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Linear combinations of generators in multiplicatively
invariant spaces
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Abstract. Multiplicatively invariant (MI) spaces are closed subspaces of L2(Ω,H)
that are invariant under multiplication by (some) functions in L∞(Ω); they were first
introduced by Bownik and Ross (2014). In this paper we work with MI spaces that are
finitely generated. We prove that almost every set of functions constructed by taking
linear combinations of the generators of a finitely generated MI space is a new set of
generators for the same space, and we give necessary and sufficient conditions on the
linear combinations to preserve frame properties. We then apply our results on MI spaces
to systems of translates in the context of locally compact abelian groups and we extend
some results previously proven for systems of integer translates in L2(Rd).

1. Introduction. Given a vector valued space L2(Ω,H) where Ω is a
σ-finite measure space and H is a separable Hilbert space, and given a de-
termining set D for L1(Ω) (see Section 3.1 for a precise definition), a mul-
tiplicatively invariant (MI) space is a closed subspace of L2(Ω,H) that is
invariant under multiplication by functions in D. A particular case of MI
spaces are the well-known doubly invariant spaces introduced by Helson [16]
and Srinivasan [25]. MI spaces as presented here were introduced in [7] where
they were also characterized in terms of range functions. The reason why MI
spaces appear on the scene is that they are strongly connected to shift in-
variant (SI) spaces. In the classical euclidean case, a SI space is a closed
subspace in L2(Rd) that is invariant under translations by integers. This
type of spaces are typically considered in sampling theory [1, 26, 27, 28]
and they also play a fundamental role in approximation theory as well as
in frame and wavelet theory [14, 18, 22]. Shift invariant spaces have proven
to be very useful models in many problems in signal and image processing.
Due to their importance in theory and applications, their structure has been
deeply analyzed during the last twenty five years [5, 11, 12, 16, 23].
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Every SI space can be generated by a set Φ of functions in L2(Rd) in the
sense that it is the closure of the space spanned by the integer translations of
the functions in Φ. When Φ is a finite set, we say that the SI space is finitely
generated. Concerning finitely generated SI spaces, a particular problem of
interest for us is the following: Suppose that Φ = {φ1, . . . , φm} generates
the SI space V , that is, V = span{Tkφj : k ∈ Z, j = 1, . . . ,m}. For ` ≤ m,
let Ψ = {ψ1, . . . , ψ`} be a set of functions constructed by taking linear com-
binations of the functions in Φ, i.e. ψi =

∑m
j=1 aijφj for 1 ≤ i ≤ `. The

question is: which linear combinations produce new sets of generators for V ?
and if in addition we know that {Tkφj}k∈Z, j=1,...,m is a frame for V , when is
{Tkψi}k∈Z, i=1,...,` also a frame for V ? These two questions were completely
answered in [6] and [8]. The problem of plain generators was addressed in [6]
where the authors proved that almost every set of functions obtained by tak-
ing linear combinations of a given set of generators of V generates V as well.
Regarding the second question, in [8], the authors exactly characterized those
linear combinations that transfer the frame property from {Tkφj}k∈Z, j=1,...,m

to {Tkψi}k∈Z, i=1,...,`.
In the present work we study the questions formulated above but for MI

spaces. In our main result we show that almost every linear combination
of generators of a MI space produces a new set of generators for the same
space. We also characterize those linear combinations that preserve uniform
frames (see Definition 3.5). Our results are thus in the spirit of those in
[6, 8]. As a first step, we work with finite-dimensional subspaces. We prove
that given a finite set V of vectors in a Hilbert space, almost every finite
set of vectors constructed by taking linear combinations of the vectors in
V spans the same subspace that V spans. This result will be the core of
what we then prove for MI spaces, and we also believe it is of interest by
itself.

As a consequence, we obtain similar results to [6, 8] but for SI spaces
considered in more general contexts than L2(Rd). The theory of shift in-
variant spaces has been extended to the setting of locally compact abelian
(LCA) groups, mainly in two different directions. First, in [7, 9, 19] SI spaces
are subspaces of L2(G) where G is an LCA group and the translations are
taken along a subgroup H of G such that G/H is compact. The case when
H is discrete was addressed in [9, 19], and in the recent paper [7] the au-
thors worked with the non-discrete case. Second, one can consider SI spaces
in L2(X ) where X is a measure space and the translations are defined by
the action of a discrete LCA group on X , [4]. In both cases, SI spaces were
characterized in terms of range functions, using fiberizations techniques and
obtaining results that extend those proven in [5] for SI spaces in L2(Rd). This
last fact is what connects SI spaces with MI spaces. Thus our results in MI
spaces allow us to provide a unified treatment to the problem of when linear
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combinations of generators in a system of translates preserve generators and
frame generators in both contexts described above.

The paper is organized as follows. In Section 2 we show that generators of
finite-dimensional subspaces are generally preserved by taking linear combi-
nations. Section 3 is devoted to MI spaces. We first summarize in Section 3.1
the basic properties of MI spaces. We prove in Section 3.2 that almost every
linear combination of generators of a MI space yields a new set of generators
for the same space (Theorem 3.3). In Section 3.3 we address the problem of
preserving uniform frames. Finally, in Section 4 we apply the result obtained
for MI spaces to systems of translates.

Notation and definitions. Here we set the notation we will use in the
next sections, and we recall the definition of frames and some basic results
of linear algebra that will be important in what follows.

Definition 1.1. Let H be a separable Hilbert space and {fk}k∈Z be a
sequence in H. The sequence {fk}k∈Z is said to be a frame for H if there
exist 0 < α ≤ β such that

α‖f‖2 ≤
∑
k∈Z
|〈f, fk〉|2 ≤ β‖f‖2

for all f ∈ H. The constants α and β are called frame bounds.

For a set X = {x1, . . . , xn} ⊆ H we denote by S(X ) the subspace spanned
by X , i.e. S(X ) = span{x1, . . . , xn}. The Gramian associated to X is the
matrix GX in Cn×n whose entries are (GX )ij = 〈xi, xj〉. The Gramian is a
positive-semidefinite matrix satisfying G∗X = GX .

Denote by KX : Cn → H the synthesis operator associated to X given by
KX c =

∑n
j=1 cjxj , and by K∗X : H → Cn its adjoint, the analysis operator,

given by K∗Xh = {〈h, xj〉}nj=1. Note that the matrix of the operator K∗XKX
in the canonical basis on Cn is GtX , the transpose of GX . It follows that

rk(GX ) = rk(GtX ) = dim(Im(K∗XKX )) = dim(Im(KXK
∗
X ))(1.1)

= dim(Im(KX )) = dim(S(X )).

The set X is always a frame for S(X ) and its frame bounds are related to
the Gramian in the following way: 0 < α ≤ β are frame bounds of X if and
only if Σ(GX ) ⊆ {0} ∪ [α, β], where Σ(GX ) is the set of eigenvalues of GX .

If E ⊆ Cd we indicate by |E| its Lebesgue measure.

2. Linear combinations preserving generators of subspaces. In
this section, we are interested in studying which linear combinations of gen-
erators of a finite-dimensional subspace still generate the same subspace.
Let us explain the problem in detail. Let H be a separable Hilbert space
and consider a finite set V = {v1, . . . , vm} of elements in H. Denote by V
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the vector whose entries are the elements of V, i.e. V = (v1, . . . , vm). For
any ` such that r ≤ ` ≤ m, where r = dim(S(V)), let W = {w1, . . . , w`}
be constructed by taking linear combinations of elements of V. That is, for
i = 1, . . . , `, wi =

∑m
j=1 aijvj for some complex scalars aij . Collecting the

coefficients of the linear combinations in a matrix A = {aij}i,j ∈ C`×m, we
can write in matrix notation

(2.1) W = AV t,

where W = (w1, . . . , w`). Therefore, the question is which matrices A trans-
fer the property of being a set of generators for S(V) from V to W. We shall
answer this by showing that for almost every matrix A ∈ C`×m, the set W
spans S(V).

Theorem 2.1. Let V = {v1, . . . , vm} ⊆ H and let r = dim(S(V)). For
any ` such that r ≤ ` ≤ m, consider the set of matrices R = {A ∈ C`×m :
S(V) = S(W)} where W is obtained from V by the relationship W = AV t.
Then C`×m \ R has zero Lebesgue measure.

In order to prove Theorem 2.1 we first give a description of the set R in
terms of the Gramians associated to V and W. The connection between GV
and GW is provided in the lemma below (see also [8, Proposition 2.5]).

Lemma 2.2. Let V = {v1, . . . , vm} ⊆ H. If W = {w1, . . . , w`} is con-
structed from V by taking linear combinations of its elements as in (2.1),
then the Gramians associated to V and W satisfy GW = AGVA

∗.

Proof. Since W = AV t, we obtain

(GW)ij =
〈 m∑
k=1

aikvk,
m∑
r=1

ajrvr

〉
=

m∑
r,k=1

aikajr 〈vk, vr〉︸ ︷︷ ︸
(GV )kr

= (AGVA
∗)ij .

For V andW as in Theorem 2.1, i.e. linked by (2.1), we have S(W)⊆S(V).
Hence, S(W) = S(V) if and only if dim(S(W)) = dim(S(V)). Now, by (1.1)
andLemma2.2,dim(S(W)) = dim(S(V)) if and only if rk(AGVA

∗) = rk(GV).
As a consequence, the set R in Theorem 2.1 can be described as the set of
matrices preserving the rank of GV under the action AGVA∗:

(2.2) R = {A ∈ C`×m : rk(AGVA
∗) = rk(GV)}.

Having this description, the proof of Theorem 2.1 follows from the next
rank-preserving result:

Proposition 2.3. Let G be a positive-semidefinite matrix in Cm×m such
that G = G∗ and let r = rk(G). For any r ≤ ` ≤ m define R(G) =
{A ∈ C`×m : rk(G) = rk(AGA∗)}. Then N (G) := C`×m \ R(G) has zero
Lebesgue measure.
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Proof. SinceG is a self-adjoint positive-semidefinite matrix, there exists a
unitary matrix U ∈ Cm×m and scalars λ1 ≥ · · · ≥ λr > 0 such that U∗GU =
D where D is the diagonal matrix diag(λ1, . . . , λr, 0, . . . , 0) ∈ Cm×m. In
particular, r = rk(G) = rk(D).

Note that for any A ∈ C`×m, A preserves the rank of G under the ac-
tion AGA∗ if and only if AU preserves the rank of D under the action
AUD(AU)∗. Therefore,

N (G)U = {AU : A ∈ C`×m, rk(G) 6= rk(AGA∗)}
= {B ∈ C`×m : rk(D) 6= rk(BDB∗)} = N (D).

Since U is a unitary matrix, the mapping A 7→ AU from C`×m into itself
preserves Lebesgue measure, implying |N (G)| = |N (D)|. Thus, it is enough
to show that |N (D)| = 0.

Let B ∈ C`×m be written by column-blocks as B = (B1|B2) where the
columns of B1 are the first r columns of B and the columns of B2 are the
last m− r columns of B. Then

rk(BDB∗) = rk(BD1/2(BD1/2)∗) = rk(BD1/2) = rk(B1).

Thus,

N (D) = {B = (B1|B2) ∈ C`×m : B1 ∈ C`×r, B2 ∈ C`×(m−r), rk(B1) < r}.
Since the set of matrices in C`×r which are not full rank has zero Lebesgue
measure, the result follows.

3. Linear combinations of generators of MI spaces. In the pre-
vious section we showed that almost all linear combinations of generators
of a finite-dimensional subspace produce a new set of vectors spanning the
same subspace. We now want to study a similar problem but in the con-
text of multiplicatively invariant (MI) spaces in L2(Ω,H). The concept of
MI spaces was recently introduced in [7] in the general setting of L2(Ω,H)
as a generalization of the very well-known doubly invariant spaces proposed
by Helson [16] and Srinivasan [25] for Ω = T. We shall prove that a result
analogous to Theorem 2.1 can be obtained for MI spaces in L2(Ω,H). The
main difference here lies in the meaning of the word “generator” which, for
MI spaces, differs from the notion of generator for a subspace. To properly
state the result we shall prove in this case, we first summarize the basic
properties of MI spaces.

3.1. Multiplicatively invariant spaces in L2(Ω,H). The material we
collect here is a summary of the content of [7, Section 2]. See [7] for details
and proofs.

Let (Ω, µ) be a σ-finite measure space and let H be a separable Hilbert
space. The vector valued space L2(Ω,H) is the space of measurable functions
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Φ : Ω→ H such that ‖Φ‖2 =
	
Ω ‖Φ(ω)‖2H dµ(ω) <∞. The inner product in

L2(Ω,H) is given by 〈Φ,Ψ〉 =
	
Ω〈Φ(ω),Ψ(ω)〉H dµ(ω).

To define MI spaces in L2(Ω,H) we need the concept of determining set
for L1(Ω). A set D ⊆ L∞(Ω) is said to be a determining set for L1(Ω) if
for every f ∈ L1(Ω) such that

	
Ω f(ω)g(ω) dµ(ω) = 0 for all g ∈ D, one

has f = 0. In the setting of Helson [16], a determining set is the set of
exponentials with integer parameter, D = {e2πik ·}k∈Z ⊆ L∞(T).

Definition 3.1. A closed subspace M ⊆ L2(Ω,H) is multiplicatively
invariant with respect to the determining set D for L1(Ω) (MI space for
short) if

Φ ∈M ⇒ gΦ ∈M for any g ∈ D.
For an at most countable (meaning finite or countable) subset Φ ⊆ L2(Ω,H)
define MD(Φ) = span{gΦ: Φ ∈ Φ, g ∈ D}. The subspace MD(Φ) is called
the multiplicatively invariant space generated by Φ, and we say that Φ is a
set of generators for MD(Φ). When Φ is finite, M = MD(Φ) is said to be
finitely generated by Φ. In that case, we define the length of M as

`(M) = min{n ∈ N : ∃Φ1, . . . ,Φn ∈M with M = MD(Φ1, . . . ,Φn)}.
One of the most important properties of MI spaces is their characteriza-

tion in terms of measurable range functions. A range function is a mapping
J : Ω → {closed subspaces of H} equipped with the orthogonal projections
PJ(ω) of H onto J(ω). A range function is said to be measurable if for any
a, b ∈ H, ω 7→ 〈PJ(ω)a, b〉 is measurable as a function from Ω to C.

Theorem 3.2 ([7, Theorem 2.4]). Suppose that L2(Ω) is separable, so
that L2(Ω,H) is also separable. Let M be a closed subspace of L2(Ω,H) and
D a determining set for L1(Ω). Then M is an MI space with respect to D if
and only if there exists a measurable range function J such that

M = {Φ ∈ L2(Ω,H) : Φ(ω) ∈ J(ω) for a.e. ω ∈ Ω}.
Identifying range functions that are equal almost everywhere, the correspon-
dence between MI spaces and measurable range functions is one-to-one and
onto.

Moreover, when M = MD(Φ) for some at most countable set Φ ⊆
L2(Ω,H), the range function associated to M is

J(ω) = span{Φ(ω) : Φ ∈ Φ} for a.e. ω ∈ Ω.

3.2. Linear combinations of MI-generators. We can now properly
state what we want to prove. Fix a determining set D ⊆ L∞(Ω) for L1(Ω).
Suppose that M is a finitely generated MI space with respect to D. That is,
M = MD(Φ) whereΦ = {Φ1, . . . ,Φm} ⊆ L2(Ω,H). For a number ` such that
`(M) ≤ ` ≤ m we construct a new set of functions of M , Ψ = {Ψ1, . . . ,Ψ`}
say, by taking linear combinations of {Φ1, . . . ,Φm} as we did for the case of
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generators for a finite-dimensional Hilbert space in Section 2. More precisely,
for each 1 ≤ i ≤ `, Ψi =

∑m
j=1 aijΦj , and collecting the coefficients in a

matrix A ∈ C`×m, we write Ψ = AΦt where Φ = (Φ1, . . . ,Φm) and Ψ =
(Ψ1, . . . ,Ψ`). The question is now which matrices A ∈ C`×m transfer the
property of being a generator set for M from Φ to Ψ .

Theorem 3.3. Let M be a finitely generated MI space and

Φ = {Φ1, . . . ,Φm} ⊆ L2(Ω,H)

be such that M = MD(Φ) where `(M) ≤ m. For `(M) ≤ ` ≤ m, set R =
{A ∈ C`×m : M = MD(Ψ), Ψ = AΦt}. Then C`×m \ R has zero Lebesgue
measure.

Observe that this result is analogous to the one we proved for the case of
generators for subspaces, Theorem 2.1. As mentioned before, the generator
set Φ generates MD(Φ) as a MI space. This fact changes the nature of the
problem, and so the proof of Theorem 3.3 requires more subtle techniques
than those used to prove Theorem 2.1.

For the proof of the above theorem we need the following known result.

Lemma 3.4. Let (X,µ) and (Y, ν) be measure spaces and F ⊆ X × Y be
µ × ν-measurable. Then (µ × ν)(F ) = 0 if and only if ν(Fx) = 0 for µ-a.e.
x ∈ X if and only if µ(Fy) = 0 for ν-a.e. y ∈ Y , where Fx = {y ∈ Y :
(x, y) ∈ F} and Fy = {x ∈ X : (x, y) ∈ F}.

Proof of Theorem 3.3. Along this proof the relationship between Φ and
Ψ will always be Ψ = AΦt for some matrix A ∈ C`×m, so we will not
repeat this again. For each ω ∈ Ω, let Φ(ω) = {Φ1(ω), . . . ,Φm(ω)} and
Ψ(ω) = {Ψ1(ω), . . . ,Ψ`(ω)}. We denote by JΦ and JΨ the measurable range
functions associated to MD(Φ) and MD(Ψ) respectively. Note that since
Ψ = AΦt, we have Ψ(ω) = AΦ(ω)t, where Φ(ω) = (Φ1(ω), . . . ,Φm(ω)) and
Ψ(ω) = (Ψ1(ω), . . . ,Ψ`(ω)). We now proceed as in [6]. By Theorem 3.2 and
and the reasoning we used to obtain (2.2), we deduce that

R = {A ∈ C`×m : MD(Φ) = MD(Ψ)}
= {A ∈ C`×m : JΦ(ω) = JΨ (ω) for a.e. ω ∈ Ω}
= {A ∈ C`×m : S(Φ(ω)) = S(Ψ(ω)) for a.e. ω ∈ Ω}
= {A ∈ C`×m : rk(GΦ(ω)) = rk(AGΦ(ω)A

∗) for a.e. ω ∈ Ω},
where in the last equality, GΦ(ω) is the Gramian associated to Φ(ω). Since
rk(GΦ(ω)) ≥ rk(AGΦ(ω)A

∗) for a.e. ω ∈ Ω, we want to prove that the set

(3.1) {A ∈ C`×m : rk(GΦ(ω)) > rk(AGΦ(ω)A
∗)

for ω in a set of positive measure}
has zero Lebesgue measure.
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Let F = {(ω,A) ∈ Ω × C`×m : rk(GΦ(ω)) > rk(AGΦ(ω)A
∗)}. Since each

Φi is a measurable function, so are the entries of GΦ(ω). On the other hand,
the rank of any matrix is the largest of the absolute values of its minors.
Thus, since the determinant is a polynomial in the entries of the matrix, it
follows that the rank of a matrix with measurable entries is a measurable
function. Now, since F = f−1((0,∞)) where f is the measurable function
f(ω,A) = rk(GΦ(ω)) − rk(AGΦ(ω)A

∗), it turns out that F is a measurable
subset of Ω× C`×m.

The sections of F are denoted by Fω and FA. By Proposition 2.3 we
know that |Fω| = 0 for a.e. ω ∈ Ω and hence, by Lemma 3.4, µ(FA) = 0
for a.e. A ∈ C`×m. Note that the set given in (3.1) is exactly {A ∈ C`×m :
µ(FA) > 0}. Therefore, it has zero Lebesgue measure.

3.3. Linear combinations preserving uniform frames. As men-
tioned in the introduction, we want to give a unified treatment for the prob-
lem of when linear combinations preserve generators and frame generators
in systems of translates, where the “systems of translates” are considered
in different contexts. That is why we work at the level of vector valued
functions. To address the frame case, we need to introduce the following
definition which, at this point, may seem a bit artificial. However, we shall
see that it makes sense in each of the different contexts we want to con-
sider.

Definition 3.5. Let Φ ⊆ L2(Ω,H) be an at most countable set and let
J be the measurable range function defined as J(ω) = span{Φ(ω) : Φ ∈ Φ}
for a.e. ω ∈ Ω. We say that Φ is a uniform frame for J if there exist constants
0 < α ≤ β such that, for a.e. ω ∈ Ω, the set {Φ(ω) : Φ ∈ Φ} is a frame for
J(ω) with frame bounds α and β.

Fix a determining set D ⊆ L∞(Ω) for L1(Ω) and suppose that Φ is a
finite set of functions in L2(Ω,H) that is a uniform frame for J where J is the
measurable range function associated to M = MD(Φ). Then Theorem 3.3
tells us that almost every linear combination of the functions in Φ produces
a new set of generators Ψ of M . In particular, this says that for a.e. ω ∈ Ω,
Ψ(ω) is a new set of generators for J(ω). Thus, we are interested in knowing
which linear combinations also preserve uniform frames. That is, if Ψ = AΦt,
what property must A have for Ψ to be a uniform frame for J? We shall
answer this question by completely characterizing matrices A that preserve
uniform frames in terms of angles between subspaces. To this end, we first
recall the notion of Friedrichs angle [13, 15, 20].

Let S, T 6= {0} be subspaces of Cn. The Friedrichs angle between S and
T is the angle in [0, π/2] whose cosine is

G[S, T ] = sup{|〈x, y〉| : x ∈ S ∩ (S ∩T )⊥, y ∈ T ∩ (S ∩T )⊥, ‖x‖ = ‖y‖ = 1}.
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We define G[S, T ] = 0 if either S = {0}, T = {0}, S ⊆ T or T ⊆ S. As usual,
the sine of the Friedrichs angle is defined as F [S, T ] =

√
1− G[S, T ]2.

We can now state a characterization of matrices that preserve uniform
frames.

Theorem 3.6. Let Φ = {Φ1, . . . ,Φm} ⊆ L2(Ω,H) be a uniform frame
for J where J is the measurable range function associated to M = MD(Φ)
and suppose that `(M) ≤ ` ≤ m. Let A ∈ C`×m be a matrix and consider
Ψ = {Ψ1, . . . ,Ψ`} where Ψ = AΦt. Then Ψ is a uniform frame for J if and
only if A satisfies the following two conditions:

(1) A ∈ R where R is as in Theorem 3.3.
(2) There exists δ > 0 such that F [Ker(A), Im(GΦ(ω))] ≥ δ for a.e.

ω ∈ Ω.

The proof is based on the fact that Φ is a uniform frame with frame
bounds α and β for J if and only if Σ(GΦ(ω)) ⊆ [α, β] ∪ {0} for a.e. ω ∈ Ω.
Therefore, the task is to prove that conditions (1) and (2) of Theorem 3.6
guarantee that the positive eigenvalues of AGΦ(ω)A

∗ are uniformly bounded.
This can be done using [8, Proposition 3.3], which is an adaptation of a result
on singular values of a composition of operators of Antezana et al. [2]. Having
these results at hand, the complete proof of Theorem 3.6 is an immediate
adaptation of [8, proof of Theorem 4.4]. For the convenience of the reader
we provide it here.

Proof of Theorem 3.6. For a positive-semidefinite matrix G such that
G = G∗ we denote by λ−(G) its smallest non-zero eigenvalue. For any matrix
B we denote by σ(B) the smallest non-zero singular value of B.

Let 0 < α ≤ β be the frame bounds of Φ. Then since Σ(GΦ(ω)) ⊆
[α, β]∪ {0} for a.e. ω ∈ Ω, we have α ≤ λ−(GΦ(ω)) and ‖GΦ(ω)‖ ≤ β for a.e.
ω ∈ Ω.

Suppose first that Ψ is a uniform frame for J with frame bounds 0 <
α′ ≤ β′. In particular, since the correspondence between MI spaces and range
functions is one-to-one and onto, Ψ is a generator set for M = MD(Φ) and
hence A ∈ R. Thus, we are under the hypotheses of [8, Proposition 3.3] and
so

λ−(GΨ(ω)) = λ−(AGΦ(ω)A
∗) ≤ ‖A‖2‖GΦ(ω)‖F [Ker(A), Im(GΦ(ω))]

≤ ‖A‖2βF [Ker(A), Im(GΦ(ω))].

Thus, α′ ≤ ‖A‖2βF [Ker(A), Im(GΦ(ω))] and condition (2) follows with δ =

α′/(‖A‖2β).
Suppose now that (1) and (2) are satisfied for some matrix A. Then we

again apply [8, Proposition 3.3] to get
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λ−(AGΦ(ω)A
∗) ≥ σ(A)2λ−(GΦ(ω))F [Ker(A), Im(GΦ(ω))]

2(3.2)

≥ σ(A)2αδ2

for a.e. ω ∈ Ω.
Note that ‖GΨ(ω)‖ = ‖AGΦ(ω)A

∗‖ ≤ ‖A‖2‖GΦ(ω)‖ ≤ ‖A‖2β and hence
the eigenvalues of GΨ(ω) are bounded above by ‖A‖2β. Combining this fact
with (3.2) we obtain Σ(GΨ(ω)) ⊆ [σ(A)2αδ2, ‖A‖2β]∪{0} for a.e. ω ∈ Ω and
so Ψ is a uniform frame for J .

When the new set of generators has exactly `(M) elements, the following
theorem can be shown. For its proof see [8, Theorem 4.7].

Theorem 3.7. Let Φ = {Φ1, . . . ,Φm} ⊆ L2(Ω,H) be a uniform frame
for J where J is the measurable range function associated to M = MD(Φ),
and let `(M) = ` ≤ m. Let A∈C`×m and Ψ ={Ψ1, . . . ,Ψ`} where Ψ =AΦt.
Then Ψ is a uniform frame for J if and only if AA∗ is invertible and

ess sup
ω∈Ω

‖(Im −A∗(AA∗)−1A)GΦ(ω)G
†
Φ(ω)‖ < 1.

Here, Im is the identity in Cm×m and G†Φ(ω) is the Moore–Penrose pseudo-
inverse of GΦ(ω).

Remark 3.8. It might be the case that condition (2) in Theorem 3.6
is not satisfied for any matrix A. An example is given in [8, Example 4.12]
for a system of translates in Rd but it can be easily adapted to the setting
of MI spaces. Indeed, in L2((−1/2, 1/2]2, `2(Z2)) consider the vector valued
functions Φ1 and Φ2 given by Φ1(ω1, ω2) = − sin(2πω1)e0 and Φ1(ω1, ω2) =
e2πiω2 cos(2πω1)e0 where e0 is the sequence in `2(Z2) that takes the value 1 at
(0, 0) and 0 otherwise. As a determining set take D = {e2πi〈(k,j),·〉}(k,j)∈Z2 .
Then for MD(Φ2,Φ2) there is no matrix satisfying condition (2) in Theo-
rem 3.6. See [8, Example 4.12] for details.

4. Application to systems of translates. In this section we show
how the previous results can be applied to systems of translates. As we
will see, there exists a connection between systems of translates and vector
valued functions which of course depends on the context where the systems
of translates are considered. The link is what we call fiberization isometry.

4.1. Systems of translates on LCA groups. Here we work with
systems of translates in the context of locally compact abelian groups. Given
a second countable LCA group G written additively, we consider translates
of functions in L2(G) along a subgroup H ⊆ G such that G/H is compact.
A closed subspace V ⊆ L2(G) is said to be H-invariant (or invariant under
translations inH) if for every f ∈ V , Thf ∈ V for all h ∈ H where Th denotes
translation by h, i.e. Thf(x) = f(x−h). Subspaces that are H-invariant were
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characterized using range functions and fiberization techniques in [9, 19]
when H is discrete. Recently in [7], a similar characterization was obtained
only assuming that G/H is compact (i.e. H not necessarily discrete). An
important point in getting these characterizations is to see the space L2(G)
as a vector valued space of the form L2(Ω,H) for some particular choices of
Ω and H. Now we briefly describe how to do this.

Let Ĝ be the dual group of G, that is, the set of continuous characters
on G. For x ∈ G and γ ∈ Ĝ we use the notation (x, γ) for the complex value
that γ takes at x. For any subgroup H ⊆ G, the annihilator of H is the
subgroup H∗ = {γ ∈ Ĝ : (h, γ) = 1, ∀h ∈ H} of Ĝ. Let us assume from now
on that H is a co-compact subgroup of G, that is, G/H is compact. Then, by
the duality theorem [24, Lemma 2.1.3], H∗ is discrete. Now fix a measurable
section Ω ⊆ Ĝ of the quotient Ĝ/H∗ whose existence is a consequence of
[21, Lemma 1.1]. When the Haar measures of the groups involved here are
appropriately chosen, the following result shows that L2(G) is isometrically
isomorphic to the vector valued space L2(Ω, `2(H∗)). For its proof see [9,
Proposition 3.3] and [7, Proposition 3.7].

Proposition 4.1. The fiberization mapping T : L2(G)→ L2(Ω, `2(H∗))
defined by

T f(ω) = {f̂(ω + δ)}δ∈H∗

is an isometric isomorphism and it satisfies T Thf(ω) = (−h,w)T f(ω) for
all f ∈ L2(G) and all h ∈ H. Here, f̂ denotes the Fourier transform of f .

The fiberization isometry of Proposition 4.1 allows us to see L2(G) as the
vector valued space L2(Ω, `2(H∗)). Under this isometry, H-invariant spaces
of L2(G) exactly correspond to MI spaces in L2(Ω, `2(H∗)). Let us explain
this correspondence in detail. The determining set behind the notion of MI
spaces in L2(Ω, `2(H∗)) is D = {(h, ·)χΩ(·)}h∈H [7, Corollary 3.6]. Thus, by
Proposition 4.1, V ⊆ L2(G) is an H-invariant space if and only if M = T V
is a MI space with respect to D. Therefore, we can also identify H-invariant
spaces with measurable range functions, as shown in [9, Theorem 3.10] and
[7, Theorem 3.8]:

Theorem 4.2. Let V ⊆ L2(G) be a closed subspace and T the mapping
defined in Proposition 4.1. Then V is H-invariant if and only if there exists
a measurable range function J such that

V = {f ∈ L2(G) : T f(ω) ∈ J(ω) for a.e. ω ∈ Ω}.
Once one identifies range functions that are equal almost everywhere, the
correspondence between measurable range functions and H-invariant spaces
is one-to-one and onto. When V = span{Thϕ : h ∈ H, ϕ ∈ A} for an at
most countable set A ⊆ L2(G), the measurable range function associated to
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V is given by

J(ω) = span{T ϕ(ω) : ϕ ∈ A} for a.e. ω ∈ Ω.

Frames of translates can also be characterized using range functions and
the fiberization isometry. Indeed, when A ⊆ L2(G) is a countable set, frames
of the form {Thϕ : h ∈ H, ϕ ∈ A} for V = span{Thϕ : h ∈ H, ϕ ∈ A}
correspond to uniform frames for J where J is the measurable range function
associated with V . For H discrete, this fact was proven in [9, Theorem 4.1].
When H is not discrete but co-compact, the set {Thϕ : h ∈ H, ϕ ∈ A} is not
indexed by a discrete set and one needs to work with the notion of continuous
frame (see [7, Definition 5.1] for details). The characterization of continuous
frames in terms of range functions was given in [7, Theorem 5.1]. In the
next theorem, we state a characterization of frames of translates using range
functions without distinguishing between the discrete and the continuous
cases. The reader should keep in mind that when H is not discrete, the word
“frame” refers to the notion of continuous frame as in [7, Definition 5.1].

Theorem 4.3. Let A ⊆ L2(G) be a countable set, let J be the measurable
range function associated to V = span{Thϕ : h ∈ H, ϕ ∈ A} and let T be
the mapping of Proposition 4.1. Then the following conditions are equivalent:

(1) {Thϕ : h ∈ H, ϕ ∈ A} is a frame for V with frame bounds 0 < α ≤ β.
(2) {T ϕ : ϕ ∈ A} is a uniform frame for J with frame bounds 0 < α ≤ β.

That is, for a.e. ω ∈ Ω, {T ϕ(ω) : ϕ ∈ A} is a frame for J(ω) with
(uniform) frame bounds 0 < α ≤ β.

We already have all the ingredients we need to see how the results of
Section 3 can be applied to this setting. Fix {φ1, . . . , φm} ⊆ L2(G) and
consider the H-invariant space generated by {φ1, . . . , φm}, V = span{Thφj :
h ∈ H, 1 ≤ j ≤ m}. By taking linear combinations of {φ1, . . . , φm} we want
to construct new sets of generators for V . As we did before for subspaces and
for MI spaces, we consider sets {ψ1, . . . , ψ`} of functions in L2(G), where for
every 1 ≤ j ≤ m, ψj =

∑m
i=1 aijφj and ` is a number between the length of

the MI space T V andm. Collecting the coefficients of the linear combinations
in a matrix A ∈ C`×m and letting Φ = (φ1, . . . , φm) and Ψ = (ψ1, . . . , ψ`)
we can write Ψ = AΦt. In the next theorem we prove that for almost every
matrix A ∈ C`×m, the functions {ψ1, . . . , ψ`} generate V . This result extends
[6, Theorem 1] to the context of LCA groups, and moreover, since H is
allowed to be non-discrete, it is new even in the case when G = Rd.

Theorem 4.4. Given {φ1, . . . , φm}⊆L2(G) let V = span{Thφj : h ∈ H,
1 ≤ j ≤ m} and let `(M) be the length ofM = T V where T is the fiberization
isometry of Proposition 4.1. For `(M) ≤ ` ≤ m, let R be the set of matrices
A = {aij}ij ∈ C`×m such that the linear combinations ψj =

∑m
i=1 aijφj
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generate V , i.e. V = span{Thψi : h ∈ H, 1 ≤ i ≤ `}. Then C`×m \ R has
Lebesgue zero measure.

Proof. Let A ∈ C`×m and Ψ = {ψ1, . . . , ψ`} where Ψ = AΦt. Then
{ψ1, . . . , ψ`} is a set of generators for V if and only if {T ψ1, . . . , T ψ`} gen-
erates M as a MI space with respect to D = {(h, ·)χΩ(·)}h∈H . Denoting
Φ = {T φ1, . . . , T φm}, Ψ = {T ψ1, . . . , T ψ`}, Ψ = (T ψ1, . . . , T ψ`) and Φ =
(T φ1, . . . , T φm), we see that R = {A ∈ C`×m : M = MD(Ψ), Ψ = AΦt}.
Thus, by Theorem 3.3, C`×m \ R has Lebesgue zero measure.

The next theorem is an extension of [8, Theorem 4.4] to LCA groups.

Theorem 4.5. Let {φ1, . . . , φm} ⊆ L2(G) be such that {Thφj : h ∈ H,
1 ≤ j ≤ m} is a frame for V = span{Thϕj : h ∈ H, 1 ≤ j ≤ m} and suppose
that `(M) ≤ ` ≤ m, where M = T V and T is as in Proposition 4.1. Let
A ∈ C`×m and consider Ψ = {ψ1, . . . , ψ`} where Ψ = AΦt. Then {Thψi :
h ∈ H, 1 ≤ i ≤ `} is a frame for V if and only if A satisfies the following
two conditions:

(1) A ∈ R, where R is as in Theorem 4.4.
(2) There is δ > 0 such that F [Ker(A), Im(GΦ(ω))] ≥ δ for a.e. ω ∈ Ω,

where GΦ(ω) is the Gramian associated to {T φ1(ω), . . . , T φm(ω)}.

Remark 4.6. Given a co-compact subgroup ∆ ⊆ Ĝ of the dual group
of G and A ⊆ L2(G), consider the system {Mδφ : φ ∈ A, δ ∈ ∆} where
Mδ is the modulation operator given by Mδφ(x) = (x, δ)φ(x). Since under
the Fourier transform, modulations become translations, all the results we
have proven for systems of translates can be reformulated for systems of
modulations. Furthermore, one may also consider systems of time-frequency
translates {MδThφ : φ ∈ A, δ ∈ ∆, h ∈ H} where H ⊆ G and ∆ ⊆ Ĝ
are discrete subgroups and A ⊆ L2(G). The closure of the span of a system
of time-frequency translates is called a shift-modulation invariant space or
Gabor space. Using fiberization techniques and range functions, a character-
ization of such spaces was given in [10]. Therefore, this setting is one more
example where the results of Section 3 can be applied.

4.2. Discrete LCA groups acting on σ-finite measure spaces.
We are now interested in systems of functions constructed by the action of a
discrete LCA group Γ on L2(X ) where (X , µ) is a σ-finite measure space. We
will work with quasi-Γ-invariant actions. This notion was introduced in [17]
and then extended to the non-abelian case in [3]. Fix a discrete countable
LCA group Γ. Let (X , µ) be a σ-finite measure space and σ : Γ× X → X a
measurable action satisfying the following conditions:

(i) for each γ ∈ Γ the map σγ : X → X given by σγ(x) := σ(γ, x) is
µ-measurable;
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(ii) σγ(σγ′(x)) = σγ+γ′(x) for all γ, γ′ ∈ Γ and for all x ∈ X ;
(iii) σe(x) = x for all x ∈ X , where e is the identity of Γ.

The action σ is said to be quasi-Γ-invariant if there exists a measurable
function Jσ : Γ× X → R+, called the Jacobian of σ, such that dµ(σγ(x)) =
Jσ(γ, x)dµ. To each quasi-Γ-invariant action σ we can associate a unitary rep-
resentation Tσ of Γ on L2(X ) given by Tσ(γ)f(x) = Jσ(−γ, x)1/2f(σ−γ(x)).

Given a quasi-Γ-invariant action σ, we say that a closed subspace V of
L2(X ) is Γ-invariant if

f ∈ V ⇒ Tσ(γ)f ∈ V for any γ ∈ Γ.

When L2(X ) is separable, each Γ-invariant spaces is of the form V =
span{Tσ(γ)ϕ : γ ∈ Γ, ϕ ∈ A} for some at most countable set A ⊆ L2(X ).

In order to obtain the analogues of Theorems 4.4 and 4.5 for systems of
the form {Tσ(γ)φj}mj=1 using the machinery of MI spaces of Section 3, we
first need to establish a connection between L2(X ) and a vector valued space
of the type L2(Ω,H). We can do this by assuming that the quasi-Γ-invariant
action σ has the tiling property : there exists a measurable subset C ⊆ X such
that µ(X \

⋃
γ∈Γ σγ(C)) = 0 and µ(σγ(C) ∩ σγ′(C)) = 0 whenever γ 6= γ′.

In this case it can be shown (see [3] and [4]) that there exists an isometric
isomorphism between L2(X ) and L2(Γ̂, L2(C)).

Proposition 4.7 ([4, Proposition 3.3]). The mapping Tσ : L2(X ) →
L2(Γ̂, L2(C)) defined by

Tσ[ψ](α)(x) :=
∑
γ∈Γ

[(Tσ(γ)ψ)(x)](−γ, α)

is an isometric isomorphism, and Tσ[Tσ(γ)ψ](α) = (γ, α)Tσ[ψ].

Just as for ordinary translates of the previous section, the isomorphism
Tσ of Proposition 4.7 connects Γ-invariant spaces in L2(X ) with MI spaces
in L2(Γ̂, L2(C)). Here the determining set D is the set of characters of Γ̂.
More precisely, for every γ ∈ Γ, let Xγ : Γ̂ → C be the homomorphism
defined as Xγ(α) = (γ, α). Then, by Pontryagin duality [24, Theorem 1.7.2],
{Xγ}γ∈Γ is the set of characters of Γ̂ and thus, by uniqueness of the Fourier
transform, D = {Xγ}γ∈Γ is a determining set for L1(Γ̂). Therefore, one can
characterize Γ-invariant spaces using range functions, obtaining a similar
result to Theorem 4.2. Furthermore, one can also prove characterizations of
frames of the form {Tσ(γ)ϕ : γ ∈ Γ, ϕ ∈ A} for V = span{Tσ(γ)ϕ : γ ∈ Γ,
ϕ ∈ A} in the spirit of Theorem 4.3. We do not include here the complete
statements of these results because we think they should be clear for the
reader (see [4, Theorems 4.3 and 5.1] for details and proofs).

In a similar way to Theorem 4.4, the following result can be shown:
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Theorem 4.8. Given {φ1, . . . , φm} ⊆ L2(X ) let V = span{Tσ(γ)φj :
γ ∈ Γ, 1 ≤ j ≤ m} and let `(M) be the length of M = Tσ[V ] where Tσ
is as in Proposition 4.7. For `(M) ≤ ` ≤ m, let R be the set of matrices
A = {aij}ij ∈ C`×m such that the linear combinations ψj =

∑m
i=1 aijφj

generate V , i.e. V = span{Tσ(γ)ψi : γ ∈ Γ, 1 ≤ i ≤ `}. Then C`×m \ R has
Lebesgue zero measure.

If in addition {Tσ(γ)φj : γ ∈ Γ, 1 ≤ j ≤ m} is a frame for V , then
{Tσ(γ)ψi : γ ∈ Γ, 1 ≤ i ≤ `} is also a frame for V if and only if A ∈ R and
there exists δ > 0 such that F [Ker(A), Im(GΦ(α))] ≥ δ for a.e. α ∈ Γ̂, where
GΦ(α) is the Gramian associated to {Tσ[φ1](α), . . . , Tσ[φm](α)}.
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