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The “Full Clarkson—Erdés—Schwartz Theorem”
on the closure of non-dense Miintz spaces

by

TamAs ErDELYI (College Station, TX)

Abstract. Denote by span{fi, f2, ...} the collection of all finite linear combinations
of the functions f1, f2,... over R. The principal result of the paper is the following.

THEOREM (Full Clarkson-Erdds—Schwartz Theorem). Suppose (\;)j=; is a sequence

of distinct positive numbers. Then span{l,:v/\l,x/\Q, ...} is dense in C[0,1] if and only if

j=1"7J

Moreover, if
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then every function from the C[0,1] closure of span{l,m/\l,m)‘2, ...} can be represented as

an analytic function on {z € C\ (—00,0] : |z| < 1} restricted to (0,1).
This result improves an earlier result by P. Borwein and Erdélyi stating that if

> ~
2
SN

then every function from the C[0,1] closure of span{1,2™,z*2,.. .} is in C*(0,1). Our
result may also be viewed as an improvement, extension, or completion of earlier results
by Miintz, Szasz, Clarkson, Erdés, L. Schwartz, P. Borwein, Erdélyi, W. B. Johnson, and
Operstein.

< 00,

1. Introduction and notation. Miintz’s beautiful classical theorem
characterizes sequences (\;)32, with

0:>\0<)\1<>\2<...
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for which the Miintz space span{xz*°, 21 ...} is dense in C[0, 1]. Here, and
in what follows, span{z*0, z* ...} denotes the collection of finite linear
combinations of the functions x’\o, o™ ... with real coefficients, and C|a, b
is the space of all real-valued continuous functions on [a,b] C R equipped
with the uniform norm. Miintz’s Theorem [Bo-Er3, De-Lo, Go, Mi, Sz4]
states the following.

THEOREM 1.A (Miintz) Suppose (X\;)52, is a sequence with 0 = \g <
A1 <... Then span{z*o x* .. .} is dense in C|0, 1] if and only if oo/

= OQ.

The original Miintz Theorem proved by Miintz [Mii] in 1914, by Szdsz
[Sz4] in 1916, and anticipated by Bernstein [Be] was only for sequences of
exponents tending to infinity. The point 0 is special in the study of Miintz
spaces. Even replacing [0,1] by an interval [a,b] C [0,00) in Miintz’s The-
orem is a non-trivial issue. This is, in large measure, due to Clarkson and
Erdds [Cl-Er] and Schwartz [Sch] whose works include the result that if
Zoo 1/A; < 00, then every function belonging to the uniform closure of

spzam{yc/\O 2 ...} on [a,b] can be extended analytically throughout the re-
g1on{z€(C\( 00,0] : |z < b}.

There are many variations and generalizations of Miintz’s Theorem [An,
Be, Boa, Bol, Bo2, Bo-Erl, Bo-Er2, Bo-Er3, Bo-Er4, Bo-Er5, Bo-Er6, Bo-
Er7, B-E-Z, Ch, Cl-Er, De-Lo, Er-Jo, Go, Lu-Ko, Ma, Op, Sch, So]. There are
also still many open problems. In [Bo-Er6] it is shown that the interval [0, 1]
in Miintz’s Theorem can be replaced by an arbitrary compact set A C [0, c0)
of positive Lebesgue measure. That is, if A C [0,00) is a compact set of
positive Lebesgue measure, then span{z*°, 2*1,...} is dense in C(A) if and
only if Zj; 1/X\; = oo. Here C(A) denotes the space of all real-valued
continuous functions on A equipped with the uniform norm. If A contains
an interval then this follows from the already mentioned results of Clarkson,
Erdos, and Schwartz. However, their results and methods cannot handle the
case when, for example, A C [0, 1] is a Cantor-type set of positive measure.

In the case that Z;‘;l 1/A\; < oo, analyticity properties of the func-

tions belonging to the uniform closure of span{z*°,2*1,...} on A are also
established in [Bo-Er6].

In [Bo-Er3, Section 4.2] and in [Bo-Er4] the following result is proved.

THEOREM 1.B (Full Miintz Theorem in C0, 1]). Suppose (A;)52

e
A2} s dense

1 18 a se-
quence of distinct positive real numbers. Then span{l, 2™ x
in C[0,1] if and only if

Z/\§+1

j=1
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Moreover, if

Z ?_]f_1<oo,

=1

<.
>

then every function from the C[0,1] closure of span{l,ax*t 22 ...} is in-

finitely many times differentiable on (0,1).
The new result of this paper is the following.

THEOREM 1.1 (Full Clarkson-Erd6s—Schwartz Theorem). Let (A;)52, be

a sequence of distinct positive numbers. Then span{l, 2™, z*2, ...} is dense
in C[0,1] if and only if

DT>

= A7 +1
Moreover, if

> g <o

2 3

= A;+1

then every function from the C[0,1] closure of span{l,z*1,2*2,...} can be

represented as an analytic function on {z € C\ (—00,0] : |z| < 1} restricted
to (0,1).

The notation
[ flla := sup | f(z)|
r€EA

is used throughout this paper for real-valued measurable functions f defined
on a set A C R.

2. Auxiliary results. The following result is the “bounded Remez-
type inequality for non-dense Miintz spaces” due to P. Borwein and Erdélyi
[Bo-Er6].

THEOREM 2.1. Suppose ('yj);?‘;l 18 a sequence of distinct positive num-

bers satisfying
o0

Zl/’yj < o0.

j=1
Let s > 0. Then there exists a constant c1(I',s) depending only on I' :=
(75)521 and s (and not on o, B, or the “length” of Q) so that

1RQllo,e) < er (I’ 8)[Ql B

for every @ € span{l,x",x72, ...} and for every set B C [p,1] of Lebesgue
measure at least s.
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Combining a result of Clarkson and Erdés [Cl-Er] and its extension given
by Schwartz [Sch] we can state the following.

THEOREM 2.2. Suppose (’yj);";l is a sequence of distinct positive num-
bers satisfying 3 7~ 1/v; < oo. Then span{l,z7,272,...} is not dense in
C[0,1]. In addition, if the gap condition
(21) inf{7j+1 — 5 7 =1,2,.. } >0

holds, then every function f € C|0,1] belonging to the C[0,1] closure of
span{l, 27, x72 ...} can be represented as

f(z) = iaj:c”, xz €10,1).
=0

If the gap condition (2.1) does not hold, then every function f € C[0,1] be-
longing to the C|0, 1] closure of span{l, " a2, ...} can still be represented
as an analytic function on {z € C\ (—00,0] : |z| < 1} restricted to (0,1).

Now we offer a sufficient condition for span{x®*, 2% ...} to be non-dense
in C[0, 1] for a sequence (3;)52, of distinct positive numbers converging to 0.

THEOREM 2.3. Suppose that (ﬂj);?‘;l s a sequence of distinct real num-
bers greater than O satisfying

Zﬂj =: 1 < o0.
j=1

Then span{xP zP2 ...} is not dense in C[0,1]. In addition, every function
in the C[0,1] closure of span{z”, z ...} can be represented as an analytic
function on C\ (—o0,0] restricted to (0,1).

Proof. The theorem is a consequence of D. J. Newman’s Markov-type
inequality [Bo-Er3, Theorem 6.1.1 on page 276] (see also [Ne]). We state this
as Theorem 2.4. Repeated application of Theorem 2.4 with the substitution
x = e~ ! implies that

1Q(e™ ) ™l 0,00y < (M™ Qe M000), m=1,2,...,
in particular
Qe "™ ©O) < ()™ Qe Mooy, m=1,2,...,

for every Q € span{z”, 27 ...}. By using the Taylor series expansion of
Q(e™!) around 0, we obtain

(2.2) Q)| < (K01 Rl,y, 2 € K,



Full Clarkson—Erdés—Schwartz Theorem 149

for every @ € span{zf, 2% ...} and for every compact K C C\ {0}, where

> (9n)™(max,c i |log z|)™
k)= Y e

= 1
_ exp(9n max |log 2|)
is a constant depending only on K and 7. Now (2.2) shows that if
Q. € span{z”, 2% ..}

converges in C]0, 1], then it converges uniformly on every compact K C
C\{0}. m

The following Markov-type inequality for Miintz polynomials is due to
Newman [Bo-Er3, Theorem 6.1.1 on page 276] (see also [Ne]).

THEOREM 2.4 (Markov-type inequality for Miintz polynomials). Suppose
that B1,...,0Bn are distinct non-negative numbers. Then

Q" @) lo. < 9( D" 85 ) IQlo 1
j=1

for every Q € span{z™,... 2P}

We will also need the bounded Bernstein-type inequality below (see [Bo-
Er3, page 178]).

THEOREM 2.5 (Bernstein-type inequality for non-dense Miintz spaces).
Suppose I' := (vj)g‘;l 15 a sequence of distinct positive numbers satisfying
> i1 1/7j < o0o. Then

1Q 10,61 < es(L2) 1R 0,1y
for every @ € span{l,27*, 272 ...} and for every x € [0,1), where c3(I', x)
depends only on x and I'.

The following simple fact will also be needed.

LEMMA 2.6. Let U C C[0,1] be a cosed linear subspace and let V. C
C[0,1] be a finite-dimensional (hence closed) linear subspace. Then U +V
15 closed.

3. Proof of Theorem 1.1. The first part of the theorem is contained
in Theorem 1.B, so we need to prove only the second part. Suppose ()‘j)?il
is a sequence of distinct positive numbers satisfying

3 Aj < 0
E 3 .
SN+

Then there are positive numbers 7, §;, v;, and d; such that
{Njj=12,..}={Fj:j=12,.. JU{v; : j=1,2,.. JU{d; : j=1,...,k},
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where y1 > 1, (8;)52, is increasing, (7;)52, is increasing,

o0

%
Zﬁjﬁ% 21/7]<007
j=1

j=1
and with I" := (7;)52; we have
a1 (I,1/2) < %
(c1(I,1/2) is defined in Theorem 2.1). Let
Hg = span{z”, zP2 ..}, H, :=span{l, 2™ 272, ...},
Hs = span{z®,... 2%}
Every Q) € Hg+ H., can be written as Q) = Qg+ @~ with some Q3 € Hg

and (), € H,. First we show that there are constans Cz and C, depending
only on Hg and H.,, respectively, so that

(3.1) 1Qsll10,1] < CsllQl 0,115
(3.2) 1@~ 110,11 < CH1Q1l10,11

for all Q € Hg + H,. Suppose to the contrary that, say, the first inequality
fails. Then there are Miintz polynomials Qs € Hg and @, , € H, so that

(3.3 1Quallion =1 i [Qq o = 1
(3.4) nh_{lgo 1Qp.n + Qynllo1) = 0.

Then by Theorem 2.4, {Qs,, : n =1,2,...} is a family of bounded, equicon-
tinuous functions on [1/3, 1], while by Theorem 2.5, {Q~,, :n=1,2,...} is
a family of bounded, equicontinuous functions on [0, 2/3]. So by the Arzela—
Ascoli Theorem there are a subsequence of (Q)g,,) (without loss of generality
we may assume that this is (Qg,,) itself) and a subsequence of (Q,.,) (we
may assume that this is (Q,,) itself) so that

(3.5) nh_{glo 1Qp,n — f”[1/3,1] =0,
(3.6) nh_{glo 1Q~,n — glljo,2/3 = 0,

with some continuous functions f and g on [1/3,1] and [0, 2/3], respectively.
By (3.4)—(3.6) we have f = —g on [1/3,2/3], so the function

[ fl=x), =ze[1/3,1],
(3.7 h“”‘{—wm,xewamL

is well defined on [0, 1]. By (3.4)—(3.7) we can deduce that
(3.5) Tim ([ Qp — B
(3.9) i [|Qy — Bl = 0.

0,1 =0,
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Using (3.3), (3.8), Theorem 2.4, and Z;; B; <n, we can deduce that

h(z) —h(1) <18y, =z €[1/2,1].
Note that (3.3), (3.5), and (3.7) imply that ||h[/jo,;) = 1 and h(0) = 0. Now
observe that the function h — h(1) is in the uniform closure of

H., =span{l,2™, 27, ...},
hence Theorem 2.1 implies
1o = h(Dljo,1) < ea(I,1/2) [[h = A(D)][[1 /2,1 < er(I,1/2)18n < 1/2.
This contradicts the fact that 4(0) = 0 and ||A||j0,;) = 1. Hence the proof of
(3.1) is finished. The proof of (3.2) goes in the same way, so we omit it.
Let H denote the uniform closure of a subspace H C C0,1]. We want

to prove that Hg + H., + Hs C A, where A C C[0,1] denotes the collection
of functions f € C[0, 1] which can be represented as an analytic function on
{z € C\(—00,0] : |2z| < 1} restricted to (0,1). Since H; is finite-dimensional,
Theorem 2.6 implies that

Hg-l—Hyﬂ-Hg C H5+H,Y+H5,
so it is sufficient to prove that
(3.10) Hg+ H, C A
However, (3.1) and (3.2) imply that

Hz+H,CHg+H,,

where Hg C A by Theorem 2.3 and H. C A by Theorem 2.2. Hence (3.10)
holds indeed. m
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