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Deformation of involution and multiplication in a C∗-algebra

by

H. Najafi and M. S. Moslehian (Mashhad)

Abstract. We investigate the deformations of involution and multiplication in a uni-
tal C∗-algebra when its norm is fixed. Our main result is to present all multiplications and
involutions on a given C∗-algebra A under which A is still a C∗-algebra when we keep
the norm unchanged. For each invertible element a ∈ A we also introduce an involution
and a multiplication making A into a C∗-algebra in which a becomes a positive element.
Further, we give a necessary and sufficient condition for the center of a unital C∗-algebra
A to be trivial.

1. Introduction. A C∗-algebra is a complex Banach ∗-algebra A satis-
fying ‖a∗a‖ = ‖a‖2 (a ∈ A). By the Gelfand–Naimark theorem, a C∗-algebra
is a norm closed ∗-subalgebra of B(H) for some Hilbert space H. A strongly
closed ∗-subalgebra of B(H) containing the identity operator is called a von
Neumann algebra. By the double commutant theorem a unital ∗-subalgebra
A of B(H) is a von Neumann algebra if and only if A is equal to its double
commutant Acc, where Ac = {B ∈ B(H) : AB = BA for all A ∈ A}. By
Sakai’s characterization of von Neumann algebras, A is a von Neumann al-
gebra if and only if it is a W ∗-algebra, i.e. a C∗-algebra which is the norm
dual of a Banach space A∗. Throughout the paper, A denotes an arbitrary
C∗-algebra and Z(A) stands for its center.

For a self-adjoint element a ∈ A, we have r(a) = ‖a‖, where r(a) de-
notes the spectral radius of A. This implies that the norm of a C∗-algebra
is uniquely determined when we fix the involution and the multiplication.
Indeed, if A is a C∗-algebra under two norms ‖ · ‖1 and ‖ · ‖2, then

‖a‖1 = ‖a∗a‖1/21 = r(a∗a)1/2 = ‖a∗a‖1/22 = ‖a‖2 for all a ∈ A.

Bohnenblust and Karlin [BK] showed that there is at most one involution
on a Banach algebra with unit 1 making it into a C∗-algebra (see also [R]):
Let ∗ and # be two involutions on a unital Banach algebra A making it
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into C∗-algebras. Let x ∈ A. Since “an element x of a unital C∗-algebra is
self-adjoint if and only if τ(x) is real for every bounded linear functional τ
on A with ‖τ‖ = τ(1) = 1” ([KR1, Proposition 4.3.3]), it follows that x is
self-adjoint with respect to ∗ if and only if it is self-adjoint with respect
to #. Now let a ∈ A be arbitrary and a = a1 + ia2 with self-adjoint parts
a1, a2 with respect to ∗. Then a∗1 = a#1 and a∗2 = a#2 and a∗ = a1− ia2 = a#.

There is also another way to show the uniqueness of the involution.
Indeed, if ∗ and # are two involutions on a unital Banach algebra A making
it into C∗-algebras, then the identity map from (A, ∗) onto (A,#) is positive
(see [P, Proposition 2.11]) and so a∗ = a# for all a ∈ A.

There are several characterizations of C∗-algebras among involutive Ba-
nach algebras (see [DT] in which the authors start with a C∗-algebra and
modify its structure). We however investigate a different problem in the
same setting. In fact we investigate the deformations of involution and mul-
tiplication in a unital C∗-algebra when its norm is fixed. Our main result is
to present all multiplications ◦ and involutions ? on a given C∗-algebra A
under which A is still a C∗-algebra when we keep the norm unchanged. As
an application, for each invertible element a ∈ A we introduce an involu-
tion and a multiplication making A into a C∗-algebra in which a becomes
a positive element. Further, we give a necessary and sufficient condition for
the center of a unital C∗-algebra A to be trivial.

Recall that a Jordan ∗-homomorphism is a self-adjoint map preserving
squares of self-adjoint operators. Jacobson and Rickart [JR] showed that
for every Jordan ∗-homomorphism ρ of a C∗-algebra A with unit 1 into a
von Neumann algebra B there exist central projections p1, p2 ∈ B such that
ρ(1) = p1 + p2 and ρ = ρ1 + ρ2, where ρ1(a) = ρ(a)p1 is a ∗-homomorphism
and ρ2(a) = ρ(a)p2 is a ∗-antihomomorphism. Kadison [K] showed that
an isometry of a unital C∗-algebra onto another C∗-algebra is a Jordan
∗-isomorphism.

2. Results. We start this section with the following lemma.

Lemma 2.1. Let A be a unital C∗-algebra of operators acting on a Hilbert
space H. Let p ∈ A be a central projection and u ∈ A be a unitary. Let ◦ be
the multiplication and ? be the involution defined on A by

(2.1) a ◦ b = paub+ (1− p)bua and a? = u∗a∗u∗

for a, b ∈ A. Then A equipped with the multiplication ◦ and the involution
? is a unital C∗-algebra.

Proof. It is easy to check that A is a complex Banach algebra under the
multiplication ◦, and u∗ is the unit for this multiplication. By the decompo-
sition H = pH⊕ (1− p)H, we can represent any element a ∈ A as the 2× 2
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matrix
( pa 0

0 (1−p)a
)
. For a, b ∈ A, therefore pa + (1 − p)b can be identified

with
( pa 0

0 (1−p)b
)
, whence ‖pa+ (1− p)b‖ = max(‖pa‖, ‖(1− p)b‖). Hence

‖a? ◦ a‖ = ‖pu∗a∗a+ (1− p)aa∗u∗‖ = max(‖pa∗a‖, ‖aa∗(1− p)‖)
= max(‖pa‖2, ‖(1− p)a‖2) = max(‖pa‖, ‖(1− p)a‖)2 = ‖a‖2

for all a ∈ A.

The unital C∗-algebra A equipped with the multiplication ◦ and the in-
volution ? is denoted by A(◦, ?). Next we establish a converse of Lemma 2.1.

Theorem 2.2. Let A be a unital C∗-algebra of operators acting on a
Hilbert space H and suppose there exist a multiplication ◦ and an involution
? on the normed space A making it into a C∗-algebra. Then there exists a
unitary element u ∈ A and a central projection p in the double commutant
Acc of A such that both equalities (2.1) hold.

Proof. Since A is unital, the closed unit ball of A has an extreme point,
hence the C∗-algebra A(◦, ?) is unital. Since ι(x) = x is an isometric linear
map of A onto A(◦, ?), the unitary elements of A(◦, ?) and those of A
coincide [KR2, Exercise 7.6.17]. Thus if u∗ is the unit of A(◦, ?), then u is
a unitary of A. Define ρ : A → A(◦, ?) by ρ(a) = u∗a. Clearly ρ is a unital
isometric linear map of A onto A(◦, ?). Hence ρ is a positive map. This
implies that u∗a∗ = ρ(a∗) = (u∗a)? and so a? = u∗a∗u∗.

To determine the multiplication, define a multiplication � on Acc (with
respect to the original multiplication) by (2.1) with p = 1. Then Acc with the
multiplication � is a C∗-algebra. As a Banach space, Acc is already the dual
of a Banach space, so with the new product and the new involution it is a von
Neumann algebra. Then the map ρ(x) = x is a unital isometric linear map of
A(◦, ?) into the von Neumann algebra Acc(�, ?). By the result of Kadison [K]
it is a Jordan ∗-isomorphism and by the Jacobson and Rickart theorem [JR]
there exists a central projection p′ in Acc(�, ?) such that ρ1(x) = p′ � ρ(x) is
a ∗-homomorphism and ρ2(x) = (u∗ − p′) � ρ(x) is a ∗-antihomomorphism.
Therefore for all a, b ∈ A we have

a ◦ b = ρ(a ◦ b) = ρ1(a ◦ b) + ρ2(a ◦ b)
= p′ � ρ1(a) � ρ1(b) + (u∗ − p′) � ρ2(b) � ρ2(a)

= p′ � a � b+ (u∗ − p′) � b � a = p′uaub+ (u∗ − p′)ubua
= p′uaub+ (1− p′u)bua.

Let p = p′u. Since (p′u)2 = p′up′u1 = p′ � (p′ � 1) = p′ � 1 = p′u and
(p′u)∗ = u∗p

′∗ = u∗p
′∗u∗u = p

′?u = p′u, it follows that p is a projection
in Acc. A similar argument shows that θ : Acc(�, ?)→ Acc defined by θ(a) =
au is a Jordan ∗-isomorphism. So, by [JR, Corollary 1], θ(Z(Acc(�, ?))) =
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Z(θ(Acc(�, ?))). Therefore pa = θ(p′)θ(au∗) = θ(au∗)θ(p′) = ap for each
a ∈ A. Hence p is a central projection in Acc.

Remark 2.3. Note that in general, a C∗-algebra A has many represen-
tations. However, the proof of Theorem 2.2 shows that for any representation
of A, we can represent all multiplications and involutions on A which keep
it a C∗-algebra with the same norm by a unitary and a central projection
in the double commutant with respect to the same representation. Further,
since p in Theorem 2.2 is in Acc ⊆ B(H), it depends on H. If A is a von
Neumann algebra, then p ∈ Acc = A.

Corollary 2.4. Let I be an ideal of a von Neumann algebra A. Then
I is also an ideal of the C∗-algebra A(◦, ?) for any multiplication ◦ and any
involution ?.

Proof. It is sufficient to note that paub and (1−p)bua belong to I when
a ∈ A, b ∈ I and so a ◦ b = paub+ (1− p)bua ∈ I.

It is easy to see that a ◦ b = b ◦ a if and only if aub = bua. We therefore
have

Corollary 2.5. Suppose that A is a unital C∗-algebra and the normed
space A equipped with a multiplication ◦ and an involution ? is a C∗-algebra
with unit u∗, where u ∈ A is a unitary. Then:

(i) A is commutative if and only if so is A(◦, ?).
(ii) Z(A) = C1 if and only if Z(A(◦, ?)) = Cu∗.
Proof. (i) Let A be commutative. By Theorem 2.2 there exist a unitary

element u ∈ A and a central projection p in Acc such that

a ◦ b = paub+ (1− p)bua (a, b ∈ A).

Hence

a ◦ b = paub+ (1− p)bua = pbua+ (1− p)aub = b ◦ a.
Therefore A(◦, ?) is commutative. Reversing the roles of A and A(◦, ?), we
reach the converse assertion.

(ii) Let Z(A) = C1. If a ∈ Z(A(◦, ?)), then a◦b = b◦a for any b ∈ A. As
in the proof of Theorem 2.2 we observe that θ : Acc(◦, ?)→ Acc defined by
θ(a) = au is a Jordan ∗-isomorphism. Hence, by [JR, Corollary 1], θ(b)θ(a) =
θ(a)θ(b), so aubu = buau. Since each element of A is of the form bu for some
b ∈ A, it follows that au ∈ Z(A). Hence au = λ1 for some λ ∈ C. Therefore
Z(A(◦, ?)) = Cu∗. Similarly we can deduce the converse.

Remark 2.6. The Arens product on (c0)
∗∗ = l∞ coincides with the

usual product in l∞ [D, Example 2.6.22]. This was extended to arbitrary C∗-
algebras in [BD]. We reprove this fact in another way: Let A be a C∗-algebra
and suppose its second dual A∗∗ is also a C∗-algebra under a multiplication
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(a, b) 7→ a · b whose restriction to A×A is the same multiplication of A. We
shall show that the Arens product (denoted by �) on A∗∗ is the same as the
multiplication · on A∗∗.

It is known that A∗∗ is a von Neumann algebra under the Arens mul-
tiplication [D, Theorem 3.2.37]. By the Kaplansky density theorem, A is
dense in A∗∗ in the weak∗-topology, so there exists a net uα in A such that
uα → 1 in the weak∗-topology, where 1 denotes the unit of A∗∗. So

b = w∗- lim
α
uαb = w∗- lim

α
uα � b = 1 � b

for each b ∈ A. The Kaplansky density theorem implies that 1 � x = x for
each x ∈ A∗∗. Therefore the units of both multiplications · and � are the
same. By Theorem 2.2 there exists a central projection p ∈ A such that

x � y = pxy + (1− p)yx

for all x, y ∈ A∗∗. On the other hand for all a, b ∈ A, we have a � b = ab. So
(1−p)ab = (1−p)ba. Since A is dense in A∗∗ in the weak∗-topology, we have
(1− p)xy = (1− p)yx for all x, y ∈ A∗∗. Therefore x � y = pxy+ (1− p)yx =
pxy + (1 − p)xy = xy for all x, y ∈ A∗∗. For instance, we deduce that the
Arens product on K(H)∗∗ = B(H) is equal to the operator multiplication on
B(H).

Theorem 2.7. Let A be a unital C∗-algebra. Then the following asser-
tions are equivalent:

(i) Z(A) = C1.
(ii) If for some invertible operators a, b ∈ A, we have ‖axb‖ = ‖x‖ for

each x ∈ A, then there exists λ > 0 such that both λa and (1/λ)b
are unitary.

Proof. (i)⇒(ii). Note that if ‖a−1xa‖ ≤ ‖x‖ for each x ∈ A, then ϕ(x) =
a−1xa is a contractive unital linear map on A. It follows from [P, Proposition
2.11] that ϕ is positive. Therefore (a−1xa)∗ = a−1x∗a and so aa∗x∗ = x∗aa∗

for each x ∈ A. Hence aa∗ ∈ Z(A) = C1. So a∗a = λ1 for some λ > 0.
Therefore (1/

√
λ)a is unitary.

First, assume that ‖axb‖ = ‖x‖ for positive invertible operators a, b and
each x ∈ A. Then ‖b−1a−1‖ = ‖a−1b−1‖ = ‖aa−1b−1b‖ = 1, whence

‖a−1xa‖ ≤ ‖axb‖ ‖b−1a−1‖ ≤ ‖x‖.

Therefore there exists λ > 0 such that (1/λ)a is unitary. Since (1/λ)a is
positive and unitary we have a = λ. A similar argument shows that b = λ′.
It follows from 1 = ‖1‖ = ‖ab‖ = λ′λ that λ = 1/λ′.

Second, assume that ‖axb‖ = ‖x‖ for invertible operators a, b and each
x ∈ A. Utilizing the polar decompositions of a and b∗, there exist unitary
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operators u, v such that a = u|a| and b = |b∗|v. Hence∥∥|a|x|b∗|∥∥ =
∥∥u|a|x|b∗|v∥∥ = ‖axb‖ = ‖x‖

for each x ∈ A. The above argument shows that |a| = λ and |b∗| = 1/λ for
some λ > 0, so a = λu and b = (1/λ)v.

(ii)⇒(i). Note that each central invertible element a of A is a scalar
multiple of a unitary element. In fact, ‖a−1xa‖ = ‖a−1ax‖ = ‖x‖ for all
x ∈ A, so λa is unitary for some λ > 0. Let a ∈ Z(A) be a positive element
and λ1, λ2 ∈ sp(a) be distinct. Then there exists an invertible continuous
function f on sp(a) such that f(λ1) = 1/2 and f(λ2) = 1. Hence f(a), which
is a central invertible element, should be a scalar multiple of a unitary. On
the other hand, 1/2, 1 ∈ sp(f(a)), which is impossible. Hence the spectrum
of a is a singleton, so a = ‖a‖. Since Z(A) is a C∗-algebra, any one of
its elements is a linear combination of four positive elements. Therefore
Z(A) = C1.

Let A(u, p) denote the C∗-algebra given via Lemma 2.1 corresponding
to a unitary u and a central projection p in A. The self-adjoint elements of
A(u, p) are the elements a such that au = u∗a∗, a fact which is independent
of the choice of p. Also a self-adjoint element a is positive in A(u, p) if and
only if a = b ◦ b = pbub+ (1− p)bub = bub for some self-adjoint b ∈ A(u, p),
and this occurs if and only if a is positive in A(u, 1).

Theorem 2.8. Let A be a C∗-algebra and a ∈ A be invertible. Then
there exists a unique unitary u ∈ A such that a is a positive element of the
C∗-algebra A(u∗, p) for any central projection p ∈ A.

Proof. Let a=u|a| be the polar decomposition of a. Then u=a|a|−1∈A.
So a = u|a|1/2|a|1/2 = |a|(1/2)? ◦ |a|1/2, where ◦ is defined in A(u∗, 1) by
(2.1). So a is positive in A(u∗, p) for every central projection p ∈ A.

To see the uniqueness, note that if a is invertible and a,wa are positive
for a unitary w, then a = w∗(wa). By the uniqueness of polar decomposition,
we have w = 1. Now if a is positive in A(v∗, 1), then a = b? ◦b = vb∗b. Hence
v∗u|a| = v∗a = b∗b is positive. Therefore v∗u|a| and |a| are positive and so
v = u according to what we just proved.

Remark 2.9. The invertibility condition in Theorem 2.8 is essential. For
example let A = C[−1, 1] and f(t) = t. If f is positive in C[−1, 1](u, 1) for
a unitary function u, then there exists g ∈ C[−1, 1] such that t = f(t) =
u(t)|g(t)|2 for each t ∈ [−1, 1]. So u(t) = 1 for each t ∈ (0, 1] and u(t) = −1
for each t ∈ [−1, 0), which is impossible.
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