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Narrow operators and rich subspaces of
Banach spaces with the Daugavet property
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Abstract. Let X be a Banach space. We introduce a formal approach which seems
to be useful in the study of those properties of operators on X which depend only on the
norms of the images of elements. This approach is applied to the Daugavet equation for
norms of operators; in particular we develop a general theory of narrow operators and rich
subspaces of spaces X with the Daugavet property previously studied in the context of
the classical spaces C(K) and L1(µ).

1. Introduction. Following [13] we say that a Banach space X has the
Daugavet property if for every operator T : X → X of rank 1 the Daugavet
equation

‖Id +T‖ = 1 + ‖T‖(1.1)

is fulfilled. It is known that then every weakly compact operator, even every
strong Radon–Nikodým operator, and every operator not fixing a copy of `1
satisfies (1.1) as well ([13], [21]). Incidentally, this shows that our definition
of the Daugavet property is equivalent to the ones which have been proposed
in [1] and [11]. Classical results due to Daugavet [5], Lozanovskĭı [15], and
Foiaş, Singer and Pełczyński [7] state that C(K), L1(µ) and L∞(µ) have
the Daugavet property provided that K is perfect and µ is non-atomic. Re-
cently, corresponding results in the non-commutative setting were obtained
by Oikhberg [16].

The papers [13] and [21] study Banach spaces with the Daugavet prop-
erty from a structural point of view; for example it is shown that such a
space never embeds into a space having an unconditional basis, and it con-
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tains (many) subspaces isomorphic to `1. Also, hereditary properties of the
Daugavet property are established there.

Returning to the classical spaces C(K) and L1(µ) we mention that a
different approach to (1.1) on these spaces was launched earlier in [12] and
[17]. These papers study a duality between certain operators, called narrow
operators, and certain subspaces, called rich subspaces, of such spaces. (For
the definitions, which differ in the two cases, see Section 2.) One of the key
features of this approach is that the concept of a narrow operator on C(K) or
L1(µ), which makes sense for operators from these spaces into an arbitrary
range space, only depends on the values ‖Tx‖, but not on the images Tx
themselves.

The idea of the present paper is to introduce narrow operators and rich
subspaces in general. In Section 2 we propose a formalism in order to deal
with those properties of an operator which depend only on the norms of the
images of elements. We define corresponding equivalence classes and their
formal sums and differences, which is reminiscent of certain procedures in
the theory of operator ideals. Then, in Section 3 we introduce and study
narrow operators on Banach spaces with the Daugavet property. We show,
in particular, that strong Radon–Nikodým operators are narrow and that
narrow operators mapping X to itself satisfy (1.1). In Section 4 we prove
that operators not fixing a copy of `1 are narrow, thus extending a result
from [21]. To do so we need an extension of a theorem due to Rosenthal
characterising separable Banach spaces that fail to contain isomorphic copies
of `1 (Theorem 4.3), which seems to be of independent interest.

Section 5 deals with rich subspaces. As in the classical case of C(K) or
L1(µ), a closed subspace Y ⊂ X is called rich if the quotient map q : X →
X/Y is narrow. One of the main results here is that the Daugavet property
passes to rich subspaces, which leads to new hereditary properties. We also
study a related class of subspaces which we term wealthy. What looks like
a quibble of words is another main result from Section 5: a subspace is rich
if and only if it is wealthy. In fact, we also need to deal with a slightly more
general class of operators called strong Daugavet operators. It turns out that
there are strong Daugavet operators which are not narrow; an example to
this effect is presented in Section 6.

As for notation, we denote the closed unit ball of a Banach space by
B(X) and its unit sphere by S(X). The slice of B(X) determined by a
functional x∗ ∈ S(X∗) and ε > 0 is the set

S(x∗, ε) = {x ∈ B(X) : x∗(x) ≥ 1− ε}.
We shall repeatedly make use of the following characterisation of the

Daugavet property in terms of slices or weakly open sets from [13, Lem-
ma 2.2] and [21, Lemma 2.2] respectively.
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Lemma 1.1. The following assertions are equivalent :

(i) X has the Daugavet property.
(ii) For every x ∈ S(X), ε > 0 and every slice S of B(X) there exists

some y ∈ S such that ‖x+ y‖ > 2− ε.
(iii) For every x ∈ S(X), ε > 0 and every non-void relatively weakly open

subset U of B(X) there exists some y ∈ U such that ‖x+ y‖ > 2− ε.
Actually, this lemma characterises Daugavet pairs (Y,X), meaning a

Banach space X and a subspace Y ⊂ X such that

‖J + T‖ = 1 + ‖T‖
for every operator from Y into X of rank 1; here J denotes the canonical
embedding map. The only modification to be made in the formulation of
Lemma 1.1 is that S and U refer to slices and subsets of B(Y ).

Finally we mention that all the Banach spaces in this paper are tacitly
assumed to be real.

Acknowledgements. We are grateful to the referee whose detailed sug-
gestions have led to a substantial improvement of the exposition of this
paper.

2. The semigroup OP(X). Throughout the paper the symbol X will
be used for a fixed Banach space, the symbols T , Ti etc. for bounded linear
operators, acting from X to some other Banach space (not necessarily the
same one).

Definition 2.1. We say that two operators T1 and T2 are equivalent
(in symbols T1 ∼ T2) if ‖T1x‖ = ‖T2x‖ for every x ∈ X. A class M of
operators is said to be admissible if for every T ∈M all the members of the
equivalence class of T also belong to M .

In other words, the operators T1 and T2 are equivalent if there is an
isometry U : T1(X)→ T2(X) such that T2 = UT1. For example, the classes
of finite-rank operators, compact operators, weakly compact operators, op-
erators bounded from below are admissible; surjections, isomorphisms, pro-
jections are examples of non-admissible operator classes.

Definition 2.2. We say that T1 ≤ T2 if ‖T1x‖ ≤ ‖T2x‖ for every x ∈ X.
A class M of operators forms an order ideal if for every T ∈ M every
operator T1 ≤ T also belongs to M .

In other words, T1 ≤ T2 if there is a bounded operator U : T2(X) →
T1(X) of norm ≤ 1 such that T1 = UT2. Order ideals are clearly admissible.
The classes of finite-rank operators, compact operators, weakly compact
operators are order ideals.
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Definition 2.3. A sequence (Tn) of operators is said to be ∼convergent
to an operator T if ‖Tnx‖ → ‖Tx‖ uniformly on B(X). In terms of ∼con-
vergence we define the notions of a ∼closed set of operators, ∼closure, etc.
in a natural way.

Of course, the ∼limit of a sequence is not unique, but it is unique up to
equivalence of operators.

For example, the class F (X) of finite-rank operators on an infinite-
dimensional space X is not ∼closed: its ∼closure contains all compact oper-
ators. Indeed, let T : X → Y be compact. Then, for the canonical isometry U
from Y into C(B(Y ∗)), T1 := UT is also compact, and by definition T1 ∼ T .
Since C(B(Y ∗)) has the approximation property, T1 can be approximated
by finite-rank operators in the above sense.

In fact, the ∼closure of F (X) coincides with the class C (X) of all com-
pact operators since C (X) is ∼closed. To see this suppose that (Tn) is a
∼convergent sequence of compact operators on X with limit T . Let (xn) be
a bounded sequence in X; using a diagonal procedure one can find a subse-
quence (x′n) such that (Tkx′n)n is convergent for each k. But ‖Tkx‖ → ‖Tx‖
uniformly on bounded sets as k → ∞; hence (Tx′n) is a Cauchy sequence
and thus convergent.

Definition 2.4. Let N be a collection of subsets inX. We define a class
of operators N ∼ as follows: T ∈ N ∼ if for every A ∈ N , T is unbounded
from below on A; i.e.,

∀ε > 0 ∃x ∈ A : ‖Tx‖ ≤ ε.
Evidently, N ∼ is a ∼closed order ideal, and it is homogeneous in the

sense that λT ∈ N ∼ whenever λ ∈ R and T ∈ N ∼. For example, if N =
{S(X)}, then N ∼ = UB(X), the class of operators that are unbounded
from below , defined by

T ∈ UB(X) ⇔ inf{‖Tx‖ : ‖x‖ = 1} = 0.

A significant example for us is the class of all C-narrow operators on the
space C(K). This class was introduced in [12] as the class of those operators
T : C(K)→ Y which are unbounded from below on the unit sphere of each
subspace JF := {f ∈ C(K) : f |F = 0}, where F is a proper closed subset of
K. To put it another way, if N denotes the collection of these unit spheres,
then the class of C-narrow operators is just N ∼.

Another important example is the class of all L1-narrow operators on
the space L1 = L1(Ω,Σ, µ). An operator T : L1 → Y is called L1-narrow
if for each B ∈ Σ and each ε > 0 there is a function vanishing off B and
taking only the values −1 and 1 on B such that ‖Tf‖ ≤ ε. In other words,
if N now denotes the collection of these sets of functions, then the class
of L1-narrow operators is again N ∼. L1-narrow operators were formally
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introduced in [17], but the complement of this class was studied earlier by
Ghoussoub and Rosenthal who called non-L1-narrow operators norm-sign-
preserving. An operator is L1-narrow if and only if it is not a sign-embedding
on any L1(B)-subspace ([9], [19], [20]).

We caution the reader that in [12] and [17] only the term “narrow” is
used. In this paper we prefer to speak of C- and L1-narrow operators in
order not to mix up these notions with our concept of a narrow operator in
Section 3; cf., however, Theorem 3.7.

We now define OP(X) as the class of all operators on X with the conven-
tion that equivalent operators will be identified. Hence OP(X) is actually
a collection of equivalence classes, and in fact it is a set. Namely, for an
operator T on X its equivalence class can be identified with the seminorm
x 7→ ‖Tx‖, and the collection of seminorms on X is clearly a set. Thus,
admissible families of operators can be identified with subsets of OP(X),
and it makes sense to write T ∈ OP(X) or M ⊂ OP(X).

We now introduce addition and subtraction on OP(X). If T1 : X → Y1
and T2 : X → Y2 are two operators, define

T1 +̃ T2 : X → Y1 ⊕1 Y2, x 7→ (T1x, T2x);

i.e.,
‖(T1 +̃ T2)x‖ = ‖T1x‖+ ‖T2x‖.

Definition 2.5. If M1,M2 ⊂ OP(X) are non-empty, then their ∼sum
is defined by M1 +̃ M2 = {T1 +̃ T2 : T1 ∈M1, T2 ∈M2}. Their ∼difference
is defined by M2 −̃M1 = {T ∈ OP(X) : T +̃ T1 ∈M2 whenever T1 ∈M1}.

The operation +̃ is commutative and associative on OP(X), and we
have 0 ∈M2 −̃M1 if and only if M1 ⊂M2.

Let us give some examples.

Example 2.6. LetK be a compact Hausdorff space and let MUB(C(K))
denote the class of operators equivalent to some multiplication operator
Mh : f 7→ hf on C(K) which is unbounded from below ; i.e., where h has
a zero. Then UB(C(K)) −̃MUB(C(K)) consists exactly of the C-narrow
operators described above.

Proof. Let T : C(K)→ Y be C-narrow. If h has a zero, we have to show
that, given ε > 0, there is some f ∈ S(C(K)) such that both ‖Tf‖ ≤ ε
and ‖hf‖∞ ≤ ε. Now, if F = {|h| ≥ ε}, which is a proper subset of K, and
f ∈ S(JF ) such that ‖Tf‖ ≤ ε, then ‖hf‖∞ ≤ ε as well.

Conversely, if a closed proper subset F ⊂ K is given, pick some h ∈
S(C(K)) such that h = 1 on F , h = 0 off a neighbourhood V of F . If
‖f‖∞ ≤ 1, ‖Tf‖ ≤ ε and ‖hf‖∞ ≤ ε, then in particular |f | ≤ ε on F . Hence
it is possible to replace f by a function g ∈ S(JF ) such that ‖Tg‖ ≤ 2ε,
which proves that T is C-narrow.



274 V. M. Kadets et al.

For our next example recall that an operator on X is a left semi-Fredholm
operator if its kernel is finite-dimensional and its range is closed, and it is
strictly singular if it is unbounded from below on (the unit sphere of) each
infinite-dimensional subspace of X.

Example 2.7. The class UB(X) −̃F (X) consists of all operators that
are not left semi-Fredholm operators; UB(X) −̃ (UB(X) −̃F (X)) consists
of all strictly singular operators.

Proof. Set G (X) = UB(X) −̃F (X) and H (X) = UB(X) −̃ G (X).
If T is a left semi-Fredholm operator, then, since kerT is complemented

by a finite-codimensional subspace Y ⊂ X, T |Y is bounded from below,
because T acts as an isomorphism from Y onto T (X). On the other hand, if
T |Y is bounded from below on some finite-codimensional subspace Y ⊂ X,
then T (Y ), and hence T (X), must be closed, and kerT is finite-dimensional,
since otherwise Y ∩ kerT 6= {0}. This shows that T is not a left semi-
Fredholm operator if and only if

(a) T |Y is not bounded from below on any finite-codimensional subspace
Y ⊂ X.

Now, if T satisfies (a), F ∈ F (X) and Y = kerF , then T +̃F ∈ UB(X),
i.e., T ∈ G (X). Conversely, if T ∈ G (X), Y ⊂ X is finite-codimensional
and q : X → X/Y is the quotient map, then, since T +̃ q ∈ UB(X), T
satisfies (a).

Thus, we have shown the announced characterisation of G (X) and, more-
over, we have shown that (a) provides another characterisation of G (X). It
follows from (a) that T ∈ G (X) if and only if

(b) for every ε > 0 there exists an infinite-dimensional subspace Z ⊂ X
such that ‖T |Z‖ ≤ ε (see [14, Prop. 2.c.4]).

From (b) it is clear that every strictly singular operator belongs to
H (X). On the other hand, if S is not strictly singular and is bounded
from below on some infinite-dimensional subspace Z, and q : X → X/Z
is the quotient map, then S +̃ q is bounded from below. Since q obviously
satisfies (b), this shows that S 6∈H (X).

Let us list some elementary properties of the operation −̃ that follow
directly from the definition.

Proposition 2.8. Suppose that M1,M2 ⊂ OP(X) contain the zero op-
erator.

(a) M2 −̃M1 is an order ideal (resp. is ∼closed) whenever M2 is.
(b) If M1 and M2 are order ideals, then M2 −̃ M1 is homogeneous

whenever M2 is.
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Of particular relevance are subsets of OP(X) that are semigroups with
respect to the operation +̃.

Proposition 2.9. Suppose that M1,M2 ⊂ OP(X) contain the zero op-
erator.

(a) M1 is a subsemigroup of OP(X) if and only if M1 −̃M1 ⊃M1, in
which case M1 −̃M1 = M1.

(b) Let M1 be a subsemigroup of OP(X), and let M1 ⊂ M2. Then
M2 −̃ (M2 −̃M1) is again a subsemigroup.

(c) M2 −̃M2 is always a subsemigroup of OP(X).

Proof. (a) is clear from the definition.
For (b) we note first that

M2 −̃ (M2 −̃ (M2 −M1)) = M2 −M1.(2.1)

Indeed, by definition of −̃ we have

M2 −̃ (M2 −̃M1) ⊃M1,(2.2)

whence
M2 −̃ (M2 −̃ (M2 −̃M1)) ⊂M2 −̃M1.

On the other hand, an application of (2.2) with M1 replaced by M2 −̃M1
gives “⊃” in (2.1). Now, by elementary arithmetic involving +̃ and −̃ we
have, writing D = M2 −̃M1 for short,

(M2 −̃D) −̃ (M2 −̃D) = M2 −̃ (D +̃ (M2 −̃D))

= M2 −̃ ((M2 −̃D) +̃ D)

= (M2 −̃ (M2 −̃D)) −̃D

= D −̃D (by (2.1))

= (M2 −̃M1) −̃D

= M2 −̃ (M1 +̃ D).

Because M1 is a semigroup, one can easily deduce that M1+̃D ⊂ D ; indeed,

M1 +̃ D = (M2 −̃M1) +̃ M1 = (M2 −̃ (M1 +̃ M1)) +̃ M1

= ((M2 −̃M1) −̃M1) +̃ M1 ⊂M2 −̃M1.

Therefore
(M2 −̃D) −̃ (M2 −̃D) ⊃M2 −̃D ,

completing the proof that M2 −̃ (M2 −̃M1) is a semigroup.
Finally, (c) is the special case M1 = {0} of (b).

The following definition is important for our abstract semigroup ap-
proach.
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Definition 2.10. Let M ⊂ OP(X), and let M1 ⊂ M be a subsemi-
group of OP(X). M1 is called a maximal subsemigroup of M if every sub-
semigroup M2 ⊂ M which includes M1 coincides with M1. We call the
intersection of all maximal subsemigroups of M the central part of M and
denote it by cp(M ).

Here is a characterisation of the central part of M .

Theorem 2.11. Let M ⊂ OP(X) have the following properties: 0 ∈M
and every element of M is contained in a subsemigroup of M (this happens
for example if M is homogeneous). Then cp(M ) = M −̃M .

Proof. Let M1 be a maximal subsemigroup of M . Put M2 = M −̃M .
We have proved above in Proposition 2.9(c) that M2 is a subsemigroup, so
M2+̃M1 is also a subsemigroup. By definition of M2 we have M2+̃M1 ⊂M .
So the maximality of M1 implies that M1 ⊃M2. This proves the inclusion
cp(M ) ⊃M −̃M .

Let us now prove the inverse inclusion. Let T ∈ cp(M )\(M −̃M ). Then
there is some T1 ∈ M such that T1 +̃ T does not belong to M . Consider
the maximal subsemigroup M3 of M which contains T1. Then M3 cannot
contain T , so cp(M ) cannot contain T either.

For every operator T and ε > 0 we define the tube

UT,ε = {x ∈ X : ‖Tx‖ < ε}.
Let M ⊂ OP(X). Put

M∼ = {UT,ε ∩ S(X) : T ∈M , ε > 0}
Then (M∼)∼ = UB(X) −̃M .

Proposition 2.12. Let M ⊂ OP(X) and let N be a collection of sub-
sets in X. Then N ∼ −̃M = N ∼

1 , where N1 consists of all intersections of
the form UT,ε ∩ A, T ∈ M , A ∈ N , ε > 0. In particular , if N ∼ −̃M is
non-empty , then all the intersections UT,ε∩A are non-empty and N ∼ ⊃M .

Proof. Let T1 ∈ N ∼−̃M . Then for every T ∈M we have T1+̃T ∈ N ∼.
This means that for every A ∈ N and ε > 0 there is an element x ∈ A such
that ‖(T1 +̃T )x‖ < ε. This in turn implies that x ∈ A∩UT,ε and ‖T1x‖ < ε.
So T1 ∈ N ∼

1 .
Now let T1∈N ∼

1 . Then for every T ∈M , every A∈N and ε>0 there
is an element x ∈ A ∩ UT,ε/2 such that ‖T1x‖ < ε/2. But by the definition
of tubes, ‖Tx‖ < ε/2. So ‖(T1 +̃ T )x‖ < ε and T1 ∈ N ∼ −̃M .

3. Narrow operators. In this section we define the class of narrow
operators on a Banach space with the Daugavet property. But first we need
to introduce a closely related class of operators.
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Definition 3.1. An operator T ∈ OP(X) is said to be a strong Dau-
gavet operator if for every x, y ∈ S(X) and ε > 0 there is an element
z ∈ (y + UT,ε) ∩ S(X) such that ‖z + x‖ > 2− ε. We denote the class of all
strong Daugavet operators on X by SD(X).

It follows from Lemma 1.1 that a finite-rank operator on a space with the
Daugavet property is a strong Daugavet operator, and conversely, if every
rank-1 operator is strongly Daugavet, then X has the Daugavet property.

There is an obvious connection between strong Daugavet operators and
the Daugavet equation.

Lemma 3.2. If T : X → X is a strong Daugavet operator , then T sat-
isfies the Daugavet equation (1.1).

Proof. We assume without loss of generality that ‖T‖ = 1. Given ε > 0
pick y ∈ S(X) such that ‖Ty‖ ≥ 1 − ε. If x = Ty/‖Ty‖ and z is chosen
according to Definition 3.1, then

2− ε < ‖z + x‖ ≤ ‖z + Ty‖+ ε ≤ ‖z + Tz‖+ 2ε,

hence
‖z + Tz‖ ≥ 2− 3ε,

which proves the lemma.

We now relate the strong Daugavet property to a collection of subsets
of X.

Definition 3.3. For every ordered pair (x, y) of elements of S(X) and
every ε > 0 define a set D(x, y, ε) by

z ∈ D(x, y, ε) ⇔ ‖z + x+ y‖ > 2− ε & ‖z + y‖ < 1 + ε.

By D(X) we denote the collection of all sets D(x, y, ε), where x, y ∈ S(X)
and ε > 0.

Proposition 3.4. SD(X) = D(X)∼.

Proof. T ∈ D(X)∼ if and only if for every x, y ∈ S(X) and ε > 0 there
is an element z ∈ D(x, y, ε) such that ‖Tz‖ < ε. This in turn is equivalent to
the following condition: for every x, y ∈ S(X) and ε > 0 there is an element
v such that ‖v‖ < 1 + ε, ‖x+ v‖ > 2− ε and v belongs to the tube y+UT,ε
(just put v = z + y). Evidently, the last equation coincides with the strong
Daugavet property of the operator T .

Let us consider an example.

Theorem 3.5. For a compact Hausdorff space K, the class SD(C(K))
of strong Daugavet operators coincides with the class of C-narrow operators.

Proof. The fact that every C-narrow operator is a strong Daugavet op-
erator has been proved in a slightly different form in [12, Th. 3.2]. Consider
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the converse implication. Let T ∈ SD(C(K)). Fix a closed subset F ⊂ K
and 0 < ε < 1/4. According to the definition it is sufficient to prove that
there is a function f ∈ S(C(K)) whose restriction to F is less than 2ε and
‖Tf‖ < 2ε (cf. Example 2.6). Fix a neighbourhood U of F and an open
set V ⊂ K, V ∩ U = ∅. Select inductively functions xn, yn ∈ S(C(K)) and
fn, gn ∈ C(K) as follows. All the yn are supported on U , and the xn are non-
negative functions supported on V . Given xn and yn pick fn ∈ D(xn, yn, ε)
with ‖Tfn‖ < ε, and let gn = f1 + . . . + fn. Then choose yn+1 ∈ S(C(K))
subject to the above support condition such that supt∈F |gn(t)|yn+1 coin-
cides on F with gn, and let xn+1 be a non-negative continuous function
supported on the subset of V where gn attains its supremum on V up to ε,
i.e., on the set {t ∈ V : gn(t) > sups∈V gn(s) − ε}, etc. (There is no initial
restriction on the choice of y1 and x1 apart from the support and positivity
conditions.)

We first claim that

‖gn‖F := sup
t∈F
|gn(t)| ≤ 3 + nε.

This is certainly true for n = 1 since ‖f1 +y1‖ < 1+ε. Now induction yields,
for t ∈ F ,

|gn+1(t)| = |gn(t) + fn+1(t)| =
∣∣‖gn‖F yn+1(t) + fn+1(t)

∣∣
= |yn+1(t) + fn+1(t) + (‖gn‖F − 1)yn+1(t)|
≤ |yn+1(t) + fn+1(t)|+ ‖gn‖F − 1

≤ 1 + ε+ 2 + nε = 3 + (n+ 1)ε.

(We have tacitly assumed that ‖gn‖F ≥ 1 since the induction step is clear
otherwise, because ‖fn+1‖ ≤ 2 + ε.)

Next, we have
sup
t∈V

gn(t) > n(1− 2ε).

Indeed, the functions x1 and y1 are disjointly supported; hence by the defi-
nition of D(x1, y1, ε) there is a point in the support of x1 at which f1 = g1
is greater than 1 − ε. Thus, the above inequality holds for n = 1. To per-
form the induction step we use the same argument to find a point t0 in the
support of xn+1 at which fn+1 exceeds 1 − ε. At t0 the function gn attains
its supremum on V up to ε. So

sup
t∈V

gn+1(t) ≥ gn+1(t0) = gn(t0) + fn+1(t0) > sup
t∈V

gn(t) + 1− 2ε

> n(1− 2ε) + 1− 2ε = (n+ 1)(1− 2ε).

Therefore ‖gn+1‖ > (n + 1)(1 − 2ε), and on the other hand we have
‖Tgn‖ ≤

∑n
k=1 ‖Tfk‖ < nε. So for n large enough the function f = gn/‖gn‖

will satisfy the desired conditions.
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Actually, a somewhat smaller class of operators turns out to be crucial.

Definition 3.6. Let X be a space with the Daugavet property. Define
the class of narrow operators by NAR(X) = SD(X) −̃X∗.

In other words, an operator T is said to be a narrow operator if, for every
x∗ ∈ X∗, T +̃ x∗ is a strong Daugavet operator.

Incidentally, it follows from the defining property of a narrow operator
that a Banach space on which at least one narrow operator is defined must
automatically have the Daugavet property.

Proposition 3.4 and Proposition 2.8 imply that NAR(X) is a ∼closed
homogeneous order ideal, and hence so is cp(NAR(X)).

We now show that we do not get anything new on C(K) if K is perfect.

Theorem 3.7. For a perfect compact Hausdorff space K, the classes of
C-narrow operators and of narrow operators coincide on C(K).

Proof. Since a narrow operator is a strong Daugavet operator and a
strong Daugavet operator is C-narrow (Theorem 3.5), it remains to prove
that a C-narrow operator T on C(K) is narrow if K is perfect. Let x∗ ∈
C(K)∗ be a functional represented by a regular Borel measure µ; we have
to show that T +̃ x∗ is a strong Daugavet operator.

Thus, let f, g ∈ S(C(K)) and ε > 0. Let ε′ = ε/(4 + ‖T‖), and consider
the open set U = {t : |f(t)| > 1 − ε′}. Pick an open non-empty subset
V ⊂ U with the property that f − g is almost constant on V in that for
some c ∈ [−2, 2],

|f(t)− g(t)− c| ≤ ε′ for t ∈ V,
and |µ|(V ) ≤ ε′; the latter is possible since K has no isolated points. Since T
is C-narrow, there is some ϕ ∈ S(C(K)) vanishing off V such that ‖Tϕ‖ ≤
ε′; in fact, ϕ can (and will) be chosen positive [12, Lemma 1.4]. Let h =
ϕf + (1− ϕ)g. Then ‖h‖ ≤ 1, and

‖f + h‖ ≥ sup
t∈V
|f(t) + h(t)| ≥ 2− 2ε′ ≥ 2− ε;

furthermore
|x∗(g)− x∗(h)| = |x∗(ϕ(f − g))| ≤ |µ(V )| · ‖ϕ‖ · ‖f − g‖ ≤ 2ε′,

‖T (g)− T (h)‖ = ‖T (ϕ(f − g))‖ ≤ ‖T‖ · ‖ϕ(f − g − c)‖+ ‖Tϕ‖ · |c|
≤ ‖T‖ε′ + 2ε′

so that
‖(T +̃ x∗)(g − h)‖ ≤ ε,

which proves that T +̃ x∗ is a strong Daugavet operator.

We shall show below (Section 6) that in general, on a space with the
Daugavet property narrow and strong Daugavet operators are not the same.
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We do not know if in general NAR(X) is a subsemigroup of OP(X)
as will be shown to be the case for X = C(K) (Theorem 4.8), but we
will show that its central part cp(NAR(X)) is always large. It contains, in
particular, all strong Radon–Nikodým operators and all operators which do
not fix copies of `1. Hence all the operators which are majorized by linear
combinations of strong Radon–Nikodým operators and operators not fixing
copies of `1, as well as ∼limits of sequences of such operators belong to
cp(NAR(X)).

We now formulate a number of lemmas. Eventually, Proposition 3.11
will present a geometric description of what distinguishes a narrow operator
from a strong Daugavet operator.

Lemma 3.8. Let T ∈ NAR(X). Then for every x, y ∈ S(X), ε > 0
and every slice S = S(x∗, α) of the unit ball of X containing y there is an
element v ∈ S such that ‖x+ v‖ > 2− ε and ‖T (y − v)‖ < ε.

Proof. Fix some 0 < δ < ε and find an element y1 in the norm-interior
of S such that ‖y− y1‖ < δ. By Proposition 2.12, for every 0 < δ1 < ε there
is an element u ∈ Ux∗,δ1 ∩ D(x, y1/‖y1‖, δ1) such that ‖Tu‖ < δ1. If δ1 is
small enough, then v := (y1 + ‖y1‖u)/‖y1 + ‖y1‖u‖ ∈ S. So, if in turn δ is
small enough, then v satisfies our requirements.

Lemma 3.9. For every τ, a, b > 0 there is a δ > 0 such that if v, x ∈
S(X) and ‖x+ v‖ > 2− δ, then ‖ax+ bv‖ > a+ b− τ .

Proof. Select δ < τ/max(a, b). There are two symmetric cases: a ≤ b or
b ≤ a. Consider for example the first. If we assume that our statement is
not true, then we obtain

2− δ < ‖x+ v‖ = ‖(1− a/b)x+ (1/b)(ax+ bv)‖
≤ 1− a/b+ (1/b)(a+ b− τ) = 2− τ/b,

a contradiction.

Lemma 3.10. Let T ∈ NAR(X).

(a) Let S1, . . . , Sn be a finite collection of slices and U ⊂ B(X) be their
convex combination, i.e., there are λk ≥ 0, k = 1, . . . , n,

∑n
k=1 λk = 1, such

that λ1S1 + . . . + λnSn = U . Then for every ε > 0, x1 ∈ S(X) and w ∈ U
there exists an element u ∈ U such that ‖u+x1‖ > 2−ε and ‖T (w−u)‖ < ε.

(b) The same conclusion is true if U is a relatively weakly open set.

Proof. (a) First of all fix yk ∈ Sk such that λ1y1 + . . . + λnyn = w.
Applying repeatedly Lemma 3.8, with sufficiently small εj , to Sj , yj ∈ Sj
and

xj =
(
x1 +

j−1∑

k=1

λkvk

) / ∥∥∥x1 +
j−1∑

k=1

λkvk

∥∥∥,
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we may select elements vk ∈ Sk with ‖T (yk− vk)‖ < ε, k = 1, . . . , n, in such
a way that for every j = 1, . . . , n,

∥∥∥x1 +
j∑

k=1

λkvk

∥∥∥ > 1 +
j∑

k=1

λk(1− ε)

(to get the last inequality, we need to apply the previous lemma at each
step). The element u = λ1v1 + . . .+ λnvn will be as required.

(b) This follows from (a) since given u ∈ U there is a convex combination
V of slices such that u ∈ V ⊂ U ; see [8, Lemma II.1] or [21].

Proposition 3.11. An operator T on a Banach space X with the Dau-
gavet property is narrow if and only if for every x, y ∈ S(X), ε > 0 and
every slice S of the unit ball of X containing y there is an element v ∈ S
such that ‖x+ v‖ > 2− ε and ‖T (y − v)‖ < ε.

Proof. It only remains to show that the above condition is sufficient for
T to be narrow. We first note that an operator satisfying that condition will
also satisfy the conclusion of Lemma 3.10; see the proof of that lemma. Now,
if x∗0 ∈ X∗, x, y ∈ S(X) and ε > 0, consider the relatively weakly open set

U := {z ∈ B(X) : |x∗0(z − y)| < ε/2}.
By Lemma 3.10 there exists some w ∈ U such that ‖w + x‖ > 2− ε/2 and
‖T (w− y)‖ < ε/2; note that y ∈ U . By definition this means that T +̃ x∗0 is
a strong Daugavet operator; i.e., T is narrow.

Let T be a strong Radon–Nikodým operator on a space X with the
Daugavet property; this means that the closure of T (B(X)) is a set with
the Radon–Nikodým property (cf. [4] for this notion). We shall show that
such an operator is narrow. For ε > 0, consider the subset A(T, ε) of B(X)
defined by y ∈ A(T, ε) if there exists a convex combination U of slices of the
unit ball such that y ∈ U and U ⊂ y + UT,ε.

Lemma 3.12. The set A(T, ε) introduced above is a convex dense subset
of B(X).

Proof. The convexity is evident. To prove the density we need to show, by
the Hahn–Banach theorem, that for every x∗ ∈ S(X∗) and every 0 < δ < ε
there is an element y ∈ A(T, ε) such that x∗(y) > 1− δ (in other words, y ∈
S = S(x∗, δ)). Fix x ∈ B(X) with x∗(x) > 1−δ/2 and consider the operator
T1 = x∗ +̃T . Consider further T1(B(X)) and a δ/2-neighbourhood W of T1x
in T1(B(X)). By the Radon–Nikodým property of the set T1(B(X)) there is
a convex combinationW1 of slices of T1(B(X)) inW . The preimages inB(X)
of these slices are slices in B(X). The corresponding convex combination U
of the latter lies in the preimage of W in B(X), so in (x+UT1,δ/2)∩B(X).
Fix y ∈ U . By our construction y ∈ U ⊂ (x+ UT1,δ/2) ∩B(X) ⊂ S. On the
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other hand,

U ⊂ x+ UT1,δ/2 ⊂ y + UT1,δ ⊂ y + UT,δ ⊂ y + UT,ε,

so y ∈ A(T, ε).

The following result is a generalisation of [13, Th. 2.3]. It can be un-
derstood as a transfer theorem: in Definition 3.6 one can pass from one-
dimensional operators to a much wider class of operators. Let us denote the
class of strong Radon–Nikodým operators on X by SRN (X).

Theorem 3.13. Let X be a space with the Daugavet property , T be nar-
row and T1 be a strong Radon–Nikodým operator on X. Then T +̃ T1 is
narrow ; that is, we have NAR(X) +̃ SRN (X) = NAR(X). In particular
every strong Radon–Nikodým operator T1 on X is a narrow operator.

Proof. Fix ε > 0, x, y ∈ S(X) and y1 ∈ A(T1, ε) such that ‖y − y1‖ < ε.
According to the definition of A(T1, ε) there exists a convex combination U
of slices of the unit ball such that y1 ∈ U and U ⊂ y1+UT1,ε. By Lemma 3.10
there is an element z ∈ U such that ‖z + x‖ > 2 − ε and ‖T (y1 − z)‖ < ε.
But the inclusion z ∈ y1 + UT1,ε means that ‖T1(y1 − z)‖ < ε. So

‖(T +̃ T1)(y − z)‖ < ε‖T +̃ T1‖+ ‖(T +̃ T1)(y1 − z)‖ < ε‖T +̃ T1‖+ 2ε.

Because ε is arbitrarily small, the last inequality shows that T +̃T1 satisfies
the definition of a strong Daugavet operator.

Now let x∗ ∈ X∗ and consider T2 = T1 +̃ x∗. This is also a strong
Radon–Nikodým operator. So (T +̃ T1) +̃ x∗ = T +̃ T2 is a strong Daugavet
operator by what we have just proved; by definition, this says that T +̃ T1

is narrow.

Corollary 3.14. Let X be a Banach space with the Daugavet property.

(a) NAR(X) +̃X∗ = NAR(X).
(b) cp(NAR(X)) = SD(X) −̃NAR(X).
(c) SRN (X) ⊂ cp(NAR(X)).

Proof. (a) follows from the previous theorem, because every finite-rank
operator is a strong Radon–Nikodým operator.

For (b) use Theorem 2.11 and note that

SD(X) −̃NAR(X) = SD(X) −̃ (NAR(X) +̃X∗)

= (SD(X) −̃X∗) −̃NAR(X)

= NAR(X) −̃NAR(X).

(c) is a restatement of Theorem 3.13.

4. Operators which do not fix copies of `1. It is proved in [21] that
an operator T : X → X on a space with the Daugavet property which does
not fix a copy of `1 satisfies the Daugavet equation. Recall that T ∈ OP(X)
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does not fix a copy of `1 if there is no subspace E ⊂ X isomorphic to `1
on which the restriction T : E → T (E) is an isomorphism. By Rosenthal’s
`1-theorem, this is equivalent to saying that for every bounded sequence
(xn) ⊂ X, the sequence of images (Txn) admits a weak Cauchy subsequence.
We shall investigate the class of operators not fixing a copy of `1 in the
present context.

We will use the following theorem, due to H. P. Rosenthal [18]:

Theorem 4.1. Let X be a separable Banach space without `1-subspaces.
If A ⊂ X is bounded and x∗∗ ∈ X∗∗ is a weak ∗ limit point of A, then there
is a sequence in A which converges to x∗∗ in the weak ∗ topology of X∗∗.

In fact, we shall need a generalisation of this result and first provide a
lemma.

Lemma 4.2. Let X be a Banach space without subspaces isomorphic to
`1, and let {xn,m}n,m∈N ⊂ X be a bounded double sequence. Let x∗∗ ∈ X∗∗ be
a σ(X∗∗,X∗)-limit point of every column {xn,m}n∈N of {xn,m}n,m∈N. Then
there are strictly increasing sequences (n(k)), (m(k)) of indices such that
xn(k),m(k) → x∗∗ in σ(X∗∗,X∗).

Proof. Consider an auxiliary space Y = X × R and an auxiliary matrix
{yn,m}n,m∈N ⊂ Y , yn,m = (xn,m, 1/n + 1/m). Since Y contains no copies
of `1 either and since (x∗∗, 0) is a σ(Y ∗∗, Y ∗)-limit point of {yn,m}n,m∈N,
there is, according to Theorem 4.1, a sequence of the form (yn(k),m(k))
which converges to (x∗∗, 0) in σ(Y ∗∗, Y ∗). This means in particular that
xn(k),m(k) → x∗∗ in σ(X∗∗,X∗) and 1/n + 1/m → 0. So (n(k)) and (m(k))
both tend to ∞, which, after passing to a subsequence, provides the desired
sequence.

The next result is a direct generalisation of Theorem 4.1.

Theorem 4.3. Let X be a separable Banach space without `1-subspaces,
(Γ,�) be a directed set , and let F : Γ → X be a bounded function. Then
for every σ(X∗∗,X∗)-limit point x∗∗ of the function F there is a strictly
increasing sequence γ(1) � γ(2) � . . . in Γ such that (F (γ(n))) converges
to x∗∗ in σ(X∗∗,X∗).

Proof. Using inductively Theorem 4.1 we can select a doubly indexed
sequence {γn,m}n,m∈N in Γ with the following properties:

(1) for every m ∈ N, x∗∗ ∈ X∗∗ is a σ(X∗∗,X∗)-limit point of every
column {F (γn,m)}n∈N;

(2) for every m,n, k, l ∈ N, if max{k, l} < m, then γk,l � γn,m.

Applying Lemma 4.2 and passing to a subsequence if necessary, we obtain
strictly increasing sequences (n(k)), (m(k)) such that maxk<j{n(k),m(k)}
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< m(j) and (F (γn(k),m(k))) converges to x∗∗ in σ(X∗∗,X∗). To finish the
proof put γ(k) = γn(k),m(k).

We wish to prove that an operator not fixing a copy of `1 is narrow
(Theorem 4.13 below). To cover the case of non-separable spaces as well we
first show that the Daugavet property is separably determined. The next
lemma prepares this result.

Lemma 4.4. Let X be a Banach space with the Daugavet property. Then
for any ε > 0 and x, y ∈ S(X), there exists a finite-dimensional subspace
Y = Y (x, y, ε) of X with x, y ∈ Y such that for every slice S(x∗, ε/2)
containing y there is some y1 ∈ S(Y ) ∩ S(x∗, ε) such that ‖y1 + x‖ > 2− ε.

Proof. Assume there exist ε > 0 and x, y ∈ S(X) such that for every
finite-dimensional subspace Y ⊂ X there is a slice S(x∗Y , ε/2) containing y
with ‖y1 + x‖ ≤ 2 − ε for all y1 ∈ S(Y ) ∩ S(x∗Y , ε). Take a weak∗ cluster
point x∗ of the net (x∗Y ) and let x∗0 = x∗/‖x∗‖. We have x∗(y) ≥ 1 − ε/2
since y ∈ S(x∗Y , ε/2) and therefore ‖x∗‖ ≥ 1 − ε/2. Now if y1 ∈ S(x∗0, ε/2),
then x∗(y1) ≥ ‖x∗‖(1− ε/2) > 1− ε and therefore x∗Y1

(y1) > 1− ε for some
Y1 that contains y1. So by assumption ‖y1 + x‖ ≤ 2 − ε, which contradicts
Lemma 1.1 when applied to the slice S(x∗0, ε/2).

Theorem 4.5. A Banach space X has the Daugavet property if and only
if for every separable subspace Y ⊂ X there is a separable subspace Z ⊂ X
which contains Y and has the Daugavet property.

Proof. Suppose X has the Daugavet property. Let (vn) be a dense se-
quence in Y . We select a sequence V1 ⊂ V2 ⊂ . . . of finite-dimensional
subspaces of X by the following inductive procedure. Put V1 = lin v1. Sup-
pose Vn has already been constructed. Fix a 2−n-net (xnk , y

n
k ), k = 1, . . . , Nn,

in S(Vn)× S(Vn) provided with the sum norm, select by Lemma 4.4 finite-
dimensional subspaces Yk = Y (xnk , y

n
k , ε), k = 1, . . . , Nn, for ε = 2−n and

define Vn+1 = lin({vn+1} ∪ Y1 ∪ . . . ∪ YNn).
If Z is defined to be the closure of the union of all the Vn, then Y ⊂ Z

and Z has the Daugavet property by Lemma 1.1.
Conversely, let x ∈ S(X), ε > 0 and let S ⊂ B(X) be a slice. Fix

a point z ∈ S. If Z is a separable subspace with the Daugavet property
containing x and z, then by Lemma 1.1 there exists some y ∈ S ∩ Z such
that ‖y + x‖ > 2 − ε. Again by Lemma 1.1 this shows that X has the
Daugavet property.

We shall need the operator version of this theorem, which is based on the
following lemma. The proofs of Lemma 4.6 and Theorem 4.7 are virtually the
same as those of Lemma 4.4 and Theorem 4.5 (one uses Proposition 3.11).
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Lemma 4.6. Let X be a Banach space with the Daugavet property and
let T be a narrow operator on X. Then for any ε > 0 and x, y ∈ S(X), there
exists a finite-dimensional subspace Y = Y (x, y, ε) of X with x, y ∈ Y such
that for every slice S(x∗, ε/2) containing y there is some y1 ∈ S(Y )∩S(x∗, ε)
with ‖Ty1 − Ty‖ < ε such that ‖y1 + x‖ > 2− ε.

Theorem 4.7. An operator T on a Banach space X is narrow if and
only if for every separable subspace Y of X there is a separable subspace
Z ⊂ X containing Y such that the restriction of T to Z is narrow.

This theorem leads to an important structural result on narrow operators
on C(K).

Theorem 4.8. If K is a perfect compact Hausdorff space, then
NAR(C(K)) is a subsemigroup of OP(C(K)).

Proof. First, let K be a perfect compact metric space. It follows from
Theorem 3.7 and [12, Th. 1.8] that the set of all narrow operators on C(K)
is stable under the operation +̃, i.e., it is a semigroup. (In fact, [12] only
deals with K = [0, 1], but the arguments work as well for a metric K.)

We shall reduce the general case to the metric one. Let now K be a
perfect compact Hausdorff space, and let T1 and T2 be two narrow operators
on C(K); we shall verify that T1 +̃ T2 is narrow, using Theorem 4.7 above.

Thus, let Y be a separable subspace of C(K). We shall first argue that
there is a separable space Z1 containing Y such that T1|Z1 and T2|Z1 are
strong Daugavet operators. Let A be a countable dense subset of S(Y ). For
every (x, y) in A × A and ε = 1/k there is some z1 (resp. z2) according
to the definition of the strong Daugavet property of T1 (resp. T2). The
countable collection of these z’s and Y span a closed separable subspace
X1. Repeating this procedure starting from X1 yields some closed separable
subspace X2, etc. The closed linear span Z1 of X1,X2,X3, . . . then has the
desired property.

Now by [22, Lemma 2.4] there is a separable space Z2 ⊃ Z1 isometric to
some space C(M2) for a perfect compact metric spaceM2. By the same token
as above, we can extend Z2 to a separable space Z3 so that T1 and T2 are
strong Daugavet operators on Z3, and we can extend Z3 to a separable space
Z4 isometric to some space C(M4) for a perfect compact metric space M4,
etc. Let Z be the closed linear span of Z1, Z2, Z3, . . . . Then T1|Z and T2|Z
are strong Daugavet operators, and Z is isometric to some space C(M) for
a perfect compact metric space M . By what we already know, (T1 +̃ T2)|Z
is a narrow operator on Z ∼= C(M); recall that the classes of narrow and
strong Daugavet operators coincide on C(M).

Finally, Theorem 4.7 implies that T1 +̃ T2 is narrow on C(K), which
proves the theorem.
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Next we introduce a topology related to an order ideal of operators.

Definition 4.9. Let M ⊂ OP(X) be an order ideal of operators, closed
under the operation +̃. Then the system of tubes UT,ε, T ∈M , ε > 0, defines
a base of neighbourhoods of 0 for some locally convex topology on X. We
denote this topology by σ(X,M ).

If M = F (X), the class of all finite-rank operators, then σ(X,M ) co-
incides with the weak topology; if M = OP(X), then σ(X,M ) coincides
with the norm topology. For classes which are in between one gets topologies
which are between the weak and the norm topology. If N is a collection of
subsets in X such that N ∼ is closed under the operation +̃, then σ(X,N ∼)
is the strongest locally convex topology on X continuous with respect to the
norm, in which the zero vector belongs to the closure of every element of N .

Definition 4.10. A locally convex topology τ on X is said to be a
Daugavet topology if for every x, y ∈ S(X), ε > 0 and every τ -neighbourhood
U of y there is an element z ∈ U ∩ S(X) such that ‖z + x‖ > 2− ε.

Of course, σ(X,M ) is a Daugavet topology if and only if every operator
T ∈M is a strong Daugavet operator.

Lemma 4.11. Let X be a Banach space with the Daugavet property , T
a narrow operator , A = {a1, . . . , an} ⊂ S(X), ε > 0 and y ∈ S(X). Then
for every σ(X, cp(NAR(X)))-neighbourhood W of y there is an element
w ∈ W ∩ S(X) such that ‖T (w − y)‖ < ε and ‖w + a‖ > 2 − ε for every
a ∈ A.

Proof. We shall argue by induction on n. First of all consider n = 1.
Every σ(X, cp(NAR(X)))-neighbourhood of y can be represented as W =
y + UR,δ, where R ∈ cp(NAR(X)). Since T1 = R +̃ T is a strong Daugavet
operator by definition of the central part, there is an element w ∈ S(X)
such that ‖w+ a1‖ > 2− ε and ‖T1(w− y)‖ < min(δ, ε). The last inequality
means, in particular, that ‖T (w − y)‖ < ε and w ∈W .

Now suppose our assertion is true for n, and let us prove it for n + 1.
Let A = {a1, . . . , an, an+1} ⊂ S(X), and assume that an element w1 ∈
W ∩S(X) such that ‖T (w1−y)‖ < ε/2 and ‖w1 +ak‖ > 2−ε, k = 1, . . . , n,
has already been selected. Then there is a weak neighbourhood U of w1

such that the inequalities ‖u + ak‖ > 2 − ε, k = 1, . . . , n, hold for every
u ∈ U . The intersection U ∩W is a σ(X, cp(NAR(X)))-neighbourhood of
w1, so according to our inductive assumption for n = 1, there is an element
w ∈ S(X) ∩ U ∩W such that ‖w + an+1‖ > 2− ε and ‖T (w − w1)‖ < ε/2.
This element w satisfies all the requirements.

Using an ε-net of the unit ball of the finite-dimensional subspace Z below
one can easily deduce the following corollary.
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Proposition 4.12. Let X be a Banach space with the Daugavet prop-
erty , T be a narrow operator and Z ⊂ X be a finite-dimensional sub-
space. Then for every ε > 0, y ∈ S(X) and every σ(X, cp(NAR(X)))-
neighbourhood W of y there is an element w ∈ W ∩ S(X) such that
‖T (w − y)‖ < ε and ‖z + w‖ > (1− ε)(‖z‖+ ‖w‖) for every z ∈ Z.

Theorem 4.13. Let X be a Banach space with the Daugavet property
and let T be an operator on X which does not fix a copy of `1. Then T ∈
cp(NAR(X)), so in particular T is a narrow operator.

Proof. Lemma 1(xii) of [6] implies that every operator which does not
fix a copy of `1 can be factored through a space without `1-subspaces. So
every operator which does not fix a copy of `1 can be majorized by an
operator which maps into a space without `1-subspaces. Since the class of
narrow operators is an order ideal, it is enough to prove our theorem for
T : X → Y , where Y has no `1-subspaces. Also, by Theorem 4.7 we may
assume that X and Y are separable.

Fix a narrow operator R, ε > 0 and x, y ∈ S(X). Introduce a directed
set (Γ,�) as follows: the elements of Γ are finite sequences in S(X) of the
form γ = (x1, . . . , xn), n ∈ N, with x1 = x. The (strict) ordering is defined
by

(x1, . . . , xn) ≺ (y1, . . . , ym) ⇔ n < m & {x1, . . . , xn} ⊂ {y1, . . . , ym−1}
and of course γ1 � γ2 if γ1 ≺ γ2 or γ1 = γ2. Now define a bounded function
F : Γ → Y × R× R by

F (γ) = (Txn, α(γ), ‖R(y − xn)‖),
where

α(γ) = sup{a > 0 : ‖z + xn‖ > a(‖z‖+ ‖xn‖) ∀z ∈ lin{x1, . . . , xn−1}}.
Due to Proposition 4.12, for every weak neighbourhood U of y in B(X),
ε > 0 and every finite collection {v1, . . . , vn} ⊂ X there is some vn+1 ∈ U
for which α((v1, . . . , vn+1)) > 1 − ε and ‖R(y − vn+1)‖ < ε. This means
that (Ty, 1, 0) is a weak limit point of the function F . So, by Theorem 4.3
there is a strictly ≺-increasing sequence (γj) = ((x1, . . . , xn(j))) for which
(Txn(j)) tends weakly to Ty, (‖R(y − xn(j))‖) tends to 0 and (α(γj)) tends
to 1. Passing to a subsequence we can select points xn(j) in such a way that
the sequence {x, xn(1), xn(2), . . .} is ε-equivalent to the canonical basis of `1.
According to Mazur’s theorem, there is a sequence zn ∈ conv{xn(j)}j>n such
that ‖Ty − Tzn‖ → 0. Evidently ‖zn + x‖ > 2 − ε and ‖(R +̃ T )(y − zn)‖
→ 0, which means that R +̃ T ∈ SD(X) and thus proves the theorem by
Corollary 3.14(b).

There are other applications of Theorem 4.3 which are not related to
the Daugavet property. As an example let us prove the following theorem
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which was earlier established by E. Behrends [2] under the more restrictive
condition of separability of X∗.

Theorem 4.14. Let X be a Banach space without `1-subspaces and An ⊂
X be bounded subsets with 0 ∈ convAn for each n ∈ N. Then there exists a
sequence (an) in X with an ∈ An for every n such that 0 ∈ conv{a1, a2, . . .}.

Proof. In each An there is a separable subset whose closed convex hull
contains 0. So, passing to the linear span of these separable subsets we may
assume that X is separable. Introduce a directed set (Γ,�) as follows: the
elements of Γ are of the form

γ =
(
n,m, {ak}mk=n, {λk}mk=n

)
,

where n,m ∈ N, n < m, ak ∈ Ak, λk > 0,
∑m

k=n λk = 1. Define � as follows:
let γ1 = (n1,m1, {ak}m1

k=n1
, {λk}m1

k=n1
), γ2 = (n2,m2, {bk}m2

k=n2
, {µk}m2

k=n2
);

then γ1 � γ2 if m1 < n2. Define F : Γ → X by the formula F (γ) =∑m
k=n λkak. Now, 0 is a weak limit point of F ; see the proof of [2, Th. 4.3].

So, by Theorem 4.3 there is a sequence

γj = (nj ,mj , {ak}mjk=nj
, {λk}mjk=nj

)

such that n1 < m1 < n2 < m2 < n3 < . . . and
∑mj

k=nj
λkak tends weakly to

zero. To finish the proof one just needs to apply Mazur’s theorem.

5. Rich subspaces. In [17] a subspace Y of L1 is called rich if the
quotient map q : L1 → L1/Y is L1-narrow, and likewise a subspace Y of
C(K) is called rich in [12] if the quotient map q : C(K) → C(K)/Y is
C-narrow. We are now in a position to discuss rich subspaces in general.

Definition 5.1. Let X be a Banach space with the Daugavet property.
A subspace Y is said to be almost rich if the quotient map q : X → X/Y is
a strong Daugavet operator. A subspace Y is said to be rich if the quotient
map q : X → X/Y is a narrow operator.

By Theorem 3.7 the new definition comprises the old one for subspaces
of C(K).

The necessity to distinguish rich and almost rich subspaces will become
apparent later when we show that the following theorem does not extend to
almost rich subspaces; see Theorem 6.4.

Theorem 5.2. A rich subspace Y of a Banach space X with the Dau-
gavet property has the Daugavet property itself. Moreover , (Y,X) is a Dau-
gavet pair.

Proof. Consider elements x ∈ S(X), y ∈ S(Y ), a slice S = S(x∗, ε) and
y ∈ S. According to our assumption the quotient map q : X → X/Y is a
narrow operator. So there is an element u ∈ S such that ‖u+x‖ > 2−ε and
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‖q(y−u)‖ = ‖q(u)‖ < ε. The last condition means that the distance from u
to Y is smaller than ε, so there is an element v ∈ Y with ‖v − u‖ < ε. The
norm of v is close to 1, viz. 1− 2ε < ‖v‖ < 1 + ε. Put w = v/‖v‖. For this
w we have ‖w − u‖ < 3ε, so w ∈ S(x∗, 4ε) and ‖w + x‖ > 2− 4ε.

This theorem leads to new hereditary properties for the Daugavet prop-
erty.

Proposition 5.3. Suppose Y is a subspace of a Banach space X with
the Daugavet property.

(a) If the quotient space X/Y has the Radon–Nikodým property , then Y
is rich.

(b) If X/Y contains no copy of `1, then Y is rich in X.
(c) If (X/Y )∗ has the Radon–Nikodým property , then Y is rich.

In either case Y has the Daugavet property itself.

Proof. (a) follows from Theorem 3.13, (b) from Theorem 4.13, and (c)
follows from (b).

That Y has the Daugavet property under assumption (a) has been proved
earlier in [21].

Remark 5.4. If the quotient map q : X → X/Y belongs to
cp(NAR(X)), then the restriction to Y of every narrow operator on X
is a narrow operator itself. If Y is a rich subspace of a space X hav-
ing the Daugavet property, then the restriction to Y of every operator
T ∈ cp(NAR(X)) is a narrow operator.

Definition 5.5. We say that a subspace Y of a space X with the Dau-
gavet property is wealthy if Y and every subspace of X containing Y have
the Daugavet property.

It is plain that if Y is an (almost) rich subspace of a space X with the
Daugavet property, then every larger subspace is (almost) rich, too. Thus,
if Y is rich, then it is wealthy. We now investigate the converse implication.

Lemma 5.6. The following conditions for a subspace Y of a Banach
space X with the Daugavet property are equivalent :

(i) Y is wealthy.
(ii) Every finite-codimensional subspace of Y is wealthy.

(iii) For every x, y ∈ S(X), the linear span of Y , x and y has the Dau-
gavet property.

(iv) For every x, y ∈ S(X), ε > 0 and every slice S of S(X) which
contains y there is an element v ∈ lin({x, y}∪Y )∩S such that ‖x+v‖ > 2−ε.
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Proof. Due to Proposition 5.3 every finite-codimensional subspace of a
space with the Daugavet property has the Daugavet property itself (see also
[13, Th. 2.14]); this is the reason for the equivalence of (i) and (ii). The
implication (i)⇒(iii) follows immediately from the definition of a wealthy
subspace; (iii)⇒(iv) and (iv)⇒(i) are consequences of Lemma 1.1.

Let us say that a pair of elements x, y ∈ S(X) is ε-fine if there is a slice
S of S(X) which contains y and the diameter of S ∩ lin{x, y} is less than ε.

Lemma 5.7. Let Y be a wealthy subspace of a Banach space X with the
Daugavet property and let a pair x, y ∈ S(X) be ε-fine. Then Y intersects
D(x, y, 2ε).

Proof. First fix a slice S = S(x∗, ε1) from the definition of an ε-fine
pair and a δ > 0 such that the set W = {w ∈ lin{x, y} : ‖w‖ < 1 + δ,
x∗(w) > 1−ε1} still has diameter less than ε. Now find a finite-codimensional
subspace E ⊂ Y such that

(1) x∗ = 0 on E,
(2) if e ∈ E and w ∈ lin{x, y}, then ‖w‖ < (1 + δ)‖e+ w‖;

the last condition can be satisfied by a variant of the Mazur argument leading
to the basic sequence selection principle; see [10, Lemma 6.3.1]. According
to our assumptions lin({x, y} ∪ E) has the Daugavet property. So there is
an element v ∈ lin({x, y} ∪ E) ∩ S such that ‖x + v‖ > 2 − ε. Represent
v in the form v = e + w, where e ∈ E, w ∈ lin{x, y}. By choice of E this
means that ‖w‖ < 1 + δ and x∗(w) = x∗(v) > 1 − ε1. Thus, w ∈ W and
‖y − w‖ < ε. Finally we see that the element e belongs to E ∩D(x, y, 2ε),
which concludes the proof.

Recall the following result [13], which can also be deduced from our
Proposition 4.12:

Lemma 5.8. Let X be a Banach space with the Daugavet property and
Z ⊂ X be a finite-dimensional subspace. Then, for every ε > 0 in every
slice of the unit sphere of X there is an element x such that

‖z + x‖ > (1− ε)(‖z‖+ ‖x‖) ∀z ∈ Z.
We now present two easy lemmas.

Lemma 5.9. A subspace Y of a Banach space with the Daugavet property
which is almost rich together with all of its 1-codimensional subspaces is rich.

Proof. Let q : X → X/Y be the quotient map and let x∗ ∈ S(X∗);
further let Y1 = Y ∩ kerx∗ and let q1 : X → X/Y1 be the corresponding
quotient map. Then either Y1 = Y or Y1 is 1-codimensional in Y . In either
case we have ‖q(x)‖+ |x∗(x)| ≤ 2‖q1(x)‖ for all x ∈ X. Since q1 is a strong
Daugavet operator by assumption, so is q +̃ x∗, and q is narrow.
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Lemma 5.10. A subspace Y of a Banach space X with the Daugavet
property is almost rich if and only if Y intersects all the elements of D(X).

Proof. If Y intersects all the elements of D(X), then the quotient map q :
X → X/Y is unbounded from below on every element of D(X). So q belongs
to D(X)∼ which coincides with the class of strong Daugavet operators by
Proposition 3.4.

Now consider the converse statement. If Y is almost rich, then for ev-
ery ε > 0 the map q is unbounded from below on every set of the form
D(x, y, ε/2). This means that there is an element z ∈ Y for which
dist(z,D(x, y, ε/2)) < ε/2. In this case z belongs to D(x, y, ε), so the in-
tersection of this set with Y is non-empty.

The following is the key result for establishing that wealthy subspaces
are rich.

Lemma 5.11. Every wealthy subspace Y of a Banach space X having the
Daugavet property is almost rich.

Proof. According to Lemma 5.10 we need to prove that for every positive
ε < 1/10 and every pair x, y ∈ S(X) the subspace Y intersects D(x, y, ε).
To do this, according to Lemma 5.7, it is enough to show that for every
ε > 0 and every x, y ∈ S(X) there is an ε-fine pair x1, y1 ∈ S(X) which
approximates (x, y) well; i.e., ‖x−x1‖+‖y−y1‖ < ε. Fix a positive δ < ε2/8
and select an element z ∈ S(X) in such a way that for every w ∈ lin{x, y}
and t > 0,

‖w + tz‖ ≥ (1− δ)(‖w‖+ |t|)
(we use Lemma 5.8). Put x1 = x+εz, y1 = y. To show that (x1, y) is an ε-fine
pair it is sufficient to demonstrate that, for every v ∈ lin{x1, y} with ‖v‖ ≥ ε,
max{‖y+ v‖, ‖y− v‖} > 1. To do this let us argue ad absurdum. Take some
v = ay+b(x+εz) with ‖v‖ ≥ ε and assume that max{‖y+v‖, ‖y−v‖} = 1.
Then

1 = max{‖y + ay + b(x+ εz)‖, ‖y − ay − b(x+ εz)‖}
≥ (1− δ)(max{‖y + ay + bx‖, ‖y − ay − bx‖}+ |b|ε)
≥ (1− δ)(1 + |b|ε).

So |b| ≤ ε/4. But in this case |a| > ε/2 and

max{‖y + v‖, ‖y − v‖} > max{‖y + ay‖, ‖y − ay‖} − ε/3 > 1 + ε/6,

which provides a contradiction.

Theorem 5.12. The following properties of a subspace Y of a Daugavet
space X are equivalent :
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(i) Y is wealthy.
(ii) Y is rich.

(iii) Every finite-codimensional subspace of Y is rich.

Proof. It is clear that (iii)⇒(ii)⇒(i); see the remark following Defini-
tion 5.5. Now suppose (i). Every 1-codimensional subspace of Y is wealthy by
Lemma 5.6 and is hence almost rich by Lemma 5.11. An appeal to Lemma 5.9
completes the proof.

6. Operators on L1. In this section we shall study strong Daugavet
and narrow operators on L1. We first introduce a technical definition.

Let (Ω,Σ, µ) be an atomless probability space. A function f ∈ L1 =
L1(µ) is said to be a balanced ε-peak on A ∈ Σ if f ≥ −1, supp f ⊂ A,�
Ω f dµ = 0 and µ{t : f(t) = −1} > µ(A)− ε. The collection of all balanced
ε-peaks on A will be denoted by P (A, ε).

Theorem 6.1. NAR(L1) = {P (A, ε) : A ∈ Σ, ε > 0}∼.

Proof. Let T ∈ NAR(L1), δ, ε > 0, and A ∈ Σ. Consider a slice in L1
of the form

S =
{
f ∈ B(L1) : �

A

f dµ > 1− δ
}
.

Applying Lemma 3.8 to this slice, the elements x=−χA/µ(A), y=χA/µ(A)
and δ we get a function v ∈ S such that

‖v − χA/µ(A)‖ > 2− δ, ‖T (v − χA/µ(A))‖ < δ.(6.1)

Denote by B the set {t ∈ A : v(t) > 0}. The condition v ∈ S implies that
‖v − χBv‖ < δ, so

‖vχB − χA/µ(A)‖ > 2− 2δ.

Next, introduce C = {t ∈ A : v(t) > 1/µ(A)}. By the last inequality

‖vχC − χA/µ(A)‖ > 2− 2δ, ‖v − χCv‖ < 3δ

and
µ(C) < δµ(A);(6.2)

to see this observe that

2− 2δ <

∥∥∥∥χBv −
χA
µ(A)

∥∥∥∥ ≤ �
C

(
χBv −

1
µ(A)

)
dµ+

1
µ(A)

(µ(A)− µ(C))

≤ 2− 2
µ(C)
µ(A)

.

Put f = (µ(A)/β)χCv − χA with β =
�
C v dµ so that

�
Ω f dµ = 0. Since�

A v dµ > 1 − δ we see from ‖v − χCv‖ < 3δ that β ≥ 1 − 4δ. By (6.1) we
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conclude that

‖Tf‖ = µ(A)
∥∥∥∥T
(
χCv

β
− χA
µ(A)

)∥∥∥∥ ≤ µ(A)
(
‖T‖

∥∥∥∥
χCv

β
− v
∥∥∥∥+ δ

)

and ∥∥∥∥
χCv

β
− v
∥∥∥∥ ≤

∥∥∥∥
χCv − v

β

∥∥∥∥+
∥∥∥∥
v

β
− v
∥∥∥∥ ≤

3δ
β

+
(

1
β
− 1
)
≤ 7δ

1− 4δ
,

and if δ is small enough, f ∈ P (A, ε) by (6.2). This proves the inclusion
NAR(L1) ⊂ {P (A, ε) : A ∈ Σ, ε > 0}∼.

To prove the opposite inclusion we use Proposition 3.11. Fix T ∈
{P (A, ε) : A ∈ Σ, ε > 0}∼. Let x, y ∈ S(L1), y∗ ∈ S(L∞) and ε > 0
be such that 〈y∗, y〉 > 1− ε. Without loss of generality we may assume that
there is a partition A1, . . . , An of Ω such that the restrictions of x, y and
y∗ to Ak are constants, say ak, bk and ck respectively. By our assumption
T is unbounded from below on each P (Ak, δ) for δ > 0, k = 1, . . . , n. Fix
functions fk ∈ P (Ak, δ) such that ‖Tfk‖ < δ, k = 1, . . . , n, and put

v =
n∑

k=1

bk(χAk + fk).

By definition of balanced δ-peaks 〈y∗, v〉 > 1−ε, ‖v‖ = 1, and ‖T (y−v)‖ and
µ(supp v) become arbitrarily small when δ is small enough. Thus δ can be
chosen so that v fulfills the conditions ‖T (y−v)‖ < ε and ‖x+v‖ > 2−ε.

The characterisation of narrow operators on L1 proved above looks sim-
ilar to the definition of L1-narrow operators. It is easy to prove that every
L1-narrow operator is narrow. We do not know whether the classes of narrow
operators and L1-narrow operators on L1 coincide.

The aim of the remainder of this section is to construct an example of a
strong Daugavet operator on L1 which is not narrow. In fact, we shall define
a subspace Y ⊂ L1[0, 1] so that the quotient map q : L1 → L1/Y is a strong
Daugavet operator, but Y fails the Daugavet property. By Theorem 5.2, q
cannot be narrow. Likewise, Y is almost rich, but not rich.

Let In,k = [(k − 1)/2n, k/2n) for n ∈ N0 and k = 1, 2, . . . , 2n. Fix N ∈ N.
We define

g0,1 = (2N − 1)χIN,1 − χI0,1\IN,1 ,
g1,1 = (2N

2−N − 1)χIN2,1
− χIN,1\IN2,1

,

g1,k = g1,1(t− (k − 1)/2n), k = 2, . . . , 2N ,
...

gn,1 = (2N
n+1−Nn − 1)χINn+1,1

− χINn,1\INn+1,1
,

gn,k = gn,1(t− (k − 1)/2N
n
), k = 2, . . . , 2N

n
.
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Denote by Pn the “peak set” of the nth generation, i.e.,

Pn =
{
t ∈ [0, 1] :

2N
n

∑

k=1

gn,k(t) > 0
}
,

and P =
⋃
n Pn. Clearly |Pn| = 2N

n
/2N

n+1
=
(
1/2N−1

)Nn

and |P | ≤
1/(2N − 1). Notice also that

� 1
0 gn,k(t) dt = 0 for all n and k.

First we formulate a lemma. All the norms appearing below are L1-
norms.

Lemma 6.2. Let

g =
M∑

n=0

2N
n

∑

k=1

an,kgn,k.

Then
‖gχ[0,1]\P ‖ ≤ 3‖gχP‖.

Proof. Define

g′′ =
∑

supp gn,k⊂P
an,kgn,k, g′ = g − g′′.

Since g′ and g coincide off P , we clearly have

‖g′χ[0,1]\P ‖ = ‖gχ[0,1]\P ‖.(6.3)

We also have
‖g′χP ‖ ≤ ‖gχP‖.(6.4)

Indeed, we can write P as a countable union of disjoint (half-open)
intervals; denote by I any one of these. Then g′ is constant on I, and� 1
0 g
′′(t) dt = 0. Hence

‖g′χI‖ =
∣∣∣
1

�
0

g′(t)χI(t) dt
∣∣∣ =

∣∣∣
1

�
0

(g′(t)χI(t) + g′′(t)χI(t)) dt
∣∣∣ ≤ ‖gχI‖.

Summing up over all I gives the result.
Next, we claim that

‖g′χ[0,1]\P ‖ ≤ 3‖g′χP ‖.(6.5)

To see this, we label the intervals I from the previous paragraph as follows.
For every l ∈ N write B0 = P0 and Bl = Pl\

⋃l−1
i=1 Pi. Each Bl can be written

as
⋃
d∈Dl IN l+1,d where Dl is some subset of {1, . . . , 2N l+1} with cardinality

< 2N
l
. Write g′ =

∑M
n=0

∑2N
n

k=1 bn,kgn,k. We then have the estimates
1

�
0

|g′(t)χB0(t)| dt = |b0,1|
2N − 1

2N
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and
1

�
0

|g′(t)χBl(t)| dt =
∑

d∈Dl
�

I
Nl+1,d

∣∣∣∣−b0,1 −
l−1∑

n=1

2N
n

∑

k=1

bn,kχsupp gn,k

+ b
l,(d−1)/(2N−1)Nl+1

(
2N

l+1−N l − 1
)∣∣∣∣ dt

≥
2N

l

∑

k=1

(
1

2N l −
1

2N l+1

)
|bl,k|

− 1
(2N−1)N l

|b0,1| −
1

(2N−1)N l

l−1∑

n=1

2N
l

∑

k=1

|bn,k|.

Summing up over all l gives us

�
P

|g′(t)| dt ≥ |b0,1|
(

2N − 1
2N

−
∞∑

m=1

1
(2N−1)Nm

)

+
∞∑

l=1

(
1

2N l −
1

2N l+1 −
∞∑

m=l+1

1
(2N−1)Nm

) 2N
l

∑

k=1

|bl,k|

≥ 1
2
|b0,1|+

1
2

∞∑

l=1

1
2N l

2N
l

∑

k=1

|bl,k|.

On the other hand, by the triangle inequality

1

�
0

|g′(t)| dt ≤ 2
(
|b0,1|+

∞∑

l=1

1
2N l

2N
l

∑

k=1

|bl,k|
)
,

hence the claim follows.
The lemma now results from (6.3)–(6.5).

Theorem 6.3. Let YN ⊂ L1[0, 1] be the closed subspace generated by the
system {gn,k} and the constants. Then the quotient map qN : L1 → L1/YN
is a strong Daugavet operator for all N , but YN fails the Daugavet property
if N ≥ 4.

Proof. Fix x, y ∈ S(L1) and ε > 0. Without loss of generality we may

assume that x =
∑2N

n

k=1 an,kχIn,k for a large enough n to be chosen later.

Put h =
∑2N

n

k=1 an,kgn,k. Then

x+ h =
2N

n

∑

k=1

2N
n+1−Nn

χNn+1,dn,kan,k
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with dn,k = 1 + (k − 1)(2N−1)N
n
. So

‖x+ h‖ =
2N

n

∑

k=1

|an,k|
2Nn = ‖x‖ = 1,

and supp(x+ h) ⊂ Pn. Since |Pn| → 0 we can pick n large enough to satisfy
‖x+ h+ y‖ > 2− ε. This shows that qN is a strong Daugavet operator.

To show that YN fails the Daugavet property if N ≥ 4, take g∗ =
χ[0,1]\P ∈ Y ∗N and ε = 2|P |. Since 1 ∈ S(YN ), we get

‖g∗‖ ≥ g∗(1) = 1− ε/2 > 1− ε.
Thus, S(g∗, ε) ∩ B(YN ) 6= ∅. We show that there is no f in this slice such
that ‖f − 1‖ > 2− ε.

Suppose, on the contrary, that there is such an f . Without loss of gen-
erality we can assume that

f = a01 + g

where g is as in Lemma 6.2.
It follows from our conditions that

‖fχP‖ = �
P

|f(t)| dt = ‖f‖ − g∗(|f |) ≤ 1− g∗(f) < ε.(6.6)

Hence,

1 ≥
1

�
0

f(t) dt = �
P

f(t) dt+ g∗(f) > 1− 2ε,

and since
� 1
0 f(t) dt = a0, we get

1− 2ε < a0 ≤ 1.(6.7)

By (6.6) and (6.7),
‖gχP ‖ ≤ ε+ |P | < 2ε,(6.8)

thus (6.7) and (6.8) yield

‖gχ[0,1]\P‖ ≥ ‖g‖ − 2ε = ‖f − a01‖ − 2ε ≥ ‖f − 1‖ − 4ε > 2− 5ε.

But now Lemma 6.2 and (6.8) imply

2− 5ε < ‖gχ[0,1]\P‖ ≤ 3‖gχP‖ < 6ε,

which yields ε > 2/11, i.e., |P | > 1/11, which is false for N ≥ 4.

Theorems 6.3 and 5.2 immediately yield the following result.

Theorem 6.4. There is an almost rich subspace of L1[0, 1] which fails
the Daugavet property and hence fails to be rich. Thus, on L1[0, 1] the class
of strong Daugavet operators does not coincide with the class of narrow
operators.
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7. Questions. We finish this paper with some questions which have re-
mained open. We intend to deal with these problems in a future publication.

(1) Does the class of narrow operators on a Banach space X form a
subsemigroup of OP(X)? [Added in the final version: We have recently
constructed a counterexample on the space X = C([0, 1], `1).]

(2) Is every narrow operator on L1 also L1-narrow?
(3) Is the sum of two L1-narrow operators from L1 to L1 again L1-

narrow? This question is clearly related to the previous ones; we remark
that the proof in [17, p. 69] which purportedly shows this to be true appears
to have a gap.

(4) If X has the Daugavet property, does X have a subspace isomorphic
to `2?

(5) If T is an operator on a space X with the Daugavet property which
does not fix a copy of `2, is T then narrow? We remark that the answer is
affirmative in the case X = C[0, 1] by our Theorem 4.13 and a result due to
Bourgain [3].
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141 (2000), 235–250.

[3] J. Bourgain, A result on operators on C[0, 1], J. Operator Theory 3 (1980), 275–289.
[4] R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon–Nikodým Prop-

erty , Lecture Notes in Math. 993, Springer, Berlin, 1983.
[5] I. K. Daugavet, On a property of completely continuous operators in the space C,

Uspekhi Mat. Nauk 18 (1963), no. 5, 157–158 (in Russian).
[6] W. J. Davis, T. Figiel, W. B. Johnson, and A. Pełczyński, Factoring weakly compact

operators, J. Funct. Anal. 17 (1974), 311–327.
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