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Weighted norm inequalities for maximal singular integrals
with nondoubling measures

by

Guoen Hu (Zhengzhou) and Dachun Yang (Beijing)

Abstract. Let µ be a nonnegative Radon measure on Rd which satisfies µ(B(x, r))
≤ Crn for any x ∈ Rd and r > 0 and some positive constants C and n ∈ (0, d]. In
this paper, some weighted norm inequalities with A%p(µ) weights of Muckenhoupt type
are obtained for maximal singular integral operators with such a measure µ, via cer-
tain weighted estimates with A%∞(µ) weights of Muckenhoupt type involving the John–
Strömberg maximal operator and the John–Strömberg sharp maximal operator, where
%, p ∈ [1,∞).

1. Introduction. During the last several years, considerable atten-
tion has been paid to the study of function spaces with nondoubling mea-
sures and boundedness of singular integrals in these spaces; see [10]–[12],
[16]–[19], [1]–[3], [6]. Let µ be a nonnegative Radon measure on Rd which
only satisfies the following growth condition: there exist positive constants
C0 and n ∈ (0, d] such that for all x ∈ Rd and r > 0,

(1.1) µ(B(x, r)) ≤ C0r
n,

where B(x, r) is the open ball centered at some point x ∈ Rd and having
radius r. The measure µ in (1.1) is not assumed to satisfy the doubling con-
dition which is a key assumption in the analysis on spaces of homogeneous
type. We recall that µ is said to satisfy the doubling condition if there ex-
ists some positive constant C such that µ(B(x, 2r)) ≤ Cµ(B(x, r)) for all
x ∈ Rd and r > 0. Some important nondoubling measures satisfying (1.1)
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and the motivation for developing the analysis related to such measures can
be found in [20]. We only point out that the analysis with nondoubling mea-
sures plays an essential role in solving the long-standing Painlevé problem
by Tolsa in [19].

Let K be a µ-locally integrable function on Rd×Rd \ {x = y} such that
for any x 6= y,

(1.2) |K(x, y)| ≤ C|x− y|−n,
and for any x, y, y′ ∈ Rd with |x− y| ≥ 2|y − y′|,

(1.3) |K(x, y)−K(x, y′)|+ |K(y, x)−K(y′, x)| ≤ C |y − y′|δ

|x− y|n+δ
,

where δ ∈ (0, 1] and C > 0 are constants. Then the Calderón–Zygmund
operator T is formally defined by setting, for any bounded function f with
compact support and x /∈ supp(f dµ),

(1.4) Tf(x) =
�

Rd
K(x, y)f(y) dµ(y).

This integral may not be convergent for many functions. Thus we consider
the truncated operator Tε for ε > 0, which is defined by setting, for any
bounded function f with compact support and x ∈ Rd,

(1.5) Tεf(x) =
�

|x−y|≥ε

K(x, y)f(y) dµ(y).

For p ∈ (1,∞), we say that T is bounded on Lp(µ) if Tε is bounded on Lp(µ)
with bound independent of ε > 0. Also, we say that T is bounded from L1(µ)
to L1,∞(µ) if Tε is bounded from L1(µ) to L1,∞(µ) with bound independent
of ε > 0. Here and in what follows, for p ∈ (0,∞), Lp,∞(µ) denotes the usual
weak-Lp(µ) space defined by

Lp,∞(µ) = {f : f is µ-measurable such that
‖f‖pLp,∞(µ) = sup

λ>0
λpµ({x ∈ Rd : |f(x)| > λ}) <∞}.

The maximal operator associated with the operator T is defined by setting,
for any bounded function f with compact support and x ∈ Rd,

(1.6) T ∗f(x) = sup
ε>0
|Tεf(x)|.

In his remarkable work [16], Tolsa established the Calderón–Zygmund de-
composition associated with the measure as in (1.1), and proved that if K
satisfies (1.2) and (1.3), and T is bounded on L2(µ), then T is also bounded
from L1(µ) to L1,∞(µ) and bounded on Lp(µ) for any p ∈ (1, 2]. There are
many other works concerning the boundedness of the operators T and T ∗

in function spaces with measures satisfying (1.1), e.g. [11], [17] and [1]–[3].
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The main purpose of this paper is to establish weighted norm inequal-
ities with weights of Muckenhoupt type for the above Calderón–Zygmund
operator T and the corresponding maximal operator T ∗. When the measure
µ as in (1.1) satisfies the additional assumption that for any cube Q,

(1.7) µ(∂Q) = 0,

that is, the faces (or edges) of any cube have µ-measure zero, Orobitg and
Pérez [13] proved that if K satisfies (1.2) and (1.3), and if T is bounded
on L2(µ), then T is bounded on Lp(u) for p ∈ (1,∞) and u ∈ Ap(µ),
where Ap(µ) consists of the weight functions of Muckenhoupt type associated
with µ; see Definition 1.1 below. In this paper, we will prove that, without
the assumption (1.7), if K satisfies (1.2) and (1.3), and if T is bounded on
L2(µ), then both T and T ∗ are bounded from Lp(u) to Lp,∞(u) for any
p ∈ [1,∞) and u ∈ A%p(µ) with % ∈ [1,∞). To state the main result, we first
recall some definitions and notation.

By a cube Q ⊂ Rd we mean a closed cube whose sides are parallel to
the axes and which is centered at some point of suppµ, and we denote its
side length by l(Q). A µ-measurable function u is said to be a weight if it
is nonnegative and µ-locally integrable. The A%p(µ) weights of Muckenhoupt
type in the setting of nondoubling measures were first introduced by Orobitg
and Pérez [13] for % = 1 and by Komori [6] for % ∈ [1,∞).

Definition 1.1. Let % ∈ [1,∞), p ∈ (1,∞) and p′ = p/(p−1). A weight
u is said to be an A%p(µ) weight if there exists a positive constant C such
that for any cube Q,(

1
µ(%Q)

�

Q

u(x) dµ(x)
)(

1
µ(%Q)

�

Q

u(x)1−p
′
dµ(x)

)p−1

≤ C.

Also, a weight u is said to be an A%1(µ) weight if there exists a positive
constant C such that for any cube Q,

1
µ(%Q)

�

Q

u(x) dµ(x) ≤ C inf
y∈Q

u(y).

As in the classical setting, we set A%∞(µ) =
⋃∞
p=1A

%
p(µ). For % = 1, we denote

A%p(µ), A%1(µ) and A%∞(µ) simply by Ap(µ), A1(µ) and A∞(µ), respectively.

Our main result is the following weighted weak type estimate for the
operator T ∗.

Theorem 1.1. Let % ∈ [1,∞) be fixed. Let K satisfy (1.2) and (1.3),
and T be the Calderón–Zygmund operator formally defined as in (1.4). If T
is bounded on L2(µ), then for any p ∈ [1,∞) and u ∈ A%p(µ), the maximal
operator T ∗ defined by (1.6) is bounded from Lp(u) to Lp,∞(u), that is, there



104 G. E. Hu and D. C. Yang

exists a positive constant C such that for any λ > 0 and bounded function
f with compact support ,

u({x ∈ Rd : T ∗f(x) > λ}) ≤ Cλ−p
�

Rd
|f(x)|pu(x) dµ(x),

where, for a weight w and a µ-measurable set E, w(E) =
	
E w(x) dµ(x).

By Corollary 2.5(i) in [13], if µ satisfies the assumption (1.7), then for
any p ∈ (1,∞) and u ∈ Ap(µ), u ∈ Ap−σ(µ) for some σ > 0. Thus, Theo-
rem 1.1 along with the Marcinkiewicz interpolation theorem shows that for
any p ∈ (1,∞) and u ∈ Ap(µ), T ∗ (and therefore T ) is bounded on Lp(u).
This recovers the weighted estimate (11) in [13].

To establish their weighted estimate for the operator T when µ satis-
fies (1.7), Orobitg and Pérez in [13] used a distributional inequality involving
the singular integral operator and the central Hardy–Littlewood maximal
operator, and the fact that for u ∈ Ap(µ), p ∈ (1,∞) and any bounded
function f with compact support, T ∗f ∈ Lp(u). Checking the argument
used in [13], we see that this a priori estimate can be replaced by the state-
ment that for u ∈ Ap(µ), p ∈ (1,∞) and any bounded function f with
compact support,

(1.8) T ∗f ∈ Lp,∞(u).

On the other hand, as pointed out by Orobitg and Pérez [13], without the
assumption (1.7), the reverse Hölder inequality, the fact that u ∈ A1(µ)
implies u ∈ L1+σ

loc (µ) with some σ ∈ (0,∞), and some other important
properties enjoyed by the Ap weights in the setting of Euclidean spaces, may
not be true; therefore, without (1.7), the a priori estimate (1.8) cannot be
verified directly. To avoid (1.7), in the proof of Theorem 1.1, we will establish
a distributional inequality linking the John–Strömberg maximal operator
and the John–Strömberg sharp maximal operator (see Theorem 2.1 below),
which, together with a fairly weak a priori estimate (see (3.10) below), leads
to the desired conclusion of Theorem 1.1.

We should point out that Theorem 2 of [9] indicates that for any nonneg-
ative Radon measure µ, there exists an orthonormal system in Rd so that
(1.7) holds. However, it is not clear how the Ap(µ) weights and singular inte-
grals related to µ as in (1.1) depend on different orthonormal systems in Rd.

Also, it is obvious that if 1 ≤ %1 < %2 < ∞, then A%1p (µ) ⊂ A%2p (µ).
However, it is still unclear if this inclusion is proper.

Finally, we make some conventions. Throughout the paper, C denotes
a positive constant that is independent of the main parameters involved,
but whose value may vary from line to line. Constants with subscript, such
as C1, do not change in different occurrences. Let α and β be positive con-
stants such that β > αn. For a cube Q, we say that Q is (α, β)-doubling if
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µ(αQ) ≤ βµ(Q), where αQ denote the cube concentric with Q and having
side length αl(Q). It was pointed out by Tolsa [17] that there exists a large
constant β = βα,d > 0 such that for any x ∈ suppµ and R > 0, there exists
some (α, βα,d)-doubling cube centered at x with l(Q) > R, and for µ-almost
all x ∈ Rd, there exists a sequence {Qk}k∈N of (α, βα,d)-doubling cubes cen-
tered at x with l(Qk)→ 0 as k →∞. In what follows, for a fixed % ∈ [1,∞),
by a doubling cube Q, we always mean that Q is a (2%, β2%,d)-doubling cube.
Moreover, for a cube Q, Q̃ denotes the smallest doubling cube of the form
(2%)kQ with k ∈ N ∪ {0}.

2. John–Strömberg maximal operators. The purpose of this sec-
tion is to introduce the John–Strömberg maximal operator and the John–
Strömberg sharp maximal operator related to the measure in (1.1), and
then establish certain weighted norm inequalities with A%∞(µ)-weights relat-
ing these two operators, where % ∈ [1,∞). This weighted estimate plays an
important role in the proof of Theorem 1.1 and is of independent interest.

For a cube Q with µ(Q) 6= 0, and a real-valued locally integrable func-
tion f , mf (Q), the median value of f on the cube Q, is defined to be any
number such that

µ({y ∈ Q : f(y) > mf (Q)}) ≤ 1
2µ(Q),

µ({y ∈ Q : f(y) < mf (Q)}) ≤ 1
2µ(Q).

If µ(Q) = 0, we set mf (Q) = 0 for any real-valued µ-locally integrable
function f . If f is complex-valued, the median value of f is defined by
mf (Q) = mRe (f)(Q) + imIm (f)(Q), where i2 = −1.

Let % ∈ [1,∞) and s ∈ (0, β−1
2%,d/4). For any fixed cube Q and µ-locally

integrable function f , define m%
0,s;Q(f) by

(2.1) m%
0,s;Q(f) = inf

{
t > 0 : µ({y ∈ Q : |f(y)| > t}) < sµ

(
3
2%Q

)}
when µ(Q) 6= 0, and m%

0,s;Q(f) = 0 when µ(Q) = 0. The John–Strömberg

maximal operator M%,d
0,s is defined by setting, for all x ∈ Rd,

(2.2) M%,d
0,s f(x) = sup

Q3x,Q doubling
m%

0,s;Q(f).

For any two cubes Q1 ⊂ Q2, set

δ%Q1,Q2
= 1 +

N%
Q1,Q2∑
k=1

µ((2%)kQ1)
[l((2%)kQ1)]n

,

where N%
Q1,Q2

is the least positive integer k such that l((2%)kQ1) ≥ l(Q2).

The John–Strömberg sharp maximal operator M%,]
0,s is defined by setting, for
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all x ∈ Rd,

(2.3) M%,]
0,sf(x) = sup

Q3x
m%

0,s;Q(f −mf (Q̃)) + sup
x∈Q⊂R

Q,R doubling

|mf (Q)−mf (R)|
δ%Q,R

.

The operators M%,d
0,s and M%,]

0,s in the setting of Euclidean spaces were first
introduced by John [5] and then rediscovered by Strömberg [15] and
Lerner [7, 8]. It is easy to verify that for any cube Q 3 x and ε > 0,

(2.4) µ({y ∈ Q : |f(y)−mf (Q̃)| > M%,]
0,sf(x) + ε}) < sµ

(
3
2%Q

)
.

Our main result in this section is the following theorem.

Theorem 2.1. Let % ∈ [1,∞), s1 ∈ (0, β−1
2%,d/4), p ∈ (0,∞) and u ∈

A%∞(µ). Then there exist a constant C1 ∈ (0, 1), depending on s1 and u, and
a positive constant C such that for any s2 ∈ (0, C1s1),

(i) if µ(Rd) =∞, f ∈ Lp0,∞(µ) with p0 ∈ [1,∞), and for any R > 0,

sup
0<λ<R

λpu({x ∈ Rd : |f(x)| > λ}) <∞,

then

sup
λ>0

λpu({x ∈ Rd : M%,d
0,s1

f(x) > λ})

≤ C sup
λ>0

λpu({x ∈ Rd : M%,]
0,s2

f(x) > λ});

(ii) if µ(Rd) <∞ and f ∈ Lp0,∞(µ) with p0 ∈ [1,∞), then

sup
λ>0

λpu({x ∈ Rd : M%,d
0,s1

f(x) > λ})

≤ C sup
λ>0

λpu({x ∈ Rd : M%,]
0,s2

f(x) > λ})

+ Cu(Rd)(s1µ(Rd))−p/p0‖f‖pLp0,∞(µ).

To prove Theorem 2.1, we first give some preliminary results aboutA%p(µ).
Let % ∈ [1,∞) be fixed. For η ∈ (1,∞), define the maximal operator Mη

by setting, for all x ∈ Rd,

(2.5) Mηf(x) = sup
Q3x

1
µ(ηQ)

�

Q

|f(y)| dµ(y).

A result of Komori [6] states that for any η > %, p ∈ [1,∞) and u ∈ A%p(µ),
Mη is bounded from Lp(u) to Lp,∞(u). Let M%,d be the doubling maximal
operator defined by setting, for all x ∈ Rd,

(2.6) M%,df(x) = sup
Q3x,Q doubling

1
µ(Q)

�

Q

|f(y)| dµ(y).
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Notice that for any doubling cube Q,
1

µ(Q)

�

Q

|f(y)| dµ(y) ≤ β2%,d
1

µ(2%Q)

�

Q

|f(y)| dµ(y) ≤ C inf
x∈Q

M2%f(x).

Therefore, we have the following conclusion.

Lemma 2.1. Let % ∈ [1,∞) and let Mη and M%,d be the maximal op-
erators defined by (2.5) and (2.6), respectively. For any p ∈ [1,∞) and
u ∈ A%p(µ), both Mη with η ∈ (%,∞) and M%,d are bounded from Lp(u) to
Lp,∞(u).

As an easy consequence of Lemma 2.1, we obtain the following result.

Lemma 2.2. Let %, p ∈ [1,∞), u ∈ A%p(µ) and η ∈ (%,∞). Then there
exist constants C2, C3 ≥ 1 such that

(i) for any cube Q and µ-measurable set E ⊂ Q,

u(E)
u(Q)

≥ C−1
2

(
µ(E)
µ(ηQ)

)p
;

(ii) for any doubling cube Q and µ-measurable set E ⊂ Q,

u(E)
u(Q)

≥ C−1
3

(
µ(E)
µ(Q)

)p
;

(iii) for any doubling cube Q and µ-measurable set E ⊂ Q,

u(E)
u(Q)

≤ 1− C−1
3

(
1− µ(E)

µ(Q)

)p
.

Proof. Obviously, (ii) follows from (i), and (iii) is an easy consequence
of (ii) with E replaced by Q \ E. So it suffices to prove (i), whose proof is
similar to that of the classical case; see [14]. In fact, it is easy to see that for
any cube Q and any µ-measurable set E ⊂ Q,

inf
x∈Q

MηχE(x) ≥ µ(E)/µ(ηQ).

On the other hand, Lemma 2.1 states that for any p ∈ [1,∞), u ∈ A%p(µ)
and η > %, there exists a constant C2 ≥ 1 such that for any λ > 0,

u({x ∈ Rd : Mηf(x) > λ}) ≤ C2λ
−p

�

Rd
|f(x)|pu(x) dµ(x).

Thus, both estimates imply that for any λ ∈ (0, µ(E)/µ(ηQ)),

u(Q) ≤ u({x ∈ Rd : MηχE(x) > λ}) ≤ C2λ
−pu(E),

and so, for any λ < µ(E)/µ(ηQ),

u(E)
u(Q)

≥ C−1
2 λp.
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The conclusion (i) follows by letting λ→ µ(E)/µ(ηQ), which completes the
proof of Lemma 2.2.

Lemma 2.3. Let %, p ∈ [1,∞) and s ∈ (0, β−1
2%,d/4). Then for all µ-locally

integrable functions f and λ > 0,

(i) {x ∈ Rd : |f(x)| > λ} ⊂ {x ∈ Rd : M%,d
0,s f(x) ≥ λ}∪Θ with µ(Θ) = 0;

(ii) for u ∈ A%p(µ),

u({x ∈ Rd : M%,d
0,s f(x) > λ}) ≤ Cs−pu({x ∈ Rd : |f(x)| > λ}),

where C is a positive constant depending on d and %, but not on s
and the weight u.

Proof. By the Lebesgue differential theorem, we know that for µ-almost
all x ∈ Rd,

|f(x)| ≤M%,df(x),

and so

{x ∈ Rd : |f(x)| > λ}
= {x ∈ Rd : χ{y∈Rd : |f(y)|>λ}(x) = 1}

⊂ {x ∈ Rd : M%,d(χ{y∈Rd : |f(y)|>λ})(x) > sβ2%,d} ∪Θ,

where µ(Θ) = 0. On the other hand, if M%,d(χ{y∈Rd : |f(y)|>λ})(x) > sβ2%,d,
then there exists a doubling cube Q containing x such that µ(Q) > 0 and

µ({y ∈ Q : |f(y)| > λ}) > sβ2%,dµ(Q) ≥ sµ
(

3
2%Q

)
.

Notice that for any t > m%
0,s;Q(f),

µ({y ∈ Q : |f(y)| > t}) < sµ
(

3
2%Q

)
.

Thus m%
0,s;Q(f) ≥ λ, and so M%,d

0,s f(x) ≥ λ, which yields (i).
We now turn to (ii). For any fixed λ, r > 0 and x ∈ Rd, set

M%,d,r
0,s f(x) = sup

Q3x, l(Q)<r,Qdoubling
m%

0,s;Q(f)

and
Er,λ = {x ∈ Rd : M%,d,r

0,s f(x) > λ}.

For any x ∈ Er,λ, there exists a doubling cube Qx such that x ∈ Qx,
l(Qx) < r, and

µ({y ∈ Qx : |f(y)| > λ}) ≥ sµ
(

3
2%Qx

)
.

It now follows from Lemma 2.2(ii) that

u({y ∈ Qx : |f(y)| > λ}) ≥ Cspu
(

3
2%Qx

)
.



Maximal singular integrals 109

By the Besicovitch covering lemma, we obtain a family {Qτ}τ ⊂ {Qx}x∈Er,λ
of cubes such that

Er,λ ⊂
⋃
τ

2%Qτ ,
∑
τ

χQτ ≤ Cd,

where Cd is a positive integer depending only on d. Therefore,

u(Er,λ) ≤ Cs−p
∑
τ

u({y ∈ Qτ : |f(y)| > λ})

≤ Cs−pu({y ∈ Rd : |f(y)| > λ}),
which together with a certain basic property of measures proves (ii). This
completes the proof of Lemma 2.3.

Lemma 2.4. Let % ∈ [1,∞), s ∈ (0, β−1
2%,d/4) and Q be a doubling cube

with µ(Q) 6= 0. For any constant c ∈ C and µ-locally integrable function f ,

|m%
0,s;Q(f)− |c| | ≤ m%

0,s;Q(f − c).
Proof. It suffices to prove that

m%
0,s;Q(f) +m%

0,s;Q(f − c) ≥ |c|, m%
0,s;Q(f) ≤ m%

0,s;Q(f − c) + |c|.
To verify the first inequality, we observe that if t1, t2 > 0 satisfy

µ({y ∈ Q : |f(y)− c| > t1}) < sµ
(

3
2%Q

)
,

µ({y ∈ Q : |f(y)| > t2}) < sµ
(

3
2%Q

)
,

then t1 + t2 ≥ |c|. Otherwise,

µ({y ∈ Q : |f(y)| ≤ t2})≤ µ({y ∈ Q : |f(y)− c| > t1})
< sµ

(
3
2%Q

)
< 1

2µ(Q),

which contradicts the fact that

µ({y ∈ Q : |f(y)| ≤ t2}) > µ(Q)− sµ
(

3
2%Q

)
≥ 1

2µ(Q).

Therefore,
m%

0,s;Q(f) +m%
0,s;Q(f − c) ≥ |c|.

On the other hand, for any ε > 0, we can take t0 > 0 such that t0 <
m%

0,s;Q(f − c) + ε, and that

µ({y ∈ Q : |f(y)− c| > t0}) < sµ
(

3
2%Q

)
.

This in turn implies that

µ({y ∈ Q : |f(y)| > t0 + |c|}) < sµ
(

3
2%Q

)
.

Thus,
m%

0,s;Q(f) ≤ t0 + |c| < m%
0,s;Q(f − c) + |c|+ ε,

which implies the desired estimate by letting ε → 0, and hence completes
the proof of Lemma 2.4.
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Lemma 2.5. Let %, p ∈ [1,∞), s ∈ (0, β−1
2%,d/4) and Q be a doubling cube.

Then for any µ-locally integrable real-valued function f ,

|mf (Q)| ≤ m%
0,s;Q(f).

Proof. Without loss of generality, we may assume that µ(Q) > 0. If f is
real-valued and mf (Q) ≥ 0, we have

{y ∈ Q : |f(y)| ≥ |mf (Q)|}
= {y ∈ Q : f(y) ≥ mf (Q)} ∪ {y ∈ Q : f(y) ≤ −mf (Q)};

and if mf (Q) < 0,

{y ∈ Q : |f(y)| ≥ |mf (Q)|}
= {y ∈ Q : f(y) ≥ −mf (Q)} ∪ {y ∈ Q : f(y) ≤ mf (Q)}.

Therefore, by the definition of mf (Q),

(2.7) µ({y ∈ Q : |f(y)| ≥ |mf (Q)|})
≥ min{µ({y ∈ Q : f(y) ≥ mf (Q)}), µ({y ∈ Q : f(y) ≤ mf (Q)})}

≥ 1
2µ(Q).

This implies that for any t > 0 satisfying

µ({y ∈ Q : |f(y)| > t}) < sµ
(

3
2%Q

)
,

we have t ≥ |mf (Q)|. Otherwise, we obtain

µ({y ∈ Q : |f(y)| ≥ |mf (Q)|}) < sµ(2%Q) ≤ sβ2%,dµ(Q) < 1
4µ(Q),

which contradicts (2.7). Our desired result now follows directly by taking
the infimum over t, which completes the proof of Lemma 2.5.

Lemma 2.6. Let % ∈ [1,∞), s1 ∈ (0, β−1
2%,d/4) and u ∈ A%p(µ) for some

p ∈ [1,∞). Then there exists a constant C4 ∈ (1,∞) such that for any
s2 ∈ (0, C−1

4 s1), γ > 0 and real-valued function f ∈ Lp0,∞(µ) with some
p0 ∈ [1,∞),

u({x ∈ Rd : M%,d
0,s1

f(x) > (1 + γ)λ, M%,]
0,s2

f(x) ≤ θ2γλ})

≤ θ1u({x ∈ Rd : M%,d
0,s1

f(x) > λ}),

provided that

(i) µ(Rd) =∞ and λ > 0, or
(ii) µ(Rd) <∞ and λ > λf = (s1µ(Rd))−1/p0‖f‖Lp0,∞(µ),

where θ1, θ2 ∈ (0, 1) are constants depending only on d, % and µ.
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Proof. Let λf = 0 if µ(Rd) = ∞ and λf = (s1µ(Rd))−1/p0‖f‖Lp0,∞(µ) if
µ(Rd) <∞. For each fixed λ > λf , set

Ωλ = {x ∈ Rd : M%,d
0,s1

f(x) > λ},

Eλ = {x ∈ Rd : M%,d
0,s1

f(x) > (1 + γ)λ, M%,]
0,s2

f(x) ≤ θ2γλ}.
Notice that if λ > λf , then

µ({y ∈ Rd : |f(y)| > λ}) ≤
‖f‖p0Lp0,∞(µ)

λp0
< s1µ(Rd),

and so
1

µ(Rd)

�

{y∈Rd : |f(y)|>λ}

dµ(y) < s1.

Moreover, as pointed out in Section 1, for µ-almost all x ∈ Rd, there exists
a sequence {Ik}k of doubling cubes with l(Ik) → ∞ as k → ∞. Therefore,
by the basic property of µ, we may assume that for any λ > λf and any
x ∈ Rd,

lim
I3x, l(I)→∞, I doubling

1
µ(I)

�

{y∈I : |f(y)|>λ}

dµ(y) < s1,

which implies that

(2.8) lim
I3x, l(I)→∞, I doubling

m%
0,s1;I(f) < λ.

On the other hand, for each fixed x ∈ Eλ, there is a doubling cube Q
containing x such that m%

0,s1;Q(f) > (1+γ/2)λ. The inequality (2.8) tells us
that among these doubling cubes, there exists one doubling cube, denoted
by Qx, which has almost maximal side length, in the sense that if some
doubling cube I contains x and has side length no less than 2%l(Qx), then
m%

0,s1;I(f) ≤ (1 + γ/2)λ; see also [17, p. 128].
Let Rx be the cube centered at x with side length 3%l(Qx), and set

Sx = R̃x. An application of Lemma 2.4 gives

|m%
0,s1;Qx

(f)−m%
0,s1;Sx

(f)|
≤ |m%

0,s1;Qx
(f)− |mf (Qx)| |

+ |mf (Qx)−mf (Sx)|+ |m%
0,s1;Sx

(f)− |mf (Sx)| |

≤ m%
0,s1;Qx

(f −mf (Qx))

+ |mf (Qx)−mf (Sx)|+m%
0,s1;Sx

(f −mf (Sx))

≤ 3δ%Qx,Sx inf
y∈Qx

M%,]
0,s1

f(y) ≤ 3δ%Qx,SxM
%,]
0,s2

f(x) ≤ C5θ2γλ,

where C5 is a positive constant depending only on d, % and µ such that
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3δ%Qx,Sx ≤ C5; see Lemma 2.1 in [17]. If we choose θ2 > 0 small enough, it
follows that m%

0,s1;Sx
(f) > λ, and so Sx ⊂ Ωλ.

By the Besicovitch covering lemma, we see that there exist nB subfami-
lies Dk = {Skj }j , k = 1, . . . , nB, of cubes {Sx}x∈Eλ such that

(i) Eλ ⊂
⋃nB
k=1

⋃
j S

k
j , and for each j and k, m%

0,s1;Skj
(f) > λ;

(ii) for each subfamily Dk (1 ≤ k ≤ nB), the cubes in Dk are pairwise
disjoint;

(iii) each cube Skj is doubling and centered at some point xkj ∈ Eλ.

We can obtain at least one family, which without loss of generality is
supposed to be D1, such that

(2.9) u
(⋃

j

S1
j

)
≥ n−1

B u
(⋃
j,k

Skj

)
.

If we can prove that there exists a positive constant C6 such that for each
S1
j ∈ D1,

(2.10) µ(S1
j ∩ Eλ) ≤ C6s

−1
1 s2µ(S1

j ),

then it follows from Lemma 2.2 that

u(S1
j ∩ Eλ) ≤ (1− C−1

3 (1− C6s
−1
1 s2)p)u(S1

j ).

Let C4 = 1 + C6 and C7 = 1 − C−1
3 (1 − C6s

−1
1 s2)p. Recall that {S1

j }j are
pairwise disjoint. Thus, for s2 ∈ (0, C−1

4 s1),

u
(
Eλ ∩

⋃
j

S1
j

)
≤ C7

∑
j

u(S1
j ) = C7u

(⋃
j

S1
j

)
.

This via (2.9) in turn implies that

u(Eλ) ≤ u
(( nB⋃

k=1

⋃
j

Skj

)
\
⋃
j

S1
j

)
+ u
(
Eλ ∩

⋃
j

S1
j

)
≤ C7u

(( nB⋃
k=1

⋃
j

Skj

)
\
⋃
j

S1
j

)
+ C7u

(⋃
j

S1
j

)
+ (1− C7)u

(( nB⋃
k=1

⋃
j

Skj

)
\
⋃
j

S1
j

)
≤ C7u

( nB⋃
k=1

⋃
j

Skj

)
+ (1− C7)

(
1− 1

nB

)
u
( nB⋃
k=1

⋃
j

Skj

)
≤
(

1− 1− C7

nB

)
u(Ωλ),

which gives us the desired conclusion with θ1 = 1− (1− C7)/nB.
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We now prove (2.10). For each fixed y ∈ S1
j ∩ Eλ, we claim that if Q

is a doubling cube containing y and satisfying m%
0,s1;Q(f) > (1 + γ)λ, then

l(Q) ≤ l(S1
j )/8. Otherwise, Qx1

j
⊂ S1

j ⊂ 3̃0Q, and so

|m%
0,s1;Q(f)−m%

0,s1; g30Q
(f)|≤ 3δ%

Q,g30Q
M%,]

0,s1
f(y)

≤ 3δ%
Q,g30Q

M%,]
0,s2

f(y)

≤ C8θ2γλ,

where C8 > 1 is such that 3δ%
Q,g30Q

≤ C8; see Lemma 2.1 in [17]. Set θ2 =

1/(2C5 + 2C8). It then follows that

m%

0,s1; g30Q
(f) > (1 + γ/2)λ,

which contradicts the fact that Qx1
j
⊂ 3̃0Q, l(3̃0Q) > 2%l(Qx1

j
) and Qx1

j
is

the chosen maximal doubling cube.
For each fixed y ∈ S1

j ∩ Eλ, we see that there exists a doubling cube
I such that y ∈ I and m%

0,s1;I(f) > (1 + γ)λ. Our claim then tells us that
l(I) ≤ l(S1

j ) and I ⊂ 5
4S

1
j . Thus,

m%
0,s1;I(fχ 5

4
S1
j
) > (1 + γ)λ.

On the other hand, by Lemma 2.5, we have∣∣mf

(
5̃
4S

1
j

)∣∣ ≤ m%

0,s1; g5
4
S1
j

(f) ≤ (1 + γ/2)λ.

This via Lemma 2.4 gives

m%
0,s1;I

((
f −mf

(
5̃
4S

1
j

))
χ 5

4
S1
j

)
> γλ/2,

and then

S1
j ∩ Eλ ⊂

{
y ∈ Rd : M%,d

0,s1

((
f −mf

(
5̃
4S

1
j

))
χ 5

4
S1
j

)
(y) > γλ/2

}
.

Invoking Lemma 2.3(ii) and the inequality (2.4) and noticing that θ2 < 1/4
by our choice, we find that for some σ > 0,

µ(S1
j ∩ Eλ) ≤ Cs−1

1 µ
({
y ∈ 5

4S
1
j :
∣∣f(y)−mf

(
5̃
4S

1
j

)∣∣ > γλ/2
})

≤ Cs−1
1 µ

({
y ∈ 5

4S
1
j :
∣∣f(y)−mf

(
5̃
4S

1
j

)∣∣ > 2M%,]
0,s2

f(x1
j ) + σ

})
≤ Cs−1

1 s2µ(2%S1
j ) ≤ Cs−1

1 s2µ(S1
j ),

where C is a positive constant. This finishes the proof of Lemma 2.6.
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Lemma 2.7. Let % ∈ [1,∞) and s ∈ (0, β−1
2%,d/4). Then for any µ-locally

integrable function f and x ∈ Rd,

M%,]
0,s(|f |)(x) ≤ 8M%,]

0,s(f)(x).

Proof. Notice that for any cube Q ⊂ Rd, c ∈ C and µ-locally integrable
function h,

mh(Q)− c = mh−c(Q).

It follows from Lemmas 2.4 and 2.5 that

m%
0,s;Q(|f | −m|f |(Q̃)) ≤ m%

0,s;Q(|f | − |mf (Q̃)|) + | |mf (Q̃)| −m|f |(Q̃)|

≤ m%
0,s;Q(f −mf (Q̃)) + |m|f |−|mf ( eQ)|(Q̃)|

≤ m%
0,s;Q(f −mf (Q̃)) + 2m%

0,s; eQ(|f | − |mf (Q̃)|)

≤ m%
0,s;Q(f −mf (Q̃)) + 2m%

0,s; eQ(f −mf (Q̃)).

On the other hand, by Lemma 2.5 again, we see that for any doubling cubes
Q ⊂ R,

|m|f |(Q)−m|f |(R)|

≤ |m|f |(Q)− |mf (Q)| |+ | |mf (Q)| − |mf (R)| |+ |m|f |(R)− |mf (R)| |

≤ |m|f |−|mf (Q)|(Q)|+ |mf (Q)−mf (R)|+ |m|f |−|mf (R)|(R)|

≤ 2m%
0,s;Q(f −mf (Q)) + |mf (Q)−mf (R)|+ 2m%

0,s;R(f −mf (R)).

Combining the last two estimates then yields the desired estimate, which
completes the proof of Lemma 2.7.

Proof of Theorem 2.1. By Lemma 2.7, we may assume that f is real-
valued. We first consider the case where µ(Rd) =∞. By Lemma 2.6, we see
that for any γ > 0 and λ > 0,

u({x ∈ Rd : M%,d
0,s1

f(x) > (1 + γ)λ})

≤ θ1u({x ∈ Rd : M%,d
0,s1

f(x) > λ}) + u({x ∈ Rd : M%,]
0,s2

f(x) > θ2γλ}),

and consequently,

(1 + γ)pλpu({x ∈ Rd : M%,d
0,s1

f(x) > (1 + γ)λ})

≤ θ1(1 + γ)pλpu({x ∈ Rd : M%,d
0,s1

f(x) > λ})

+ (1 + γ)pλpu({x ∈ Rd : M%,]
0,s2

f(x) > θ2γλ}).
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Taking the supremum in the last inequality shows that for any R > 0,

sup
0<λ<(1+γ)R

λpu({x ∈ Rd : M%,d
0,s1

f(x) > λ})

≤ θ1(1 + γ)p sup
0<λ<R

λpu({x ∈ Rd : M%,d
0,s1

f(x) > λ})

+
(

1 + γ

θ2γ

)p
sup
λ>0

λpu({x ∈ Rd : M%,]
0,s2

f(x) > λ}).

Notice that by Lemma 2.3,

sup
0<λ<R

λpu({x ∈ Rd : M%,d
0,s1

f(x) > λ})

≤ C sup
0<λ<R

λpu({x ∈ Rd : |f(x)| > λ}),

where C is a positive constant. Our hypotheses guarantee that in this case,

sup
0<λ<R

λpu({x ∈ Rd : M%,d
0,s1

f(x) > λ}) <∞.

Choosing γ small enough such that (1 + γ)pθ1 < 1, we see that when
µ(Rd) =∞,

sup
0<λ<R

λpu({x ∈ Rd : M%,d
0,s1

f(x) > λ})

≤ C sup
0<λ<R

λpu({x ∈ Rd : M%,]
0,s2

f(x) > λ}),

where C is a positive constant.
On the other hand, if µ(Rd) < ∞, another application of Lemma 2.6

indicates that for any R > λf and γ ∈ (0, 1),

sup
0<λ<(1+γ)R

λpu({x ∈ Rd : M%,d
0,s1

f(x) > λ})

≤ sup
(1+γ)λf≤λ<(1+γ)R

λpu({x ∈ Rd : M%,d
0,s1

f(x) > λ})

+ sup
0<λ<(1+γ)λf

λpu({x ∈ Rd : M%,d
0,s1

f(x) > λ})

≤ (1 + γ)p sup
λf≤λ<R

λpu({x ∈ Rd : M%,d
0,s1

f(x) > (1 + γ)λ})

+ (1 + γ)pλpfu(Rd)

≤ (1 + γ)pθ1 sup
λf≤λ<R

λpu({x ∈ Rd : M%,d
0,s1

f(x) > λ})

+
(

1 + γ

θ2γ

)p
sup
λ>0

λpu({x ∈ Rd : M%,]
0,s2

f(x) > λ}) + (1 + γ)pλpfu(Rd).
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Since µ(Rd) <∞ implies u(Rd) <∞, we infer that when µ(Rd) <∞,

sup
0<λ<R

λpu({x ∈ Rd : M%,d
0,s1

f(x) > λ})

≤ C sup
0<λ<R

λpu({x ∈ Rd : M%,]
0,s2

f(x) > λ}) + Cλpfu(Rd),

where C is a positive constant. Taking R → ∞ then leads to the desired
conclusion (ii), which completes the proof of Theorem 2.1.

3. Proof of Theorem 1.1. By Lemma 2.1, it is obvious that Theo-
rem 1.1 is an easy corollary of the following result.

Theorem 3.1. Under the hypotheses of Theorem 1.1, for any %, p ∈
[1,∞) and u ∈ A%p(µ), there exists a positive constant C such that for any
bounded function f with compact support ,

sup
λ>0

λpu({x ∈ Rd : T ∗f(x) > λ}) ≤ C sup
λ>0

λpu({x ∈ Rd : M 9
8
%f(x) > λ}).

To prove Theorem 3.1, we begin with an inequality relating the sharp
maximal operator M%,]

0,s and a variant of the sharp maximal operator of
Tolsa [17]. Let r ∈ (0,∞). Define the sharp maximal operator M%,]

r by
setting, for all x ∈ Rd,

M%,]
r f(x) = sup

x∈Q

(
1

µ
(

3
2%Q

) �

Q

|f(x)−mf (Q̃)|r dµ(x)
)1/r

+ sup
x∈Q⊂R

Q,R doubling

|mf (Q)−mf (R)|
δ%Q,R

.

For r = 1 and % = 1, this operator is the sharp maximal operator introduced
by Tolsa in [17]. It is obvious that for any cube Q and r ∈ (0,∞),

m%
0,s;Q(f −mf (Q̃)) ≤ s−1/r

(
1

µ
(

3
2%Q

) �

Q

|f(y)−mf (Q̃)|r dµ(y)
)1/r

.

Therefore, for all x ∈ Rd,

(3.1) M%,]
0,sf(x) ≤ s−1/rM%,]

r f(x).

Moreover, we have the following several technical lemmas.

Lemma 3.1. Let % ∈ [1,∞), s ∈ (0, β−1
2%,d/4) and r ∈ (0,∞). For any

cube Q and µ-locally integrable function f ,

m%
0,s;Q(f −mf (Q)) ≤ 3s−1/r inf

c∈C

(
1

µ
(

3
2%Q

) �

Q

|f(y)− c|r dµ(y)
)1/r

.
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Proof. For any cube Q and µ-locally integrable function f , set

m%,]
0,s;Q(f) = inf

c∈C
m%

0,s;Q(f − c).

Then, to prove Lemma 3.1, it suffices to prove that

(3.2) m%
0,s;Q(f −mf (Q)) ≤ 3m%,]

0,s;Q(f).

The estimate (3.2) is trivial if µ(Q) = 0; so we need only consider the
case where µ(Q) > 0. For any fixed ε > 0, we choose cQ = a+ ib such that

µ({y ∈ Q : |f(y)− cQ| > m%,]
0,s;Q(f) + ε}) < sµ

(
3
2%Q

)
.

Thus,

µ({y ∈ Q : |Re f(y)− a| > m%,]
0,s;Q(f) + ε}) < sµ

(
3
2%Q

)
,(3.3)

µ({y ∈ Q : |Im f(y)− b| > m%,]
0,s;Q(f) + ε}) < sµ

(
3
2%Q

)
.(3.4)

If Remf (Q) > a+m%,]
0,s;Q(f) + ε, then by (3.3),

µ({y ∈ Q : Re f(y) < Remf (Q)})
≥ µ({y ∈ Q : Re f(y) ≤ a+m%,]

0,s;Q(f) + ε})

≥ (1− sβ2%,d)µ(Q) > 1
2µ(Q),

which contradics the definition of Remf (Q). Therefore,

Remf (Q) ≤ a+m%,]
0,s;Q(f) + ε.

We can also deduce from (3.3) that

Remf (Q) ≥ a−m%,]
0,s;Q(f)− ε,

and from (3.4) that

b−m%,]
0,s;Q(f)− ε ≤ Immf (Q) ≤ b+m%,]

0,s;Q(f) + ε.

Combining these estimates yields

|mf (Q)− cQ| ≤ 2m%,]
0,s;Q(f) + 2ε,

which leads to

{y ∈ Q : |f(y)−mf (Q)| > 3m%,]
0,s;Q(f) + 3ε}

⊂ {y ∈ Q : |f(y)− cQ| > m%,]
0,s;Q(f) + ε}.

We then obtain

µ({y ∈ Q : |f(y)−mf (Q)| > 3m%,]
0,s;Q(f) + 3ε}) < sµ

(
3
2%Q

)
,

and so
m%

0,s;Q(f −mf (Q)) ≤ 3m%,]
0,s;Q(f) + 3ε.

The inequality (3.2) then follows by letting ε → 0, which completes the
proof of Lemma 3.1.
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Lemma 3.2. Let % ∈ [1,∞) and r ∈ (0, 1). Under the assumptions of
Theorem 1.1, there exists a positive constant C such that for all bounded
functions f with compact support and x ∈ Rd,

(3.5) M%,]
r (T ∗f)(x) ≤ CM 9

8
%f(x).

Proof. For each cube Q and each bounded function f with compact
support, set

hQ = mQ(T ∗(fχRd\ 4
3
Q));

here and in what follows, for any µ-locally integrable function h,

mQ(h) =
1

µ(Q)

�

Q

h(z) dµ(z).

It follows from Lemmas 2.4 and 3.1 that for any cube Q and s ∈ (0, β−1
2%,d/4),

�

Q

|T ∗f(y)−mT ∗f (Q̃)|r dµ(y) ≤
�

Q

|T ∗f(y)− hQ|r dµ(y) + |hQ − h eQ|rµ(Q)

+ |m%

0,s; eQ(T ∗f)−mT ∗f (Q̃)|rµ(Q) + |m%

0,s; eQ(T ∗f)− h eQ|rµ(Q)

≤
�

Q

|T ∗f(y)− hQ|r dµ(y) + |hQ − h eQ|rµ(Q)

+ (m%

0,s; eQ(T ∗f −mT ∗f (Q̃)))rµ(Q) + (m%

0,s; eQ(T ∗f − h eQ))rµ(Q)

≤
�

Q

|T ∗f(y)− hQ|r dµ(y) + |hQ − h eQ|rµ(Q)

+ C(3rs−1 + s−1)
µ(Q)

µ(Q̃)

�

eQ
|T ∗f(y)− h eQ|r dµ(y),

where C is a positive constant, and for any two doubling cubes Q ⊂ R,

|mT ∗f (Q)−mT ∗f (R)|
≤ |m%

0,s;Q(T ∗f)− hQ|+ |hQ − hR|+ |m%
0,s;R(T ∗f)− hR|

+ |m%
0,s;Q(T ∗f)−mT ∗f (Q)|+ |m%

0,s;R(T ∗f)−mT ∗f (R)|

≤ m%
0,s;Q(T ∗f − hQ) + |hQ − hR|+m%

0,s;R(T ∗f − hR)

+m%
0,s;Q(T ∗f −mT ∗f (Q)) +m%

0,s;R(T ∗f −mT ∗f (R))

≤ 4s−1/r

(
1

µ
(

3
2%Q

) �

Q

|T ∗f(y)− hQ|r dµ(y)
)1/r

+ |hQ − hR|

+ 4s−1/r

(
1

µ
(

3
2%R

) �

R

|T ∗f(y)− hR|r dµ(y)
)1/r

.
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Thus, the proof of (3.5) can be reduced to proving that for any cube Q,

(3.6)
(

1
µ
(

3
2%Q

) �

Q

|T ∗f(y)− hQ|r dµ(y)
)1/r

≤ C inf
x∈Q

M 9
8
%f(x),

and for any two cubes Q ⊂ R with R a doubling cube,

(3.7) |hQ − hR| ≤ Cδ%Q,R inf
x∈Q

M 9
8
%f(x),

where C is a positive constant.
To prove (3.6) and (3.7), we employ the argument used in [2]. We first

consider (3.6). For any cube Q, write�

Q

|T ∗f(y)− hQ|r dµ(y) ≤
�

Q

|T ∗f(y)− T ∗(fχRd\ 4
3
Q)(y)|r dµ(y)

+
�

Q

|T ∗(fχRd\ 4
3
Q)(y)− hQ|r dµ(y)

≤
�

Q

|T ∗
(
fχ 4

3
Q

)
(y)|r dµ(y)

+
�

Q

|T ∗
(
fχRd\ 4

3
Q

)
(y)− hQ|r dµ(y).

Recall that T ∗ is bounded from L1(µ) to weak L1(µ); see [11] or [2]. It
follows from the Kolmogorov inequality that(

1
µ
(

3
2%Q

) �

Q

|T ∗
(
fχ 4

3
Q

)
(y)|r dµ(y)

)1/r

≤ C

µ
(

3
2%Q

) ‖fχ 4
3
Q‖L1(µ)

≤ C inf
x∈Q

M 9
8
%f(x),

where C is a positive constant. On the other hand, the size condition (1.2)
and the regularity condition (1.3) via a standard computation imply that
for any y, z ∈ Q,

(3.8) |T ∗(fχRd\ 4
3
Q)(y)− T ∗(fχRd\ 4

3
Q)(z)|

≤ sup
ε>0

∣∣∣ �

|y−w|>ε

K(y, w)f(w)χRd\ 4
3
Q(w) dµ(w)

−
�

|y−w|>ε

K(z, w)f(w)χRd\ 4
3
Q(w) dµ(w)

∣∣∣
+ sup

ε>0

∣∣∣ �

|y−w|>ε

K(z, w)f(w)χRd\ 4
3
Q(w) dµ(w)

−
�

|z−w|>ε

K(z, w)f(w)χRd\ 4
3
Q(w) dµ(w)

∣∣∣
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≤
�

Rd\ 4
3
Q

|K(y, w)−K(z, w)| |f(w)| dµ(w)

+ C sup
ε>0

ε−n
�

|z−w|<Cε

|f(w)|χRd\ 4
3
Q(w) dµ(w)

≤ C inf
x∈Q

M 9
8
%f(x),

where C is a positive constant. This in turn implies that for a positive
constant C,{

1
µ
(

3
2%Q

) �

Q

|T ∗(fχRd\ 4
3
Q)(y)− hQ|r dµ(y)

}1/r

≤ C inf
x∈Q

M 9
8
%f(x),

which gives the estimate (3.6).
Now we turn to (3.7). Denote N%

Q,R + 1 simply by N . Write

|hQ − hR| ≤ mQ(T ∗(fχ2%Q\ 4
3
Q)) +mQ(T ∗(fχ(2%)NQ\2%Q))

+ |mQ(T ∗(fχRd\(2%)NQ))−mR(T ∗(fχRd\(2%)NQ))|
+mR(T ∗(fχ(2%)NQ\ 4

3
R))

= I1 + I2 + I3 + I4.

The size condition (1.2) along with the growth condition (1.1) implies
that for any x, y ∈ Q,

T ∗(fχ2%Q\ 4
3
Q)(y) ≤ C

[l(Q)]n
�

2%Q

|f(z)| dµ(z) ≤ CM 9
8
%f(x),

and for any y ∈ R and x ∈ Q,

T ∗(fχ(2%)NQ\ 4
3
R)(y) ≤ C

[l(R)]n
�

4%R

|f(z)| dµ(z) ≤ CM 9
8
%f(x),

where C is a positive constant. Therefore, for a positive constant C,

I1 + I4 ≤ C inf
x∈Q

M 9
8
f(x).

For the term I2, observing that for any y ∈ Q,

T ∗(fχ(2%)NQ\2%Q)(y) ≤ C
N−1∑
k=1

�

(2%)k+1Q\(2%)kQ

|f(z)|
|y − z|n

dµ(z)

≤ C
N−1∑
k=1

µ((2%)k+2Q)
[l((2%)kQ)]n

inf
x∈Q

M2%f(x)

≤ Cδ%Q,R inf
x∈Q

M 9
8
%f(x),
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so we have
I2 ≤ Cδ%Q,R inf

x∈Q
M 9

8
%f(x),

where C is a positive constant.
Finally, as in the inequality (3.8), a familiar argument involving the

condition (1.3) gives, for any y ∈ Q and z ∈ R,

|T ∗(fχRd\(2%)NQ)(y)− T ∗(fχRd\(2%)NQ)(z)| ≤ C inf
x∈Q

M 9
8
%f(x),

and so
I3 ≤ C inf

x∈Q
M 9

8
%f(x),

where C is a positive constant. The inequality (3.7) now follows, which
completes the proof of Lemma 3.2.

Proof of Theorem 3.1. We first prove that if p ∈ [1,∞), then for any
bounded function f with compact support,

(3.9) T ∗f ∈ Lp,∞(µ),

and for any %, p ∈ [1,∞) and u ∈ A%p(µ),

(3.10) sup
0<λ<R

λpu({x ∈ Rd : |T ∗f(x)| > λ}) <∞.

The fact (3.9) was proved in [11] and [2]. To prove (3.10), let t > 2 be
large enough such that the support of f is contained in the ball B(0, t). It
is obvious that

sup
0<λ<R

λpu({x ∈ B(0, 2t) : |T ∗f(x)| > λ}) ≤ Rpu(B(0, 2t)) <∞.

On the other hand, it is easy to see that if x ∈ Rd \ B(0, 2t), then by the
size condition (1.2),

T ∗f(x) ≤
�

Rd
|K(x, y)f(y)| dµ(y) ≤ C9

|x|n
‖f‖L1(µ).

This via Lemma 2.2(i) and the growth condition (1.1) implies that if λ ≤
C9‖f‖L1(µ)/2,

u({x ∈ Rd \B(0, 2t) : |T ∗f(x)| > λ})
≤ u({x ∈ Rd : |x|−n > λ/(C9‖f‖L1(µ))})

≤ u
(
B
(
0, 9

8%(C9‖f‖L1(µ))
1/nλ−1/n

))
≤ Cu(B(0, 1))

(µ(B(0, 9
8%C9‖f‖1/nL1(µ)

λ−1/n
))

µ(B(0, 1))

)p
≤ Cf

u(B(0, 1))
[µ(B(0, 1))]p

λ−p,

where Cf is a positive constant.
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Notice that for λ > C9‖f‖L1(µ)/2, there exists no point x ∈ Rd \B(0, 2t)
satisfying T ∗f(x) > λ. Therefore,

sup
λ>0

λpu({x ∈ Rd \B(0, 2t) : |T ∗f(x)| > λ})

= sup
0<λ≤C9‖f‖L1(µ)/2

λpu({x ∈ Rd \B(0, 2t) : |T ∗f(x)| > λ})

≤ Cf
u(B(0, 1))

[µ(B(0, 1))]p
,

which proves (3.10).
We can now conclude the proof of Theorem 3.1. If µ(Rd) = ∞, the

desired result follows from Lemma 2.3(i), Theorem 2.1 with s1 = β−1
2%,d/5

and p0 = 1, (3.1) and Lemma 3.2.
If µ(Rd)<∞, %, p∈ [1,∞) and u∈A%p(µ), then for a positive constant C,

u(Rd)[µ(Rd)]−p‖T ∗f‖p
L1,∞(µ)

≤ Cu(Rd)[µ(Rd)]−p‖f‖p
L1(µ)

≤ Cu(Rd)( inf
x∈Rd

M 9
8
%f(x))p

≤ C sup
λ>0

[λpu({x ∈ Rd : M 9
8
%f(x) > λ})],

where in the first inequality, we have invoked the estimate

‖T ∗f‖L1,∞(µ) ≤ C‖f‖L1(µ)

(see [11] or [2]), and the second inequality follows from the fact that
1

µ(Rd)

�

Rd
|f(y)| dµ(y) = lim

l(Q)→∞

1
µ
(

9
8%Q

) �

Q

|f(y)| dµ(y) ≤ inf
x∈Rd

M 9
8
%f(x).

The desired result again follows from Lemma 2.3(i), Theorem 2.1 with s1 =
β−1

2%,d/5 and p0 = 1, (3.1) and Lemma 3.2, which completes the proof of
Theorem 3.1.
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[15] J. O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy
spaces, Indiana Univ. Math. J. 28 (1979), 511–544.

[16] X. Tolsa, A proof of weak (1, 1) inequality for singular integrals with non doubling
measures based on a Calderón–Zygmund decomposition, Publ. Mat. Barcelona 45
(2001), 163–174.

[17] —, BMO, H1 and Calderón–Zygmund operators for non doubling measures, Math.
Ann. 319 (2001), 89–149.

[18] —, The space H1 for nondoubling measures in terms of a grand maximal operator ,
Trans. Amer. Math. Soc. 355 (2003), 315–348.
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