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Some theorems of Korovkin type

by

Tomoko Hachiro (Sendai) and Takateru Okayasu (Yamagata)

Abstract. We take another approach to the well known theorem of Korovkin, in
the following situation: X, Y are compact Hausdorff spaces, M is a unital subspace of
the Banach space C(X) (respectively, CR(X)) of all complex-valued (resp., real-valued)
continuous functions on X, S ⊂ M a complex (resp., real) function space on X, {φn}
a sequence of unital linear contractions from M into C(Y ) (resp., CR(Y )), and φ∞ a
linear isometry from M into C(Y ) (resp., CR(Y )). We show, under the assumption that
ΠN ⊂ ΠT , where ΠN is the Choquet boundary for N = Span(

⋃
1≤n≤∞Nn), Nn =

φn(M) (n = 1, 2, . . . ,∞), and ΠT the Choquet boundary for T = φ∞(S), that {φn(f)}
converges pointwise to φ∞(f) for any f ∈ M provided {φn(f)} converges pointwise to
φ∞(f) for any f ∈ S; that {φn(f)} converges uniformly on any compact subset of ΠN
to φ∞(f) for any f ∈ M provided {φn(f)} converges uniformly to φ∞(f) for any f ∈ S;
and that, in the case where S is a function algebra, {φn} norm converges to φ∞ on M
provided {φn(f)} norm converges to φ∞ on S. The proofs are in the spirit of the original
one for the theorem of Korovkin.

1. Introduction. The theorem of Korovkin asserts that if {φn} is a
sequence of positive linear maps from C([0, 1]) (resp., CR([0, 1])), the Ba-
nach space of complex-valued (resp., real-valued) continuous functions on
the closed interval [0, 1], into itself and the sequences {φn(ιk)} of functions
converge uniformly to ιk on [0, 1] (k = 0, 1, 2), where

ι0(x) = 1, ι1(x) = ι(x) = x, ι2(x) = (ι(x))2 = x2, x ∈ [0, 1],

then, for any f ∈ C([0, 1]) (resp., CR([0, 1])), the sequence {φn(f)} of func-
tions converges uniformly to f . This fact is well illustrated by the behavior
of the Bernstein polynomials

Bn(f)(x) =
n∑

k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k, 0 ≤ x ≤ 1,

defined for a continuous function f on the interval [0, 1]. Indeed, it is well
known that the sequence {Bn(f)} converges uniformly to f on [0, 1], not
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merely for f = ιk (k = 0, 1, 2) (in fact, Bn(1) = 1, Bn(ι) = ι), but also for
any f ∈ C([0, 1]) (resp., CR([0, 1]).

The phenomenon described by this theorem is a prototype of ones where
a sequence {φn} of maps and a map φ∞ of some specified kind exhibit the
property: If the sequence {φn(f)} converges to φ∞(f) in some sense for any
f belonging to some restricted class S, then {φn(f)} converges to φ∞(f) in
that sense for all f in a class M properly larger than S.

Korovkin’s theorem aroused great interest and stimulated extensive in-
vestigation of such phenomena. We refer, e.g., to the large volume [1] by
Altomare and Campiti.

The standing assumptions in the present paper are: X, Y are compact
Hausdorff spaces, M is a subspace of the Banach space C(X) (resp., CR(X))
of all complex-valued (resp., real-valued) continuous functions on X, S ⊂M
a complex (resp., real) function space on X, {φn} a sequence of unital linear
contractions from M into C(Y ) (resp., CR(Y )), and φ∞ a linear isometry
from M into C(Y ) (resp., CR(Y )); finally, the Choquet boundary ΠN for

N = Span
( ⋃

1≤n≤∞
Nn

)
, where Nn = φn(M) (n = 1, 2, . . . ,∞),

is contained in the Choquet boundary ΠT for T = φ∞(S). The question we
ask in this paper is: Does the sequence {φn(f)} converge to φ∞(f) for any
f ∈ M provided {φn(f)} converges to φ∞(f) for any f ∈ S? Here, we take
up three kinds of convergence, namely, the pointwise, uniform, and norm
convergences.

The idea, however, of getting the results in this paper rests on the original
proof of Korovkin’s theorem.

2. Choquet boundaries and linear isometries. Suppose that M is
a subspace of the Banach space C(X) (resp., CR(X)) and Γ a subset of X.
We say that Γ is a boundary for M if there exists x′ ∈ Γ such that

|f(x′)| = ‖f‖ = sup
x∈X
|f(x)|

for any f ∈M.
For x ∈ X, the evaluation τM (x) at x is defined by

τM (x)(f) = f(x) for any f ∈M.

τM (x) is in the closed unit ball BM∗ of the dual space M∗ of M . It is known
that

ΠM = {x ∈ X : τM (x) ∈ extBM∗} = τ−1
M (extBM∗)

is in fact a boundary for M , where extBM∗ means the set of all extreme
points of BM∗ . Following Novinger [10], we call ΠM the Choquet boundary
for M . If M is unital, then this notion coincides with the set of H-extremal



Theorems of Korovkin type 133

points due to Bauer [3], [4], and was called the Choquet boundary by Bishop
and de Leeuw [6] (see Notes and references to Section 2.6 of [1] for more
historical aspects).

Furthermore, we have the following lemma that generalizes the so-called
Arens–Kelley theorem [2]:

Lemma 2.1. Let M be a subspace of C(X) (resp., CR(X)). Then

extBM∗ = TτM (ΠM ) = {λτM (x) : λ ∈ T, x ∈ ΠM},
where T is the torus in the complex plane C (resp.,

extBM∗ = τM (ΠM ) ∪ −τM (ΠM )).

The following proof is valid for both the real and complex cases.

Proof. We suppose that the closed convex hull of the set TτM (X) =
{λτM (x) : λ ∈ T, x ∈ X} is properly contained in BM∗ . Then there exists
an f ∈M such that

sup
λ∈T, x∈X

Re(λτM (x)(f)) < sup
ϕ∈BM∗

Re(ϕ(f)),

which yields the strict inequality supx∈ΠM |f(x)| < ‖f‖, a contradiction. So
the closed convex hull of TτM (X) coincides with the ball BM∗ . It follows by
the Milman theorem that the set extBM∗ is contained in TτM (X). Hence
we conclude that extBM∗ = TτM (ΠM ).

For a subspace M of C(X) (resp., CR(X)), we denote by ΓM the closure
ΠM of ΠM .

We say that a subspace M of C(X) (resp., CR(X)) is a complex (resp.,
real) function space on X if M is unital, that is, the constant function 1 is
in M , and separates points of X, that is, given any pair of distinct points
x, x′ ∈ X there is an f ∈M such that f(x) 6= f(x′). Any function space M
has a smallest closed boundary ΣM , which in fact is ΓM , called the Shilov
boundary for M .

Essential to our considerations is a characterization of Choquet bound-
aries for function spaces, given in Theorem 2.2.6 of Browder [7] (see also
Theorem 4.2.11 in [13]):

Lemma 2.2. Let M be a function space (either complex or real) on X
and x′ ∈ X. Then x′ ∈ ΠM if and only if , for any α, β ∈ (0,∞) with α < β
and any open neighborhood U of x′, there exists a function f ∈M such that

Re f ≤ 0, Re f(x) < −β for x ∈ U c, Re f(x′) > −α.
We say that a subspace M of C(X) is self-conjugate if f ∈M whenever

f ∈M . It is obvious that if M is a subspace of C(X), then

M +M = {f1 + f2 : f1, f2 ∈M}
is self-conjugate. We prove
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Lemma 2.3. If a subspace M of C(X) is unital , then

ΠM+M = ΠM .

Proof. First we consider the case where M is a function space. Suppose
that x′ ∈ ΠM+M . Then, for any α, β ∈ (0,∞) with α < β and any open
neighborhood U of x′, there exists a function f ∈M +M such that

Re f ≤ 0, Re f(x) < −β for x ∈ U c, Re f(x′) > −α.
So, we have functions f1, f2 ∈ M such that f = f1 + f2. Put g = f1 + f2.
Then g ∈M . We have Re g = Re f , and so g satisfies

Re g ≤ 0, Re g(x) < −β for x ∈ U c, Re g(x′) > −α.
This shows that x′ ∈ ΠM . Thus we get the inclusion ΠM+M ⊂ ΠM . The
opposite inclusion is obvious.

Next we prove the general case. We introduce an equivalence relation
∼M on X by

x ∼M x′ ⇔ f(x) = f(x′) for any f ∈M
⇔ (f1 + f2)(x) = (f1 + f2)(x′) for any f1, f2 ∈M.

We denote by X/∼M the quotient space of X by ∼M , which is a compact
Hausdorff space, and by ·̂ the canonical map from X onto X/∼M . Further-
more, we define, for any f ∈M+M , a continuous function f̂ on X̂ = X/∼M
by

f̂(x̂) = f(x) for x ∈ X.

Then M̂ becomes a function space on X̂. Since (M + M)∧ = M̂ + M̂ , we
have

ΠM+M =
⋃
Π(M+M)∧ =

⋃
Π
M̂

= ΠM .

A complex function space M on X is called a function algebra on X if M
is uniformly closed, and, at the same time, is an algebra. A function algebra
version of Lemma 2.2 is the following:

Lemma 2.4. Let M be a function algebra on X and x′ ∈ X. Then
x′ ∈ ΠM if and only if , for any α, β ∈ (0, 1) with α < β and any open
neighborhood U of x′, there exists a function f ∈M such that

|f | ≤ 1 on X, |f(x)| < α for x ∈ U c, |f(x′)| > β.

We refer to Theorem 2.3.4 of Browder [7] (and Theorem 4.3.4 of [13], cf.
[5] and [6]).

Lemma 2.5. Let M be a complex (resp., real) function space on X, φ a
linear isometry from M into C(Y ) (resp. CR(Y )), and N the image of M
under φ. Then there is a unique continuous map η from ΓN onto ΣM such



Theorems of Korovkin type 135

that
φ(f)(y) = φ(1)(y)f(η(y)) for y ∈ ΓN and f ∈M.

Furthermore,

|φ(1)(y)| = 1 (resp. φ(1)(y) = 1 or − 1) for y ∈ ΓN ,
and η carries ΠN onto ΠM .

Proof. Let y ∈ ΠN . Since φ is a linear isometry, φ∗(τN (y)) is in extBM∗
and must be of the form λτM (x), λ ∈ T, x ∈ ΠM . So, φ(f)(y) = λf(x) for
any f ∈ M . In particular, φ(1)(y) = λ. Hence, φ(f)(y) = φ(1)(y)f(y) for
any f ∈M .

We consider the set P of all (x, y) ∈ X × Y such that

φ(f)(y) = φ(1)(y)f(x) for any f ∈M.

What we have shown means that ΠN is contained in the set

{y ∈ Y : (x, y) ∈ P for some x ∈ ΠM}.
Since P is compact, it follows that ΓN is contained in the set of all y ∈ Y
such that (x, y) ∈ P for some x in ΣM .

SinceM separates points ofX, the restriction πY |P to P of the projection
πY of X×Y on Y is one-to-one, and its image contains ΓN . So we can define
the map η from ΓN into ΣM by

η = πX ◦ (πY |P ′)−1,

where πX is the projection of X×Y onto X, and P ′ the set of all (x, y) ∈ P
with y ∈ ΓN . It is continuous because both πX and (πY |P ′)−1 are continuous.

It is clear that

φ(f)(y) = φ(1)(y)f(η(y)) for any f ∈M and y ∈ ΓN .
Since, as above, ΠM , ΣM are contained in the sets of x ∈ X such that
(x, y) ∈ P for some y ∈ ΠN , ΓN , respectively, we have η(ΓN ) = ΓM and
η(ΠN ) = ΠM . It also is clear that |φ(1)(y)| = 1 for any y ∈ ΓN , and that
the map η is uniquely determined.

3. Pointwise approximations. We say that a linear map φ from a
subspace M of C(X) (resp., CR(X)) into C(Y ) (resp., CR(Y )) is a contrac-
tion if ‖φ‖ ≤ 1; that a linear map φ from a unital subspace M of C(X)
(resp., CR(X)) into C(Y ) (resp., CR(Y )) is unital if φ(1) = 1; and that
a linear map φ from a unital self-conjugate subspace M of C(X) (resp.,
CR(X)) into C(Y ) (resp., CR(Y )) is positive if φ(f) ≥ 0 whenever f ≥ 0.

Lemma 3.1 ([11]). Any unital linear contraction from a unital subspace
of C(X) (resp., CR(X)) into C(Y ) (resp., CR(Y )) is necessarily positive.



136 T. Hachiro and T. Okayasu

Lemma 3.2. If φ is a unital linear contraction from a unital subspace M
of C(X) (resp., CR(X)) into C(Y ) (resp., CR(Y )), then φ uniquely extends
to a positive linear map φ̃ from M +M into C(Y ) (resp., CR(Y )).

Proof. For any f, g ∈M , we put

φ̃(f + g) = φ(f) + φ(g).

It is easy to see that φ̃ is well defined and positive. In fact, for any y ∈ Y , by
the Hahn–Banach extension theorem, φ∗τN (y) extends to a linear functional
% on M + M with ‖%‖ = 1. Since % is unital, % must be positive. So, % is
self-adjoint. Thus, for f, g ∈M with f + g ≥ 0 and y ∈ Y ,

φ̃(f +g)(y) = φ(f)(y)+φ(g)(y) = %(f)+%(g) = %(f) +%(g) = %(f +g) ≥ 0.

Hence φ̃(f + g) ≥ 0. It is clear that φ̃ must be unique.

Theorem 3.3. Let M be a subspace of C(X) (resp., CR(X)), S a func-
tion space on X contained in M , {φn} a sequence of unital linear contrac-
tions from M into C(Y ) (resp., CR(Y )), φ∞ a linear isometry from M into
C(Y ) (resp., CR(Y )), and assume that ΠN ⊂ ΠT , where

N = Span
( ⋃

1≤n≤∞
Nn

)
, Nn = φn(M) (n = 1, 2, . . . ,∞), T = φ∞(S).

If {φn(f)} converges pointwise to φ∞(f) for any f ∈ S, then {φn(f)} con-
verges pointwise to φ∞(f) for any f ∈M .

We only give the proof for M being a subspace of C(X). The argument
for the other case is even simpler.

Proof. Let φ∞ be represented, via Lemma 2.5, by a continuous map η
from ΓT onto ΣS as

φ∞(f)(y) = f(η(y)), y ∈ ΠT ,

for any f ∈ S. Take f ∈ M and ε > 0. Put F = f ⊗ 1 − 1 ⊗ f . This is
a continuous function on X ×X, and assumes the value 0 on the diagonal
∆X = {(x, x) : x ∈ X} of X ×X. So, there exists an open neighborhood U
of ∆X such that |F (x, x′)| < ε for (x, x′) ∈ U .

Let y′ ∈ ΠT and x′ = η(y′). Then x′ ∈ ΠS . Thus we have an open
neighborhood Vx′ of x′ such that Vx′ × Vx′ ⊂ U . By Lemma 2.2 we can find
fy′ ∈ S such that

Re fy′ ≥ 0 on X, Re fy′ ≥ 1 on V c
x′ , Re fy′(x′) < ε.

Put Fy′ = fy′ ⊗ 1 + 1⊗ fy′ . Then

ReFy′ ≥ 0 on X ×X, ReFy′ ≥ 1 on (V × Vx′)c ⊃ U c.
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So, |ReF | ≤ ‖F‖ ≤ ‖F‖ReFy′ on U c, and hence, |ReF | ≤ ε+ ‖F‖ReFy′ ,
that is,

−(ε+ ‖F‖ReFy′) ≤ ReF ≤ ε+ ‖F‖ReFy′

on X ×X. Therefore, since φ̃n ⊗ φ̃∞ is positive,

−(φ̃n ⊗ φ̃∞)(ε+ ‖F‖ReFy′) ≤ (φ̃n ⊗ φ̃∞)(ReF )

≤ (φ̃n ⊗ φ̃∞)(ε+ ‖F‖ReFy′).

So, we have

|Reφn(f)− Reφ∞(f)|
= |Re(φn ⊗ φ∞)(F )| = |(φ̃n ⊗ φ̃∞)(ReF )|

≤ (φ̃n ⊗ φ̃∞)(ε+ ‖F‖ReFy′) = ε+ ‖F‖(φ̃n ⊗ φ̃∞)(ReFy′)

= ε+ ‖F‖Re(φn ⊗ φ∞)(Fy′) = ε+ ‖F‖(Re(φn(fy′) + φ∞(fy′)))

≤ ε+ ‖F‖(|φn(fy′)− φ∞(fy′)|+ 2 Reφ∞(fy′)),

which implies that, for any sufficiently large integer n,

|(Reφn(f))(y′)− (Reφ∞(f))(y′)|
≤ ε+ ‖F‖(|φn(fy′)(y

′)− φ∞(fy′)(y
′)|+ 2 Re fy′(x

′))

< ε+ ‖F‖(ε+ 2ε) = (1 + 3‖F‖)ε.
Hence, {Reφn(f)} converges pointwise to Reφ∞(f) on ΠT . By replacing f
by −if , we may see that {Imφn(f)} also converges pointwise to Imφ∞(f)
on ΠT . Therefore, {φn(f)} also converges pointwise to φ∞(f) on ΠT .

Now we denote by ·̂ the canonical map from Y onto Y/∼N . Then it
is obvious that {φn(f)∧} converges pointwise to φ∞(f)∧ on Π̂T = {ŷ :
y ∈ ΠT }.

By the Bishop–de Leeuw theorem ([6, Section V], see also [12, Section 4],
for any y ∈ Y there exists a positive measure µ on the σ-ring of subsets of
BN̂∗ generated by extBN̂∗ and the Baire subsets of BN̂∗ that represents ŷ
and satisfies µ(BN̂∗) = 1. Since extBN̂∗ = TΠN̂ ⊂ TΠ̂T , we conclude, by
the Lebesgue dominated convergence theorem, that for any f ∈M ,

φn(f)(y) = φn(f)∧(ŷ) = τN̂ (ŷ)(φn(f)∧) =
�

B
N̂∗

φn(f)∧ dµ

→
�

B
N̂∗

φ∞(f)∧ dµ = τN̂ (ŷ)(φ∞(f)∧) = τN (y)(φ∞(f)) = φ∞(f)(y)

as n→∞. Thus the proof is complete.
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4. Uniform approximations. Next we state the following

Theorem 4.1. Let M , S, {φn}, φ∞, Nn (n = 1, 2, . . . ,∞), N∞, N , T be
as in Theorem 3.3. If {φn(f)} converges uniformly to φ∞(f) for any f ∈ S,
then {φn(f)} converges to φ∞(f) uniformly on any compact subset of ΠN

for any f ∈M . In particular , if in addition ΠN is compact , then it follows
that {φn(f)} converges uniformly to φ∞(f) for any f ∈M .

Just as for Theorem 3.3, we only give the proof of the complex case.

Proof. Let again φ∞ be represented by a continuous map η of ΓT onto
ΠS as

φ∞(f)(y) = f(η(y)), y ∈ ΠT ,

for any f ∈ S. Take f ∈ M , K ⊂ ΠN compact, y′ ∈ K, and ε > 0. Put
F = f ⊗ 1− 1⊗ f and x′ = η(y′). Then, as in the proof of Theorem 3.3, we
have an open neighborhood Vx′ of x′ and a function fy′ ∈ S such that

Re fy′ ≥ 0 on X, Re fy′ ≥ 1 on V c
x′ , Re fy′(x′) < ε.

It follows that

|Reφn(f)− Reφ∞(f)| ≤ ε+ ‖F‖(|φn(fy′)− φ∞(fy′)|+ 2 Reφ∞(fy′)).

Since K is compact and the family of open neighborhoods

Wy′ = {y ∈ Y : Reφ∞(fy′)(y) < ε}

of y′ ∈ K covers K, we can find a finite number of points y′1, . . . , y
′
p in K

such that K ⊂ ⋃1≤k≤pWy′k
. So, for any y ∈ K, we can find a k with y ∈Wy′k

and have

|(Reφn(f))(y)− (Reφ∞(f))(y)|
≤ ε+ ‖F‖(|φn(fy′k)(y)− φ∞(fy′k)(y)|+ 2 Reφ∞(fy′k)(y))

≤ ε+ ‖F‖(‖φn(fy′k)− φ∞(fy′k)‖+ 2ε)

= ‖F‖ max
1≤k≤p

‖φn(fy′k)− φ∞(fy′k)‖+ (1 + 2‖F‖)ε.

Applying the above to −if = g in place of f , we find functions gy′′1 , . . . , gy′′q
∈ S such that for any y ∈ K,

|(Imφn(f))(y)− (Imφ∞(f))(y)|
≤ |(Reφn(g))(y)− (Reφ∞(g))(y)|
≤ ‖F‖ max

1≤l≤q
‖φn(gy′′l )− φ∞(gy′′l )‖+ (1 + 2‖F‖)ε.



Theorems of Korovkin type 139

Therefore we have, for any sufficiently large integer n,

|φn(f)(y)− φ∞(f)(y)|
≤ ‖F‖( max

1≤k≤p
‖φn(fy′k)− φ∞(fy′k)‖+ max

1≤l≤q
‖φn(gy′′l )− φ∞(gy′′l )‖)

+ 2(1 + 2‖F‖)ε
< (2‖F‖+ 2(1 + 2‖F‖))ε = 2(1 + 3‖F‖)ε.

This shows that, for any f ∈ M , {φn(f)} converges uniformly on K to
φ∞(f). Thus the theorem is proved.

5. Approximations in norm. In this section, we will state a theorem
of Korovkin type on the convergence in norm, parallel to Theorems 3.3 and
4.1, under the assumption, however, that S is a function algebra:

Theorem 5.1. Let M , S, {φn}, φ∞, Nn (n = 1, 2, . . . ,∞), N∞, N , T
be as in Theorem 3.3, with the additional assumption that S is a function
algebra. If

‖φn − φ∞‖S = sup
f∈S, ‖f‖≤1

|φn(f)− φ∞(f)|

converges to 0 as n→∞, then

‖φn − φ∞‖M = sup
f∈M, ‖f‖≤1

|φn(f)− φ∞(f)|

converges to 0 as n→∞.

Proof. Let φ∞ be represented, via Lemma 2.5, by a continuous map η
from ΓT onto ΣS as

φ∞(f)(y) = f(η(y)), y ∈ ΓT ,
for any f ∈ S. Take f ∈ M and ε > 0 sufficiently small. Put F = f ⊗ 1 −
1⊗ f . This is a continuous function on X ×X and assumes the value 0 on
the diagonal ∆X = {(x, x) : x ∈ X} of X × X. So, there exists an open
neighborhood U of ∆X such that |F (x, x′)| < ε for (x, x′) ∈ U .

Let y′ ∈ ΠT and x′ = η(y′). Then x′ ∈ ΠS . We have an open neighbor-
hood Vx′ of x′ such that Vx′ × Vx′ ⊂ U . By Lemma 2.4 we can find gy′ ∈ S
such that

|gy′ | ≤ 1 on X, |gy′(x)| < ε for x ∈ V c
x′ , |gy′(x′)| > 1− ε.

Put fy′ = 1− e−iθgy′ with θ = arg gy′(x′). Then

2 ≥ Re fy′ ≥ 0 on X, Re fy′ > 1− ε on V c
x′ , Re fy′(x′) < ε.

Put next Fy′ = fy′ ⊗ 1 + 1⊗ fy′ . Then

ReFy′ ≥ 0 on X ×X, ReFy′ > 1− ε on U c.
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So,

|ReF | ≤ ‖F‖ ≤ ‖F‖
1− ε ReFy′ on U c,

and hence,

|ReF | ≤ ε+
‖F‖
1− ε ReFy′ ,

that is,

−
(
ε+

‖F‖
1− ε ReFy′

)
≤ ReF ≤ ε+

‖F‖
1− ε ReFy′

on X ×X. So, since φ̃n ⊗ φ̃∞ is positive,

−(φ̃n ⊗ φ̃∞)
(
ε+

‖F‖
1− ε ReFy′

)
≤ (φ̃n ⊗ φ̃∞)(ReF )

≤ (φ̃n ⊗ φ̃∞)
(
ε+

‖F‖
1− ε ReFy′

)
.

Hence, we have

|Reφn(f)− Reφ∞(f)| = |Re(φn ⊗ φ∞)(F )| = |(φ̃n ⊗ φ̃∞)(ReF )|

≤ (φ̃n ⊗ φ̃∞)
(
ε+

‖F‖
1− ε ReFy′

)
= ε+

‖F‖
1− ε (φ̃n ⊗ φ̃∞)(ReFy′)

= ε+
‖F‖
1− ε Re(φn ⊗ φ∞)(Fy′) = ε+

‖F‖
1− ε (Re(φn(fy′) + φ∞(fy′)))

≤ ε+
‖F‖
1− ε (|φn(fy′)− φ∞(fy′)|+ 2 Reφ∞(fy′)),

which implies that, for any sufficiently large integer n,

|(Reφn(f))(y′)− (Reφ∞(f))(y′)|

≤ ε+
‖F‖
1− ε (|φn(fy′)(y′)− φ∞(fy′)(y′)|+ 2 Re fy′(x′))

≤ ε+
‖F‖
1− ε (‖φn − φ∞‖S‖fy′‖+ 2ε) <

(1− ε+ 4‖F‖)ε
1− ε

<
(1 + 8‖f‖)ε

1− ε ,

since in fact ‖F‖ ≤ 2‖f‖.
Replacing f by −if in the above, we have, for any sufficiently large

integer n,

|(Imφn(f))(y′)− (Imφ∞(f))(y′)| < (1 + 8‖f‖)ε
1− ε ,
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and so,

‖φn − φ∞‖M = sup
f∈M, ‖f‖≤1, y′∈ΠN

|φn(f)(y′)− φ∞(f)(y′)|

≤ 2 · 9ε
1− ε =

18ε
1− ε.

Therefore, we conclude that ‖φn − φ∞‖M → 0 as n → ∞, and the proof is
complete.

6. Applications. Let M be a complex (resp., real) function space on
X. Then it may be seen from Lemma 2.2 that, if for any x′ ∈ X, there is an
f ∈M such that

Re f(x′) = 0 < Re f(x) for any x ∈ X distinct from x′,

then the Choquet boundary ΠM for M coincides with X.
So, from Theorems 3.3 and 4.1, we have the following

Corollary 6.1. Let S be a complex (resp., real) function space on X,
{φn} a sequence of unital linear contractions from C(X) (resp., CR(X)) into
C(Y ) (resp., CR(Y )), and φ∞ a linear isometry from C(X) (resp., CR(X))
into C(Y ) (resp., CR(Y )). Assume that for any y′ ∈ Y , there is a g ∈ φ∞(S)
such that

Re g(y′) = 0 < Re g(y) for any y ∈ Y distinct from y′.

If {φn(f)} converges pointwise to φ∞(f) for any f ∈ S, then {φn(f)} con-
verges pointwise to φ∞(f) for any f ∈ C(X) (resp., CR(X)). The statement
is also true with “converges pointwise” replaced by “converges uniformly”.

Corollary 6.1 gives us some new theorems of Korovkin type. Here we
recall theorems due to Volkov [14] (cf. p. 245 of [1]) and to Morozov [9].
The former asserts that if {φn} is a sequence of positive linear maps from
CR(Ω), Ω a compact subset of Rp, into itself, {φn(ι0)} converges uniformly
to ι0, {φn(ιk)} converges uniformly to ιk, where

ι0(x) = 1, ιk(x) = xk for x = (x1, . . . , xp) ∈ Ω (k = 1, . . . , p),

and {φn(
∑p

k=1 ι
2
k)} converges uniformly to

∑p
k=1 ι

2
k, then {φn(f)} converges

uniformly to f for any f ∈ CR(Ω); the latter asserts that if {φn} is a sequence
of positive linear maps from the Banach space CR(Rp)2π of real-valued con-
tinuous functions on Rp of period 2π in each variable x1, . . . , xn into itself,
{φn(ι0)} converges uniformly to ι0, {φn(cosk)} converges uniformly to cosk
and {φn(sink)} converges uniformly to sink, where

ι0(x) = 1, cosk(x) = cosxk, sink(x) = sinxk for x = (x1, . . . , xp) ∈ Rp

(k = 1, . . . , p), then {φn(f)} converges uniformly to f for any f ∈ CR(Rp)2π.
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Corollary 6.2. Let {φn} be a sequence of unital linear contractions
from C(Ω) (resp., CR(Ω)) into itself , and φ∞ a linear isometry from C(Ω)
(resp., CR(Ω)) into itself which satisfies

φ∞(ι0) = ι0, φ∞(ιk) = ιk (k = 1, . . . , p), φ∞
( p∑

k=1

ι2k

)
=

p∑

k=1

ι2k.

If {φn(ι0)} converges pointwise to ι0, {φn(ιk)} converges pointwise to ιk (k=
1, . . . , p), and {φn(

∑p
k=1 ι

2
k)} converges pointwise to

∑p
k=1 ι

2
k, then {φn(f)}

converges pointwise to f for any f ∈ C(Ω) (resp., CR(Ω)). The statement
is also true with “converges pointwise” replaced by “converges uniformly”.

Corollary 6.3. Let {φn} be a sequence of unital linear contractions
from the Banach space C(Rp)2π (resp., CR(Rp)2π) of complex-valued (resp.,
real-valued) continuous functions on Rp of period 2π in each variable
x1, . . . , xn into itself , and let φ∞ be a linear isometry from C(Rp)2π (resp.,
CR(Rp)2π) into itself which satisfies

φ∞(ι0) = ι0, φ∞(cosk) = cosk, φ∞(sink) = sink (k = 1, . . . , p).

If {φn(ι0)} converges pointwise to ι0, {φn(cosk)} converges pointwise to cosk
and {φn(sink)} converges pointwise to sink (k = 1, . . . , p), then {φn(f)} con-
verges pointwise to f for any f ∈ C(Rp)2π (resp., CR(Rp)2π). The statement
is also true with “converges pointwise” replaced by “converges uniformly”.

We denote by A(T) the function algebra on T = {z ∈ C : |z| = 1}
consisting of the complex-valued continuous functions on T which extend
to continuous functions on the closed unit disc D = {z ∈ C : |z| ≤ 1} and
are analytic on its interior. It is known that the Choquet boundary ΠA(T)
of A(T) is the torus. So, from Theorem 5.1, we have the following

Corollary 6.4. Let {φn} be a sequence of unital linear contractions
from C(T) into itself , and φ∞ a linear isometry from C(T) into itself. If

‖φn − φ∞‖A(T) = sup
f∈A(T), ‖f‖≤1

|φn(f)− φ∞(f)|

converges to 0 as n→∞ (so, φ∞ is an algebra-isomorphism), then

‖φn − φ∞‖C(T) = sup
f∈C(T), ‖f‖≤1

|φn(f)− φ∞(f)|

converges to 0 as n→∞.
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