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Nevanlinna algebras

by

A. Haldimann and H. Jarchow (Zürich)

Abstract. The Nevanlinna algebras, N p
α , of this paper are the Lp variants of classical

weighted area Nevanlinna classes of analytic functions on U = {z ∈ C : |z| < 1}. They are
F -algebras, neither locally bounded nor locally convex, with a rich duality structure.

For s = (α+ 2)/p, the algebra Fs of analytic functions f : U → C such that
(1− |z|)s|f(z)| → 0 as |z| → 1 is the Fréchet envelope of N p

α . The corresponding algebra
N∞s of analytic f : U → C such that supz∈U(1 − |z|)s|f(z)| < ∞ is a complete metric
space but fails to be a topological vector space. Fs is also the largest linear topological
subspace of N∞s . Fs is even a nuclear power series space. N p

α and N q
β generate the same

Fréchet envelope iff (α+ 2)/p = (β + 2)/q; they can replace each other for quasi-Banach
space-valued continuous multilinear mappings.

Results for composition operators betweenN p
α ’s can often be translated in a one-to-one

fashion to corresponding ones on associated weighted Bergman spaces Apα. This follows
from the fact that the invertible elements in each N p

α are precisely the exponentials of
functions in Apα. Moreover, each N p

α , (α+ 2)/p ≤ 1, admits dense ideals.
Apα embeds order boundedly into Aqβ iff Aqβ contains the Bloch type space A∞(α+2)/p

iff (α+ 2)/p < (β + 1)/q. In particular,
⋃
p>0A

p
α and

⋂
p>0A

p
α do not depend on the

particular choice of α > −1. The first space is a nuclear space, a copy of the dual of the
space of rapidly decreasing sequences; the second has properties much stronger than being
a Schwartz space but fails to be nuclear.

Introduction. We discuss a class of “large” algebras of analytic func-
tions on the open unit disk U ⊂ C. These algebras, denoted by N p

α , are the
Lp variants of the usual weighted area Nevanlinna classes, defined by the
measures dσα(z) = (α + 1)(1− |z|2)1/α dσ(z), α > −1, σ being normalized
area measure on U. The N p

α are F -algebras, which we refer to as Nevanlinna
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at the University of Zürich under the supervision of the second.

[243]



244 A. Haldimann and H. Jarchow

algebras. They fail to be locally pseudoconvex and so are neither locally
bounded nor locally convex. But each N p

α has a separating dual since point
evaluations are continuous.

The bidual of N p
α turns out to be the “Fréchet envelope” of N p

α , i.e., the
completion of N p

α with respect to the finest locally convex topology which is
coarser than the original one; see [21]. This Fréchet envelope can be looked
at as a “(p =∞)-case” of Nevanlinna algebras: it can be identified with the
space Fs of analytic functions f : U → C such that lim|z|→1(1−|z|)s|f(z)| =
0, where s = (α+ 2)/p. The corresponding space N∞s of analytic functions
f : U→ C such that supz∈U(1−|z|)s|f(z)| <∞ is also an algebra. It carries
a canonical complete metric such that addition is continuous but scalar
multiplication is not. The rôle of Fs as the “locally convex hull” of N p

α is
complemented by the property of being a “linear topological kernel”: as in
the case of the classical Smirnov and Nevanlinna classes, Fs is the largest
linear subspace of N∞s which is a topological vector space with respect to
the induced metric. It is a locally convex space, even a specific nuclear power
series space of finite type. N p

α and N q
β generate the same Fréchet envelope

if and only if (α+ 2)/p = (β + 2)/q, in which case they can be replaced by
each other when dealing with quasi-Banach space valued continuous (multi-)
linear mappings.

We also generalize several recent results on composition operators be-
tween the function spaces under consideration (cf. [5], [19], [21], [41]). We
show that, for some important cases, results for composition operators be-
tween Nevanlinna algebras N p

α translate in a one-to-one fashion to corre-
sponding ones between the associated weighted Bergman spaces Apα. This
follows from the fact that the invertible elements in each N p

α are precisely
the exponentials of functions in Apα. Another algebraic feature of Nevanlinna
algebras N p

α is that they admit, at least for (α+ 2)/p ≤ 1, dense (maximal)
ideals and so fail to be Q-algebras.

Applying this to formal identities between the spaces under discussion,
we deduce that Apα embeds into Aqβ in an order bounded fashion iff Aqβ
contains the Bloch type space A∞(α+2)/p (definitions below) iff (α+ 2)/p <
(β+ 1)/q. In particular, neither

⋃
p>0Apα nor

⋂
p>0Apα depends on the par-

ticular choice of α > −1. The first one is a nuclear space, in fact a copy of
the dual of the space of rapidly decreasing sequences, whereas the second
fails to be nuclear, though it has much stronger properties than just being
a Schwartz space.

Nevanlinna algebras. We denote by U the open unit disk {z ∈ C :
|z| < 1} in the complex plane. The space H of all analytic functions f :
U → C is a Fréchet space with respect to the topology of local uniform
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convergence (= uniform convergence on compact subsets of U). We will be
interested in certain “big” subspaces of H.

Let σ be normalized area measure on U; so dσ(x+ iy) = π−1dxdy. For
each α > −1, a (Borel) probability measure on U is given by

dσα(z) := (α+ 1)(1− |z|2)αdσ(z).

For 0 < p < ∞, we denote by ‖ · ‖α,p the usual norm (p-norm if p < 1)
on the Lebesgue space Lp(σα). The corresponding weighted Bergman space
Apα consists of all f ∈ H which define an element of Lp(σα); briefly, Apα :=
H∩Lp(σα). With respect to the induced (p-) norm ‖ · ‖α,p, this is a Banach
space (a p-Banach space when 0 < p < 1).

Normalized Lebesgue measure on the unit circle T = ∂U will be denoted
by m; so dm = dt/(2π). The Hardy space Hp consists of all f ∈ H such
that supr<1

�
T |f(·)|p dm is finite (0 < p < ∞). Hp is a (p-) Banach space,

the (p-) norm being given by the pth root of the above expression. It is well
known that, for f ∈ Hp, f̃(ζ) = limr→1− f(rζ) exists for m-almost all ζ ∈ T,
and that f 7→ f̃ allows us to consider Hp as a closed subspace of Lp(m).

TheH2-functionsw 7→ k(z, w) := (1−zw)−1, z ∈ U , satisfy (k(z, ·) | f) =
f(z) for all f in H2 [here (·|·) is the scalar product of H2]. The function k is
the reproducing kernel of H2. Each of the Hilbert spaces A2

α, α > −1, has
a reproducing kernel as well, namely kα+2. Accordingly, we shall also write
Ap−1 instead of Hp, and σ−1 instead of m.

Nevanlinna algebras are the “logarithmic analogues” of the above
weighted Bergman spaces. Given α > −1 and 0 < p < ∞, let Lplog(σα)
be the space of all (equivalence classes of) σα-measurable functions on U
such that

|||f |||α,p :=
( �

U
[log(1 + |f |)]p dσα

)1/p

is finite. This is an F -space (complete, metrizable topological vector space).
A defining F -norm on Lplog(σα) is given by ||| · |||α,p if 1 ≤ p < ∞, and by
||| · |||pα,p if 0 < p < 1. The canonical embedding of Lplog(σα) into the usual
F -space L0(σα) of all (equivalence classes of) Borel measurable functions
is continuous. [Lplog(σα), ||| · |||α,p] is also an F -space. Since log(1 + st) ≤
log(1+s)+log(1+t) for all s, t ≥ 0, it is an algebra with respect to pointwise
multiplication. This multiplication is (jointly) continuous: our F -space is an
F -algebra. An F -space whose topology is locally convex will be called a
Fréchet space. We refer to [20] for details on these and related concepts.

Our main interest is in the space

N p
α := H ∩ Lplog(σα) (α > −1)

with the induced F -norm ||| · |||α,p. For the time being, we require 1 ≤ p <∞
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since we need subharmonicity of [log(1+ |f |)]p. It is readily verified that N p
α

is a closed subalgebra of Lplog(σα) and so it is also an F -algebra. Polynomials
are dense in N p

α , so that N p
α can also be seen as the closure of the usual disk

algebra in Lplog(σα).
Incorporation of α = −1 requires some care. We want to say that f ∈

H belongs to N p
−1 if supr→1−(

�
T log(1 + |f(rζ)|)p dm(ζ))1/p is finite and

that this expression equals the F -norm of f as an element of Lplog(dm). No
problems occur if 1 < p < ∞; see M. Stoll [39]. If p = 1, then the natural
choice for N 1

−1 is the Smirnov class rather than the usual Nevanlinna class.
Recall (e.g. from P. Duren [12]) that f ∈ H belongs to the Nevanlinna class
N if supr<1

�
T log(1 + |f(rζ)|) dm(ζ) is finite. In this case, boundary values

f̃(ζ) = limr→1− |f(rζ)| exist for m-almost all ζ ∈ T; they define an element
f̃ of L1

log(m). The function f belongs to the Smirnov class N+ if the F -norm

of f̃ in L1
log(m) equals supr<1

�
T log(1+ |f(rζ)|) dm(ζ). It is well known that

N+ is properly contained in N ; in fact, N fails to be a topological vector
space in the canonical metric, whereasN+ is the largest subspace ofN which
is a topological vector space with respect to this metric; see J. H. Shapiro
and A. L. Shields [36].

For 1 < p < ∞, the N p
−1 are the Hardy–Orlicz spaces of [39]. The N 1

α,
α > −1, are known as area Nevanlinna classes. We call a Nevanlinna algebra
each of the N p

α ’s, α ≥ −1, 1 ≤ p <∞; we also say that N p
α is the Nevanlinna

algebra which corresponds to Apα.
Later on, we will briefly indicate how our methods can be used to extend

the definition of N p
α to 0 < p < 1, essentially preserving what is discussed

in this paper for p ≥ 1.

The case p = ∞. An important rôle will be played by L∞ versions
of the above spaces. H∞ is the usual Banach space of bounded analytic
functions U → C. Given s > 0, we denote by A∞s the “Bloch type space”
consisting of all f ∈ H such that

‖f‖∞s := sup
z∈U

(1− |z|2)s|f(z)| <∞.

With ‖ ·‖∞s as a norm, this is a Banach space. The functions f in A∞s which
satisfy lim|z|→1−(1−|z|2)s|f(z)| = 0 form a closed subspace of A∞s which we
denote by A∞s,0. Again we will be interested in the “logarithmic analogues” of
these spaces.N∞s is the space of all f ∈ H such that supz∈U (1−|z|2)s log(1+
|f(z)|) < ∞. The subspace N∞s,0 consists of all f ∈ N∞s such that even
lim|z|→1−(1− |z|2)s log(1 + |f(z)|) = 0.

Let M(f, r) := max|z|=r |f(z)| (0 ≤ r < 1) be the usual maximal func-
tion of f ∈ H. Clearly, f belongs to A∞s iff supr<1(1 − r)sM(f, r) < ∞.
Analogously for A∞s,0, N∞s , and N∞s,0.
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It is readily seen that if we put

|||f |||s,∞ := sup
z∈U

(1− |z|2)s log(1 + |f(z)|)

then (f, g) 7→ |||f − g|||s,∞ defines a complete, translation invariant metric
on N∞s . But ||| · |||s,∞ fails to be an F -norm; there are functions f ∈ N∞s
such that (|||n−1f |||s,∞)n∈N does not converge to zero. For example, f(z) =
exp((1 − z)−s) is in N∞s \ N∞s,0, and if we choose 0 < rn < 1 such that
exp((1− rn)−s) = n2, then |||n−1f |||s,∞ ≥ (1− rn)s log(n + 1) ≥ 1/2 for all
n ∈ N.

Inside N∞s , the space N∞s,0 takes the rôle of the Smirnov class N+ inside
the Nevanlinna class N :

Theorem 1. N∞s,0 is the largest linear subspace of N∞s which is a topo-
logical vector space in the induced topology ; it is actually an F -space.

Proof. As is readily seen, G := {f ∈ N∞s : limt→0 |||t · f |||s,∞ = 0}
is the largest linear subspace of N∞s which is a topological vector space
with respect to the induced topology, and that it is complete (compare L.
Drewnowski [11], M. Nawrocki [29]). So all we have to show is that G and
N∞s,0 coincide.

Let f ∈ N∞s,0 and ε > 0 be given. Let R ∈ (0, 1) be such that
(1 − |z|2)s log(1 + |f(z)|) < ε for all R < |z| < 1. Then (1 − |z|2)s

× log(1 + n−1|f(z)|) < ε for all R < |z| < 1 and all n ∈ N. By compactness
of R · U , we can find nε ∈ N such that (1− |z|2)s log(1 + n−1|f(z)|) < ε for
|z| ≤ R and n ≥ nε. It follows that f is in G.

Suppose now that f belongs to G. Fix ε > 0 and choose an integer
N ≥ 2 such that (1− r)s log(1 +N−1M∞(r, f)) < ε for all 0 < r < 1. Then
(1− r)s log+M∞(r, f) < ε+ (1− r)s logN for all r. If we choose 0 < R < 1
so that (1 − R)s log N < ε, then (1 − r)s log+M∞(r, f) < 2ε for r ≥ R,
hence (1−r)s log(1+M∞(r, f)) ≤ (1−r)s[log 2+log+M∞(r, f)

]
< ε (since

N ≥ 2). This shows that f is in N∞s,0.

In order to conform with established notation, we write from now on Fs
instead of N∞s,0. It was shown by M. Stoll [39] that Fs is even an F -algebra.
He also obtained the next result (Theorem 2.2(a)⇔(c) in [39]); we state it
as a lemma in a slightly modified fashion:

Lemma A. An analytic function f(z) =
∑∞
n=0 anz

n on U belongs to Fs
if and only if its Taylor coefficients an satisfy

∑∞
n=0 |an|2 exp(−ns/(s+1)/k)

<∞ for all k ∈ N.

For each c > 0, let Fs,c be the space of all sequences (an)n ∈ CN0 such
that

qc((an)n) :=
( ∞∑

n=0

|an|2 exp(−cns/(s+1))
)1/2

<∞.
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Fs,c is a Hilbert space with norm qc. Via (an)n 7→
∑∞
n=0 anz

n, each Fs,c can
be considered as a linear subspace of H.

If 0 < c < d, then Fs,c is a (dense) linear subspace of Fs,d and the
embedding is a nuclear (= trace class) operator. Consequently,

Fs =
⋂

c>0

Fs,c =
⋂

k∈N
Fs,1/k

is a nuclear Fréchet space with respect to the corresponding projective limit
topology, a so-called nuclear power series space of finite type ([20, Ch. 21]).

Note that we get the usual representation of H as a sequence space if we
take s =∞.

The arguments used to prove (c)⇒(a) of Theorem 2.2 in [39] yield

N∞s =
⋃

c>0

Fs,c =
⋃

k∈N
Fs,k

(compare also [29, p. 170]). Consequently, N∞s is a topological vector space
with respect to the corresponding natural topological inductive limit topol-
ogy; this topology is locally convex ([15, p. 164]) since we even deal with
the inductive limit of a sequence of Hilbert spaces with nuclear linking map-
pings. With this topology, N∞s is reflexive; it is in fact the strong dual of
the “nuclear power series space of infinite type”

⋂
k∈N F

∗
s,k. Here F ∗s,k con-

sists of all sequences (an)n∈N such that an = O(exp(−kns/(s+1))), k ∈ N.
The existence of this topology, together with a general version of the closed
graph theorem ([20, 5.5.4]), provides another proof of the fact that ||| · |||s,∞
cannot be an F -norm on N∞s .

It is easy to see that each N p
α embeds continuously into F(α+2)/p. We

will see below that relations between these algebras are in fact much tighter.
But first we take a look at some algebraic properties of Nevanlinna al-

gebras.

On the algebras N p
α. By a result of N. Mochizuki [28], each of the

algebrasN p
−1, 1 < p <∞, admits dense (maximal) ideals [ideals are assumed

to be non-trivial]. By a different argument this can be extended to the
algebras N p

α and F(α+2)/p for suitably chosen α and p.

Proposition 1. Let α>−1 and 1≤ p<∞ be such that (α+ 2)/p≤ 1.
Then the F -algebras N p

α and F(α+2)/p contain dense ideals.

Proof. Put s = (α+ 2)/p. Since s ≤ 1, f(z) := (1 − z)−s has positive
real parts and so ϕ := e−f belongs to H∞. As before (Theorem 1), 1/ϕ is a
member of N∞s but not of Fs = N∞s,0 and, a fortiori, not of N p

α .
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We use the well-known fact that f is in Hr for any 0 < r < 1/s and
apply a result of J. Bourgain [4, Proposition 1.6]. Accordingly, there are a
constant C = C(r) and, for each λ > 0, functions g, h ∈ Hr such that

f = g + h, |g|, |h| ≤ C|f |, |g| ≤ Cλ,
( �

T
|h|r dm

)1/r
≤ C

( �

{|f |>λ}
|f |r dm

)1/r
.

Fix ε > 0 and choose λ so large that the right hand side in the last expression
is≤ ε. Note that γ := exp(g) belongs toH∞. LetX beN p

α or F(α+2)/p. Since
Hr embeds canonically into X we have ‖ϕγ−1‖X ≤ ‖h‖α,p ≤ ‖h‖Hr ≤ ε. So
ϕ admits an “approximative inverse” in X ([28]), and so the ideal generated
by ϕ is dense in X. The ideal is proper since 1/ϕ does not belong to X.

A modification of the preceding argument yields another proof of
Mochizuki’s result mentioned above (the case α = −1, 1 < p < ∞). We
do not know whether the proposition is also valid if (α+ 2)/p > 1.

If a commutative F -algebra admits no (proper) dense ideals then it is
obviously a Q-algebra: its invertible elements form an open subset. So the
algebras N p

α and F(α+2)/p provide examples for non-Q-algebras, the latter
being locally convex and even nuclear.

It is well known that the invertible elements in the Smirnov class N 1
−1 =

N+ are just the outer functions. By [39], the invertible elements in N p
−1,

1 < p < ∞, are precisely the exponentials of functions in Hp. This carries
over to Nevanlinna algebras:

Proposition 2. Suppose that α > −1 and 1 ≤ p < ∞. Then f ∈ N p
α

is invertible if and only if f = eg for some g ∈ Apα.

Proof. It is clear that if g is in Apα, then eg is invertible in N p
α . Let

conversely f ∈ N p
α be invertible. Then f does not vanish, hence f = eg for

some g ∈ H. Writing g = u+ iv with R-valued harmonic functions u and v
we get

∞ > |||f |||pα,p =
�

U
[log(1 + eu)]p dσα ≥

�

{u≥0}
|u|p dσα.

Similarly, ∞ >
�
U[log(1 + 1/|f |)]p dσα ≥

�
{u≤0} |u|p dσα, hence u ∈

Lp(σα). Since α > −1 this implies that v also belongs to Lp(σα) [27], and
so g is a member of Apα.

However, we do not have a characterization of the invertible elements
in Fs.

By results of J. W. Roberts and M. Stoll [32] and N. Mochizuki [28], the
closed maximal ideals in N p

−1 (1 ≤ p < ∞) are precisely the kernels of the
point evaluations f 7→ f(z), z ∈ U. This extends to the algebras Fs (see
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[27, Theorem 2]), but we do not know if such a result is also true for the
algebras N p

α for α > −1 and 1 ≤ p <∞.

Multipliers. We start by extending results which are known for scalar-
valued function spaces [21], and in the vector-valued case for α = −1, 0
(cf. [14]). The common strategy employed in these papers originates in the
work of N. Yanagihara [42] who had settled the case of the scalar-valued
Smirnov class in 1973. The desired close ties between N p

α and F(α+2)/p are
derived from a characterization of multipliers from these spaces into “small”
ones, and even into “small” spaces of analytic functions with values in a
quasi-Banach space. The announced extension is obtained by combining such
results with a construction which is based on a lemma due to E. Beller [3]
(see Lemma C below).

Let X be a quasi-Banach space. Following N. Kalton [24] we say that a
function f : U→ X is analytic if there is a sequence (xn) in X such that

(∗) f(z) =
∞∑

n=0

xnz
n for all z ∈ U.

Here xn = f (n)(0)/n!, as usual. By the Aoki–Rolewicz theorem, every quasi-
Banach space can be renormed to be an r-Banach space for some 0<r≤ 1.
This simplifies working with series like (∗). The analogue of Cauchy’s theo-
rem, however, may fail if X cannot be given an equivalent norm, and non-
analytic, differentiable functions U→ X may exist ([1], [40]).

The analytic functions U → X form a linear space, H(X), which is an
F -space with respect to local uniform convergence. For each 0 < p <∞, let
Apα(X) consist of all f ∈ H(X) such that ‖f(·)‖ is in Lp(σα).

More function spaces will be needed. The first one is A(X), the X-valued
analogue of the disk algebra; it consists of all f ∈ H(X) admitting a continu-
ous extensionU→X. The second is the spaceWq(X), 0<q≤ 1, consisting of
all f ∈ H(X) which have a representation (∗) such that

∑∞
n=0 ‖xn‖q < ∞,

‖ · ‖ being a defining r-norm on X. In a canonical fashion, Apα(X) is an
s-Banach space for s = p ∧ r, A(X) is an r-Banach space with respect to
uniform convergence on U, and Wq(X) is an s-Banach space for s = q ∧ r.
If F is any of the spaces Apα, A, Wq, then ‖ · ‖F (X) will denote the canonical
quasinorm on F (X).

Suppose in addition that E is any of the F -spaces of analytic scalar-
valued functions considered here. Given a quasi-Banach space X, let us
denote by [[E,F (X)]] the collection of all sequences (xn)∞n=0 in X such that∑∞
n=0 anz

nxn belongs to F (X) whenever
∑∞
n=0 anz

n belongs to E. This is
a linear space; its elements are called (coefficient) multipliers from E into
F (X). By the Closed Graph Theorem, each (xn) ∈ [[E,F (X)]] defines a
continuous linear operator Λ : E → F (X) :

∑∞
n=0 anz

n 7→∑∞
n=0 a

nznxn.
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The following theorem is of fundamental importance. Fix −1 ≤ α < ∞
and 1 ≤ p <∞.

Theorem 2. For every sequence (xn) in a quasi-Banach space X the
following statements are equivalent :

(i) (xn) ∈ [[N p
α,A(X)]].

(ii) (xn) ∈ [[N p
α,Wq(X)]] for some (and then every) 0 < q ≤ 1.

(iii) There are constants C, c > 0 such that

‖xn‖ ≤ C exp[−cn(α+2)/(α+2+p)].

If X is even a Banach space, the following statements can be added :

(iv) (xn) ∈ [[N p
α,Aqβ(X)]] for some β ≥ −1 and some 0 < q ≤ ∞.

(v) (xn) ∈ [[N p
α,Aqβ(X)]] for all β ≥ −1 and all 0 < q ≤ ∞.

This was obtained by C. M. Eoff [14] for α = −1, 0. For scalar-valued
functions, the theorem was proved in [21].

Results of this kind are derived from precise information about the Tay-
lor coefficients of the members of our function spaces. Such information
is provided by the following series of lemmas. The first one is taken from
[17, Lemma B].

Lemma B. Let α > −1 and 1 ≤ p < ∞. If f(z) =
∑∞
n=0 anz

n belongs
to N p

α , then

an = O(exp[o(n(α+2)/(α+2+p))]) (n = 0, 1, . . .).

The next result is due to E. Beller [3, Lemma 2].

Lemma C. Let a > 0 and r0 > 0 be given. Define f(z) =
∑∞
n=0 anz

n by
f(z) = exp[r/(1−z)a] for 0 < r ≤ r0. Then there exist constants K and C,
depending only on a and r0, such that

an ≥ K exp[Cna/(a+1)] for all n ∈ N0.

Note that the an’s are indeed positive.
For Banach space valued functions, we may state:

Lemma D. Let X be a Banach space. Given β ≥ −1 and 0 < q < ∞,
there exists a constant C = C(X,β, q) such that if g(z) =

∑∞
n=0 xnz

n

belongs to Aqβ(X), then

‖xn‖ ≤ C‖g‖β,qn(β+2)/q for all n ∈ N.
This is well known in the scalar case (see e.g. Lemma B.5 in W. Smith

[38]). The Banach space case can be obtained either by working with the
weak topology of X, or else by repeating the proof with absolute values
replaced by norms.
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No analogue of Lemma D seems to be available for functions with values
in a quasi-Banach space. However, thanks to the following result of N. Kalton
[24, Theorem 6.1], a partial generalization, sufficient for our purposes, does
exist.

Lemma E. Let X be an r-Banach space. Then there are constants γ > 0
and C = C(X) > 0 such that if g =

∑∞
n=0 xnz

n belongs to A(X) then

‖xm‖ ≤ Cmγ‖g‖A(X) for all m ∈ N.
Theorem 2 can now be proved essentially by adjusting the arguments

given in [21]. For the sake of completeness, we include the details.

Proof of Theorem 2. For convenience, we confine ourselves to the case
α > −1. Up to natural (notational) changes, the same arguments work for
α = −1.

(i)⇒(iii). Consider the function

f(s)(z) = exp
[
c(1− s)(α+2)/p

(1− sz)2(α+2)/p

]
− 1 where 0 < s < 1 and c > 0.

By [43, Lemma 4.2.2] there is a constant K0 = K0(α) such that

|||f(s)|||pα,p =
�

U
[log(1 + |f(s)|)]p dσα ≤ cp

�

U

(1− s)α+2

|1− sz|2(α+2)
dσα(z)

= cp(α+ 1)(1− s)α+2
�

U

(1− |z|2)α

|1− sz|2α+4 dσ(z) ≤ cpKp
0 .

Let Λ : N p
α → A(X) be the multiplier induced by (xn). By continuity,

there is a C > 0 such that ‖Λ(g)‖A(X) ≤ 1 whenever g ∈ N p
α satisfies

|||g|||α,p ≤ C. Hence, if we choose c ≤ C/K0 in the definition of f(s), then
‖Λ(f(s))‖A(X) ≤ 1 for all 0 < s < 1.

Put now R := c(1− s)(α+2)/p and consider the function

f(z) = exp
[

R

(1− z)2(α+2)/p

]
− 1.

Clearly, f(s)(z) = f(sz), so that if we write f(s)(z) =
∑∞
n=0 an,sz

n and
f(z) =

∑∞
n=0 cnz

n, then an,s = sncn for all n ∈ N0. We know from Lemma
C that the an,s are positive and that

an,s ≥ C1s
n exp[L(1− s)(α+2)/(2α+4+p)n(2α+4)/(2α+4+p)]

where L = cp/(2α+4+p)(p/(2α+ 4))(2α+4)/(2α+4+p) and C1 is a constant.
Choose 0 < b, d < 1 such that d < b < (L/2)d(α+2)/(2α+4+p), and then

N0 ∈ N so large that b ≤ (3/4)N θ
0 where θ = p/(α + 2 + p). For N ≥ N0

and s satisfying dN−θ ≤ 1 − s ≤ bN−θ we get (using once more the fact
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that 1− t > e−2t for 0 < t ≤ 3/4)

aN,s ≥ C1(1− bN−θ)N exp[L(dN−θ)(α+2)/(2α+4+p)N (2α+4)/(2α+4+p)]

≥ C1 exp[−2bN1−θ + L(α+2)/(2α+4+p)N (α+2)/(α+2+p)]

= C1 exp[C2N
(α+2)/(α+2+p)];

here C2 := Ld(α+2)/(2α+4+p) − 2b (> 0).
Lemma E provides us with constants C3, λ > 0 such that ‖an,sxn‖ ≤

C3n
λ for all n and s. It follows that

‖xN‖ ≤
C3

C1
Nλ exp[−C2N

(α+2)/(α+2+p)] for N ≥ N0,

whence our claim.
(iii)⇒(ii). Assume that f(z) =

∑∞
n=0 anz

n is in N p
α . By Lemma B, there

are a constant C ′ and a null sequence of positive numbers bn such that
|an| ≤ C ′ exp[bnn(α+2)/(α+2+p)] for all n. It follows that

∞∑

n=0

‖anxn‖q ≤ CC ′
∞∑

n=0

exp[q(bn − c)n(α+2)/(α+2+p)] <∞.

Since (ii)⇒(i) is trivial, we are done.

The Banach space parts of Theorem 2 can be obtained similarly, using
Lemma D instead of Lemma E. Alternatively, duality can be applied to
derive them directly from the results on scalar-valued function spaces in [21].

Duality. Now we are in a position to clarify the relations between
spaces N p

α and F(α+2)/p (α ≥ −1, 1 ≤ p < ∞). Recall that F(α+2)/p
is
⋂
k∈N Fα,1/k where Fα,1/k consists of all sequences (an) in C such that

qk((an)) =
∑∞
n=0 |an|2 exp[−(1/k)n−(α+2)/(α+2+p)] <∞ (k ∈ N). It follows

that

(◦) F ∗(α+2)/p =
⋃

k∈N

{
(an) :

∞∑

n=0

|an|2 exp[(1/k)n(α+2)/(α+2+p)] <∞
}
.

It was shown in [21] that Theorem 2 (for scalar-valued functions) yields:

Corollary 1. If α ≥ −1 and 1 ≤ p <∞, then:

(a) N p
α embeds continuously and densely into F(α+2)/p.

(b) The duals of N p
α and of F(α+2)/p coincide and can be identified

with the space of all g ∈ H whose Taylor coefficients bn satisfy bn =
O (exp[−c n(α+2)/(α+2+p)]) for some c > 0. The action of g on f(z) =∑∞
n=0 anz

n in N p
α is given by

〈g, f〉 = lim
r→1−

2π�

0

g(reit)f(re−it)
dt

2π

(
=
∑

n

anbn

)
.
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(c) F(α+2)/p induces on N p
α the Mackey topology µ(N p

α, (N p
α)∗).

(d) F(α+2)/p is the Fréchet envelope of N p
α.

(e) F(α+2)/p is the bidual of N p
α.

Note that (d) complements the result that F(α+2)/p is the “linear topo-
logical kernel” of N(α+2)/p (Theorem 1).

A few remarks are in order. It is clear that N p
α is barrelled (see [20], 11.1)

under the Mackey topology µ(N p
α, (N p

α)∗), which therefore coincides with
the strong topology β(N p

α, (N p
α)∗). Moreover, identifying (F(α+2)/p)∗ and

(N p
α)∗, we refer in (e) to the strong topology β((N p

α)∗, F(α+2)/p). It coincides
with β((N p

α)∗, E) for every dense linear topological subspace E ⊂ F(α+2)/p

([20], 9.4.2), e.g. for E = [N p
α , µ(N p

α, (N p
α)∗)]. Being nuclear, F(α+2)/p is

reflexive: the strong dual of [(N p
α)∗, β((N p

α)∗, F(α+2)/p)] is F(α+2)/p. If τ de-
notes the original topology of the F -space N p

α then, by metrizability, subsets
of N p

α must exist which are bounded for µ(N p
α, (N p

α)∗) and unbounded for τ .
We do not have a satisfactory characterization of τ -bounded subsets of N p

α ,
and we do not know what the dual of [(N p

α)∗, γ] is when γ is the topology
of uniform convergence on τ -bounded subsets of N p

α .
It follows from Corollary 1 that N p

α cannot be locally bounded: other-
wise F(α+2)/p would be a nuclear Banach space and so finite-dimensional.
N p
α cannot be locally convex either; there are in fact various possibilities

to see that N p
α is a proper subset of F(α+2)/p. We shall provide a “soft”

argument below (Corollary 6).
Again by Corollary 1, if X is a Banach space (or just a complete locally

convex space), then every continuous linear map N p
α → X admits a unique

extension to a continuous linear map F(α+2)/p → X. Theorem 2 yields more:

Theorem 3. Let α1, . . . , αn ≥ −1 and 1 ≤ p1, . . . , pn < ∞ be given
(n ∈ N), and let X be a quasi-Banach space. Then every continuous n-linear
map b : N p1

α1
× . . . × N pn

αn → X has a (unique) extension to a continuous
n-linear map b̃ : F(α1+2)/p1 × . . .× F(αn+2)/pn → X.

This relies on the following lemma which generalizes Propositions 4.5
and 4.6 in C. M. Eoff’s paper [14]. The proof is entirely similar and is
therefore omitted.

Lemma F. Let X be a quasi-Banach space and u : N p
α → X a lin-

ear map, where α ≥ −1 and 1 ≤ p < ∞. For u to be continuous it
is necessary and sufficient that (uzn)n belongs to [[N p

α,A(X)]] and that
u(f) =

∑∞
n=0 anu(zn) converges in X for each f(z) =

∑∞
n=0 anz

n in N p
α.

Here zn is used to denote the monomial z 7→ zn.

Proof of Theorem 3. We start by looking at the case n = 1. Let
u : N p

α → X be linear and continuous. By Lemma F, the xn := u(zn)
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form a sequence in [[N p
α,A(X)]]. By Theorem 2, there are constants C and c

such that ‖xn‖ ≤ C exp[−cn(α+2)/(α+2+p)] for all n. We conclude that, for
appropriately chosen C ′ > 0 and k ∈ N,

‖uf‖r ≤
∞∑

n=0

|an|r‖xn‖r

≤ C
∞∑

n=0

|an|r exp(−crn(α+2)/(α+2+p)) ≤ C ′qk((an)n)r

whenever f(z) =
∑∞
n=0 anz

n is in N p
α . Therefore u extends uniquely to a

continuous linear map ũ : F(α+2)/p → X.
Note that this implies that if (Un) is a 0-basis in N p

α and 0 < q ≤ 1 then
the q-convex hulls of Un form a 0-basis for µ(N p

α, (N p
α)∗).

Using this, we can settle the case n ≥ 1 by induction. For notational
convenience, we just treat the bilinear case.

Let us write Nj = N pj
αj and Fj = F(αj+2)/pj , j = 1, 2. Let b : N1 × N2

→ X be bilinear and continuous, X a q-Banach space. Let U1, U2 be 0-
neighbourhoods in N1 resp. N2 such that b(U1 × U2) ⊂ BX . By the above
remark, the q-convex hull Û2 of U2 is a 0-neighbourhood for the Mackey
topology, µ2, of N2. By q-convexity of BX we have b(U1 × Û2) ⊂ BX , so
that b is continuous as a map N1 × [N2, µ2]→ X.

Now µ2 is the topology which N2 inherits from F2. As we know, F2 =⋂
k∈NGk with Banach spaces Gk each of which contains F2 densely and

whose norms, ‖·‖k, generate the topology of F2. Accordingly, there is a k ∈ N
such that Û2 contains some multiple, Vk say, of N2 ∩BGk . From b(U1 × Vk)
⊂ BX we conclude that ub : N1 → L([N2, ‖ · ‖k],X) : f1 7→ (f2 7→ b(f1, f2))
is well defined, linear and continuous if we endow L([N2, ‖ · ‖k],X) with its
canonical q-norm. Since N2 is dense in Gk, the latter space can be identified
with the q-Banach space L(Gk,X), and so ub appears as a continuous linear
map N1 → L(Gk,X). By the first part, it has a unique continuous linear
extension ũb : F1 → L(Gk,X). The restriction of F1 ×Gk → X : (f1, f2) 7→
ũb(f1)(f2) to F1×F2 is the continuous bilinear extension of β we are looking
for.

Let b be as in Theorem 3. Nuclearity of the F(αj+2)/pj implies that b has
the form

b(f1, . . . , fn) =
∞∑

k=1

λk〈g(1)
k , f1〉 . . . 〈g(n)

k , fn〉zk (f1 ∈ N p1
α1
, . . . , fn ∈ N pn

αn ),

where each of the sequences (g(j)
k )k is equicontinuous in (N pj

αj )∗ (1 ≤ j ≤ n),
(zk)k is bounded in X, and (λk)k is taken from `r. It follows that b̃ can
be extended further to a continuous n-linear map E1 × . . . × En → X
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provided each Ej is a Hausdorff locally convex space containing F(αj+2)/pj
as a subspace. Analogously for polynomials.

Taking n = 1, we obtain a slight improvement of what was already used
in the proof of Theorem 3:

Corollary 2. (a) Let (Un) be a 0-basis in N p
α and let (sn) be any

sequence in (0, 1]. For each n ∈ N, let Vn be the sn-convex hull of Un.
Then (Vn)n is a 0-basis for the Mackey topology µ(N p

α, (N p
α)∗).

(b) The space N p
α fails to be “locally pseudoconvex”: it cannot be repre-

sented as a projective limit of quasi-Banach spaces.

It follows that if a locally pseudoconvex space is isomorphic to a quo-
tient of N p

α , then it is locally convex and nuclear. In particular, no infinite-
dimensional quasi-Banach space can be isomorphic to a quotient of N p

α . On
the other hand, we do not know if there is an infinite-dimensional quasi-
Banach space which is isomorphic to a subspace of N p

α .
As we shall see later, there is, however, “enough room” to embed power

series spaces Fs continuously into N p
α , for a precise range of parameters s

(Corollary 10).
As another consequence of Corollary 1 we may state:

Corollary 3. (a) The algebras N p
α and N q

β have the same Fréchet
envelope if and only if (α+ 2)/p = (β + 2)/q.

(b) If (α+ 2)/p = (β + 2)/q, then every continuous linear map from N p
α

to a complete locally pseudoconvex space X gives rise to a unique continuous
linear map N q

β → X, and conversely. Accordingly , the corresponding spaces
of continuous linear mappings can be identified :

L(N p
α ,X) ∼= L(F(α+2)/p,X) ∼= L(N q

β ,X).

More generally, if α1, . . . , αn, β1, . . . , βn ≥ −1 and 1 ≤ p1, . . . , pn,
q1, . . . , qn <∞ (n ∈ N) are such that (αk + 2)/pk = (βk + 2)/qk, 1 ≤ k ≤ n,
then Theorem 3 leads to the natural identification of the corresponding
spaces of continuous n-linear mappings:

Ln(N p1
α1
× . . .×N pn

αn ;X) ∼= Ln(N q1
β1
× . . .×N qn

βn
;X).

The case p < 1. The results obtained so far can be used to introduce
Nevanlinna algebras with analogous properties also for p < 1. We have seen
that N p

α and N 1
α′ generate the same dual whenever α, α′ ≥ −1, 1 ≤ p <∞

and α′ + 2 = (α+ 2)/p. If 0 < p < 1, then we define, with the same choice
of α′,

N p
α := Lplog(σα) ∩ N 1

α′ .

An F -norm ||| · |||•α,p is obtained on N p
α by

|||f |||•α,p := max {|||f |||pα,p, |||f |||α′,1}.
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Plainly, N p
α is an F -algebra with respect to this F -norm and embeds con-

tinuously into N 1
α′ . Using this and Lemma B, we get:

• if f =
∑∞
n=0 anz

n belongs to N p
α then an =O(exp[o(n(α+2)/(α+2+p))]).

Moreover, Lemmas C and E allow us to extend Theorems 2 and 3 in a
straightforward manner. In particular, if α, β ≥ −1 and 0 < p, q <∞, then

• N p
α embeds continuously and densely into F(α+2)/p;

• the duals of N p
α and of F(α+2)/p coincide;

• F(α+2)/p induces on N p
α the Mackey topology µ(N p

α , (N p
α)∗);

• F(α+2)/p is the Fréchet envelope of N p
α ;

• N p
α fails to be locally pseudoconvex;

• N p
α and N q

β have the same Fréchet envelope if and only if (α+ 2)/p =
(β + 2)/q.

The description of the dual of N p
α for 0 < p < 1 is as in (b) of Corollary 1,

and the resulting corollaries remain valid in the extended setting. Details
will be contained in [16].

In this note, however, we keep to the case p ≥ 1.

Composition operators. Let X be Apα or N p
α , α, p being arbitrary. It

is well known that every analytic map ϕ : U→ U gives rise to a continuous
linear map Cϕ : X → X : f 7→ f ◦ϕ, the composition operator induced by ϕ.
By standard arguments (see [16]), if X is an algebra N p

α , then composition
operators are just the algebra homomorphisms X → X.

We are going to look at composition operators which operate between
N p
α and N q

β (resp. Apα and Aqβ) for different (α, p) and (β, q).
In what follows, arcs will be subsets of ∂U of the form I = {z ∈ ∂U :

θ1 ≤ arg z < θ2} (θ1, θ2 ∈ [0, 2π), θ1 < θ2). Normalized length of an arc I is
|I| =

�
I
dm(z). The set

S(I) := {z ∈ U : 1− |I| ≤ |z| < 1, z/|z| ∈ I}
is the Carleson box based on I. An s-Carleson measure, s > 0, on U is a
Borel measure µ such that µ(S(I)) = O(|I|s) for all arcs I. We say that µ
is a compact s-Carleson measure if even µ(S(I)) = o(|I|s) for all arcs I.

To incorporate the “Hardy case” we need to work on U. Here we use the
same definitions, with U replaced by U. So Carleson boxes are now subsets
of U, and Carleson measures are Borel measures on U.

Let ϕ : U → U be analytic. σβ,ϕ will be the image measure σβ ◦ ϕ−1.
If β > −1 then σβ,ϕ is a Borel measure on U. If β = −1, then σβ = m is
normalized Lebesgue measure on T, and σβ,ϕ is a Borel measure on U.

The parallelism between the spaces N p
α and Apα is emphasized by the

following
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Theorem 4. Let ϕ : U → U be analytic, and let α, β ≥ −1 and
1 ≤ p ≤ q <∞.

(a) Cϕ exists as a bounded operator N p
α → N q

β if and only if σβ,ϕ is a
q(α+ 2)/p-Carleson measure.

(b) Cϕ defines a compact operator N p
α → N q

β if and only if σβ,ϕ is a
compact q(α+ 2)/p-Carleson measure.

This is a generalization of a result obtained in [23]. For convenience, we
include the essential parts of the argument.

Proof. We only treat the case β > −1; the modifications needed for the
case β = −1 are left to the reader. So our measure σβ,ϕ lives on ϕ(U) and,
for every f ∈ N q

β , we have
�
U [log(1 + |f ◦ϕ|)]q dσβ =

�
U [log(1 + |f |)]q dσβ,ϕ.

(a) Suppose that Cϕ : N p
α → N q

β is bounded. Then there is a % > 0 such
that |||Cϕf |||β,q ≤ 1 for all f ∈ N p

λ satisfying |||f |||α,p ≤ %. To show that σβ,ϕ
is a q(α+ 2)/p-Carleson measure, fix θ ∈ [0, 2π), h ∈ (0, 1], and consider the
function

fw(z) = exp
[
c

(
1− |w|2

(1− wz)2

)(α+2)/p]
− 1,

where w = (1 − h)eiθ. The constant c will be fixed below. By [43, Lem-
ma 4.2.2], there is a constant K = K(α) such that, for each w ∈ U,

|||fw|||α,p =
( �

U
[log(1 + |fw|)]p dσα

)1/p
≤ c
( �

U

(
1− |w|2
|1− wz|2

)α+2

dσα(z)
)1/p

≤ c
( �

U

(1− |z|2)α

|1− wz|2α+4 dσ(z)
)1/p

≤ cK.

If we choose c := %/K, then |||fw|||α,p ≤ % and so |||Cϕfw|||β,q ≤ 1.
Look at arcs I of sufficiently small length h. There is a constant

c0 such that if z is in S(I), then |1 − wz|−4(α+2) ≥ c0 h
−4(α+2) and

Re[(1− wz)2(α+2)] ≥ c0 h2(α+2). It follows that

log(1 + |fw(z)|) = log
∣∣∣∣ exp

[
c

(1− |w|2)α+2(1− wz)2(α+2)

|1− wz|4(α+2)

]∣∣∣∣
1/p

=
(
c(1− |w|2)α+2 Re[(1− wz)2(α+2)]

|1− wz|4(α+2)

)1/p

≥ cc20 (1− |w|2)(α+2)/p

h(α+2)/p

and so, with an appropriate constant C,
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1 ≥ |||Cϕfw|||β,q ≥
( �

S(I)

[log 1 + |fw|]q dσβ,ϕ
)1/q

≥ C

h(α+2)/p
σβ,ϕ(S(I))1/q.

We have shown that σβ,ϕ is a q(α+ 2)/p-Carleson measure.
Suppose conversely that σβ,ϕ is a q(α+ 2)/p-Carleson measure. To prove

that Cϕ maps N p
α boundedly into N q

β , we divide U into “dyadic boxes”, that
is, we consider Carleson boxes based on the members the family of all arcs
of the form

In,k :=
{
z ∈ ∂U :

2πk
2n
≤ arg z <

2π(k + 1)
2n

}
,

k = 0, 1, . . . , 2n − 1, n = 0, 1, . . .

Let Hn,k be the “inner half” of S(In,k):

Hn,k := {z ∈ S(In,k) : 1− |In,k| ≤ |z| < 1− |In,k|/2}.
Notice that these sets are pairwise disjoint and cover U. For each (n, k), let
an,k be the “center” of Hn,k in the sense that |an,k| bisects the interval of
absolute values of points in Hn,k and arg an,k bisects the interval of their
arguments. Note that |In,k| � 1 − |an,k|. Let f ∈ N p

α be given. Let a∗n,k be
a point in Hn,k where |f | attains its maximum. The disk Un,k with radius
2−(n+1) and center at a∗n,k interesects at most four of the sets Hn,k. By
subharmonicity of [log(1 + |f |)]p and since p ≤ q,

|||Cϕf |||qβ,q =
�

U
[log(1 + |f |)]q dσβ,ϕ =

∑

n,k

�

Hn,k

[log(1 + |f |)]q dσβ,ϕ

≤
∑

n,k

sup
w∈Hn,k

[log(1 + |f(w)|)]q σβ,ϕ(Hn,k)

≤ C
∑

n,k

[log(1 + |f(a∗n,k)|)]q(1− |an,k|2)q(α+2)/p

≤ C
(∑

n,k

[log(1 + |f(a∗n,k)|)]p(1− |an,k|2)α+2
)q/p

≤ C
(∑

n,k

�

Un,k
[log(1 + |f(z)|)]p(1− |z|2)α dσ(z)

)q/p

≤ C
(∑

n,k

�

Hn,k

[log(1 + |f(z)|)]p dσα(z)
)q/p

= C|||f |||qα,p;

here C denotes a constant which may change from line to line.
(b) is just the “little o” version of (a) and has a similar proof which is

based on the fact that a sequence in N p
α converges to zero iff it is bounded

and converges to zero locally uniformly. We skip the details.
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It is not clear to what extent the conditions on p and q can be relaxed.
Note that if p > q and β ≥ α then Cϕ always acts boundedly from N p

α to
N q
β : it is bounded from N p

α to itself and the canonical embedding N p
α ↪→ N p

β

is continuous.
If α, β > −1, then Cϕ : N p

α → N q
β is even compact in such a case. In

fact, combining Theorem 4 with [10, Proposition 6] and [23, Theorems 1.2
and 1.3], we may first of all state:

Corollary 4. Let ϕ : U → U be analytic, and let α, β ≥ −1 and
1 ≤ p ≤ q < ∞. Then Cϕ maps N p

α boundedly (resp. compactly) into N q
β

iff it maps Apα boundedly (resp. compactly) into Aqβ.

To get from this the above compactness statement, we need to know
that, by atomic decomposition, Arα is isomorphic to `r (compare with [6]
or [27]) and that, by Pitt’s theorem ([26, p. 208]), any operator `q → `p is
compact whenever p < q.

We also have an immediate reduction to a plain Hilbert space setting:

Corollary 5. Suppose that p ≤ q(α + 2) and define α′ by α′ + 2 =
q(α+ 2)/p. For Cϕ to exist as a bounded (resp. compact) operator N p

α→N q
α,

it is necessary and sufficient that Cϕ maps the Hilbert space A2
α′ boundedly

(resp. compactly) into the Hilbert space A2
β .

It is not hard to see that if that if α, β ≥ −1 and 1 ≤ p ≤ q < ∞, then
N p
α ⊂ N q

β (continuously) if and only if (β + 2)/q ≥ (α+ 2)/p and that the
embedding is compact if and only if (β + 2)/q > (α+ 2)/p. Formally, this
appears as a special case of the situation discussed here since formal identi-
ties can be considered as composition operators induced by the identity map
of U. Note that N p

α and N q
β can be replaced with Apα and Aqβ , respectively.

As a consequence, if α, β ≥ −1, 1 ≤ p ≤ q < ∞ and N p
α = N q

β , then
α = β and p = q. Actually, no restriction on p and q is needed.

Corollary 6. Let α, β ≥ −1 and 1 ≤ p, q < ∞. Then N p
α and N q

β

coincide only when α = β and p = q.

Proof. If N p
α = N q

β , then Apα = Aqβ by Proposition 2, and so the state-
ment follows.

This leads to the promised “soft” proof thatN p
α cannot be locally convex.

In fact, otherwise we would haveN p
α = F(α+2)/p, henceN p

α ⊂ N q
β ⊂ F(α+2)/p

and soN p
α = N q

β if we choose β, q such that (α+ 2)/p = (β + 2)/q and p < q;
this is a contradiction with Corollary 6.

Order boundedness. Let X be a quasi-Banach space and Y a subspace
of a quasi-Banach lattice L. An operator u : X → Y is called order bounded
if there is an element g ≥ 0 in L such that |uf | ≤ g for all f in BX , the
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unit ball of X. It is thus required that u maps BX into an order interval
of L. The choice of L is part of the definition; every Banach space operator
u : X → Y becomes order bounded when Y is considered as a subspace of
the Banach lattice C(K) of continuous functions on an appropriate compact
Hausdorff space K.

On the other hand, if I is an order interval in a quasi-Banach lattice L,
then the span of I, with the order inherited from L and normed by the gauge
functional of I, is a Banach lattice. It is in fact an abstract M -space and
so, by Kakutani’s theorem, isometrically isomorphic to some Banach lattice
C(K). Consequently, an order bounded operator u : X → Y , considered
as an operator with values in the given lattice L, admits a factorization

X → C(K)
j
↪→ L, j being the canonical map.

Within the setting of Banach lattices and Banach spaces, there are close
relations with absolutely summing operators; see e.g. [7, Chs. 11 & 16].
We just mention that, for arbitrary measures µ and ν, an operator L2(µ)→
L2(ν) is order bounded if and only if it is a Hilbert–Schmidt operator. Order
bounded operators with values e.g. in Aqβ (q ≥ 1) are known to be q-integral.
They are q-nuclear if the dual of the domain space has the Radon–Nikodym
property. Details can be found in [8] and [7].

Order boundedness is generalized to operators from N p
α into Aqβ or N q

β

by requiring that every 0-neighbourhood in N p
α is mapped into an order

interval in Lq(σβ), resp. Lqlog(σβ).
Order boundedness of composition operators between weighted Bergman

spaces has been investigated in [10], for example. It was shown there that,
given α, β ≥ −1, p, q ≥ 1 and ϕ : U → U analytic, Cϕ exists as an
order bounded operator Apα → Aqβ if and only if (1 − |ϕ|2)−q(α+2)/p is
σβ-integrable. The same condition characterizes order boundedness of com-
position operators between Nevanlinna algebras:

Theorem 5. Let ϕ : U→ U be analytic, and let α, β ≥ −1 and p, q ≥ 1.
Then Cϕ exists as an order bounded operator N p

α → N q
β if and only if

(1− |ϕ|2)−1 belongs to Lq(α+2)/p(σβ).

Proof. Suppose first that Cϕ : N p
α → N q

β is order bounded: for each
s > 0 there exists a gs ∈ Lqlog(σβ) such that |f(ϕ(z))| ≤ gs(z)| a.e. on U for
all f ∈ N p

α satisfying |||f |||α,p ≤ s. Given c > 0 and w ∈ U, we define

Fw(z) := exp
[
c

(
1− |ϕ(w)|2

(1− ϕ(w)z)2

)(α+2)/p]
− 1 (z ∈ U);

so Fw := fϕ(w) in the notation used in the proof of Theorem 4. Accordingly,
there is a constant K = K(α) > 0 such that |||Fw|||α,p ≤ cK. We put c = s/K
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so as to have |||Fw|||α,p ≤ s, hence

gs(z) ≥ |Fw(ϕ(z))| =
∣∣∣∣ exp

[
c

(
1− |ϕ(w)|2

(1− ϕ(w)z)2

)(α+2)/p]
− 1
∣∣∣∣.

In particular, gs(w) ≥ exp[c((1− |ϕ(w)|2)−(α+2)/p]− 1, so that

[log(1 + |gs(w)|)]q ≥ c((1− |ϕ(w)|2)−q(α+2)/p.

The statement follows.
The converse is also straightforward. Assume that (1 − |ϕ|2)−q(α+2)/p

is σβ-integrable. A standard subharmonicity argument provides us with a
constant M0 = M0(α) such that [log(1 + |f(w)|)]p ≤ M0s/(1 − |w|2)α+2

whenever |||f |||α,p ≤ s1/p; it follows that

[log(1 + |f(ϕ(z))|]q ≤ M0s

(1− |ϕ(z)|2)q(α+2)/p
.

The function to the right is in L1(σβ) and provides an order bound for the
functions f under consideration. Since s > 0 was arbitrary, Cϕ : N p

α → N q
β

is order bounded.

In addition to the situation for bounded and compact operators, we may
state:

Corollary 7. Suppose that p ≤ q(α + 2). Then Cϕ is order bounded
as an operator N p

α → N q
β iff it acts as a Hilbert–Schmidt operator from A2

α′

into A2
β , where α′ + 2 = q(α+ 2)/p.

In the setting of Banach spaces and Banach lattices, every order bounded
operator admits a factorization through some C(K)-space. As for composi-
tion operators, we can be more precise. We start by a result on spaces A∞s,0
andA∞s , s > 0. We will use the fact thatA∞s is canonically isomorphic to the
bidual of A∞s,0 (this is true even in a more general context; see L. A. Rubel
and A. L. Shields [34]). In fact, A∞s,0 is isomorphic to the sequence space c0.

Theorem 6. Let s > 0, β ≥ −1, 0 < q < ∞ and an analytic function
ϕ : U→ U be given. Then the composition operator Cϕ : A∞s,0 → Aqβ is order
bounded whenever it is defined. In this case, (1− |ϕ|)−s belongs to Lq(σβ).

Proof. We confine ourselves to β > −1. The case β = −1 is similar; see
[18, Theorem 3].

We prove order boundedness of Cϕ : A∞s → Aqβ first under the assump-
tion 0 < s ≤ 1, q ≥ 1. By weak compactness, Cϕ maps A∞s into Aqβ if and
only if Cϕ(A∞s,0) ⊂ Aqβ .

We apply a lacunary series argument (compare [2, Theorem 16] and
[18, Theorem 4]). For each (non-dyadic) t ∈ [0, 1], define ft(z) :=∑∞
n=0 rn(t)2nsz2n where (rn) is the sequence of Rademacher functions. The
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ft’s form a bounded family in A∞s ; see [22, p. 435] (it is claimed there that
‖ft‖s,∞ does not depend on t, but this seems to be too optimistic). Our hy-
pothesis implies that K := supt ‖Cϕft‖β,q exists. By Fubini’s theorem and
Khinchin’s inequality there is a C > 0 such that

Kq ≥
1�

0

‖Cϕft‖qβ,q dt =
�

U

1�

0

∣∣∣
∞∑

n=0

rn(t)2nsϕ(z)2n
∣∣∣
q

dt dσβ(z)

≥ C
�

U

( ∞∑

n=0

22ns|ϕ(z)|2n+1
)q/2

dσβ(z).

Put In = {k ∈ N : 2n ≤ k+ 1 < 2n+1}, n ∈ N0. Since
∑
k∈In(k+ 1) ≤ 22n+1

we get, for 0 < r < 1,
∞∑

n=0

22nsr2n+1

≥ 2−s
∞∑

n=0

[ ∑

k∈In
(k + 1)

]s
(r2)2n ≥ 2−s

[ ∞∑

n=0

∑

k∈In
(k + 1)(r2/s)k+1

]s

= 2−s
[ ∞∑

n=0

(n+ 1)(r2/s)n+1
]s
≥ 2−s

[ ∞∑

n=0

(n+ 1)(r4/s)n − (1− r2/s)
]s

≥ 2−s
[ ∞∑

n=0

(n+ 1)(r4/s)n − 1
]s
≥ 2−s

[
1

(1− r4/s)2s
− 1
]
.

Hence
�
U[(1 − |ϕ|4/s)−2s − 1]q/2 dσβ ≤ C for some C > 0. It follows that

(1− |ϕ|4/s)−sq and so (1− |ϕ|2)−sq are σβ-integrable.
The cases where s > 1 and/or q is arbitrary can now be settled by the

same reduction procedure. Let Cϕ be as in the theorem. Then Cϕ maps A∞s/2
into A2q

β . In fact, f ∈ BA∞s/2
implies f2 ∈ BA∞s , hence

‖f ◦ ϕ‖2qβ,2q = ‖f2 ◦ ϕ‖qβ,q ≤ K (sup
z∈U

(1− |z|2)s|f2(z)|)q ≤ K,

where K = ‖Cϕ : A∞s → Aqβ‖q. Iterate to see that Cϕ maps each A∞s/2k
(boundedly) into A2kq

β , k ∈ N. Choose k so that s/2k ≤ 1 and 2kq ≥ 1.

Then Cϕ : A∞s/2k → A
2kq
β is order bounded by the first part of the proof,

and again we can conclude that (1− |ϕ|2)−s ∈ Lq(σβ).

By the last step, if 0 < q, s, t <∞ and β ≥ −1 are given and if Cϕ maps
A∞s into Aqβ then it maps A∞st into Aq/tβ . These operators are order bounded;
moreover, A∞s and A∞st can be replaced by A∞s,0 and A∞st,0, respectively.
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It is readily seen that Apα embeds (boundedly) into A∞(α+2)/p,0. Therefore
we can now state:

Corollary 8. A composition operator Cϕ : Apα → Aqβ is order bounded
if and only if Cϕ even maps A∞(α+2)/p,0 (equivalently , A∞(α+2)/p) into Aqβ .

Compare with [22] and [11]. Again there is a corresponding result for
composition operators between Nevanlinna algebras. Recall that F(α+2)/p is
the Nevanlinna algebra corresponding to A∞(α+2)/p,0 (Lemma A).

Corollary 9. Let ϕ : U → U be analytic, α, β ≥ −1, 1 ≤ p, q < ∞
(q > 1 if β = −1).

(a) Cϕ : F(α+2)/p → N q
β is order bounded whenever it is defined.

(b) Cϕ maps N p
α order boundedly into N q

β iff it even maps F(α+2)/p

into N q
β .

Proof. (a) Write s = (α+ 2)/p and look at any f ∈ A∞s,0. Then exp(±f)
∈ Fs and so Cϕ(exp(±f)) ∈ N q

β , by assumption. Since Cϕ(exp(±f(z))) =
exp(±(Cϕf)(z)) for all z ∈ U, we see that we are dealing with invertible
elements in N q

β . It follows from Proposition 2 that Cϕf belongs to Aqβ .
The resulting operator Cϕ : A∞s,0 → Aqβ is order bounded by Theorem 6,

and we have 1/(1− |ϕ|2)s ∈ Lq(σβ). The functions exp c/(1− |ϕ|2)s ∈
Lqlog(σβ), c > 0, provide order bounds for the Cϕf ’s, f ∈ Fs: as an op-
erator Fs → N q

β , Cϕ is order bounded.
(b) is a straightforward consequence of the preceding results.

Concluding remarks. Passing again to the special case of embeddings,
we may state:

Corollary 10. Let α ≥ −1, β > −1 and 0 < p, q <∞. The following
statements are equivalent :

(i) (β + 1)/q > (α+ 2)/p.
(ii) Apα ↪→Aqβ order boundedly.
(iii) A∞(α+2)/p,0 ↪→A

q
β (order boundedly).

Analogously for embeddings N p
α ↪→ N q

β and F(α+2)/p ↪→N q
β (1 ≤ p, q <∞).

It was shown in [33, Theorem 6.7] that if s < 1 then Fs ↪→ N 1
0 . By

Corollary 10, the converse is true as well. This answers a corresponding
question raised in [33, Remark 7].

There is no chance to extend Corollary 10 to β = −1. In fact, suppose
that Fc embeds into N q

−1 for some 0 < c < 1 and 1 ≤ q <∞. Put p = 1/c.
Then p ≥ q,N p

−1 embeds order boundedly intoN q
−1, and soHp embeds order

boundedly into Hq. Being a q-summing operator with domain a reflexive
space, the embedding would be compact ([7, Ch. 5]), and this is impossible.
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Clearly, the Nevanlinna class N embeds (continuously) into N q
β for any

β > −1 and p ≥ 1. It is an easy consequence of results of J. S. Choa,
H. O. Kim and J. H. Shapiro [5] and T. Domenig [9] that this embedding
is compact if q = 1; see [23]. We can now strengthen these results as fol-
lows:

Corollary 11. (a) If β > −1 and (β + 2)/q > 1, then N embeds
compactly into N q

β . Moreover , every analytic function ϕ : U→ U gives rise
to a compact composition operator Cϕ : N → N q

β .
(b) If β > −1 and (β + 1)/q > 1, then N embeds order boundedly into

N q
β . Moreover , every analytic function ϕ : U → U gives rise to an order

bounded composition operator Cϕ : N → N q
β .

Here compactness and order boundedness of operators with domain N
are defined in the same way as for operators on N p

α ; compare [5] and [19].
By Corollary 10,

A :=
⋂

s>0

A∞s,0 =
⋂

s>0

A∞s =
⋂

p>0

Apα and F :=
⋂

s>0

Fs =
⋂

s>0

N∞s =
⋂

p>0

N p
α

for every α > −1. In a natural fashion, F is a nuclear Fréchet space, and A
is a Fréchet–Schwartz space (Pitt’s theorem). As a consequence, Corollary
10 does not extend to α = −1:

⋂
p<∞H

p cannot be a Schwartz space since
otherwise embeddings like H∞ ↪→ H2 would be compact. By Theorem 1,⋂
p<∞N

p
−1 ⊂ F is a proper inclusion as well.

We claim that A fails to be nuclear. To see this, we employ the ideals
Sr of Banach space operators whose approximation numbers belong to `r,
0 < r <∞. For details we refer to A. Pietsch [30], Chapter 2. Assume that
A is nuclear. Then, by a known multiplication theorem ([30, 2.3.13]), the
standard embedding W ↪→ A2

α, for example, is in each Sr since it admits
a factorization through A. Here W is the Wiener algebra, as before. We
identify, in the canonical way, W with `1 and A2

α with `2. Then the above
embedding is just the diagonal operator D : `1 → `2 given by (dn)∞n=0 where
dn = Γ (α+1)1/2Γ (n+1)1/2Γ (α+n+2)−1/2 is the norm of the nth monomial
zn in A2

α. By [30, 2.9.12], D belongs to Sr(`1, `2) iff (dn)n belongs to `r. It
follows that {0 < r < ∞ : D ∈ Sr(`1, `2)} is bounded away from zero, a
contradiction.

On the other hand, we lack information about the topological structure
of the F -space

⋂
p<∞N

p
−1.

Similarly we see that, independently of α > −1,

A−∞ :=
⋃

p>0

Apα =
⋃

s>0

A∞s =
⋃

s>0

A∞s,0.
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A−∞ is an algebra and was introduced by B. Korenblum [25]. Selecting
αn’s in (−1,∞) such that αn+1 > αn + 1 for each n, we obtain an inductive
limit representation A−∞ =

⋃
nA2

αn of Hilbert spaces. By Corollary 10, the
linking mappings are Hilbert–Schmidt, and it is well known that therefore
the (linear) inductive limit topology on A−∞ is nuclear (compare K. Floret
and J. Wloka [15, p. 163]). In our case, this can also be seen more directly.
In fact, it is readily verified that an analytic function f(z) =

∑∞
n=0 anz

n

belongs to A−∞ iff (ann−k)n is bounded for some k ∈ N. Accordingly, the
dual of A−∞ consists of all analytic functions g(z) =

∑∞
n=0 bnz

n such that
all (nkbn)n are bounded (see [25, p. 189]) and so can be identified with the
classical space s of rapidly decreasing sequences. s is the “universal” nuclear
space in the sense that every nuclear space is isomorphic to a subspace of
a product of copies of s. It follows that A−∞ itself is just another model of
the dual of s.

It also follows from Corollary 10 that if (β + 2)/(β + 1) < q′/q and if
a composition operator Cϕ maps Apα into Aq

′

β , then it is order bounded as
an operator Apα → Aqβ . Again, this does not apply directly to β = −1,
but in that case a much better result was obtained by H. Hunziker [17]: a
composition operator Cϕ maps Hp order boundedly into Hq if Cϕ(Hp) ⊂
Hλq holds for some λ > 1+p/q; compare also [15, Theorem 5.5]. It was shown
by R. Riedl [31] that this cannot be improved: if ϕ maps U conformally onto
a polygonal domain inside U and if γ is the greatest interior angle at a point
of contact of the polygon and T, then Cϕ maps H1 into Hπ/γ . This is best
possible: Cϕ : H1 → Hπ/γ cannot be compact.

We do not have a sharp result like this for weighted Bergman spaces. We
can only complement the above statements by the following simple

Proposition 3. Suppose that p ≤ q and that Cϕ maps Apα into Aλqβ
for some λ > 1 + 2p/(q(α+ 2)). Then Cϕ is order bounded as an operator
Apα → Aqβ.

Proof. Put γ := q(α+ 2)/p. We want to show that (1 − |z|)−γ is σβ,ϕ-
integrable whenever σβ,ϕ is a λγ-Carleson measure.

Let C > 0 be such that σβ,ϕ(S(I)) ≤ C|I|αγ for every arc I ⊂ T. For
each n ∈ N, put An := {z ∈ U : |z| > 1 − 1/n} and Bn := An \ An+1.
Partition T into n disjoint arcs Ik of equal length. Then An is the disjoint
union of the Carleson boxes S(Ik), whence

σβ,ϕ(An) =
n∑

k=1

σβ,ϕ(S(Ik)) ≤ C

nλγ−1 .

It follows that
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� 1
(1− |z|)γ dσβ,ϕ(z) =

∞∑

n=1

�

Bn

1
(1− |z|)γ dσβ,ϕ(z)

≤
∞∑

n=1

(n+ 1)γσβ,ϕ(An) ≤ C ′
∞∑

n=1

nλγ−2,

where C ′ = C2γ . The sum converges since λγ − 2 > γ ≥ 1.
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