dx)f, f〉 =

∞�

0

x2α〈E(dx)|A|f, |A|f〉

≤ cA

∞�

0

x2α〈E(dx)Af,Af〉 = cA
∥∥|A|αAf∥∥2 <∞.

Hence f ∈ D(|A|1+α), which completes the proof of (6.1). Now, by applying
[18, Lemma A.1] to (6.1), we conclude that |A| ∈ B(H). This in turn implies
that A ∈ B(H), which completes the proof.

7. Weakly quasinormal weighted shifts on directed trees. The
basic facts on directed trees and weighted shifts on directed trees can be
found in [5]. We refer the reader to [6] for recent applications of this idea to
general operator theory.

Let T = (V,E) be a directed tree (V and E stand for the sets of vertices
and edges of T , respectively). Set V ◦ = V \ {root} if T has a root and
V ◦ = V otherwise. For every vertex u ∈ V ◦ there exists a unique vertex, de-
noted by par(u), such that (par(u), u) ∈ E. Set Chi(u) = {v ∈ V : (u, v) ∈ E}
for u ∈ V . If W ⊆ V , we put Chi(W ) =

⋃
v∈W Chi(v) and Des(W ) =⋃∞

n=0 Chi
〈n〉(W ), where Chi〈0〉(W ) = W and Chi〈n+1〉(W ) = Chi(Chi〈n〉(W ))
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for all integers n ≥ 0. For u ∈ V , we set Chi〈n〉(u) = Chi〈n〉({u}) and
Des(u) = Des({u}).

Denote by `2(V ) the Hilbert space of all square summable complex
functions on V with the standard inner product. The set {eu}u∈V , where
eu := χ{u}, is an orthonormal basis of `2(V ). Put EV = Lin{eu : u ∈ V }.

Given λ = {λv}v∈V ◦ ⊆ C, we define the operator Sλ in `2(V ) by

D(Sλ) = {f ∈ `2(V ) : ΛT f ∈ `2(V )},
Sλf = ΛT f, f ∈ D(Sλ),

where ΛT is the map defined on functions f : V → C via

(ΛT f)(v) =

{
λv · f(par(v)) if v ∈ V ◦,
0 if v = root.

(7.1)

Such Sλ is called a weighted shift on the directed tree T with weights
{λv}v∈V ◦ . Let us recall that weighted shifts on directed trees are always
closed (cf. [5, Proposition 3.1.2]).

Before characterizing weak quasinormality of a densely defined weighted
shift Sλ on T , we describe the spectral measure of |Sλ|α for α ∈ (0,∞).

Lemma 7.1. If Sλ is a densely defined weighted shift on a directed tree
T with weights λ = {λv}v∈V ◦, α ∈ (0,∞) and E is the spectral measure of
|Sλ|α, then

(E(σ)f)(v) = χσ(‖Sλev‖α)f(v), v ∈ V, f ∈ `2(V ), σ ∈ B(R+).

Proof. By [5, Proposition 3.4.3], EV ⊆ D(Sλ) ∩D(|Sλ|α) and |Sλ|αeu =
‖Sλeu‖αeu for all u ∈ V . Hence, by [5, (2.2.1)], we have

E(σ)f =
∑
u∈V

χσ(‖Sλeu‖α)〈f, eu〉eu, f ∈ `2(V ), σ ∈ B(R+),

which implies that

(E(σ)f)(v) = 〈E(σ)f, ev〉 = χσ(‖Sλev‖α)f(v)

for all v ∈ V , f ∈ `2(V ) and σ ∈ B(R+). This completes the proof.

Now we characterize weak quasinormality of weighted shifts on directed
trees.

Theorem 7.2. Let Sλ be a densely defined weighted shift on a directed
tree T with weights λ = {λv}v∈V ◦ , and E be the spectral measure of |Sλ|.
Then the following assertions are valid.

(i) For any c ∈ R+, Sλ is weakly quasinormal with cSλ
≤ c if and only

if (2)

(2) We adhere to the convention that
∑

v∈∅ |λv|2 = 0. Note also that EV ⊆ D(Sλ) (cf.
[5, Proposition 3.1.3(v)]), which means that the expression (7.2) makes sense.
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(7.2) ‖Sλeu‖2 ≤ c
∑

v∈Chi e(u)

|λv|2, u ∈ V,

where Chi e(u) := {v ∈ Chi(u) : ‖Sλev‖ = ‖Sλeu‖}.
(ii) 〈E(·)|Sλ|f, |Sλ|f〉 � 〈E(·)Sλf, Sλf〉 for all f ∈ D(Sλ) if and only if

(7.3) ∀u ∈ V : ‖Sλeu‖ 6= 0 ⇒ Chi′(u) 6= ∅,

where Chi′(u) := {v ∈ Chi e(u) : λv 6= 0}.

It is worth noting that if (7.2) holds, then according to our summation
convention (see footnote 2) we have

∀u ∈ V : ‖Sλeu‖ 6= 0 ⇒ Chi e(u) 6= ∅.(7.4)

Proof of Theorem 7.2. It follows from Lemma 7.1 that

〈E(σ)f, f〉 =
∑
u∈V

χσ(‖Sλeu‖)|f(u)|2, σ ∈ B(R+), f ∈ `2(V ).

Since (|Sλ|f)(u) = ‖Sλeu‖f(u) for all u ∈ V and f ∈ D(Sλ) (cf. [5, Propo-
sition 3.4.3]), we deduce that

〈E(σ)|Sλ|f, |Sλ|f〉 =
∑
u∈V

χσ(‖Sλeu‖)‖Sλeu‖2|f(u)|2(7.5)

for all σ ∈ B(R+) and f ∈ D(Sλ). In view of the equality V ◦ =
⊔
u∈V Chi(u)

(cf. [5, Proposition 2.1.2]), we have

〈E(σ)Sλf, Sλf〉 =
∑
u∈V ◦

χσ(‖Sλeu‖)|λu|2|f(par(u))|2(7.6)

=
∑
u∈V

( ∑
v∈Chi(u)

χσ(‖Sλev‖)|λv|2
)
|f(u)|2

for all σ ∈ B(R+) and f ∈ D(Sλ).
(i) Since, by [5, Proposition 3.1.3(v)], EV ⊆ D(Sλ), we infer from (7.5)

and (7.6) that the inequality (4.1) holds with A = Sλ if and only if

(7.7) χσ(‖Sλeu‖)‖Sλeu‖2 ≤ c
∑

v∈Chi(u)

χσ(‖Sλev‖)|λv|2,

u ∈ V, σ ∈ B(R+).

First we show that (7.7) implies (7.2). Suppose (7.7) holds. Fix u ∈ V
and define the set Ωu = {‖Sλev‖ : v ∈ Chi(u)} ⊆ R+. We may assume
that ‖Sλeu‖ 6= 0. Then, by (7.1), Chi(u) 6= ∅. If Ωu = R+, then clearly
Chi e(u) 6= ∅. If Ωu 6= R+, then substituting σ = {t} with t ∈ R+ \ Ωu into
(7.7), we deduce that ‖Sλeu‖ 6= t. Hence R+ \ Ωu ⊆ R+ \ {‖Sλeu‖}, which
yields Chi e(u) 6= ∅. This proves (7.4). By substituting σ = {‖Sλeu‖} into
(7.7), we obtain (7.2).
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Now we show that (7.2) implies (7.7). Fix u ∈ V and σ ∈ B(R+). With-
out loss of generality we can assume that ‖Sλeu‖ 6= 0 and ‖Sλeu‖ ∈ σ. Then,
by (7.2),

χσ(‖Sλeu‖)‖Sλeu‖2 ≤ c
∑

v∈Chi e(u)

χσ(‖Sλev‖)|λv|2

≤ c
∑

v∈Chi(u)

χσ(‖Sλev‖)|λv|2,

which shows that (7.7) holds. This completes the proof of (i).
(ii) One can argue as in the proof of (i). We leave the details to the

reader.

The following characterization of quasinormality of weighted shifts on di-
rected trees generalizes that of [5, Proposition 8.1.7] to the case of unbounded
operators. The present proof is quite different from that for bounded opera-
tors.

Corollary 7.3. Let Sλ be a densely defined weighted shift on a directed
tree T with weights λ = {λv}v∈V ◦. Then the following two conditions are
equivalent:

(i) Sλ is quasinormal,
(ii) ‖Sλeu‖ = ‖Sλev‖ for all u ∈ V and v ∈ Chi(u) such that λv 6= 0.

Moreover, if V ◦ 6= ∅ and λv 6= 0 for all v ∈ V ◦, then Sλ is quasinormal if
and only if ‖Sλ‖−1Sλ is an isometry.

Proof. (i)⇒(ii). By Theorem 3.1, Sλ is weakly quasinormal with cSλ
≤1.

One can deduce from [5, Proposition 3.1.3] and Theorem 7.2(i), applied to
c = 1, that λv = 0 for all v ∈ Chi(u) \ Chi e(u) and u ∈ V . This implies (ii).

(ii)⇒(i). By our present assumption, λv = 0 for all v ∈ Chi(u) \ Chi e(u)
and u ∈ V . This implies that (7.2) holds with c = 1. Hence, by Theorem
7.2(i), Sλ is weakly quasinormal with cSλ

≤ 1. Applying Theorems 4.3(iii)
and 5.1 yields (i).

Arguing as in the proof of [5, Proposition 8.1.7], we deduce the “moreover”
part of the conclusion from the equivalence (i)⇔(ii).

We will show by example that there are unbounded quasinormal weighted
shifts on directed trees (cf. Example 8.1).

The following corollary is closely related to Proposition 6.1.

Corollary 7.4. If Sλ is a quasinormal weighted shift on a directed
tree T , then Sλ(EV ) ⊆ D(|Sλ|α) for every positive real α.
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Proof. By Corollary 7.3 and [5, Proposition 3.1.3], for every u ∈ V ,

(7.8)
∑
v∈V
‖Sλev‖2α|(Sλeu)(v)|2 (7.1)

=
∑
v∈V ◦

‖Sλev‖2α|λv|2eu(par(v))

=
∑

v∈Chi(u)

‖Sλev‖2α|λv|2 = ‖Sλeu‖2α
∑

v∈Chi(u)

|λv|2 = ‖Sλeu‖2(α+1).

Since, by [5, Proposition 3.4.3], EV ⊆ D(|Sλ|α) and |Sλ|αeu = ‖Sλeu‖αeu
for every u ∈ V , we deduce that a function f ∈ `2(V ) belongs to D(|Sλ|α)
if and only if

∑
v∈V ‖Sλev‖2α|f(v)|2 < ∞ (consult the proof of [5, Lemma

2.2.1]). This combined with (7.8) gives Sλeu ∈ D(|Sλ|α) for u ∈ V , which
completes the proof.

8. Examples. This section provides examples of weighted shifts on di-
rected trees that illustrate the subject of this paper. We begin by consid-
ering the case of quasinormal operators. It follows from Corollary 7.3 that
quasinormal weighted shifts on directed trees with nonzero weights are au-
tomatically bounded. However, if some of the weights are allowed to be zero,
then quasinormal weighted shifts may be unbounded. Below, we construct
an example of an injective quasinormal weighted shift on a directed binary
tree whose restriction to `2(Des(u)) is unbounded for every u ∈ V .

Example 8.1. Let T be a directed tree with root such that for every
u ∈ V , the set Chi(u) has exactly two vertices. By [5, Corollary 2.1.5], we
have

V ◦ =
∞⊔
n=1

Chi〈n〉(root).

We define recursively a sequence {{λv}v∈Chi〈n〉(root)}
∞
n=1 of systems of non-

negative real numbers. We begin with n = 1. If v1, v2 ∈ Chi(root) and
v1 6= v2, then we set λv1 = 0 and λv2 = 1. Suppose that we have con-
structed the systems {λv}v∈Chi〈j〉(root) ⊆ [0,∞) for j = 1, . . . , n. To construct
{λv}v∈Chi〈n+1〉(root), note that (cf. [5, (6.1.3)])

Chi〈n+1〉(root) =
⊔

u∈Chi〈n〉(root)

Chi(u).(8.1)

Fix u ∈ Chi〈n〉(root). By our assumption Chi(u) = {v, w} with v 6= w.
If λu = 0, then we set λv = 0 and λw = n + 1. If λu 6= 0, then we
set λv = 0 and λw = λu. In view of (8.1), the recursive procedure gives
us the system λ := {λv}v∈V ◦ . Let Sλ be the weighted shift on T with
weights λ. By [5, Proposition 3.1.3], Sλ is densely defined. It is a routine
matter to verify that Sλ satisfies the condition (ii) of Corollary 7.3. Hence
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the operator Sλ is quasinormal. It is easily seen, by using [5, Proposition
3.1.8], that for every u ∈ V , the operator Sλ|Lin{ev : v∈Des(u)} (which acts in
`2(Des(u))) is unbounded. The injectivity of Sλ follows from [5, Proposition
3.1.7].

Now we show how to construct nonquasinormal weighted shifts on cer-
tain directed trees that are weakly quasinormal as well as non-weakly quasi-
normal weighted shifts on the same directed trees that satisfy the condi-
tion (i) of Theorem 4.4 (with A = Sλ). Note that this is not possible
for classical weighted shifts (that is, weighted shifts on the directed tress
(Z+, {(n, n+ 1): n∈Z+}) and (Z, {(n, n+ 1): n∈Z}), cf. [5, Remark 3.1.4]),
because by Theorem 7.2 and Corollary 7.3 every classical weighted shift
which satisfies the condition (i) of Theorem 4.4 is automatically quasinor-
mal. Hence, nonquasinormal classical weighted shifts (many such exist) do
not satisfy this condition. We also show that for every c ∈ (1,∞), there exists
an injective weighted shift Sλ on a directed tree such that cSλ

= c, were cSλ

is understood as in Section 4. In Examples 8.2 and 8.3, we consider the cases
of bounded and unbounded nonhyponormal operators with the properties
mentioned above. All this can also be achieved in the class of hyponormal
operators, as is shown in Example 8.4.

Fig. 1

Example 8.2. LetT be the directed tree as in Figure 1, where {α(n)}∞n=1,
{β(n)}∞n=0, {q(n)}∞n=0 and {γ(n)}∞n=0 are sequences of positive real numbers
satisfying the following two conditions:

α(n)2 + β(n− 1)2 = 1, n ∈ N,(8.2)

1 + q(n)2 = γ(n)2, n ∈ Z+.(8.3)



26 Z. J. Jabłoński et al.

Let Sλ be the weighted shift on T with weights given by Figure 1. By [5,
Proposition 3.1.3], Sλ is densely defined (and closed as a weighted shift on a
directed tree). It follows from (8.2), (8.3) and [5, Proposition 3.1.8] that Sλ
is bounded if and only if the sequence {q(n)}∞n=0 is bounded.

We first note that Sλ is not hyponormal. Indeed, since∑
v∈Chi(ui)

|λv|2

‖Sλev‖2
= 1 + α(i+ 1)2 > 1, i ∈ N,

where ui is the vertex corresponding to α(i), we infer from [5, Theorem 5.1.2
and Remark 5.1.5] that Sλ is not hyponormal.

Suppose now that infn∈N α(n) = 0. Then Sλ is not weakly quasinormal.
Indeed, otherwise by Theorem 7.2(i) applied to u = ui with i ∈ Z+ (u0 :=
root), there exists c > 0 such that 1 ≤ cα(i + 1)2 for all i ∈ Z+, which is
impossible. It follows from (8.2) and (8.3) that (7.3) holds, which in view of
Theorem 7.2(ii) implies that

〈E(·)|Sλ|f, |Sλ|f〉 � 〈E(·)Sλf, Sλf〉, f ∈ D(Sλ).

Fix c ∈ (1,∞). Suppose now that infn∈N α(n) = 1/
√
c and q(i)−2 +1 ≤ c

for all i ∈ Z+ (we still assume that (8.2) and (8.3) are satisfied). It is easily
seen that (7.2) holds. Hence, by Theorem 7.2(i), Sλ is weakly quasinormal
with cSλ

≤ c. We show that cSλ
= c. Indeed, by Theorem 7.2(i), 1 ≤ cSλ

α(i)2

for all i ∈ N, which implies that 1/
√
cSλ
≤ 1/

√
c, and thus cSλ

≥ c.
Finally, note that the so-constructed operator Sλ can be made bounded or

unbounded according to our needs, still maintaining its properties discussed
above. This can be achieved by considering bounded or unbounded sequences
{q(n)}∞n=0.

Fig. 2

Example 8.3. Let {α(n)}∞n=1 and {β(n)}∞n=0 be sequences of positive
real numbers that satisfy (8.2). The reader can easily check that the weighted
shifts Sλ on the directed tree T given by Figure 2, which are less complicated
than those in Figure 1, have all the properties specified in Example 8.2 (each
of which depends on the choice of weights) except for unboundedness, namely
Sλ are always bounded.
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Fig. 3

Example 8.4. The previous two constructions can be modified so as
to obtain examples of weighted shifts Sλ on a directed tree with nonzero
weights which have all the properties stated in Example 8.2 (each of which
depends on the choice of weights) except for nonhyponormality, namely Sλ
are hyponormal. Since the main idea remains the same, we skip the discus-
sion of the present example. For the reader’s convenience we draw a figure
that contains the necessary data (cf. Figure 3). The sequences {α(n)}∞n=1,
{β(n)}∞n=0, {γ(n)}∞n=0 and {δ(n)}∞n=0 consist of positive real numbers that
satisfy (8.2) and the following three conditions:

δ(n)2 = β(n)2 + γ(n)2, n ∈ Z+,

β(n)2

δ(n)2
+ α(n+ 1)2 < 1, n ∈ Z+,(8.4)

δ(n) > 1, n ∈ Z+.(8.5)
It is worth pointing out that under the assumption (8.2), the conditions (8.4)
and (8.5) are equivalent.

9. Remarks and further results. The absolute continuity approach
developed in this paper in the context of quasinormal operators can be gen-
eralized to other classes of operators. The class of q-quasinormal operators,
a particular case of q-deformed operators introduced by Ôta in [13] (see also
[14, 16, 17]) in connection with the theory of quantum groups (see [8]), is
well-suited for our purposes.

Let q be a positive real number. Following [13], we say that a closed
densely defined operator A in a complex Hilbert space H is q-quasinormal



28 Z. J. Jabłoński et al.

if U |A| ⊆ √q |A|U , where A = U |A| is the polar decomposition of A (or
equivalently U |A| = √q |A|U ; cf. [13, Lemma 2.2]). In view of [13, Theorem
2.5], a closed densely defined operator A in H is q-quasinormal if and only if

UE(σ) = E(ψ−1q (σ))U, σ ∈ B(R+),

where E is the spectral measure of |A| and ψq : R+ → R+ is a Borel function
given by ψq(x) =

√
q x. The above suggests the following generalization.

Proposition 9.1. Let A be a closed densely defined operator in H, A =
U |A| be its polar decomposition and E be the spectral measure of |A|. Suppose
φ and ψ are Borel functions from R+ to R+. Then the following conditions
are equivalent (3):

(i) UE(ϕ−1(·)) = E(ψ−1(·))U ,
(ii) Uϕ(|A|) ⊆ ψ(|A|)U ,
(iii) E(ψ−1(·))A ⊆ AE(ϕ−1(·)).
Proof. (i)⇔(ii). Use the measure transport theorem (cf. [1, Theorem

5.4.10]) and the “intertwining” version of [1, Theorem 6.3.2].
(i)⇔(iii). Adapt the proof of [21, Proposition 1].

Below we assume that φ, ψ : R+ → R+ are fixed Borel functions. Arguing
exactly as in the proofs of Theorems 3.1, 4.3, 4.4 and 5.1, and using Proposi-
tion 9.1 together with its proof, we obtain the following more general results.
It is also worth pointing out that the “moreover” parts of Theorems 4.3 and
4.4 can be easily adapted to this new context as well. We leave the details
to the reader.

Theorem 9.2. Let A be a closed densely defined operator in H, and E
be the spectral measure of |A|. Then the following conditions are equivalent:

(i) E(ψ−1(·))A ⊆ AE(ϕ−1(·)),
(ii) 〈E(ψ−1(·))Af,Af〉 = 〈E(ϕ−1(·))|A|f, |A|f〉 for all f ∈ D(A),
(iii) 〈E(ψ−1(·))Af,Af〉 � 〈E(ϕ−1(·))|A|f, |A|f〉 for all f ∈ D(A).

Theorem 9.3. Let A be a closed densely defined operator in H, E be
the spectral measure of |A| and c ∈ R+. Then the following conditions are
equivalent:

(i) 〈E(ϕ−1(·))|A|f, |A|f〉 ≤ c〈E(ψ−1(·))Af,Af〉 for all f ∈ D(A),
(ii) there exists T ∈ B(H) such that

TA = |A|, ‖T‖ ≤
√
c and TE(ψ−1(·)) = E(ϕ−1(·))T ,

(iii) there exists T ∈ B(H) such that

TA = |A|, ‖T‖ ≤
√
c and Tψ(|A|) ⊆ ϕ(|A|)T .

(3) E(ϕ−1(·)) stands for the spectral measure B(R+) 3 σ 7→ E(ϕ−1(σ)) ∈ B(H).
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Theorem 9.4. Let A be a closed densely defined operator in H, and E
be the spectral measure of |A|. Then the following conditions are equivalent:

(i) 〈E(ϕ−1(·))|A|f, |A|f〉 � 〈E(ψ−1(·))Af,Af〉 for all f ∈ D(A),
(ii) there exists a (unique) linear map T0 : H0 → R(|A|) such that T0A =
|A| and T0E(ψ−1(·))|H0 = E(ϕ−1(·))T0, where

H0 = Lin
{
E(ψ−1(σ))Af : σ ∈ B(R+), f ∈ D(A)

}
.

Theorem 9.5. Let A be a closed densely defined operator in H, and E
be the spectral measure of |A|. Then the following conditions are equivalent:

(i) E(ψ−1(·))A ⊆ AE(ϕ−1(·)),
(ii) 〈E(ϕ−1(·))|A|f, |A|f〉 ≤ 〈E(ψ−1(·))Af,Af〉 for all f ∈ D(A).

Substituting ϕ = the identity function on R+ and ψ = ψq into the
above theorems, we obtain characterizations of q-quasinormal operators,
“q-variants” of weakly quasinormal operators and operators satisfying the
“q-version” of the condition (i) of Theorem 4.4.
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