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Some Banach spaces of Dirichlet series

by

Maxime Bailleul and Pascal Lefèvre (Lens)

Abstract. The Hardy spaces of Dirichlet series, denoted by Hp (p ≥ 1), have been
studied by Hedenmalm et al. (1997) when p = 2 and by Bayart (2002) in the general case.
In this paper we study some Lp-generalizations of spaces of Dirichlet series, particularly
two families of Bergman spaces, denoted Ap and Bp. Each could appear as a “natural”
way to generalize the classical case of the unit disk. We recover classical properties of
spaces of analytic functions: boundedness of point evaluation, embeddings between these
spaces and “Littlewood–Paley” formulas when p = 2. Surprisingly, it appears that the two
spaces have a different behavior relative to the Hardy spaces and that these behaviors are
different from the usual way the Hardy spaces Hp(D) embed into Bergman spaces on the
unit disk.

1. Introduction

1.1. Background and notation. In [14], the authors defined the Hardy
space H2 of Dirichlet series with square-summable coefficients. It is a space
of analytic functions on C1/2 := {s ∈ C : <(s) > 1/2} and this domain is

maximal. This space is isometrically isomorphic to the Hardy space H2(T∞)
(see [9] for the definition of H2(T∞), and we refer to [14] for results on H2).

F. Bayart [5] introduced the more general class of Hardy spaces of Dirich-
let series Hp (1 ≤ p <∞). We shall recall the definitions below.

In another direction, McCarthy [21] defined some weighted Hilbert
spaces, for instance, the spaces of Dirichlet series whose coefficients satisfy∑
|an|2(log(n))α <∞. We shall recover these spaces (and their properties)

as a special case of our spaces Apµ, with p = 2 and a suitable measure µ.

[21] is the starting point of much recent research on spaces of Dirichlet
series: for instance in [23], [24] and [25], some local properties of these spaces
are studied, and in [2], [3], [4], [5], [6], [18], [27] and [28] some results about
composition operators on these spaces are obtained.
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The study of Dirichlet series may appear more complicated than the
study of power series. For instance, there is a first important difference: all
the notions of radius of convergence coincide for Taylor series, while Dirichlet
series have several abscissas of convergence. The two most standard ones
are the abscissa σc of simple convergence and the abscissa σa of absolute
convergence (see [26], [31]).

Let f be a Dirichlet series of the form

(1) f(s) =
∞∑
n=1

ann
−s.

We shall need another two abscissas:

σu(f) = inf{a : the series (1) is uniformly convergent for <(s) > a},
the abscissa of uniform convergence of f , and

σb(f) = inf{a : the function f has

an analytic, bounded extension for <(s) > a},
the abscissa of boundedness of f . Actually, these two abscissas coincide: for
all Dirichlet series f , one has σb(f) = σu(f) (see [7]). This result due to Bohr
is really important for the study of H∞, the algebra of bounded Dirichlet
series on the right half-plane C+ (see [20]), which also turns out to be the
space of multipliers of H2. We shall denote by ‖ ·‖∞ the norm on this space:

‖f‖∞ := sup
<(s)>0

|f(s)|.

Let us now recall Bohr’s point of view on Dirichlet series: Let n ≥ 2 be
an integer; it can be (uniquely) written as a product of prime numbers,
n = pα1

1 . . . pαkk where αj ≥ 1, and where p1 = 2, p2 = 3. If s is a complex
number and z = (p−s1 , p−s2 , . . .), then by (1),

f(s) =
∞∑
n=1

an(p−s1 )α1 . . . (p−sk )αk =
∞∑
n=1

anz
α1
1 . . . zαkk .

So we can consider a Dirichlet series as a Fourier series on the infinite-
dimensional polytorus T∞. We shall denote this Fourier series by D(f):

D(f)(z1, z2, . . .) =
∑
n≥1

n=p
α1
1 ···p

αk
k

anz
α1
1 . . . zαkk .

This correspondence is not just formal. For instance, let P be the set of
prime numbers. Bohr proved the following result.

Theorem ([7]). Let f be a Dirichlet series of the form (1). Then∑
p∈P
|ap| ≤ ‖f‖∞.
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The infinite-dimensional polytorus T∞ can be identified with the group
of complex-valued characters χ on the positive integers, which satisfy the
following properties:{ |χ(n)| = 1 ∀n ≥ 1,

χ(nm) = χ(n)χ(m) ∀n,m ≥ 1.

To obtain this identification for χ = (χ1, χ2, . . . ) ∈ T∞, it suffices to define χ
on the prime numbers by χ(pi) = χi and use multiplicativity.

We shall denote by m the normalized Haar measure on T∞.

Now, let us recall how one can define the Hardy spaces of Dirichlet se-
ries Hp. We fix p ≥ 1. The space Hp(T∞) is the closure of the set of analytic
polynomials with respect to the norm of Lp(T∞,m). Let f be a Dirich-
let polynomial; from Bohr’s point of view, D(f) is an analytic polynomial
on T∞. By definition ‖f‖Hp := ‖D(f)‖Hp(T∞). The space Hp is defined to
be the completion of the Dirichlet polynomials with respect to this norm.
Consequently, Hp and Hp(T∞) are isometrically isomorphic. We already
mentioned the case p = ∞, nevertheless, it is easy to adapt the previous
description to the case p =∞. When p = 2, H2 is just the space of Dirichlet
series of the form (1) which satisfy

∞∑
n=1

|an|2 <∞.

Let D be the space of functions which admit a representation by a conver-
gent Dirichet series on some half-plane. When a function f belongs to D and
σ > 0, we define fσ ∈ D to be the translate of f by σ, i.e. fσ(s) := f(σ + s).
We then define a map from D to D by Tσ(f) = fσ.

For θ ∈ R, Cθ is the half-plane {s ∈ C : <(s) > θ}.
We shall denote by P the space of Dirichlet polynomials, that is, the

vector space spanned by the functions en(z) = n−z, where n ≥ 1. Finally,
for p ≥ 1, we write p′ for its conjugate exponent: 1/p+ 1/p′ = 1.

1.2. Organization of the paper. In the present paper, we introduce
two classes of Bergman spaces of Dirichlet series. We give some properties
of these spaces, and estimate the growth of point evaluation of functions
belonging to these spaces. Finally, we compare them to the Hardy spaces of
Dirichlet series: here some curious phenomena appear.

Definition 1. Let p ≥ 1, P be a Dirichlet polynomial and µ be a
probability measure on (0,∞) such that 0 belongs to the support supp(µ)
of µ. We define

‖P‖Apµ =
(∞�

0

‖Pσ‖pHp dµ(σ)
)1/p

.
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The space Apµ is the completion of P with respect to this norm. When
µ(σ) = 2e−2σ dσ, we denote this space simply by Ap. More generally, fix
α > −1 and consider the probability measure µα defined by

dµα(σ) =
2α+1

Γ (α+ 1)
σα exp(−2σ) dσ.

The space Apµα will be denoted simply Apα.

Definition 2. On the infinite-dimensional polydisk D∞, we consider
the measure A = λ ⊗ λ ⊗ · · · where λ is the normalized Lebesgue measure
on the unit disk D. For p ≥ 1, the space Bp(D∞) is the closure of the set
of analytic polynomials with respect to the norm of Lp(D∞, A). Let f be
a Dirichlet polynomial, and set ‖f‖Bp := ‖D(f)‖Bp(D∞). The space Bp is
defined to be the closure of P with respect to this norm.

In Section 2, we prove that point evaluation is bounded on the spaces Apµ
for any s ∈ C1/2. More precisely, let δs be the operator of point evaluation at
s ∈ C1/2, which is a priori defined for Dirichlet polynomials (or convergent
Dirichlet series). We prove that the operator extends to a bounded operator
which we still denote by δs, and we show that there exists a constant cp such
that for every s ∈ C1/2,

‖δs‖(Ap)∗ ≤ cp
(
<(s)

2<(s)− 1

)2/p

.

It turns out that the classical ideas to prove the boundedness of point eval-
uation do not apply here and we have to find some new ideas. In particular,
these ideas also apply to the classical (one variable) Bergman (or Dirichlet)
spaces (although they do not give the best constants in that case). We also
show that the identity from H2 to Ap is not bounded when p > 2 (but is
compact when p = 2): this is probably the most surprising result of the
paper because it completely differs from the classical result that the classi-
cal Hardy space of the unit disk, H2(D), embeds into the Bergman space
A4 = B4 (of the unit disk). Finally, we obtain a Littlewood–Paley formula
for the Hilbert spaces A2

µ.
In Section 3, we prove that the point evaluation at any s ∈ C1/2 is

bounded on Bp and

‖δs‖(Bp)∗ = ζ(2<(s))2/p.

By a hypercontractivity result, we find that the injection from Hp to B2p
is bounded. This phenomenon is similar to what happens in the classical
framework of Hardy/Bergman spaces in one variable. Nevertheless, con-
cerning compactness, we have the following curiosity: the injection from
Hp to Bp is not compact. We also obtain a Littlewood–Paley formula
for B2.
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2. The Bergman spaces Apµ

2.1. Hilbert spaces of Dirichlet series with weighted `2 norm.
First, we recall some facts from [21]. We have changed the definition in order
to include the constant functions in these spaces, which seems to us more
natural.

Let w = (wn)n≥1 be a sequence of positive numbers. The space A2
w is

defined by

A2
w :=

{
f ∈ D : f(s) =

∞∑
n=1

ann
−s, ‖f‖ =

( ∞∑
n=1

|an|2wn
)1/2

<∞
}
.

Of course, if w ≡ 1, then A2
w is just the classical Hardy space H2. In

order to obtain good properties for these spaces, we need to impose some
conditions on the weights. This is motivated by the ideas and results of [17].

Definition ([21]). Let µ be a probability measure on (0,∞) such that
0 ∈ supp(µ). For n ≥ 1 we define

wn :=

∞�

0

n−2σ dµ(σ).

In this case, we say that the space A2
µ := A2

w is a (hilbertian) Bergman-like
space and that w is a Bergman weight.

Example. When µ = δ0, the Dirac mass at 0, we have wn = 1 and we
get the Hardy space H2. In the opposite situation, when µ({0}) = 0, it is
easy to see that the sequence w converges to 0.

In the case µ = µα, where α > −1, we have wn = (log(n) + 1)−1−α for
n ≥ 1 and the associated space is A2

α. For α = 0, we recover the space A2

and we notice that the limit (degenerate) case α = −1 corresponds to H2.

McCarthy [21] proved that these spaces are spaces of analytic functions
on C1/2. This is a consequence of the following lemma:

Lemma ([21]). Let w be a Bergman weight. Then w is non-increasing
and it decreases more slowly than any negative power of n, that is,

∀ε > 0, ∃c > 0, ∀n ≥ 1, wn > cn−ε.

In addition, C1/2 is a maximal domain. Indeed, let ζ be the Riemann
zeta function ([31]). Then for every ε > 0 and every Bergman weight w,

ζ(1/2 + s+ ε) =
∞∑
n=1

1

n1/2+ε+s
∈ A2

w.

But this Dirichlet series has a pole at 1/2− ε.
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2.2. Point evaluation on Apµ. First we can easily compute the norm
of point evaluation in the case of the Hilbert spaces A2

µ. In this case point
evaluation is bounded on C1/2, it is optimal (in the sense that point evalu-
ation cannot be defined on Ca with a < 1/2) and the reproducing kernel at
s ∈ C1/2 is

Kµ(s, w) :=

∞∑
n=1

n−w−s

wn

and

‖δs‖(A2
µ)
∗ ≤

( ∞∑
n=1

n−2σ

wn

)1/2

for every s = σ + it ∈ C1/2.

In the general case, the next theorem provides us with a majorization
which gives the right order of growth when the abscissa is close to the critical
value 1/2. Actually we are going to distinguish the behaviour according to
the valuation of the function (i.e. the least v such that an = 0 for every
n < v), so we shall need some estimates depending on whether the constant
coefficient vanishes or not. It could be interesting to work with (truncated)
functions with higher valuation; however, in the present paper, we shall only
concentrate on the cases v = 0 and v = 1, because these are the only cases
needed here.

Definition 3. Let Hp∞ be the subspace of Hp of functions whose valua-
tion is at least 1, i.e. the space of Dirichlet series whose constant coefficient
a1 is zero (remember that a1 is actually the value at infinity, and this ex-
plains our notation).

Let Apµ,∞ be the subspace of Apµ of functions whose constant coefficient
vanishes. In the particular case of the measure µα, we write Apα,∞. Finally,
when α = 0, we simply use the natural notation Ap∞.

On the spaces Hp (resp. Hp∞), we define ∆p(s) (resp. ∆p,∞(s)) as the
norm of the evaluation at s ∈ C1/2. We recall that ∆p(s) = ζ(2<(s))1/p

by [5].

Theorem 1. Let p ≥ 1 and µ be a probability measure on (0,∞) such
that 0 ∈ supp(µ). Then the point evaluation at any s ∈ C1/2 is bounded on
P ∩Apµ (resp. on P ∩Apµ,∞). Hence it extends to a bounded operator on Apµ
(resp. on Apµ,∞) whose norm satisfies

(i) ‖δs‖(Apµ)∗ ≤ inf
η∈(0,<(s)−1/2)

‖∆p(<(s)− •)‖Lp′ ([0,<(s)−1/2−η], dµ)
µ([0,<(s)− 1/2− η])

.

(ii) ‖δs‖(Apµ,∞)
∗ ≤ inf

η∈(0,<(s)−1/2)

‖∆p,∞(<(s)− •)‖Lp′ ([0,<(s)−1/2−η], dµ)
µ([0,<(s)− 1/2− η])

.
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Proof. We prove only (i) since the proof of (ii) is the same. Fix η in
(0,<(s)−1/2). We can assume that s = σ ∈ (1/2,∞) thanks to the vertical
translation invariance of the norm on Apµ. Let P be a Dirichlet polynomial.
We have

P (σ) = Pε(σ − ε) for any ε ∈ (0, σ − 1/2).

We know that point evaluation is bounded on Hp:

|P (σ)| ≤ ∆p(σ − ε)‖Pε‖Hp for any ε ∈ (0, σ − 1/2).

By integration on (0, σ − 1/2− η) we obtain

µ([0, σ − 1/2− η])|P (σ)| ≤
σ−1/2−η�

0

∆p(σ − ε)‖Pε‖Hp dµ(ε).

Then, by Hölder’s inequality,

µ([0, σ − 1/2− η])|P (σ)| ≤ ‖P‖Apµ · ‖∆p(σ − • )‖Lp′ ([0,σ−1/2−η],dµ).

Since η ∈ (0,<(s)− 1/2) is arbitrary, the result follows.

Corollary 1. Let p ≥ 1 and α > −1.

(i) The point evaluation at any s ∈ C1/2 is bounded on Apα and there
exists a positive constant cp,α such that for every s ∈ C1/2 we have

‖δs‖(Apα)∗ ≤ cp,α
(
<(s)

2<(s)− 1

)(2+α)/p

.

(ii) The point evaluation at any s ∈ C1/2 is bounded on Apα,∞ and there
exists a positive constant c′p,α such that for every s ∈ C1/2 we have

‖δs‖(Apα,∞)
∗ ≤

c′p,α

(2<(s)− 1)(2+α)/p
.

Proof. We shall use the fact that ζ(x) ≤ x
x−1 for every x > 1. Moreover,

A . B means that there exists for some constant c depending on p and α
only such that A ≤ cB.

Fix s = σ ∈ (1/2,∞) and η ∈ (0, σ−1/2). In our framework, there exists
some constant Cα depending on α only, such that, for every A > 0,

µα([0, A]) ≥ Cα min(1, Aα+1).

Let us prove (i). We first consider the case p = 1. We choose η =
(σ − 1/2)/2. Since

sup
ε∈[0,(σ−1/2)/2]

|ζ(2σ − 2ε)| = ζ(σ + 1/2) ≤ 2σ + 1

2σ − 1
,

the conclusion follows from the preceding theorem.
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Now assume that p > 1 and p 6= 2 (we already know the exact norm of
the evaluation in the case p = 2). We have

σ−1/2−η�

0

ζ(2σ − 2ε)p
′/p dµα(ε) . (2σ)p

′/p

σ−1/2−η�

0

εα

(2σ − 2ε− 1)p′/p
e−2ε dε.

We split our discussion into two cases, according to whether p > 2 or
2 > p > 1.

First assume that p > 2. We have p′/p < 1, hence the last integral
converges for η = 0 and is majorized by

σ−1/2�

0

εα

(2σ − 2ε− 1)p′/p
dε =

1

(2σ − 1)p′/p

σ−1/2�

0

εα

(1− 2ε/(2σ − 1))p′/p
dε

=
(2σ − 1)α+1

2α+1(2σ − 1)p′/p

1�

0

tα(1− t)−p′/p dt with t =
2ε

2σ − 1
.

Finally, we obtain

σ−1/2−η�

0

ζ(2σ − 2ε)p
′/p dµα(ε) . (2σ)p

′/pB(α+ 1, 1− p′/p)
(2σ − 1)p′/p−α−1

where B is the classical Beta function ([11]). Moreover, with the choice η = 0
in Theorem 1, we get

‖δσ‖(Apα)∗ .
(
B(α+ 1, 1− p′/p)
(2σ − 1)p′/p−α−1

)1/p′ (2σ)1/p

min(1, (σ − 1/2)α+1)
.

This estimate is good when σ is bounded (and more precisely when σ is close
to 1/2). We have to consider the asymptotic behavior. So, assume σ ≥ 1;
the above integral

σ−1/2�

0

ζ(2σ − 2ε)p
′/p dµα(ε)

is then majorized by

σ−1�

0

sup
x≥2
|ζ(x)|p′/p dµα(ε) +

σ−1/2�

σ−1
ζ(2σ − 2ε)p

′/p dµα(ε).

The first integral is bounded uniformly in σ and the second is majorized by

σ−1/2�

σ−1

εα(2σ)p
′/p

(2σ − 2ε− 1)p′/p
e−2ε dε . σα+p

′/pe−2σ
1�

0

1

up′/p
du . 1.

This proves that the norm of the evaluation is uniformly bounded when
σ > 1. Collecting everything proves (i) when p > 2.
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Now for 1 < p < 2, we have p′/p > 1 and we cannot choose η = 0
because the integral is not convergent. But in fact, it suffices to choose the
middle point η = (σ − 1/2)/2. We conclude in the same way.

Let us prove (ii). Obviously ‖δs‖(Apα,∞)
∗ ≤ ‖δs‖(Apα)∗ , hence the conclu-

sion follows from (i) when the real part of s is bounded by 1.

It suffices to consider the behavior when σ > 1 and the result will follow
from the (asymptotic) behavior of ∆p,∞:

∆p,∞(s) ≤ 1

<(s)− 1
.

Indeed, for every f ∈ P ∩Hp∞ ⊂ H1
∞, we have, for any s ∈ C1,

f(s) = lim
T→∞

1

2T

T�

−T
ζ̃(s+ it) f(it) dt,

where ζ̃(z) =
∑

n≥2 n
−z. Hence

|f(s)| ≤ ‖ζ̃σ‖H∞‖f‖H1 ≤
1

σ − 1
‖f‖Hp .

Now, the rest of the proof follows the lines of the proof of (i), so we leave
the details to the reader.

Remarks. (i) Let us clarify why the estimate of the norm is optimal
in many cases: The behavior of ‖δs‖(Apα)∗ around the critical line σ = 1/2

cannot be a power of <(s)/(2<(s) − 1) better than (2 + α)/p. Indeed, let

σ > 1/2; we would like to consider the function ζ
2/p
σ . Let us mention that

we can define the function ζq (where q > 0) through the Euler product:

ζq(z) =
∏
p∈P

[
1

1− p−z

]q
.

Actually we first work with F being a partial sum of (ζσ)2/p and we obtain

|F (σ)|p ≤ ‖δσ‖p(Apα)∗‖F‖
p
Apα

. ‖δσ‖p(Apα)∗
∞�

0

‖Fε‖pHpε
α exp(−2ε) dε

because F is a Dirichlet polynomial. Now if we assume that p > 1, we know
(see [1]) that (en)n≥1 is a Schauder basis for Hp. Hence there exists cp > 0
such that

|F (σ)|p . cp‖δσ‖p(Apα)∗
∞�

0

‖ζ2/pσ+ε‖
p
Hpε

α exp(−2ε) dε.

But

‖ζ2/pσ+ε‖
p
Hp = ‖ζσ+ε‖2H2 = ζ(2σ + 2ε)
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and we get (since F was an arbitrary partial sum of ζ
2/p
σ )

|ζ(2σ)|2 . ‖δσ‖p(Apα)∗
∑
n≥1

n−2σ

(1 + ln(n))α+1
.

When α < 0, we get |ζ(2σ)|2 . ‖δσ‖p(Apα)∗(2σ − 1)α, hence

1

(2σ − 1)2+α
. ‖δσ‖p(Apα)∗ ,

which proves our claim, in a strong way: the majorization in (i) of Corollary 1
is actually also (up to a constant) a minorization.

When α ≥ 0, we have

1

(2σ − 1)2+α|log(2σ − 1)|
. ‖δσ‖p(Apα)∗ ,

which proves that we cannot get a better exponent than (2 +α)/p in Corol-
lary 1(i).

(ii) Let σ > 1/2 and µ = µα. We already know that the reproducing
kernel at σ is defined by

∀w ∈ C1/2, Kµα(σ,w) =
∞∑
n=1

(1 + log(n))α+1n−σ−w.

Then

Kµα(σ, σ) ≤ ‖δσ‖(A2
α)
∗‖Kµα(σ, •)‖A2

α

and by the property of the reproducing kernel,

Kµα(σ, σ)1/2 ≤ ‖δσ‖(A2
α)
∗ .

The converse inequality is already known. Hence

‖δσ‖(A2
α)
∗ = Kµα(σ, σ)1/2 =

(
Γ (2 + α)

(2σ − 1)2+α
+O(1)

)1/2

when σ goes to 1/2 (see [25] for the second equality), and so our result is
sharp when p = 2.

(iii) With the same notation, we have

Kµα(σ, σ)2 ≤ ‖δσ‖(A1
α)
∗‖Kµα(σ, • )2‖A1

α
= ‖δσ‖(A1

α)
∗‖Kµα(σ, • )‖2A2

α
,

and again by the property of the reproducing kernel, we obtain

Kµα(σ, σ) ≤ ‖δσ‖(A1
α)
∗ .

We conclude as in (ii) and so the result is also sharp for p = 1.
(iv) In (i), we have used the fact that (en)n≥1 is a Schauder basis for

Hp when p > 1. This result is also true for Apµ when p > 1: just use the
result on Hp, then make an integration and use the density of the Dirichlet
polynomials. This remark is also true for the spaces Bp.
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Let us mention here that we are able to give a more precise majorization
in the particular case of an even integer p: the constants are equal to 1. This
follows immediately from a general method explained in the appendix at
the end of the paper:

Proposition 1. Let p be an even integer, and µ be as in Theorem 1.

(i) For every s ∈ C1/2 we have

‖δs‖(Apµ)∗ ≤ ‖δs‖
2/p

(A2
µ)
∗ .

In particular,
(ii) For every s ∈ C1/2 we have

‖δs‖(Ap)∗ ≤
(
(ζ−ζ ′)(2<(s))

)1/p ∼ 1

(2<(s)− 1)2/p
when <(s)→ 1/2.

As soon as a Bergman-like space is defined, a Dirichlet-like space is
naturally associated:

Definition 4. Let p ≥ 1 and µ be a probability measure on (0,∞). We
define the Dirichlet space Dpµ as the space of Dirichlet series f such that

‖f‖pDpµ := |f(∞)|p + ‖f ′‖pApµ <∞.

Here f(∞) stands for lim<(s)→∞ f(s) = a1, where f has an expansion (1).

Theorem 2. Let p ≥ 1 and µ be a probability measure on (0,∞). For
any s ∈ C1/2, we have

|f(s)| ≤ 21/p
′
max

(
1,

∞�

<(s)

‖δt‖(Apµ,∞)∗ dt
)
× ‖f‖Dpµ .

Proof. Without loss of generality we may assume that s = σ ∈ (1/2,∞).
Now

|f(σ)− f(∞)| =
∣∣∣∞�
σ

f ′(t) dt
∣∣∣ ≤ ∞�

σ

|f ′(t)| dt

≤
∞�

σ

‖δt‖(Apµ,∞)
∗ dt× ‖f ′‖Apµ,∞

since the constant coefficient of f ′ vanishes, i.e. f ′ ∈ Apµ,∞. So we get

|f(σ)| ≤ |f(∞)|+
∞�

σ

‖δt‖(Apµ,∞)
∗ dt× ‖f ′‖Apµ,∞

≤
(

1 +
(∞�
σ

‖δt‖(Apµ,∞)
∗ dt
)p′)1/p′

×
(
|f(∞)|p + ‖f ′‖pApµ,∞

)1/p
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thanks to Hölder’s inequality. Now it suffices to remark that(
1 +

(∞�
σ

‖δt‖(Apµ,∞)
∗ dt
)p′)1/p′

≤ 21/p
′
max

(
1,

∞�

<(s)

‖δt‖(Apµ,∞)
∗ dt
)
.

Corollary 2. Let α > −1 and p ≥ 1. There exists cp,α > 0 such that
for every s ∈ C1/2, we have

‖δs‖Dpα ≤

{
cp,α/(2<(s)− 1)(2+α)/p−1 if α 6= p− 2,

cp,α log(2<(s)− 1) if α = p− 2.

Proof. This follows from Theorem 2 and Corollary 1.

Let us make a digression. The proofs of Theorems 1 and 2 are based on
the fact that we work with Bergman spaces with axial weights. Replacing
axial weights on the half-plane by radial weights on the unit disk, the same
idea can be adapted to classical Bergman and Dirichlet spaces on the unit
disk D. Let us describe here how we can easily estimate the norm of the
evaluation on weighted spaces of analytic functions over the unit disc.

Let σ : (0, 1) → (0,∞) be a continuous function such that σ ∈ L1(0, 1).
We extend it on D by σ(z) = σ(|z|). For p ≥ 1, we consider the weighted
Bergman space

Apσ := H(D) ∩ Lp(D, σ(|z|) dλ(z))

where H(D) is the set of analytic functions on D and λ is the normalized
Lebesgue measure on D. This space is equipped with the norm

‖f‖Apσ =
(�
D

|f(z)|pσ(z) dλ(z)
)1/p

.

We also consider the Dirichlet space Dp
σ(D) of analytic functions on D whose

derivative belongs to Apσ. This space is equipped with the norm

‖f‖Dpσ =
(
|f(0)|p + ‖f ′‖p

Apσ

)1/p
.

We know that the point evaluation at z ∈ D is bounded on the (classical)
Hardy spaces Hp = Hp(D) (see [10]) and we have exactly

‖δz‖(Hp)∗ =
1

(1− |z|2)1/p
.

Theorem 3. Let p ≥ 1 and z ∈ D. The point evaluation at z is bounded
on Apσ and we have

‖δz‖(Apσ)∗ ≤ inf
η∈(0,1−|z|)

‖r 7→ (1− (|z|/r)2)−1/p‖Lp′ ([|z|+η,1],σ(r)dr)
S([|z|+ η, 1])

where S(I) =
	
I σ(r) dr.
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Example. When σ ≡ 1 (the classical Bergman space Ap), we recover

‖δz‖(Ap)∗ .
1

(1− |z|2)2/p
for any z ∈ D.

Theorem 4. Let p ≥ 1 and z ∈ D. We have

‖δz‖(Dpσ)∗ ≤ 21/p
′
max

(
1,

|z|�

0

‖δr‖(Apσ)∗ dr
)
.

2.3. Apµ as a space of Dirichlet series. The results of the preceding
section allow us to define, for each s ∈ C1/2, the value of f ∈ Apµ at s
as δs(f). Of course, this coincides with the natural definition when f is a
Dirichlet polynomial or when f ∈ D ∩ Apµ. Now we want more: we wish to
check that we are actually working on spaces of Dirichlet series.

We first need the following tool.

Lemma 1. Let ε > 0 and µ be a probability measure on (0,∞). Then

Tε : P ∩ A1
µ → A2

µ, f 7→ fε,

is bounded. It extends to a bounded operator (still denoted Tε) from A1
µ

to A2
µ.

In the proof, we shall use the following sequence.

Definition 5. Let µ be a probability measure on (0,∞) with 0 ∈
supp(µ). For every integer n ≥ 1 we define

w̃n :=

∞�

0

n−σ dµ(σ).

Proof of Lemma 1. We shall introduce three bounded operators. First
we define S1 : P ∩ A1

µ → H1 by

S1

( ∞∑
n=1

anen

)
:=

∞∑
n=1

anw̃nen.

It is bounded because for any Dirichlet polynomial we have∥∥∥ N∑
n=1

anw̃nen

∥∥∥
H1

=
�

T∞

∣∣∣ N∑
n=1

anw̃nz
α1
1 . . . zαkk

∣∣∣ dm(z)

=
�

T∞

∣∣∣∞�
0

N∑
n=1

ann
−σzα1

1 . . . zαkk dµ(σ)
∣∣∣ dm(z) by definition of w̃n

≤
∞�

0

�

T∞

∣∣∣ N∑
n=1

ann
−σzα1

1 . . . zαkk

∣∣∣ dm(z) dµ(σ) =
∥∥∥ N∑
n=1

anen

∥∥∥
A1
µ

.

By density, this operator extends to a bounded operator (still denoted S1).
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Now we define S2 : H1 → H2 by

S2

( ∞∑
n=1

anen

)
:=

∞∑
n=1

ann
−ε

√
w̃n

en.

It is bounded because Tε/2 : H1 → H2 is bounded (see [5]) and because
there exists C > 0 such that w̃n > Cn−ε.

The third operator S3 : H2 → A2
µ is defined by

S3

( ∞∑
n=1

anen

)
:=

∞∑
n=1

an√
w̃n

en.

It is bounded because wn ≤ w̃n for all n ≥ 1.
Hence S3 ◦ S2 ◦ S1 is bounded and clearly coincides with Tε.

Theorem 5. The space Apµ is a space of Dirichlet series: every f ∈ Apµ
belongs to D and σu(f) ≤ 1/2.

Proof. The result is obvious when p ≥ 2 since then Apµ ⊂ A2
µ. When

1 ≤ p < 2, since Apµ ⊂ A1
µ, we only have to prove the conclusion for p = 1.

But this follows from the preceding lemma: Indeed, fix f ∈ A1
µ, α > 1/2

and ε = α − 1/2 > 0. The function Tε(f) belongs to A2
µ so that for every

z ∈ C1/2 we can write

Tε(f)(z) =
∑
n≥1

a(ε)n n−z.

On the other hand, f is the limit of a sequence (Pk)k∈N of Dirichlet
polynomials in the space A1

µ. The continuity of Tε implies that Tε(f) is the

limit of (Pk(ε + •))k∈N in the norm of A2
µ. Invoking the continuity of the

point evaluation both at z + ε and at z, we get

f(z + ε) = limPk(ε+ z) = limTε(Pk)(z) = Tε(f)(z) =
∑
n≥1

a(ε)n n−z.

In particular, for every s ∈ Cα, we have (with z = s− ε ∈ C1/2)

f(s) =
∑
n≥1

(a(ε)n nε)n−s.

Actually the coefficients do not depend on ε (by uniqueness of the Dirich-
let expansion). Since α > 1/2 is arbitrary, we get the conclusion.

In view of the results of this section, we get the conclusion of Lemma 1.
It seems clear that Hp ⊂ Apµ for any p ≥ 1 and any µ. Indeed, the

following theorem makes this fact precise and shows that the way we may
compute the norm remains valid for general functions of Apµ.

Theorem 6. Let p ≥ 1 and µ a probability measure whose support con-
tains 0.
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(i) Hp ⊂ Apµ and ‖f‖Apµ ≤ ‖f‖Hp for every f ∈ Hp.
(ii) For every f ∈ Hp, we have ‖f‖Apµ = (

	∞
0 ‖fσ‖

p
Hp dµ)1/p.

(iii) For every f ∈ Apµ, we have ‖f‖Apµ = limc→0+ ‖fc‖Apµ.

Proof. For every Dirichlet polynomial f , we have ‖f‖Apµ ≤ ‖f‖Hp , since

µ is a probability measure and ‖f‖Hp = supc>0 ‖fc‖Hp . Now (in the spirit of
the proof of Theorem 5) a density argument, combined with the boundedness
of point evaluation, easily yields the first assertion.

Now, let f ∈ Hp and ε > 0. There exists a Dirichlet polynomial P such
that ‖f − P‖Hp < ε. By the first assertion ‖f − P‖Apµ < ε and so

‖f‖Apµ ≤ ε+ ‖P‖Apµ = ε+
(∞�

0

‖Pσ‖pHp dµ(σ)
)1/p

≤ ε+
(∞�

0

‖Pσ − fσ‖pHp dµ(σ)
)1/p

+
(∞�

0

‖fσ‖pHp dµ(σ)
)1/p

.

Now, Tσ is a contraction on Hp for every σ > 0 and so

‖f‖Apµ ≤ 2ε+
(∞�

0

‖fσ‖pHp dµ(σ)
)1/p

.

In the same way we obtain a lower bound and finally the second assertion.

For the third assertion, we shall use the fact that Tc is a contraction
on Apµ for every c > 0. As in the first assertion, it suffices to check it on
Dirichlet polynomials but in this case this is clear by definition of the norm
for Dirichlet polynomials and the fact that Tc is a contraction on Hp. Now
let f ∈ Apµ and ε, c > 0. There exists a Dirichlet polynomial P such that
‖f − P‖Apµ < ε. Then

‖f − fc‖Apµ ≤ ‖f − P‖Apµ + ‖P − Pc‖Apµ + ‖Pc − fc‖Apµ
≤ 2‖f − P‖Apµ + ‖P − Pc‖Apµ ≤ 2ε+ ‖P − Pc‖Apµ

and by the Lebesgue dominated convergence theorem ‖P − Pc‖Apµ → 0 as
c→ 0, and so the result is proved.

Remark. It follows from the preceding theorem that the norm of point
evaluation on Hp is bounded by its norm on Apµ. Hence C1/2 is always the
maximal domain where we can a priori define the Dirichlet series of Apµ.

2.4. Vertical limits and Littlewood–Paley formula. Let f be a
Dirichlet series absolutely convergent in a half-plane. For any sequences
(τn) ⊂ R, we can consider vertical translations of f ,

(fτn(s)) := (f(s+ iτn)).
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By Montel’s theorem, this sequence is a normal family in the half-plane of
absolute convergence of f and so there exists a subsequence convergent to
some f̃ . We say that f̃ is a vertical limit of f . We shall use the following result.

Proposition ([14]). Let f be a Dirichlet series of the form (1), abso-
lutely convergent in a half-plane. The vertical limit functions of f are exactly
the functions of the form

fχ :=

∞∑
n=1

anχ(n)en where χ ∈ T∞.

In [14] it is shown that every element f in H2 admits vertical limit
functions fχ which converge m-almost everywhere on C+. We have the same
result for the Bergman spaces Apµ. This is a consequence of the following
theorem.

Men’shov’s Theorem ([22]). Let (Ω,A, ν) be a probability space and
(Φn) be an orthonormal sequence in L2(Ω). Then

∞∑
n=1

|cn|2 log2(n) <∞ ⇒
∞∑
n=1

cnΦn converges ν-a.e.

Proposition 2. Let p ≥ 1, µ be a probability measure on (0,∞) and let
f ∈ Apµ or Dpµ. For almost all χ ∈ T∞, fχ converges on C+.

Remark. It suffices to give the proof in the case of the Bergman-like
spaces: indeed, if f is in Dpµ then f ′ ∈ Apµ and so f ′χ converge on C+ for
almost every χ ∈ T∞, and the same holds for f .

Proof. First, we prove the result when p = 2. Let f ∈ A2
µ be of the form

(1) and set cn := ann
−σ−it where σ > 0 and t ∈ R. Clearly (χ(n)) is an

orthonormal family in L2(T∞). We have
∞∑
n=2

|cn|2 log2(n) =

∞∑
n=2

|an|2wn
(

log2(n)

n2σwn

)
.

If w is a Bergman weight, we know that there exists a positive constant
C such that wn > Cn−σ for all n ≥ 1, so

log2(n)

n2σwn
≤ log2(n)

Cnσ
.

In this case, the right hand side of this inequality is finite and by Men’shov’s
theorem, the proof is finished for p = 2.

Now we want to prove this result when p 6= 2. By inclusion between these
spaces, it suffices to prove the result for p = 1.

Let f ∈ A1
µ. By Lemma 1, fε ∈ A2

µ for every ε > 0. So

for every ε > 0, for almost all χ ∈ T∞, (fε)χ converges on C+.
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Thus

for every n ≥ 1, for almost all χ ∈ T∞, (f1/n)χ converges on C+.

Now we can invert the quantifiers:

for almost all χ ∈ T∞, for all n ≥ 1, (f1/n)χ converges on C+.

Of course if (f1/n)χ converges on C+ for every n ≥ 1, then fχ converges
on C+, and so we obtain the result.

Now, following some ideas from [17] in the case of the unit disk, we
consider the case of weighted Bergman-like spaces when dµ(σ) = h(σ)dσ
where h ≥ 0, ‖h‖L1(R+) = 1 and 0 ∈ supp(h). Let wh be the associated
Bergman weight defined for n ≥ 1 by

wh(n) =

∞�

0

n−2σh(σ) dσ.

For σ > 0, we define

βh(σ) :=

σ�

0

(σ − u)h(u) du =

σ�

0

t�

0

h(u) du dt.

Remark. Observe that limσ→∞ βh(σ)n−2σ = 0 for every n ≥ 2.

We can compute the first two derivatives of βh:

β′h(σ) =

σ�

0

h(u) du, β′′h(σ) = h(σ).

In order to obtain a Littlewood–Paley formula for A2
µ, we need the fol-

lowing lemma.

Lemma ([6]). Let η be a Borel probability measure on R, and f of the
form (1). Then

‖f‖2H2 =
�

T∞

�

R

|fχ(it)|2 dη(t) dm(χ).

Theorem 7 (“Littlewood–Paley formula”). Let η be a Borel probability
measure on R. Then

‖f‖2Awh = |f(∞)|2 + 4
�

T∞

∞�

0

�

R

βh(σ)|f ′χ(σ + it)|2 dη(t) dσ dm(χ).

Proof. Let f ∈ A2
wh

be of the form (1). The previous lemma applied to
fσ where σ > 0 gives

�

T∞

�

R

|f ′χ(σ + it)|2 dη(t) dm(χ) =
∞∑
n=2

|an|2n−2σ log2(n) ∀σ > 0.
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Now we multiply by βh(σ) and integrate over R+:
∞�

0

�

T∞

�

R

βh(σ)|f ′χ(σ + it)|2 dη(t) dm(χ) dσ =

∞∑
n=2

|an|2 log2(n)

∞�

0

n−2σβh(σ) dσ.

Now, it suffices to prove that

wh(n) = 4 log2(n)

∞�

0

n−2σβh(σ) dσ.

But by definition, we have

wh(n) =

∞�

0

h(σ)n−2σ dσ.

Integration by parts gives

wh(n) =
[ σ�
0

h(u) du× n−2σ
]∞
0

+ 2 log(n)

∞�

0

σ�

0

h(u) du× n−2σ dσ

=
[
β′h(σ)× n−2σ

]∞
0

+ 2 log(n)

∞�

0

β′h(σ)n−2σ dσ.

But we know that β′h(σ)→ 0 as σ → 0 (because h ∈ L1(R+)) and β′h(σ)→
‖h‖1 as σ →∞. So we have

wh(n) = 2 log(n)

∞�

0

β′h(σ)× n−2σ dσ.

Using again integration by parts, we obtain

wh(n) = 4 log2(n)

∞�

0

n−2σβh(σ) dσ.

Example. Let α > −1 and f ∈ A2
α. We have βh(σ) ≈ σα+2 when σ is

small. Hence

‖f‖2A2
α
≈ |f(∞)|2 +

2α+3

Γ (α+ 3)

�

T∞

∞�

0

�

R

σα+2|f ′χ(σ + it)|2 dη(t) dσ dm(χ).

In the case of Dirichlet spaces, we obtain the following proposition.

Proposition 3. Let dµ = hdσ be a probability measure. Then for f ∈
D2
µ we have

‖f‖2D2
µ

= |f(∞)|2 + 4
�

T∞

∞�

0

�

R

h(σ)|f ′χ(σ + it)|2 dη(t) dσ dm(χ).

Remark. These formulas are really useful to prove some criteria for
compactness of composition operators (see [2]). We can also use them to



Banach spaces of Dirichlet series 35

compare A2 and H2 norms. For example, assume that f ∈ A2
∞. Then for

x > 0, we have

‖f‖2A2 ≥ 4

x�

0

�

T∞

�

R

|f ′χ(σ + it)|2 dη(t) dm(χ)σ2 dσ.

But we know that�

T∞

�

R

|f ′χ(σ + it)|2 dη(t) dm(χ) = ‖fσ‖2H2 ≥ ‖fx‖2H2

when σ ≤ x. Thus we have

‖f‖2A2 ≥ 4‖fx‖2H2

x�

0

σ2 dσ and so ‖fx‖H2 ≤
√

3‖f‖A2

2x3
∀x > 0.

Obviously we can do the same with the spaces A2
µ.

Corollary 3. Let ε > 0. Then Tε(A2
µ) ⊂ H2 ⊂ A2

µ.

2.5. Comparison of Ap and Hp. We already saw that Hp ⊂ Ap. The
goal of this section is to prove the following theorem, which looks surprising,
in view of the classical results on the unit disk.

Theorem 8. Let p > 2. The identity from H2 to Ap is not bounded but
the identity from H2 to A2 is compact.

Corollary 4. Let p > 1. The identity from H1 to Ap is not bounded.

Proof of Corollary 4. If the identity from H1 to Ap were bounded then
by using squares of Dirichlet polynomials the identity from H2 to Ap would
be bounded, contrary to Theorem 8.

We need the following lemma (we have not found any such formula in
the literature).

Lemma 2. For n ≥ 1, we have
∞∑
k=0

(
n+ k

n

)2

zk =
1

(1− z)2n+1

n∑
k=0

(
n

k

)2

zk.

Proof. We give two proofs:

Proof 1. For n = 1, we easily check that
∞∑
k=0

(
k + 1

1

)2

zk =
1 + z

(1− z)3
.

We can now prove the equality by induction just by noting that(
n+ k

n

)
n+ k + 1

n+ 1
=

(
n+ k + 1

n+ 1

)
.
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Now it suffices to compute the second derivative of the equality for the
rank n to obtain the equality for rank n+ 1; the computation is tedious and
we leave it to the reader.

Proof 2. We also give a quick and elementary argument. Fix z ∈ D. We

want to estimate S =
∑∞

k=0

(
n+k
k

)2
zk.

Since for every w ∈ D, we have

1

(1− w)n+1
=
∞∑
k=0

(
n+ k

k

)
wk,

we observe that

S =
1

n!
G(n)(1) where G(w) =

wn

(1− zw)n+1
.

Using now the Leibniz formula, we get

S =
1

n!

n∑
k=0

(
n

k

)
n!

k!
· (n+ k)!zk

n!(1− z)n+k+1
=

1

(1− z)2n+1
S̃

where

S̃ =

n∑
k=0

(
n

k

)(
n+ k

k

)
zk(1− z)n−k,

which is the derivative of order n at w = z of the function

w 7→ 1

n!

n∑
k=0

(
n

k

)
wn+k(1− z)n−k =

wn

n!
(w + 1− z)n.

Hence with the help of the Leibniz formula once again, we obtain

S̃ =
1

n!

n∑
k=0

(
n

k

)
n!

k!
zk · n!

(n− k)!
(z + 1− z)n−k =

n∑
k=0

(
n

k

)2

zk,

which gives the conclusion.

After this work was completed, M. De La Salle communicated to us a
third proof which relies on the computation of a residue.

Remark. By uniqueness, we obtain

min(m,2n+1)∑
j=0

(−1)j
(

2n+ 1

j

)(
n+m− j

n

)2

=

(
n

m

)2

∀n,m ≥ 1.

Definition 6. Letm ≥ 1 be an integer. We define dm to be the following
multiplicative function:

dm(k) =
∑

d1...dm=k
d1,...,dm≥1

1.
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Remark. We denote by ∗ the Dirichlet convolution: (a∗b)n=
∑

kl=n akbl.
Now it is easy to see that dm is multiplicative because dm = 1 ∗ · · · ∗ 1
(m times) where 1(n) = 1 for every n ≥ 1.

Proposition 4. Let m ≥ 1 be an integer. There exists γm > 0 such that

∞∑
n=1

dm(n)2n−2σ ∼ γm

(2σ − 1)m2 when σ → 1/2.

Proof. We know that dm is multiplicative, so

∞∑
n=1

dm(n)2n−2σ =
∏
p∈P

(∑
k≥0

dm(pk)2p−2σk
)
.

Now, we can compute each series in the product because

dm(pk) =
∑

pα1 ... pαm=pk

α1,..., αm≥0

1 =
∑

α1+···+αm=k
α1,..., αk≥0

1 =

(
m+ k − 1

m− 1

)
.

So, by Lemma 2, we have

∞∑
n=1

dm(n)2n−2σ =
∏
p∈P

(∑m−1
k=0

(
m−1
k

)2
(p−2σ)k

(1− (p−2σ)k)2m−1

)
.

Now we have (m−1∑
k=0

(
m− 1

k

)2

zk
)

(1− z)(m−1)2 = Q(z)

where Q(0) = 1 and Q′(0) = 0 because the coefficient of z is(
m− 1

1

)2

−
(

(m− 1)2

1

)
= (m− 1)2 − (m− 1)2 = 0.

We find that (Q(p−2σ))p ∈ `1 when σ ≥ 1/2 and the infinite product∏
p∈PQ(p−2σ) is convergent and has a positive limit when σ → 1/2. Fi-

nally, we obtain

∞∑
n=1

dm(n)2n−2σ =

∏
p∈PQ(p−2σ)∏

p∈P(1− p−2σ)(m−1)2+2m−1 =

∏
p∈PQ(p−2σ)∏

p∈P(1− p−2σ)m2 .

And so when σ → 1/2, we obtain

∞∑
n=1

dm(n)2n−2σ = ζ(2σ)m
2
(∏
p∈P

Q(p−2σ)
)
∼ γm

(2σ − 1)m2 .

An immediate corollary is
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Corollary 5. Let m ≥ 1 be an integer. There exists cm > 0 such that

‖ζm(σ + ·)‖H2 ∼
cm

(2σ − 1)m2/2
when σ → 1/2.

Now we can prove Theorem 8.

Proof of Theorem 8. Assume that the injection fromH2 toAp is bounded.
Then there exists m ≥ 1 such that

2 < 2(m+ 1)/m < p.

The identity from H2 to A2(m+1)/m is then also bounded: there exists C > 0
such that, for every f ∈ H2,

‖f‖A2(m+1)/m ≤ C‖f‖H2 .

We apply this inequality to the mth power of the reproducing kernels of
H2 : s 7→ ζm(σ + s) with σ > 1/2. Then

‖ζm(σ + •)‖A2(m+1)/m ≤ C‖ζm(σ + •)‖H2

and thanks to the last corollary we know that

‖ζm(σ + •)‖H2 ∼
cm

(2σ − 1)m2/2
when σ → 1/2.

Now the left hand side of the above inequality satisfies

‖ζm(σ + •)‖A2(m+1)/m = ‖ζm+1(σ + •)‖
m
m+1

A2 =

( ∞∑
n=1

dm+1(n)2n−2σ

log(n) + 1

) m
2(m+1)

.

By the previous proposition, we know that
∞∑
n=1

dm+1(n)2n−2σ ∼ γm+1

(2σ − 1)(m+1)2
when σ → 1/2.

So by integration, we obtain( ∞∑
n=1

dm+1(n)2n−2σ

log(n) + 1

) m
2(m+1)

∼ γ̃m

(2σ − 1)
m2(m+2)
2(m+1)

for some γ̃m > 0.
Now using the inequality given by the boundedness of the identity, we

obtain, for σ close to 1/2,

1 . C(2σ − 1)
m2(m+2)
2(m+1)

−m2/2
= (2σ − 1)

m2

2(m+1) ,

and this is obviously false.
To finish the proof we have to show that the injection from H2 to A2

is compact. It suffices to remark that this injection is a diagonal operator
for the orthonormal canonical basis (en)n≥1 of H2: the eigenvalues, equal to
1/(log(n) + 1), tend to zero.
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2.6. Inequalities on coefficients. We shall give some inequalities be-
tween the Ap norm and some weighted `p norms of the coefficients of the
functions. This follows in spirit the classical estimates on Bergman spaces
(see [12, p. 81] for instance).

Theorem 9. Let p ≥ 1 and µ be a probability measure on (0,∞) such
that 0 ∈ supp(µ) and (wn)n≥1 the associated weight.

(i) If 1 ≤ p ≤ 2 and f =
∑

n≥1 anen ∈ Apµ, then

‖w1/p
n an‖`p′ ≤ ‖f‖Apµ .

(ii) If p ≥ 2 and
∑

n≥1w
p′−1
n |an|p

′
<∞, then f =

∑
n≥1 anen ∈ Apµ and

‖f‖Apµ ≤
(∑
n≥1

wp
′−1
n |an|p

′
)1/p′

= ‖w1/p
n an‖`p′ .

An immediate corollary is

Corollary 6. Let p ≥ 1.

(i) If 1 ≤ p ≤ 2 and f =
∑

n≥1 anen ∈ Ap, then∥∥∥∥ an

(1 + ln(n))1/p

∥∥∥∥
`p′
≤ ‖f‖Ap .

(ii) If p ≥ 2 and
∑

n≥1
|an|p

′

(1+ln(n))p′−1 < ∞, then f =
∑

n≥1 anen ∈ Ap

and

‖f‖Ap ≤
(∑
n≥1

|an|p
′

(1 + ln(n))p′−1

)1/p′

=

∥∥∥∥ an

(1 + ln(n))1/p

∥∥∥∥
`p′
.

Proof of Theorem 9. Let us detail the case 1 ≤ p ≤ 2.

For every integer n = pα1
1 pα2

2 . . . ≥ 1 and f ∈ Lp(R+×T∞, dµ⊗dm), set

τn(f) =
�

R+×T∞
f(σ, z)z̄(n)n−σ dµ(σ)⊗ dm(z)

where z(n) = zα1
1 zα2

2 . . . .

To a Dirichlet polynomial P (s) =
∑

n≥1 ann
−s, we can associate as usual

f(σ, z) =
∑

n≥1 ann
−σzα1

1 zα2
2 . . . . In that case τn(f) = wnan.

Set Q(f) = (τn(f))n≥1. Then Q defines a norm one operator from
L1(R+×T∞, dµ⊗dm) to L∞(ω) and from L2(R+×T∞, dµ⊗dm) to L2(ω),
where Lq(ω) is the Lebesgue space on the positive integers with discrete
measure whose mass at n is 1/wn. Indeed,

|τn(f)| ≤ ‖f‖1 and
∑
n≥1

|τn(f)|2

wn
=
∑
n≥1
|〈f, bn〉|2
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where bn(σ, z) = z(n)n−σ/
√
wn is an orthonormal system in the Hilbert space

L2(R+ × T∞, dµ⊗ dm). So the Bessel inequality gives∑
n≥1

|τn(f)|2

wn
≤ ‖f‖22.

Now by interpolation (apply the Riesz–Thorin theorem), Q is bounded from
Lp(R+ × T∞, dµ⊗ dm) to Lp

′
(ω):(∑

n≥1

|τn(f)|p′

wn

)1/p′

≤ ‖f‖p.

Writing this inequality in the particular case of f associated to a Dirichlet
polynomial (as described at the beginning of the proof) yields the result.

The other case is obtained in the same way (it is even easier).

3. The Bergman spaces Bp

3.1. The Bergman spaces of the infinite polydisk. Recall that
A = λ ⊗ λ ⊗ · · · where λ is the normalized Lebesgue measure on the unit
disk D. For p ≥ 1, Bp(D∞) is the Bergman space of the infinite polydisk. It is
defined as the closure in Lp(D∞, A) of the span of the analytic polynomials.

Remark. Let P be an analytic polynomial defined for z = (z1, z2, . . . )

∈ D∞ by P (z) :=
∑N

n=1 anz
α1
1 . . . zαkk . Then

‖P‖B2(D∞) =

( N∑
n=1

|an|2

(α1 + 1) . . . (αk + 1)

)1/2

.

So clearly H2(T∞) ⊂ B2(D∞). In fact this is also true for any p ≥ 1: it
suffices to apply this property several times in the case of the unit disk.

Recall that the Bergman kernel at z, w ∈ D is defined by

k(w, z) :=
1

(1− wz)2
.

Definition 7. Let z ∈ D∞ and ζ ∈ D∞ ∩ `2. For n ≥ 1, we define

Kn(ζ, z) :=

n∏
i=1

k(ζi, zi) and K(ζ, z) :=

∞∏
i=1

k(ζi, zi).

Then K is well defined thanks to the condition on ζ and the fact that (Kn)
converges pointwise to K.

Remark. We know that

‖k(ζi, • )‖22 = k(ζi, ζi) =
1

(1− |ζi|2)2
.
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So K(ζ, · ) ∈ B2(D∞) and

‖K(ζ, • )‖2B2(D∞) =
∞∏
i=1

1

(1− |ζi|2)2
.

Proposition 5. Let P be an analytic polynomial on D∞ and let ζ ∈
D∞ ∩ `2. Then

|P (ζ)| ≤
( ∞∏
i=1

1

1− |ζi|2

)
‖P‖B2(D∞).

Proof. By the reproducing kernel property of the classical Bergman
space used several times, we obtain

P (ζ1, . . . , ζn) =
�

Dn
P (z1, . . . , zn)Kn(ζ, z) dλ(z1) . . . dλ(zn).

The Cauchy–Schwarz inequality gives the result.

With the help of the previous proposition, we can extend by density the
evaluation defined on the analytic polynomials for z ∈ D∞ ∩ `2. For every
f ∈ B2(D∞), we denote this extension by f̃(ζ) and we have

|f̃(ζ)| ≤
( ∞∏
i=1

1

1− |ζi|2

)
‖f‖B2(D∞).

Moreover the norm of the evaluation is exactly
∏∞
i=1

1
1−|ζi|2 . Actually in [9],

the authors proved (in a more general setting) that f̃ is holomorphic on
D∞ ∩ `2. We shall need the following lemma.

Lemma ([9]). Let ζ ∈ D∞ ∩ `2, N ≥ 1 and a ∈ R, and set

GN (z) :=

N∏
i=1

(1− ζizi)a.

Then {GN} is a bounded martingale in L2(T∞).

Remark. Each Gn belongs to B2(D∞) and we have

‖Gn‖L2(D∞) = ‖Gn‖B2(D∞) ≤ ‖Gn‖H2(T∞) = ‖Gn‖L2(T∞).

So {Gn} is a bounded martingale in L2(D∞). By Doob’s theorem we know
that the product converges pointwise and in norm in B2(D∞).

We need to recall some notation and results from [9].

Let U be a uniform algebra on a compact space X and µ be a measure
on X. Then Hp(µ) is the closure of U in Lp(µ).

Proposition ([9]). Let U be a uniform algebra on a compact space X,
µ be a probability measure on X, and y ∈ X such that the point evaluation
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at y extends continuously to H2(µ). Assume that any real power of the re-
producing kernel of this point evaluation, x 7→ K(x, y), belongs to H2(µ).
Then for p ≥ 1, we have

|f̃(y)|p ≤ K(y, y)
�
|f(x)|p dµ(x)

for every function f in Hp(µ), and the norm of the point evaluation at y is
exactly K(y, y)1/p.

From the last remark and this proposition, we deduce that the point
evaluation at ζ ∈ D∞ ∩ `2 is bounded on Bp(D∞) and we have

|f(ζ)|p ≤
∞∏
i=1

1

(1− |ζi|2)2
‖f‖pBp(D∞).

Moreover f̃ is holomorphic on D∞ ∩ `2 thanks to [9].

3.2. Point evaluation on Bp. In the following, R will denote the infi-
nite product of the probability measures 2ridri on [0, 1].

Definition 8. Let P ∈ P be of the form
∑N

n=1 ann
−s. We define on P

the norm

‖P‖Bp :=
( �

[0,1]∞

∥∥∥ N∑
n=1

anr
α1
1 . . . rαkk en

∥∥∥p
Hp
dR
)1/p

.

Remark. The fact that this defines a norm follows from the next propo-
sition.

Definition 9. Let p ≥ 1. We denote by Bp the closure of P in the
norm ‖ · ‖Bp ; it is the Bergman space of Dirichlet series.

Remark. We denote by d(n) the number of divisors of n. For f as in (1),
one has

‖f‖B2 =

( ∞∑
n=1

|an|2

d(n)

)1/2

.

First we use Bohr’s point of view to specify the link between Bp and
Bp(D∞).

Proposition 6. Let p ≥ 1.

(i) ‖P‖Bp = ‖D(P )‖Bp for all P ∈ P.
(ii) D : P → Bp(D∞) extends to an isometric isomorphism from Bp

onto Bp(D∞).

Proof. The first fact is clear. For the second one, recall that Bp is the
closure of P and that Bp(D∞) is the closure of the set of analytic polyno-
mials.
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Theorem 10. Let p ≥ 1 and f ∈ Bp. The abscissa of uniform conver-
gence of f satisfies σu(f) ≤ 1/2. Moreover, when <(w) > 1/2, we have

|f(w)| ≤ ζ(2<(w))2/p‖f‖Bp and ‖δw‖(Bp)∗ = ζ(2<(w))2/p.

In addition, there exists f ∈ Bp such that σb(f) = 1/2.

Proof. Let f ∈ Bp and s ∈ C1/2. We define zs = (p−s1 , p−s2 , . . .) ∈ D∞∩`2.
We know that D(f) ∈ Bp(D∞) and so

|D(f)(zs)|p ≤
∞∏
i=1

1

(1− |p−si |2)2
‖D(f)‖pBp(D∞).

But thanks to the last proposition, ‖D(f)‖Bp(D∞) = ‖f‖Bp and

D(f)(zs) =
∑

n=p
α1
1 ...p

αk
k

n≥1

an(p−s1 )α1 . . . (p−sk )αk

=
∑

n=p
α1
1 ...p

αk
k

n≥1

an(pα1
1 . . . pαkk )−s =

∑
n≥1

ann
−s.

Then we have

|f(s)|p ≤
∞∏
i=1

1

(1− p−2<(s)i )2
‖f‖Bp = ζ(2<(s))2‖f‖pBp .

So f admits a bounded extension on each smaller half-plane in C1/2. By
Bohr’s theorem we have σu(f) ≤ 1/2.

To prove that the norm of the evaluation is exactly ζ(2<(w))2/p, it suf-
fices to use the corresponding result from [9] on Bp(D∞).

3.3. Comparison of Bp and Hp. In this section, we study the link
between Bp and Hp. This question is natural as soon as we keep in mind the
behavior of the injection from Hp(D) to Bq(D) in the classical framework
of one variable Hardy–Bergman spaces on the unit disk. We recall that
Hp ⊂ Bq if and only if q ≤ 2p and that this injection is compact if and only
if q < 2p (see [19] for recent results on the limit case q = 2p).

First, following ideas of [5], we obtain a hypercontractivity result between
the spaces Bp.

Let 1 ≤ p ≤ q < ∞. For f ∈ Bp(D∞), z ∈ D∞ and k ≥ 1, we define
ẑk = (z1, . . . , zk−1, zk+1, . . . ). Let fẑk(zk) = f(z). Then�

D∞
‖fẑk‖

r
Lr(D) dm(ẑk) = ‖f‖rLr(D∞).

We consider a sequence of operators Sk : Bp(D)→ Bq(D) for k ≥ 1 such
that Sk(1) = 1. If P is an analytic polynomial on D∞, we define

P 1 = P, P k+1 = Sk(Pẑk(zk)).
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This is not in general a sequence of polynomials but if P depends on
z1, . . . , zn then so does each term of this sequence. So this sequence is sta-
tionary.

Proposition 7. If
∏∞
k=1 ‖Sk‖ < ∞ then (P k)k≥1 converges to some

S(P ) ∈ Bq(D∞). In addition, S extends to a bounded operator from Bp(D∞)
to Bq(D∞).

Actually, if we consider a sequence of operators Sk : Hp(D) → Bq(D),
we obtain the following similar result.

Proposition 8. If
∏∞
k=1 ‖Sk‖ < ∞ then (P k)k≥1 converges to some

S(P )∈ Bq(D∞). In addition, S extends to a bounded operator from Hp(T∞)
to Bq(D∞).

We only give the proof of the second proposition.

Proof. It suffices to show that

‖P k+1‖Bq(D∞) ≤
( k∏
i=1

‖Si‖
)
‖P‖Hp(T∞).

One has

‖P k+1‖qBq(D∞) =
�

D∞
|Sk(P kẑk(zk))|q dA(z)

=
�

D∞

�

D

|Sk(P kẑk(zk))|q dλ(ẑk) dA(zk)

=
�

D∞
‖Sk(P kẑk(·))‖qBq(D) dA(ẑk)

≤ ‖Sk‖q
�

D∞
‖P kẑk(·)‖qHp(T) dA(ẑk)

= ‖Sk‖q
�

D∞

(�
T

|P kẑk(χk)|p dm(χk)
)q/p

dA(ẑk).

Since q/p ≥ 1, we get, by the integral triangular inequality,

‖P k+1‖qBq(D∞) ≤ ‖Sk‖
q
(�
T

( �

D∞
|P kẑk(χk)|q dm(ẑk)

)p/q
dm(χk)

)q/p
.

By induction, we obtain the result.

We shall give some applications of these propositions, but we first need
other preliminaries, in the classical setting of the unit disk. In the following,
for q ≥ 1, the space Bq(D) (resp. Hq(D)) is the classical Bergman space
(resp. the classical Hardy space).
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Lemma 3. The sequence
(

2
n+2

)
n≥0 defines a multiplier from B1(D) to

H1(D) with norm exactly 1: for every f(z) =
∑

n≥1 anz
n ∈ B1(D), we have∥∥∥∥∑

n≥1

2

n+ 2
anz

n

∥∥∥∥
H1(D)

≤ ‖f‖B1(D).

Proof. Let r < 1 and f ∈ B1(D) of the form f(z) =
∑∞

n=0anz
n.

Then if we denote by M the multiplier operator B1(D) 3 f 7→ Mf(z) =∑
n≥1

2
n+2anz

n, we have

1

2π

2π�

0

|Mf(reiθ)| dθ =
1

2π

2π�

0

∣∣∣∣ ∞∑
n=0

2

n+ 2
anr

neinθ
∣∣∣∣ dθ

=
1

2π

2π�

0

∣∣∣ ∞∑
n=0

2

1�

0

anρ
n+1rneinθ dρ

∣∣∣ dθ
≤ 1

π

2π�

0

1�

0

∣∣∣ ∞∑
n=0

anρ
nrneinθ

∣∣∣ρ dρ dθ.
Letting r → 1, we obtain the result.

Lemma 4. Let r ≤ 2/3. Then
(
rn n+2

2
√
n+1

)
n≥0 is a multiplier from H1(D)

to H2(D) with norm 1.

Proof. We adapt a proof from [8]. Let f ∈ H1(D), with norm 1, be of
the form

f(z) =

∞∑
n=0

anz
n.

We consider a factorization f = gh where g and h are in H2(D) and |g|2 =
|h|2 = 1. Denote by (bn) and (cn) the Fourier coefficients of g and h. Then

an =

n∑
k=0

bkcn−k.

We also know that
∞∑
n=0

|bn|2 =

∞∑
n=0

|cn|2 = 1.

We want to show that
∞∑
n=0

∣∣∣∣anrn n+ 2

2
√
n+ 1

∣∣∣∣2 ≤ 1.

We can assume that the coefficients bn and cn are all non-negative (at worst,
the modulus of an becomes larger but we are looking for a sufficient condition
for the inequality so this is not a problem).
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So the last inequality is equivalent to
∞∑
n=0

n∑
k=0

bkcn−kr
ndn

n+ 2

2
√
n+ 1

≤ 1

for all non-negative sequences (dn) with `2 norm 1. This is equivalent to
∞∑

k,n=0

bkcnr
n+kdn+k

n+ k + 2

2
√
n+ k + 1

≤ 1.

We will get this inequality as soon as we show that
∞∑

k,n=0

(
rn+k

n+ k + 2

2
√
n+ k + 1

dn+k

)2

≤ 1.

But for any non-negative integer j, we only have j + 1 ways to write j as
the sum of two non-negative integers. So it suffices to prove that

∞∑
j=0

r2j
(j + 2)2

4
d2j ≤ 1.

By the definition of (dn), this will follow from

r2j
(j + 2)2

4
≤ 1 for any j ≥ 0.

This latter inequality is clearly true for j = 0 for any r, so we just have to
compute

r0 = inf
j≥1

(
2

j + 2

)1/j

.

We can easily check that x 7→ ln(2/(x+2))
x is increasing on [1,∞[ so we obtain

r0 = 2/3.

The following is obvious and is just a rewriting of the norms.

Lemma 5. The sequence (
√
n+ 1)n≥0 defines a multiplier from H2(D)

to B2(D) with norm exactly 1.

Now we can state a contractive type result on classical Bergman spaces.
Here Pr denotes the blow-up operator Pr(f)(z) = f(rz).

Theorem 11. If r ≤ 2/3, then Pr : B1(D) → B2(D) is bounded with
norm 1. Conversely, if Pr : B1(D) → B2(D) is bounded with norm 1 then
r ≤ 1/

√
2.

Proof. If r ≤ 2/3, it suffices to apply the previous three lemmas.
Conversely, assume that Pr : B1(D) → B2(D) is bounded with norm 1.

Let a ∈ R. We have

‖1 + arz‖2B2(D) = 1 +
a2r2

2
, ‖1 + az‖B1(D) = 1 +

a2

8
+ o(a2).
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So we have

1 +
a2r2

2
≤
(

1 +
a2

8
+ o(a2)

)2

= 1 +
a2

4
+ o(a2).

And thus r2 ≤ 1/2.

Now we have another consequence of the preceding results, which will
be used in the next section, and is similar to Lemma 1.

Proposition 9. Let ε > 0. Then Tε : B1 → B2 is bounded.

Proof. We consider the following sequence of operators (we keep the
notation of the preceding theorem):

Sk : B1(D)→ B2(D), f 7→ Pp−εk
(f),

where Pr is the classical Poisson kernel. Indeed, if we apply Proposition 7
to this sequence of operators and to a Dirichlet series f of the form (1), we
obtain

S(f)(s) =
∑

n=p
α1
1 ...p

αk
k ≥1

an(p−s−ε1 )α1 . . . (p−s−εk )αk

=
∑

n=p
α1
1 ...p

αk
k ≥1

ann
−s−ε = Tε(f)(s).

We know from the preceding theorem that ‖Pr‖B1(D)→B2(D) ≤ 1 for r quite

small and we obtain our result for Tε because p−εk → 0 as k → ∞, and so
the infinite product of the norm is finite.

Notation. Let p ≥ 1. We denote by HpP (resp. BpP)) the following sub-
space of Hp (resp. Bp):

HpP = span(ek : k ∈ P)
Hp

(resp. BpP = span(ek : k ∈ P)
Bp

).

Theorem 12. Let p ≥ 1.

(i) The identity from Hp to B2p is bounded with norm 1, but
(ii) the identity from Hp to Bp is not compact. Actually, it is not a

strictly singular operator.

Proof. (i) Recall [12] that the identity from Hp(D) to B2p(D) is bounded
with norm 1 so it suffices to use Proposition 8 to get the boundedness of
our operator.

(ii) In [5], it is shown that HpP = H2
P and in the same way we find

that BpP = B2P. But clearly H2
P = B2P so Hp and Bp have isomorphic infinite-

dimensional closed subspaces and so the identity fromHp to Bp is not strictly
singular.
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Remarks. (i) When p = 1, (i) has already been proved by Helson [16].
(ii) We can check easily that for every n 6= m we have

‖epn − epm‖Bp ≥ ‖epn‖Bp =

(
2

p+ 2

)1/p

,

and hence we obtain another proof of non-compactness in Theorem 12(ii).
(iii) We mention that it is immediate (without invoking Theorem 12(ii))

that the identity from Hp to B2p is not compact: indeed, if it were, by
restriction to the variable z1 = 2−s, the identity from Hp(D) to B2p(D)
would be compact, which is not the case.

Actually, we can prove that H2 ⊂ B4 by a simple computation on the
coefficients of the Dirichlet series. Let f be a Dirichlet series of the form (1).
We want to show that ‖f‖B4 ≤ ‖f‖H2 . We have

‖f‖4B4 = ‖f2‖2B2 .
But f2(s) =

∑∞
n=1 bnn

−s with bn =
∑

d|n adan/d for all n ≥ 1. So

‖f2‖2B2 =

∞∑
n=1

|
∑

d|n adan/d|2

d(n)
·

Now we apply the Cauchy–Schwarz inequality using the fact that the sum
contains exactly d(n) terms to get

‖f2‖2B2 ≤
∞∑
n=1

∑
d|n

|ad|2 |an/d|2.

Exchanging the sums yields

‖f2‖2B2 ≤
∞∑
d=1

|ad|2
∑
d|n

|an/d|2.

But if n is a multiple of d, then n/d is in N, and∑
d|n

|an/d|2 = ‖f‖2H2 .

Finally, we get ‖f‖4B4 ≤ ‖f‖
4
H2 .

3.4. Generalized vertical limit functions

Definition 10. Let χ ∈ D∞ and f be of the form (1). We denote by fχ
the Dirichlet series

fχ =
∞∑
n=1

anχ(n)en.

In this part, we apply the same trick as in [13] and [5] to obtain another
expression of the norm in Bp, useful for the study of composition operators.
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Let ϕ1(z) = 1+z
1−z be the Cayley transform which maps D onto C+. We

will say that a function f is in Hp
i (C+) if f ◦ ϕ1 ∈ Hp(D) (the classical

Hardy space on the unit disk). In this case we have

1

2π

π�

−π
|f ◦ ϕ1(e

iθ)|p dθ =
�

R

|f(it)|p dλi(t)

where

dλi(t) =
dt

π(1 + t2)
.

Definition 11. Let t ∈ R. We define the Kronecker flow Tt on D∞ by

Tt(z1, z2, . . . ) := (p−it1 z1, p
−it
2 z2, . . . ).

Lemma 6. Let χ ∈ D∞, f ∈ Bp and t ∈ R. Set gχ(it) := D(f)(Ttχ).
Then for any finite Borel measure w on R, one has

�

D∞

�

R

|gχ(it)|p dw(t) dA(χ) = w(R)‖f‖pBp .

Proof. The Kronecker flow (Tt) is just a rotation on D∞, so
�

D∞
|gχ(it)|p dA(χ) =

�

D∞
|D(f)(Ttχ)|p dA(χ)

=
�

D∞
|D(f)(χ)|p dA(χ) = ‖D(f)‖pBp .

We conclude the proof using Fubini’s theorem.

Proposition 10. Let χ ∈ D∞ and f ∈ Bp. Then gχ ∈ Hp
i (C+) and gχ

is an extension of fχ onto C+.

Proof. Thanks to the previous lemma, we already know that gχ ∈ Lp(λi)
for almost every χ ∈ D∞. So it suffices to show (we use here a characteriza-
tion of the classical Hardy space)

∞�

−∞

(
1− it
1 + it

)n
gχ(it) dλi(t) = 0 for n ≥ 1.

We use the same ideas as in [13] and [5] but we have to adapt the proof
because here we do not work with Fourier series on T∞ but with functions
in Bp(D∞). We fix n ≥ 1 and define

G(χ) :=

∞�

−∞

(
1− it
1 + it

)n
gχ(it) dλi(t).
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Clearly G ∈ Lp(D∞) because

�

D∞
|G(χ)|p dA(χ) =

�

D∞

∣∣∣∣ ∞�
−∞

(
1− it
1 + it

)n
gχ(it) dλi(t)

∣∣∣∣p dA(χ)

≤
�

D∞

∞�

−∞
|gχ(it)|p dλi(t) dA(χ) = ‖D(f)‖pBp

where the last inequality follows from the preceding lemma.
Actually, G ∈ Bp(D∞). It suffices to show that there exists a sequence

of analytic polynomials which converges to G. Since f ∈ Bp(D∞), we have
D(f) ∈ Bp(D∞) and there exists a sequence (Pk) of analytic polynomials
such that

‖D(f)− Pk‖Bp(D∞) −−−→
k→∞

0.

Then we define the analytic polynomial

Qk(χ) :=

∞�

−∞

(
1− it
1 + it

)n
Pk(Ttχ) dλi(t)

and we claim that (Qk) converges to G. Indeed,

‖G−Qk‖pBp(D∞) =
�

D∞

∣∣∣∣ ∞�
−∞

(
1− it
1 + it

)n
(gχ(it)− Pk,χ(it)) dλi(t)

∣∣∣∣p dA(χ).

We get, by Fubini’s theorem,

‖G−Qk‖pBp(D∞) ≤
∞�

−∞
‖(D(f)− Pk)(Tt(·))‖pBp(D∞) dλi(t);

but Tt is just a rotation, so

‖G−Qk‖pBp(D∞) ≤
∞�

−∞
‖D(f)− Pk‖pBp(D∞) dλi(t) = ‖D(f)− Pk‖pBp(D∞),

which goes to zero as k →∞, and this proves our claim.
We claim now that G vanishes almost everywhere. Since G ∈ Bp(D∞),

it suffices to prove that G is orthogonal to every monomial with positive
index. Let q ∈ N. We have

�

D∞
χ(q)G(χ) dA(χ) =

∞�

−∞

(
1− it
1 + it

)n �

D∞
χ(q)gχ(it) dA(χ) dλi(t).

Actually we have �

D∞
χ(q)gχ(it) dA(χ) = 0

because gχ(it) = Df(Ttχ) ∈ Bp(D∞). This is clear for f being a polynomial,
and by density this proves the claim.
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The proof that gχ is an extension of fχ is the same as in the case of Hp
(see [5]).

Now we shall denote the extension by fχ instead of gχ. As in the case
of Hp with p ≥ 1, this extension is almost surely simple.

Proposition 11. Let χ ∈ D∞ and f ∈ Bp for p ≥ 1. Then for almost
every χ (relative to the measure A on D∞), fχ converges on C+.

Proof. Let f ∈ B2 be of the form (1). We consider L2(D∞, A) and the
orthonormal sequence Φn(χ) =

√
d(n)χ(n). For σ > 0 and t ∈ R, let

cn := ann
−σ−it/

√
d(n)· We observe that (an/

√
d(n))n≥1 ∈ `2, and that

(n−σ log(n))n≥1 ∈ `∞, hence

∞∑
n=1

|cn|2 log2(n) <∞.

So Men’shov’s theorem gives that
∑
cnΦn(χ) converges for almost every χ.

Therefore, we get the result when p = 2.

When p 6= 2, it suffices to prove the result for p = 1. As in the case of
the spaces Ap, the result follows from Proposition 9.

Let f ∈ B2. We know that for almost all χ ∈ D∞, fχ converges on C+

and so gχ = fχ. We obtain, for each probability measure w on R,

‖f‖2B2 =
�

R

�

D∞
|fχ(it)|2 dA(χ) dw(t).

Theorem 13. Let f ∈ B2 and w be a probability measure on R. Then

‖f‖2B2 = |f(∞)|2 + 4
�

R

∞�

0

�

D∞
σ|fχ(σ + it)|2 dA(χ) dσ dw(t).

Proof. For σ > 0, we have

�

D∞

�

R

|f ′χ(σ + it)|2 dw(t) dA(χ) = ‖f ′‖2B2 =
∞∑
n=2

|an|2n−2σ log2(n)

d(n)
.

We multiply by σ and it suffices to remark that

∞�

0

σn−2σdσ =
1

4 log2(n)
·

3.5. Inequalities on coefficients of Bp functions. We shall give here
some inequalities between the Bp norm and some weighted `p norms of the
coefficients of the functions (as in Theorem 9).
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Theorem 14. Let p ≥ 1.

(i) If 1 ≤ p ≤ 2 and f =
∑

n≥1 anen ∈ Bp, then∥∥∥∥ an

d(n)1/p

∥∥∥∥
`p′
≤ ‖f‖Bp .

(ii) If p ≥ 2 and
∑

n≥1
|an|p

′

d(n)p′−1 <∞, then f =
∑

n≥1 anen ∈ Bp and

‖f‖Bp ≤
(∑
n≥1

|an|p
′

d(n)p′−1

)1/p′

=

∥∥∥∥ an

d(n)1/p

∥∥∥∥
`p
′
.

Proof. We do not give the details since the proof follows the same ideas
as the one of Theorem 9.

(i) For every integer n = pα1
1 pα2

2 . . . ≥ 1 and f ∈ Lp(D∞, dA), set

τn(f) =
�

D∞
f(z)z̄(n) dA

where z̄(n) = z̄α1
1 z̄α2

2 . . .
With a Dirichlet polynomial P (s) =

∑
n≥1 ann

−s, we associate as usual
f(z) = D(P )(z) =

∑
n≥1 anz

α1
1 zα2

2 . . . . In that case τn(f)=an/d(n).
Then we consider Q(f) = (τn(f))n≥1. This defines norm one operators

from L1(D∞, dA) to L∞(ω) and from L2(D∞, dA) to L2(ω), with ω(n) =
d(n). An interpolation argument gives the conclusion.

In the same spirit, we prove (ii).

4. Comparison of Apµ and Bp. It is worth mentioning that Ap and Bp
are not the same space. Actually, more generally, we have

Theorem 15. Let µ be a probability measure whose support contains 0,
and let α > −1 and p, q ≥ 1.

(1) Apµ * Bq.
(2) Bq * Apα.

In the following, A ≈ B means that there exist positive constants c, d
depending on p (or q) such that cA ≤ B ≤ dA.

Proof. Our proof relies on some estimates of the norms of the en. We
claim that:

(i) log ‖en‖Apα ≈ − log(log(n)).
(ii) log ‖en‖Bq ≈ log(1/d(n)).

Indeed, when 1 ≤ p ≤ 2, on the one hand ‖en‖Apα ≤ ‖en‖A2
α
. On the other

hand, ‖en‖A2
α
≤ ‖en‖p/2Apα ‖en‖

1−p/2
∞ = ‖en‖p/2Apα so that

(log(n+ 1))−(α+1)/2 ≥ ‖en‖Apα ≥ (log(n+ 1))−(α+1)/p.
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In the same way, when p ≥ 2, we have

log(n+ 1)−(α+1)/2 ≤ ‖en‖Apα ≤ log(n+ 1)−(α+1)/p.

The same method gives d(n)−1/q ≤ ‖en‖Bq ≤ d(n)−1/2 when q ≤ 2, and
d(n)−1/2 ≤ ‖en‖Bq ≤ d(n)−1/q when q ≥ 2. This proves (ii) and our claim.

Now the theorem follows easily:

Let us prove clause 1. Assume that Apµ ⊆ Bq. Thanks to the closed graph
theorem, the identity from Apµ to Bq is bounded and there exists C > 0 such
that ‖epn‖Bq ≤ C‖epn‖Apµ for every n ≥ 1.

Moreover it is clear that limn→∞ ‖epn‖Apµ = 0.

But the previous claim implies that ‖epn‖Bq ≈ 1 and we get a contradic-
tion.

Let us now prove the second point. Assuming the contrary, we would
have some C > 0 such that for every n ≥ 1,

‖en‖Apα ≤ C‖en‖Bq .
A fortiori

log(d(n)) . log(log(n)).

But this contradicts the extremal order of (log(d(n)))≥1 (see [31, p. 82] for
example):

lim sup
n→∞

log(d(n)) log(log(n))

log(2) log(n)
= 1.

5. Appendix: Around the norm of point evaluation. We wish to
present here a principle of comparing (for different p) the norms of point
evaluation. We shall work in a rather general framework of subspaces of
functions of some Lp spaces. When one works on classical spaces of analytic
functions (Hardy–Bergman spaces), this principle is useless, since one can
essentially work with any power of a function. In the context of Dirichlet
series, a major difficulty is that we have no way to consider fα when α is
not an integer (and f ∈ D). The following method can be helpful and gives
very precise results in some particular cases.

In this section, we consider some subspaces Xp ⊂ Lp(Ω, ν) of functions
on Ω, where ν is a probability measure on Ω and p ≥ 1. We assume that
there exists some algebra P ⊂

⋂
p≥1Xp which is dense in each Xp (think of

the polynomials in many contexts).

We fix some ω ∈ Ω and we assume that the point evaluation Xp 3 f 7→
f(ω) is bounded with norm Np.

Let us mention that most often, thanks to the theory of reproducing
kernels, the value of N2 is known (and easy to get).

We now list several simple observations which we have used in this paper.
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Proposition 12. With the previous notation:

(i) If 1/p = 1/q1 + 1/q2, then Np ≥ Nq1Nq2.
(ii) If q ≥ p ≥ 1, then Np ≥ Nq.

(iii) Let m be an integer. Then Npm ≤ (Np)
1/m for every p ≥ 1. In

particular, N2m ≤ (N2)
1/m.

Proof. (i) Let f, g ∈ P with ‖f‖Lq1 = 1 and ‖g‖Lq2 = 1. The product fg
still belongs to P ⊂ Xp and we have

Np ≥ Np‖fg‖Lp = Np‖fg‖Xp ≥ |f(ω)| · |g(ω)|.
Taking now the upper bound relative to f and to g yields the first assertion.

(ii) is trivial.
(iii) By an obvious induction, we have Np ≥ Nq1 . . . Nqr as soon as 1/p =

1/q1+ · · ·+1/qr. In particular, since 1/p = 1/(pm)+ · · ·+1/(pm) (m times),
we get Np ≥ (Npm)m.

Acknowledgments. We thank the anonymous referee for valuable
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