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Unicellularity of the multiplication
operator on Banach spaces of formal power series

by

B. YOUsSEF1 (Shiraz)

Abstract. Let {3(n)};= be a sequence of positive numbers and 1 < p < oo. We con-
sider the space ¢ (3) of all power series f(z)=) 1", f(n)z" such that Yoo |F(n)|P|B(n) P
< 00. We give some sufficient conditions for the multiplication operator, M, to be uni-
cellular on the Banach space ¢P(3). This generalizes the main results obtained by Lu
Fang [1].

Introduction. First, we generalize some definitions from [4].
Let {#(n)} be a sequence of nonzero complex numbers with 5(0) = 1

~

and 1 < p < oo. We consider the space of sequences f = {f(n)}>2, such
that

LFIP = 1LFIG = D IF (P8P < oo
n=0

The notation f(z) = >~ f(n)z” will be used whether or not the series
converges for any value of z. These are called formal power series. Let ¢P(3)
denote the space of such formal power series.

For 1 < p < oo, ¢P() = LP(u) where p is the o-finite measure defined
on the positive integers by pu(K) = > ., B(n)?, K € NU{0}. So (P(3)
is a reflexive Banach space ([3]) and (¢P(3))* = (9(3P/9) where BP/9 =
{81}, ([6)).

Let fr(n) = 0nk. So fr(z) = 2% and then {fx}) is a basis such that
IlIfxll = |B(k)|. Now consider M,, the operator of multiplication by z on

°(3): N
(M.f)(z) =Y fn)z"*,
n=0
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In other words

(4.9 ) = { fo =D =

Clearly M, shifts the basis {f;}r. The operator M, is bounded if and
only if {8(k+ 1)/8(k)}k is bounded and in this case

B(n+k)
B(k)

Consider the multiplication of formal power series, fg = h, given by

n=0 n—0

HM;H:sgp , n=0,1,2,...

where

h(n) = (k)gn—k), n=0,1,2,...

If1/p+1/¢g=1 and

q
< o0

S%p; BB~
then clearly by the Holder inequality one can see that ¢P(3) is a Banach
algebra ([2]).

If f € ¢?(8) and P(z) is a polynomial, then to the vector P(M.,)f there
corresponds the formal power series P(z)f(z).

Let X be a Banach space. We denote by B(X) the set of bounded linear
operators on X. Let A € B(X) and = € X. We say that z is a cyclic vector
of A if

Bn)
(n—1)

X =span{A"z:n=0,1,2,...}.

Here span{-} is the closed linear span of the set {-}. A polynomial p(z) =
(z—A1)...(2— Ag) is a cyclic vector of M, in (P () iff {\I'/B(n)},, & ¢4 for
i=1,...,k, where 1/p+1/q =1 ([6]).

Also an operator A in B(X) is called unicellular on X if the set of its
invariant subspaces, Lat(A), is linearly ordered by inclusion.

In the main theorem of this paper we give some sufficient conditions
for the multiplication operator, M., on ¢P(3) to be unicellular and then
we obtain the main results of [1]. Throughout this paper we assume that
M, € B(tP(5)).

Unicellularity of M,. The following theorem is the main result of this
paper.

THEOREM. Let 1 < p < co. The operator M, is unicellular on (P([3) if
B(n) is of the form B(n) = a(n)y(n) where {a(n)} and {y(n)} satisfy:
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(i) There exists a positive number M such that
sup {‘ y(n + 1)
Y(n)(7)

(ii) There exists a positive integer mq such that

Ly,, = sup {

:i,n:0,1,2,...}§M.

a(n +i)a(mg)
a(n +mg)af(i)

(), e
where 1/p+1/q=1.

Proof. Let {fm}m be the basis for ¢P(3) as defined in the introduction.
Put (2, (8) = {0}, £5(8) = £7(B) and

0(B) = { > cmfm € Ep(ﬁ)} (n>1).

m>n

:n >0, i2m0}<oo

and

In order to show that M. is unicellular it suffices to show that the lattice
of invariant subspaces of M, Lat(M,), is a subset of {¢2(5): 0 < n < oo}.
So let K be a nontrivial element of Lat(M,). Then there exists a positive
integer n such that £ C ¢5(3) and K ¢ ¢, ,(3). Thus we may choose

= Tmfmin K (2, = ]?(m)) with z,, # 0. Note that {fn1r}72, is a
basis for /% (). We claim that f is a cyclic vector for M| (g. If so, then
since MK C K, we have M!f € K for i € N. Also since

% (B) = span{(M|z5)f :i=0,1,2,...},

we have (£ (3) C K and so ¢? () = K. Now to prove our claim it is sufficient
to show that if

F=Y" fm)fm € (B)
m=0

is such that f(()) # 0, then f is a cyclic vector for M,. Without loss of
generality, assume that f(0) = 1. Note that M., f = fx+1. For the formal
power series

f(z) =" fm)z"

m

o

we choose the formal power series
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such that g(z)f(z) = 1. Indeed g(0) = 1 and for k > 1,

k
=5 Y 0ifm)... fm)

=1 m1++mlzk
mjil

(see [5]). In order to show that f is a cyclic vector of M, we show that
mo

(1) span{Zﬁ(k)Mf*”f:n:0,1,2,...} =(P(B)
k=0

(mg is the positive integer in condition (ii) of the theorem). Put

mo
Ymom = 3 GR)MET"f, n=0,1,2,...

If there exists a positive integer ngy such that

(2) Span{ymom in > nO} = 620 (ﬂ)

then clearly one can see that

Span{ymg,n in > ng — 1} - gﬁo l(ﬁ)

By continuing this process, we conclude that (1) holds. Now since g(z)f(z)

=1, we have
(L50++ Y 50)*) 1) =1
k=0

k>mg
and so
> @) ME FOM.) fo+ Y (5( M.)fo = fo.
k=0 k>mg

Now since for each n > 0, M} fo = f,, by taking the image under M7 of
both sides of the above equation, we have

S GRMEY FOLY fo— fo = — 3 @R)ME™) F(OML) fo.
k=0 k>mg

Note that f(M.)fo=fand f=°_ Of( m) fm. So

Ymo,n — Z Z Mk+nfm

k>mgo m=0
Therefore
Ymo,m — fn € g’rp;m—l—n—i—l(/@)'
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Now we show that there exists a positive integer ng such that (2) holds.
For i > 1, define the projections P; : ¢7(3) — ¢2(3) by

RS Fmen) = 3 Fimz
n=0 n=t

Note that | M| (g ||=sup,, |B(i + n+m)/B(i +m)| and for i > k, P,MFf
= MkPi_kf for all f € ¢P(B) ([5]). Thus

1
mo,n n Pmo n mo,m ~_ Jn
1
]ﬁ(n)\ ” mo+n+1(ymo,n)Hp
1 &
G(E)| || Prgsns1 METT
< ]ﬂ(n)| kzzo‘g( )| H otn+1 pr
1 &
= k)| - ||MF P,
’ﬁ(n”kzzo‘ ( )| H z 0 kJrlpr
< S GO IME g, ol
k=0

Blmo+n+i+1) ‘
Bn)B(mo+i+1—k)|

|f||pz lg(k Sup

Since B(n) = a(n)y(n), we have
Blmo+n+i+1)
B(n)B(mo+i+1—k)

almo+n+i+1) H y(mo+n+i+1) '
a(n)a(mo+i+1—k)||v(n)y(mo+i+1—k)|

sup
i

= sup
i

But by condition (ii) of the theorem,

sup
i

a(mo+n+i+1)
a(n)a(me+i+1—-k)
a(mo +n+i+1)a(mo)

a(mg +i+ 1)a(mg + n) ‘

I a(mo+n)a(mo+i+1)||an)a(m)a(me+i+1—k)
a(mg+n) almo+i+1)
< Lmg a(n)a(mg) Sl; almog+i+1—k) "
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y(mo+n+i+1) ‘

"y (mo + i+ 1)
y(mo +n+i+1) y(mo+i+1)
= sup : _
i |7(n)y(mo +i+1)||y(mo+i+1—k)
v(mo + i+ 1)
<M .
=P y(mo+i+1—k)
So
Blmo+n+i+1) ‘
sup

i |Bn)B(mo+i+1—k)

< ML, a(mg +n) sup B(mg + i+1)
am)a(me)| i |Bimo+i+1—k)
and therefore
1
m”ymo,n - anp
a(mg +n) < B(mo +1i+1)
<ML, | ———% k)| su - .
— 0 a(n)a(mo) ||f||pI;)|g( )| ip ﬁ(m0+z+1—k)
Since
ﬁ(mo + 1 -+ Z)
MY =
V=l o] Sgp‘ﬂ(mo Tkt =
for k =0,1,2,...,mg, there exists a positive number M’ such that
mo .
~ B(mo+1+1
> [g(k)|sup (mo ) <
=0 i ﬁ(m0+1—k+z)
So we have
1
o7 T IYm mo fn S Cn
‘5(n)’ || 0 ||P
where
L,
cn:MM'||f||p 0 a(m0+n)’ n=12...
la(mo)||  a(n)

Since {c,} € £%, there exists a positive integer ny > mg such that
A= Z ch < 1.
n>ngo

Therefore for any finite linear combinations

qb = deymomo-f—k/ﬁ(no + k)a w = defno+k/ﬁ(n0 + k)?
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by the Holder inequality we have
6 = llp < D ldil - [Ymo,notk — Frotkllp/|B(no + k)|
k

< (;mrp)” (S W — FulllB(] )

n=ngo

— ol (3 )™

n>ngo

1/q

Thus
= ¢llp < AV|3p.

Since 0 < AV < 1, {Ymg,n}o2,, is in €8 (8) and {fy}n>n, is a basis for
b (B), it follows immediately from Lemma 2.1 of [1] (which is true for
Banach spaces) that {%mg,n fn>n, is a complete set, i.e., spanning (2 (). So
(2) holds and this completes the proof.

From the proof of the theorem, we obtain the following corollary.

o0

COROLLARY. Under the hypothesis of the theorem, if x = Y " Tm fm
belongs to (P(B3) and xy # 0, then z is a cyclic vector of M,.

Now as a consequence of the above theorem, in the following example we
prove the main result of [1] which gives sufficient conditions for a Lambert
weighted shift operator to be unicellular.

ExAMPLE. Let H be a separable Hilbert space with orthonormal basis
{en}5% - A unilateral weighted shift operator S in B(H) (Se,, = wpent1)
is called a Lambert weighted shift operator if the weights {w, } are given by
_

A
where A is a given injective operator in B(H), f is a nonzero vector in
H and {a,}>2, is a bounded sequence of positive numbers. S is unitarily

equivalent to the multiplication operator M, on the space £2(3) where the
sequence 3 = {3(n)}52, satisfies 3(0) = 1 and

W, n=0,1,2,...,

B(n) =wowy ... wp—1 (0 >1).

The equivalence of these operators is realized by means of the isomorphism
U of £%(3) onto H defined by the formula (U f),, = f(n)B(n) ([4]). Now for
each nonnegative integer n put

a(n) =ao...an-1, y(n)=[A"f|/IfI.

If {a(n)} and {v(n)} satisfy the hypothesis of the theorem, then the Lambert
weighted shift operator is unicellular.
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PROPOSITION. Suppose

B(i+n) |7
2| iystm)

Then M, is uicellular on (P ([3).

< oo wherel/p+1/q=1.

Proof. Let (2 (3) be defined as in the proof of the previous theorem. As
in that proof, it is sufficient to show that if f = >, -, f(n)fn € £7(3) is such
that f(O) # 0, then f is a cyclic vector for M,. Without loss of generality,

assume that f(0) = 1. Put y,, = M}'f for n = 0,1,2,... As before we can
see that if

(1) dng €N,  span{y, :n >ne} = (3)
then
span{y, :n>ng — 1} = £, (0).

By continuing this process we can conclude that f is a cyclic vector. Note
that

i>1

Now we have

1 ny
Tl = fally = m\\;mm )

< S IR0l 8601 5
. P 1/p Bi+n) [\
< (X wersor) (Z gorall)
Bl +n) |\
< (Ziem| )
Put .
=712 % L n=012...

i>1

Thus >, ,cn < 00 and so there exists a positive integer ng such that
A= Zn>n_0 ¢n, < 1. Therefore for any finite linear combinations

¢ = chynwk, X = chfno—i-k:
k k
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we have

6= xllp = || 32 et = Fraw)]|
k

_ a\ /g
< ||x||p< 3 %) Ayl

n>no

Since {fno1k r>0 is a basis for K,,,, and 0 < A1/ < 1, it follows that (1)
holds. This completes the proof.
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