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Uniform spetral radius and ompat Gelfand transformby
Alexandru Aleman and Anders Dahlner (Lund)Abstrat. We onsider the quantization of inversion in ommutative p-normed quasi-Banah algebras with unit. The standard questions onsidered for suh an algebra Awith unit e and Gelfand transform x 7→ x̂ are: (i) Is Kν = sup{‖(e − x)−1‖p : x ∈ A,

‖x‖p ≤ 1, max |x̂| ≤ ν} bounded, where ν ∈ (0, 1)? (ii) For whih δ ∈ (0, 1) is Cδ =
sup{‖x−1‖p : x ∈ A, ‖x‖p ≤ 1, min |x̂| ≥ δ} bounded? Both questions are related to a�uniform spetral radius� of the algebra, r∞(A), introdued by Björk. Question (i) has ana�rmative answer if and only if r∞(A) < 1, and this result is extended to more generalnonlinear extremal problems of this type. Question (ii) is more di�ult, but it an alsobe related to the uniform spetral radius. For algebras with ompat Gelfand transformwe prove that the answer is �yes� for all δ ∈ (0, 1) if and only if r∞(A) = 0. Finally, wespeialize to semisimple Beurling type algebras ℓp

ω(D), where 0 < p < 1 and D = N or
D = Z. We show that the number r∞(ℓp

ω(D)) an be e�etively omputed in terms ofthe underlying weight. In partiular, this solves questions (i) and (ii) for many of thesealgebras. We also onstrut weights suh that the orresponding Beurling algebra has aompat Gelfand transform, but the uniform spetral radius equals an arbitrary givennumber in (0, 1].1. Introdution. This paper onerns two fundamental questionsabout inversion in ommutative (semisimple) Banah algebras with unitwhih have attrated a lot of attention reently. Reall that an element
x in suh an algebra A is invertible if and only if its Gelfand transform
x̂ has no zeros in the maximal ideal spae of A, and it is natural to askwhether there exist quantitative versions of this fat. More preisely, we anformulate:
Question 1. Given δ > 0 does there exist a positive onstant Cδ suhthat ‖x−1‖ ≤ Cδ for all x ∈ A with ‖x‖ ≤ 1 and |x̂| ≥ δ?
Question 2. Given ε > 0 does there exist a positive onstant Kε suhthat ‖(e − x)−1‖ ≤ Kε for all x ∈ A with ‖x‖ ≤ 1 and |x̂| ≤ ε? (Here e isthe unit in A.)2000 Mathematis Subjet Classi�ation: Primary 46J05; Seondary 43A15.Key words and phrases: uniform spetral radius, norm ontrolled inversion, boundedinverse property, invisible spetrum, quasi-Banah algebras.[25℄



26 A. Aleman and A. DahlnerWe are going to onsider these problems in the slightly more generalontext of ommutative quasi-Banah algebras. The reason for this is notonly beause our abstrat results apply to these algebras as well, but alsothe fat that in the onrete ase of weighted ℓp-algebras we will enountera somewhat di�erent situation when 0 < p < 1.A omplete metri linear spae X over C is alled a quasi-Banah spae(also known as p-normed spae or loally bounded spae) if the metri isindued by a p-norm for some �xed p with 0 < p ≤ 1, i.e. a funtion
‖ · ‖ : X → R suh that if x, y ∈ X and λ ∈ C then: ‖x‖ > 0 for x 6= 0,
‖λx‖ = |λ|p‖x‖, and ‖x + y‖ ≤ ‖x‖ + ‖y‖. By a quasi-Banah algebra (or
p-normed algebra) we mean a ommutative algebra A over C, with unitelement e, suh that A is a quasi-Banah spae with a p-norm satisfying
‖e‖ = 1 and ‖xy‖ ≤ ‖x‖ ‖y‖ for all x, y ∈ A.The maximal ideal spae of A, denoted by M = M(A), is the set ofall (nonzero) algebra homomorphisms ζ : A → C, and arries a ompatHausdor� topology [15℄. We say that A is semisimple if ⋂

ζ∈M
ker ζ = {0}.The Gelfand transform on A is the operator G : A → C(M) de�ned by

G(x) = x̂, where x̂ is de�ned by x̂(ζ) = ζ(x), and C(M) is the Banah spaeof omplex-valued ontinuous funtions on M. As in the Banah algebraase, it turns out that for a omplex number λ, λe − x ∈ A is invertible ifand only if λ does not belong to the range of the Gelfand transform of x.Consequently, the spetrum of an element x ∈ A, denoted by σ(x), is therange of x̂, whih is a ompat subset of C. The spetral radius of an element
x ∈ A is de�ned by r(x) = supζ∈M |x̂(ζ)|p, or equivalently, by the spetralradius formula

r(x) = lim
n→∞

‖xn‖1/n = inf
n

‖xn‖1/n.For an introdution to quasi-Banah algebras and quasi-Banah spaes werefer to �elazko's treatise [15℄ and Rolewiz's book [11℄.A lass of examples that are relevant for this work (see Setion 4 below)are the weighted ℓp-spaes with a submultipliative weight. They are usuallyalled Beurling type algebras. More preisely, let D = N or D = Z and let
ω be a stritly positive funtion on D with the property that ω(m + n) ≤
ω(m)ω(n), ω(0) = 1. Suh a funtion will be alled a weight funtion. Thespae ℓpω(D), p > 0, onsists of sequenes f = (an)n∈D with

‖f‖ℓpω =
∑

n∈D

|an|pω(n) <∞.The produt of two suh sequenes is de�ned to be their onvolution. Itturns out that ℓpω(D) is a quasi-Banah algebra if p ≤ 1. Under ertainother onditions on the weight funtion, ℓpω(D) beomes a Banah algebrafor p > 1 as well, with the norm f 7→ ‖f‖1/p

ℓpω
(see [3℄ for more details). The



Uniform spetral radius 27algebras ℓpω(Z) are always semisimple, while ℓpω(N) is semisimple if and onlyif inf ω(n)1/n > 0.In his work [1℄ on quantization of inversion in Banah algebras Björkonsidered ertain �uniform spetral radii� whih will play a entral role inthis paper. These are numbers that depend only on the algebra A and arede�ned as follows.Definition 1.1. A sequene (xn) in A is alled a spetral null sequeneprovided ‖xn‖ ≤ 1 and limn→∞ r(xn) = 0. When x = (xn) is a spetral nullsequene and N is a positive integer we de�ne rN (x) = limn→∞ ‖xNn ‖1/Nand set
rN (A) = sup{rN (x) : x is a spetral null sequene}.Moreover, we denote by r∞(A) the number infN≥1 rN (A) = limN→∞ rN (A)and refer to it as the uniform spetral radius of A. The existene of the limitand the last identity follow from the submultipliativity of the sequene

(rN (A)N ).If Question 1 has an a�rmative answer for some δ ∈ (0, 1) then thequantity
(1) C(A, δ) = sup{‖x−1‖ : x ∈ A, ‖x‖ ≤ 1,

|x̂(ζ)|p ≥ δ for all ζ ∈ M(A)}is �nite and we say that A has norm ontrolled inversion of degree δ1(A),where δ1(A) is the �rst ritial onstant(2) δ1(A) = inf{δ : δ ∈ (0, 1), C(A, δ) <∞}.The quantity δ1(A) was introdued and studied by Nikolski in [8℄. It hasbeen pointed out to us by the referee that the �rst expliit appearane ofthe problem of norm ontrolled inversion is the paper of J. Stafney [13℄ whoonsidered the speial ase of the Wiener algebra ℓ1(Z).If Question 2 has an a�rmative answer for some ε ∈ (0, 1) we say that
A has the bounded inverse property and write
Kε(A) = sup{‖(e− x)−1‖ : x ∈ A, ‖x‖ ≤ 1, |x̂(ζ)| ≤ ε for all ζ in M(A)}.Both the bounded inverse property and that of norm ontrolled inversionhave been extensively studied in Banah algebras (see [1℄, [2℄, [3℄, [8℄, [10℄,and [12℄), that is, in the ase when p = 1. For a omprehensive survey of theproblems under onsideration and their relation to lassial problems in thetheory of harmoni analysis we refer to [9℄.Due to nonlinearity suh extremal problems are rather di�ult and havesurprising answers in many onrete ases. For example, if A is one of theWiener algebras ℓ1(N) or ℓ1(Z), then Kε(A) = ∞ for all ε > 0, δ1(ℓ1(N)) =

1/2 and 1/2 ≤ δ1(ℓ
1(Z)) ≤ 1/

√
2, where the exat value of the last onstant



28 A. Aleman and A. Dahlnerseems to be unknown (see for example [3℄, [9℄). In fat, as we shall see below,this bad behavior of the inversion in these algebras an be explained bythe fat that the uniform spetral radius r∞(A) takes the maximal value 1.A onsiderable amount of work has been devoted to the intrinsi relationbetween Björk's uniform spetral radius and the quantities desribed above.The aim of the present paper is to ontinue this investigation; we presentsome new results in this diretion that hold even in the more general ontextof quasi-Banah algebras. Furthermore, the results in the last setion aboutBeurling type algebras show that essential di�erenes an our when dealingwith the ase p < 1.As we mentioned above, Björk introdued the numbers rN (A) (for Ba-nah algebras) and the main theorem of [1℄ asserts that a ommutative Ba-nah algebra A has the bounded inverse property if and only if rN (A) < 1for some integer N ≥ 2, or equivalently r∞(A) < 1. The argument in [1℄provides an estimate of Kε(A) in terms of r∞(A) and reently, in [10℄, Olof-sson was able to obtain estimates of r∞(A) in terms of Kε(A). Moreover, inthe same paper Olofsson estimated from below the ritial onstant δ1(A) interms of the same number r∞(A). Expliitly, he proved that(3) r∞(A)

1 + r∞(A)
≤ δ1(A).In Setion 2 we give a uni�ed approah to these problems that not onlyworks for quasi-Banah algebras but also applies to more general nonlinearextremal problems. We should point out here that the main tehnial dif-�ulty when working with the ase p < 1 is that one needs a replaementfor the integration tehniques that are quite ommon in Banah algebras.The main result of the setion provides two estimates of ‖xn‖ in terms ofthe numbers rN (A), as well as in terms of norms of power series appliedto x. A onsequene (see Corollary 2.3) is that for any power series ψ in theunit dis whose oe�ients are positive and bounded away from zero thenumber

K(ψ, η) = sup{‖ψ(x)‖ : x ∈ A, ‖x‖ ≤ 1, r(x) < η} (η ∈ (0, 1))is �nite if and only if r∞(A) < 1. Our method also yields quantitative es-timates of K(ψ, η) if r∞(A) < 1 and of r∞(A) if K(ψ, η) < ∞. A furtheronsequene is the fat that inequality (3) ontinues to hold for any quasi-Banah algebra.A more subtle problem is to �nd estimates of δ1(A) from above (see [8℄and [3℄) and this is due to the more ompliated ondition imposed on theGelfand transform in the extremal problem that de�nes these numbers. Animportant tool for showing that δ1(A) = 0 is the use of ompat embeddingsin larger algebras that have the same maximal ideal spae. Suh methods



Uniform spetral radius 29have been used by El-Fallah, Nikolski and Zarrabi [3℄ for ertain sequeneBanah algebras A that ontain some of the Beurling type algebras.Note that the weakest form of ompat embedding in an algebra with thesame maximal ideal spae is the one in C(M(A)) via the Gelfand transform,and also reall that by (3) we have r∞(A) = 0 whenever δ1(A) = 0. Theaim of our third setion is to prove that for every semisimple quasi-Banahalgebra with ompat Gelfand transform this impliation an be reversed,i.e. δ1(A) = 0 whenever r∞(A) = 0. For ertain Beurling type algebras thisresult has been proved reently by El-Fallah and Ezzaaraoui [2℄.Setion 4 is devoted to algebras of semisimple Beurling type in the ase
0 < p < 1. We prove a general estimate of ‖fN‖ℓpω for f ∈ ℓpω(D) that yieldsgood estimates for the uniform spetral radii rN (ℓpω(D)). These estimatesare then used to obtain an expliit formula for the number r∞(ℓpω(D)) interms of the weight ω. To avoid some neessary normalizations, let us stateour formula only in the ase when D = N and limn ω(n)1/n = 1. Then (seeCorollary 4.3) r∞(ℓpω(D)) = 0 whenever the weight is bounded, and if ω isunbounded then

r∞(ℓpω(D)) = inf
k≥1

lim
ω(n)→∞

ω(nk)1/k

ω(n)
.For many weights we have r∞(ℓpω(D)) = infk≥1 lim|n|→∞ ω(nk)1/k/ω(n) = 0and it turns out that this ondition automatially implies the ompatnessof the Gelfand transform. Then the main result of Setion 3 applies and weobtain δ1(ℓpω(D)) = 0. Nevertheless, the onverse to the above statement isfalse. For any given α ∈ (0, 1] we onstrut a weight ωα suh that the Gelfandtransform on ℓpωα(D) is ompat, but r∞(ℓpωα(D)) = α for all p ∈ (0, 1].These results are not only sharper than the ones known for p ≥ 1, butthey also reveal a somewhat di�erent situation for these Beurling algebras.Indeed, for p ≥ 1 only ertain estimates in terms of more ompliated ex-pressions of the uniform spetral radius are available. Moreover, for boundedweights ω the uniform spetral radius of ℓpω(D) an assume the maximalvalue 1 when p ≥ 1.

2. General estimates of ‖xn‖. Reall that A denotes a ommutativesemisimple quasi-Banah algebra, with unit e and with a p-norm ‖ · ‖, where
p is some number in (0, 1]. In this setion we are going to prove two estimatesof the norms of the positive powers of an element x ∈ A with given normand spetral radius. These inequalities will then be applied to obtain severalestimates of the onstants Kε(A) and δ1(A) in terms of the uniform spetralradius r∞(A) introdued in the previous setion. In fat, we will onsider amore general version of Kε(A) de�ned as follows. For an analyti funtion ψ



30 A. Aleman and A. Dahlnerin the unit dis and a number η ∈ (0, 1) let(4) K(ψ, η) = sup{‖ψ(x)‖ : x ∈ A, ‖x‖ ≤ 1, r(x) < η}.Note that if K(ψ, η0) < ∞ for some η0 ∈ (0, 1), then K(ψ, η) < ∞ for all ηwith 0 < η < η0, and the limit
Kψ = lim

η→0
K(ψ, η)exists.For Banah algebras, estimates of the type mentioned above rely fre-quently on integration tehniques whih are not available in the more generalontext onsidered here. Instead, our main tool will be the following variantof the maximum priniple due to Kalton [7℄ for A-valued analyti funtions.As usual, for a p-normed spae X and an open subset Ω of C, we say thata funtion f : Ω → X is analyti on Ω if for eah z0 ∈ Ω there exists δ > 0suh that for all z with |z − z0| < δ, f(z) an be written as a onvergentpower series

f(z) =
∞∑

n=0

f̂(n)(z − z0)
n

with oe�ients f̂(n) ∈ X for n ≥ 0. The lassial maximum modulustheorem is in general not true for quasi-Banah spaes (see [6℄ and [7℄ fordetails). However, the following weaker result holds:Theorem 2.1 (Theorem 5.2 of [7℄). Let X be a quasi-Banah spae, andlet 0 < r < 1. Then there exists a onstant M = M(X, r) suh that
‖f(0)‖ ≤M max

r≤|z|≤1
‖f(z)‖for all analyti funtions f : D → X whih are ontinuous on D.We now turn to the main result of this setion. We shall denote by [a]the integer part of the real number a.Theorem 2.2. Let x ∈ A with ‖x‖ ≤ 1 and r(x) = t < 1. Then:(i) Given a positive integer N and ε > 0 there exists 0< τ = τ(ε,N)< 1suh that for all integers n ≥ N([log τ/log t] + 1) we have

‖xn‖ ≤ (rN (A) + ε)k(n),where k(n) = k(n,N, ε) = (n+ 1)([log τ/log t] + 1)−1 −N .(ii) Given an analyti funtion ψ in the unit dis and ε > 0 there existsa positive onstant Mε depending only on ε suh that for all positiveintegers n,
|ψ̂(n)|p‖xn‖ ≤Mε(1 − ε)−np(n+ 1)1−p sup

1−ε<|z|<1
‖ψ(zx)‖.



Uniform spetral radius 31Proof. (i) If rN (A)+ε ≥ 1 there is nothing to prove. Assume that rN (A)
+ ε < 1 and use the de�nition of rN (A) to onlude that there exists 0 < τ
= τ(ε,N) < 1 suh that whenever y ∈ A satis�es ‖y‖ ≤ 1, r(y) < τ we have

‖yN‖ ≤ (rN (A) + ε)N .Now let x be as in the statement and set m = [log τ/log t]+1. Then r(xm) =
tm < τ and if n ≥ mN is an integer write n = lmN + j with integers l ≥ 1and 0 ≤ j ≤ mN − 1, and apply the previous inequality to y = xm to obtain

‖xn‖ ≤ ‖xlmN‖ ≤ ‖xmN‖l ≤ (rN (A) + ε)lN ≤ (rN (A) + ε)(n+1−mN)/m,proving the result.(ii) Let ξ = e2πi/(n+1) and onsider the A-valued funtion
φ(z) =

1

(n+ 1)zn

n∑

k=0

ψ(ξkzx)ξ−kn.We note �rst that this funtion is analyti in the puntured dis entered atthe origin of radius t−1. Moreover, if ψ(w) =
∑∞

j=0 ψ̂(j)wj for |w| < 1, thenfor 0 < |z| < 1,
φ(z) =

1

zn

∞∑

j=0

ψ̂(j)(zx)j
1

n+1

n∑

k=0

ξ(j−n)k =
∞∑

l=0

ψ̂(n+l(n+1))zl(n+1)xn+l(n+1),

whih shows that φ extends analytially near the origin as well and satis�es
φ(0) = ψ̂(n)xn. Consequently, we may apply Theorem 2.1 to dedue that forevery ε > 0 there exists a onstant Mε > 0 suh that

‖φ(0)‖ = |ψ̂(n)|p‖xn‖ ≤Mε sup
1−ε<|z|<1

‖φ(z)‖.Now for |z| > 0 we have the following straightforward estimate:
‖φ(z)‖ ≤ |z|−np(n+ 1)1−p sup

|ζ|=|z|
‖ψ(ζx)‖,whih together with the previous inequality implies the desired result.It turns out that Theorem 2.2 an be applied to study ertain nonlinearextremal problems in the algebra A. We shall be onerned �rst with theonstants K(ψ, η) de�ned at the beginning of the setion. As pointed out inthe introdution, Björk [1℄ and Olofsson [10℄ have onsidered this extremalproblem in the ase when A is a Banah algebra and when ψ(z) = (1−z)−1.The orollary below extends their results to many other funtions ψ, that is,it provides neessary and su�ient onditions in order to have K(ψ, η) <∞for η ∈ (0, 1), as well as an estimate from above for these onstants wheneverthey are �nite.



32 A. Aleman and A. DahlnerFor an analyti funtion F in the unit dis, we denote as above by F̂ (n)its nth Taylor oe�ient and by F̃p the funtion
F̃p(z) =

∞∑

n=0

|F̂ (n)|pzn.Corollary 2.3.(i) If r∞(A) < 1 then for every analyti funtion ψ in the unit diswith ψ(0) 6= 0 there exist an absolute onstant α > 0 and a positiveonstant C1 depending only on ψ suh that
K(ψ, η) ≤ C1ψ̃p(η

α) <∞.(ii) Let ψ be analyti in the unit dis. Assume that there exists an integer
s > 0 suh that the Taylor oe�ients, ψ̂s(n), of ψs are real , and thatthere exists an integer m ≥ 0 suh that ψ̂s(n) ≥ 1 for all n ≥ m.If K(ψ, η) < ∞ for some 0 < η < 1 then there exists a positiveonstant C2 depending only on ψ suh that

r∞(A) ≤ (1 − (Kψs + C2)
−1/p)p < 1.In partiular , if ψ satis�es the onditions in (i) and (ii), then Kψ < ∞ ifand only if r∞(A) < 1.Proof. (i) Fix η ∈ (0, 1). Suppose that r∞(A) < 1 and let ε,N > 0 besuh that a = rN (A) + ε < 1. Let τ = τ(ε,N) ∈ (0, 1) be the number givenin Theorem 2.2(i) and set N0 = N([log τ/log η] + 1). Theorem 2.2(i) statesthat for all x ∈ A with ‖x‖ ≤ 1 and r(x) < η < 1 we have

‖ψ(x)‖ ≤
N0∑

n=0

|ψ̂(n)|p + a−N
∑

n>N0

|ψ̂(n)|pa(n+1)/([log τ/log η]+1).Fix η0 > 0 and let α > 0 satisfy
α log η ≥ max

{
log a

/([
log τ

log η

]
+ 1

)
,−1/N0

}

for all η ≥ η0. For suh values of η we have
‖ψ(x)‖ ≤

N0∑

n=0

|ψ̂(n)|p + a−N
∑

n>N0

|ψ̂(n)|pη(n+1)α.Now use the obvious inequality
N0∑

n=0

|ψ̂(n)|p ≤ e

N0∑

n=0

|ψ̂(n)|pe−n/N0 ≤ eψ̃p(e
−1/N0) ≤ eψ̃p(η

α)to onlude that the estimate in the statement holds for all η ≥ η0 with
C1 = e+a−N . Finally, from the fat that ψ(0) 6= 0 we see that the inequality



Uniform spetral radius 33holds for all η ∈ (0, 1) with a suitable hange of the onstant C1 that maynow depend on ψ.(ii) Suppose �rst that s = 1 and m = 0, and note that in this ase wehave, for all positive integers k, n,(5) ψ̂k(n) =
∑

j1+···+jk=n

ψ̂(j1) · · · ψ̂(jk) ≥
∑

j1+···+jk=n

1 =

(
n+ k − 1

n

)
.Choose a sequene (xn) in A suh that ‖xn‖ ≤ 1, ηn = r(xn) → 0 and

‖xnn‖1/n → r∞(A) as n → ∞. Apply Theorem 2.2(ii) with ε > 0 arbitraryto obtain, for all positive integers n, k,
|ψ̂k(n)|p‖xnn‖ ≤Mε(1 − ε)−np(n+ 1)1−p sup

1−ε<|z|<1
‖ψk(zxn)‖.Together with (5) this yields

(
n+ k − 1

n

)p

‖xnn‖ ≤Mε(1 − ε)−np(n+ 1)1−pKk(ψ, ηn).Now let c > 0 be �xed but arbitrary, take the nth root on both sides ofthe above inequality and let k, n→ ∞ in suh a manner that |k−cn| < n−1.Then by Stirling's formula (
n+k−1
n

)1/n → (1 + c)1+cc−c and the inequalitybeomes
r∞(A) ≤ (1 − ε)−p

(
c

1 + c

)cp

Kc
ψ(1 + c)−p.If Kψ > 1, we let c(1 + c)−1 = K

−1/p
ψ , and sine ε was arbitrary we get

r∞(A) ≤ (1 −K
−1/p
ψ )p.The same inequality follows by a standard approximation if Kψ = 1. Finally,if s > 0, m ≥ 0 are arbitrary, let C ′

2 = mmax{1+ |ψ̂s(n)|, n = 0, . . . ,m−1}and replae in the above argument ψ by ϕ(z) = ψs(z) + (C ′
2/m)

∑m−1
n=0 z

n.Sine K(ϕ, ·) ≤ K(ψs, ·) + C2, with C2 = (C ′
2)
pm1−p, the result follows.

Remark. It is easy to hek that the ondition imposed on ψ in part(ii) is satis�ed, for example, if ψ̂(n) ≥ c(n + 1)−γ for some onstants c > 0and γ < 1. To see this, use the inequality
(k + 1)−γ(n+ 1 − k)−γ ≥ 4γ(n+ 2)−2γ ≥ (n+ 1)−2γ ,whih implies that
ψ̂2(n) ≥ c2

n∑

k=0

(k + 1)−γ(n+ 1 − k)−γ ≥ c2(n+ 1)−2γ+1.Sine −2γ + 1 > −γ, the result follows by iterating this inequality.We lose this setion with the extension of Olofsson's estimate of δ1(A)from below (see [10℄) to the ase of quasi-Banah algebras.



34 A. Aleman and A. DahlnerCorollary 2.4. The following inequality holds:
r∞(A)

1 + r∞(A)
≤ δ1(A).Proof. Suppose that δ1(A) < 1; otherwise there is nothing to prove. Let

ε > 0, 1 > δ > δ1(A) and (xn) be a sequene in A suh that ‖xn‖ ≤ 1,
ηn = r(xn) → 0 and ‖xnn‖1/n → r∞(A) as n → ∞. Further, let ̺n be thepositive solution of the equation

(1 − ̺nηn)
p

1 + ̺pn
= δ.It follows easily from this equality that (̺n) onverges to (1/δ − 1)1/p as

n → ∞. For |z| < 1 set yn(z) = (e − z̺nxn)(1 + ̺pn)−1/p, and note that
‖yn(z)‖ ≤ 1 and

|ŷn(z)|p ≥
(1 − ̺nηn)

p

1 + ̺pn
= δ.Then ‖(yn(z))−1‖ ≤ C(A, δ), and hene

‖(e− z̺nxn)
−1‖ ≤ ‖(yn(z))−1‖ ≤ C(A, δ).Now apply Theorem 2.2(ii) with ψ(z) = (e−z̺nxn)−1 to obtain the inequal-ity

̺npn ‖xnn‖ ≤Mε(1 − ε)−n(n+ 1)1−pC(A, δ).Take the nth root on both sides and let n→ ∞ to obtain
(1/δ − 1)r∞(A) ≤ (1 − ε)−1.Sine ε > 0 and 1 > δ > δ1(A) were arbitrary, the result follows.In view of Theorem 2.2 one might be tempted to onsider in the aboveproof other analyti funtions than z 7→ (e − z̺x)−1 and try to re�ne theinequality. It seems, however, that this partiular hoie is optimal, at leastfor our method of proof. Furthermore, there are even Banah algebras A suhthat δ1(A) = 1 (see [4℄ and [8℄) and hene the inequality in Corollary 2.4 anbe strit.3. Algebras with ompat Gelfand transform. As we have seenin the previous setion (Corollary 2.4), in order to have δ1(A) = 0 for aquasi-Banah algebra A it is neessary that r∞(A) = 0. It is the aim of thissetion to show that the impliation an be reversed for any algebra A witha ompat Gelfand transform. More preisely, we shall prove the followingresult.Theorem 3.1. Let A be a semisimple quasi-Banah algebra suh thatthe Gelfand transform G : A→ C(M(A)) is ompat. Then δ1(A) = 0 if andonly if r∞(A) = 0.



Uniform spetral radius 35The proof is essentially based on two intermediate steps. The �rst isontained in the following lemma.Lemma 3.2. Let A be a semisimple quasi-Banah algebra suh that
r∞(A) = 0. Further , let x ∈ A and (xn) be a bounded sequene of in-vertible elements of A suh that the sequene (x̂n) onverges to x̂ uniformlyon M(A). If x is invertible then supn ‖x−1

n ‖ <∞.Proof. Start with the identity(6) x−1
n =

m−1∑

j=0

(x− xn)
jx−j−1 + x−1

n (x− xn)
mx−mand note that it su�es to prove that there exists a positive integer m suhthat(7) γm = lim

n→∞
‖(x− xn)

mx−m‖ < 1.Indeed, assume that (7) holds for some integer m, let 0 < ε < 1 − γm anduse (6) to obtain, for su�iently large n,
‖x−1

n ‖ ≤
m−1∑

j=0

‖(x− xn)
jx−j−1‖ + (γm + ε)‖x−1

n ‖.If we de�ne C = supn ‖xn‖ + 1 this leads to
(1 − γm − ε)‖x−1

n ‖ ≤
m−1∑

j=0

(‖x‖ + C)j‖x−1‖j+1,and the result follows. To prove (7) note that the sequene (yn) de�ned by
yn = (‖x‖ + C)−1/p‖x−1‖−1/p(x− xn)x

−1is a spetral null sequene in A. Sine r∞(A) = 0 we an hoose m suh that
rm(A) ≤ 1

(‖x‖ + C)2‖x−1‖ ,and thus
lim
n→∞

‖ymn ‖1/m ≤ 1

(‖x‖ + C)2‖x−1‖ ,whih implies
γm = lim

n→∞
‖(x− xn)

mx−m‖ ≤ 1

(‖x‖ + C)m
,and the proof is omplete.Of ourse, the ompatness of the Gelfand transform, as assumed in The-orem 3.1, does not neessarily lead to the situation onsidered in the lemma.For this reason, our next aim is to enlarge our algebra A in a suitable way.



36 A. Aleman and A. DahlnerLet Ã be the set of all x ∈ C(M(A)) suh that there is a boundedsequene (xn) in A whose Gelfand transform (x̂n) onverges to x uniformlyon M(A). On Ã we de�ne the p-norm
‖x‖

Ã
= inf lim

n→∞
‖xn‖A,where the in�mum is taken over all bounded sequenes (xn) as above.This onstrution is quite ommon in the theory of Banah algebrasand is usually alled relative ompletion (see for example [14℄). More pre-isely, Ã is the relative ompletion of A with respet to C(M(A)). Clearly,

A an be identi�ed with a subalgebra of Ã via the Gelfand transform andthis will be done in what follows, in order to simplify the notation. Some-times Ã oinides with A via the above identi�ation. A simple examplewhere the two algebras are di�erent is obtained for A = lipα(T), in whihase Ã = Lipα(T). The onstrution has been extensively used in harmonianalysis. More preisely, the so-alled tilde-algebras are obtained exatly bythe above proedure, starting with quotient algebras on ompat groups(see [5, Chapter 12℄). In partiular, it turns out that A may not even belosed in Ã.Let us ollet some properties of the algebra Ã.Proposition 3.3. If A is a semisimple quasi-Banah algebra then:(i) Ã is a quasi-Banah algebra.(ii) M(Ã) = M(A).(iii) rN (Ã) ≤ rN (A).Proof. (i) This fat is known (see [14, p. 94℄); for the onveniene of thereader we inlude a sketh of the argument. Note �rst that if (xn) is a Cauhysequene in Ã then it must onverge uniformly on M(A) to some x ∈ Ã. Italso follows immediately from the de�nition that ‖x‖
Ã

≤ lim ‖xn‖Ã. If wenow �x a positive integer k and apply this last inequality to the sequene
(xn − xk) we see that

lim
k→∞

‖x− xk‖Ã ≤ lim
k→∞

lim
n→∞

‖xn − xk‖Ã = 0.(ii) The proof is straightforward.(iii) Choose a spetral null sequene (xn) in Ã with
rN (Ã) ≤ lim

n→∞
‖xNn ‖

1/N

Ã
+ ε, ε > 0.By the de�nition of Ã we an �nd a sequene (yn) in A suh that |x̂n − ŷn|

< 1/n on M(A) and
‖yn‖ ≤ 1 + 1/n, ‖xNn ‖

1/N

Ã
≤ ‖yNn ‖1/N + 1/n.



Uniform spetral radius 37Clearly, ((1 + 1/n)−pyn) is a spetral null sequene in A, and thus
rN (Ã) ≤ lim

n→∞
‖xNn ‖1/N

Ã
+ ε ≤ lim

n→∞
‖yNn ‖1/N + ε ≤ rN (A) + ε,whih onludes the proof.An immediate onsequene of (i) and (ii) is that every invertible elementof A is invertible in Ã.Proof of Theorem 3.1. We have to show that given δ > 0 and a sequene

(xn) in A with ‖xn‖ ≤ 1 and |x̂n|p ≥ δ we have supn ‖x−1
n ‖ < ∞. Sine theGelfand transform is ompat we an assume, by passing to a subsequeneif neessary, that (x̂n) onverges uniformly on M(A) to some x ∈ Ã. Notethat if x ∈ A the statement follows by a diret appliation of Lemma 3.2.If this is not the ase, we an still apply Lemma 3.2 to onlude that C1 =

supn ‖x−1
n ‖

Ã
< ∞. By the de�nition of Ã this means that there exists asequene (yn) in A with ‖yn‖ ≤ 2C1 and |x̂−1

n − ŷn| < 1/n. In partiular,the sequene (zn) de�ned by zn = xnyn ∈ A satis�es ‖zn‖ ≤ 2C1 and (ẑn)onverges uniformly to the onstant 1 on M(A). Then, learly, zn is invertiblein A for su�iently large n and another appliation of Lemma 3.2 gives
C2 = lim

n→∞
‖z−1
n ‖ <∞.On the other hand, we have the inequality

‖x−1
n ‖ = ‖ynz−1

n ‖ ≤ ‖yn‖ ‖z−1
n ‖,whih implies that

lim
n→∞

‖x−1
n ‖ ≤ 2C1C2,and the result follows.

4. Beurling type quasi-Banah algebras. As in the introdution, wewrite D = N or D = Z and we let ω : D → (0,∞) be a submultipliativefuntion with ω(0) = 1. We shall onsider for 0 < p ≤ 1 the quasi-Banahalgebra ℓpω(D) of all omplex sequenes f = (an)n∈D suh that
‖f‖ℓpω =

∑

n∈D

|an|pω(n) <∞,

where the produt of two elements f = (an)n∈D, g = (bn)n∈D of ℓpω(D) isde�ned to be the onvolution
fg =

( ∑

k,n−k∈D

akbn−k

)

n∈D
.



38 A. Aleman and A. DahlnerLet us write
r+ = r+(ω) = inf

n>0
ω(n)1/n = lim

n→+∞
ω(n)1/n,

r− = r−(ω) =

{
supn>0 ω(−n)−1/n = limn→−∞ ω(n)1/n if D = Z,
0 if D = N.In the ase D = N we shall assume, in addition, that r+(ω) > 0 (the ex-ample ω(n) = 1/n! shows that r+ = 0 is possible) to ensure that ℓpω(D) issemisimple. In the ase D = Z one has 0 < r− ≤ r+ < ∞ and ℓpω(D) isalways semisimple. The maximal ideal spae of ℓpω(D) is then identi�ed withpoint evaluations, i.e. the Gelfand transform is given by
ℓpω(D) ∋ f 7→ f̂(ζ) =

∑

n∈D

anζ
n

where ζ ∈ Ω(ω) = {ζ ∈ C : r− ≤ |ζ|p ≤ r+}. We will frequently identify anelement f ∈ ℓpω(D) with its Gelfand transform.In order to simplify the exposition we introdue the funtion
σ(n) =

{
ω(n)/rn+ if n ≥ 0,
ω(n)/rn− if D = Z and n < 0.With this notation we have for f = (an)n∈D ∈ ℓpω(D) the oe�ient estimate(8) |an|pω(n) ≤ sup

ζ∈Ω(ω)
|f(ζ)|pσ(n).Indeed, this follows from

|aj|rj/p± =
1

2π

∣∣∣
2π\
0

f̂(r
1/p
± eit)e−ijt dt

∣∣∣ ≤ 1

2π

2π\
0

|f̂(r
1/p
± eit)| dt ≤ sup

Ω(ω)
|f̂(ζ)|.The aim of the present setion is to give estimates for the uniform spetralradii rN (ℓpω(D)) in the ase when 0 < p < 1. These results enable us toe�etively ompute r∞(ℓpω(D)) for suh p. Using Theorem 3.1 we will applyour results to norm ontrolled inversion in these algebras.The following estimate of the norms of powers of elements of ℓpω(D) willbe essential for our purposes.Theorem 4.1. Let ω : D → (0,∞) be a weight funtion, and let p ∈

(0, 1). Let k,m,N ∈ N be suh that 1 < k ≤ mk < N and de�ne
F (k,m,N) = [(N − (m− 1)k)/(k − 1)]!.Then for every t > 0 and f ∈ ℓpω(D) we have

‖fN‖ℓpω ≤ ‖f‖NℓpωF (k,m,N)p−1(9)
+ tk−1

(
N

k

)
r(f)k−1‖f‖N−k+1

ℓpω
+ sup
σ(j)>t

ω(kj)m

ω(j)km
‖f‖Nℓpω ,where we set the supremum above to equal zero if {j ∈ D : σ(j) > t} = ∅.



Uniform spetral radius 39Proof. Let us begin by introduing some notation. For a multi-index
α = (α1, . . . , αN ) in DN we write, as usual, |α| =

∑N
j=1 αj . Given a funtion

u : D → C and a multi-index α as above let
ũ(α) =

N∏

j=1

u(αj).Similarly, given a sequene g = (bj), for any multi-index α we write
b̃α =

N∏

j=1

bαj
.

For a permutation χ ∈ SN and a multi-index α = (α1, . . . , αN ) ∈ DN wewrite
χα = (αχ(1), . . . , αχ(N)).For an integer k with 1 < k < N and a multi-index α as above we de�ne

s(α) as the greatest nonnegative integer s ≤ N/k with the property thatthere exists χ ∈ SN suh that χα an be written in the form
χα = (β1, . . . , β1︸ ︷︷ ︸

k times , . . . , βs, . . . , βs︸ ︷︷ ︸
k times , βks+1, . . . , βN ).

Note that for every s ≤ s(α) and for every sequene (bj)j∈D we an write(10) b̃α = b̃kβ b̃γ ,with β ∈ Ds and γ ∈ DN−ks, where b̃γ is taken to be 1 if s = s(α) = N/k.Finally, observe that if s = s(α) < N/k then eah entry of the multi-index γ,in the representation (10), ours at most k − 1 times, and onsequently, atleast [(N − ks(α))/(k − 1)] entries of γ are distint.After these preparations we turn to the atual proof of the theorem. Startwith the equality(11) ‖fN‖ℓpω =
∑

j∈D

∣∣∣
∑

α∈DN , |α|=j

ãα

∣∣∣
p
ω(j).

Let us de�ne the following sets of multi-indies:1) The set Aj,1 of multi-indies α with |α| = j and s(α) < m.2) The set Aj,2 of multi-indies α with |α| = j, s(α) ≥ m and suh that,if ãα is written in the form (10) with s = m, then at least one of theentries βi of β = (β1, . . . , βs) satis�es σ(βi) < t.3) The set Aj,3 of multi-indies α with |α| = j that do not belong to theprevious sets, that is, s(α) ≥ m and if ãα is written in the form (10)with s = m then all entries βi of β = (β1, . . . , βs) satisfy σ(βi) ≥ t.



40 A. Aleman and A. DahlnerWe have(12) ‖fN‖ℓpω ≤
3∑

µ=1

∑

j∈D

∣∣∣
∑

α∈Aj,µ

ãα

∣∣∣
p
ω(j).

Reall that every multi-index in Aj,1 has at least [(N − (m − 1)k)/(k − 1)]distint entries and we an write
∑

α∈Aj,1

ãα = F (k,m,N)
∑

′

α∈Aj,1

ãα,

where ∑′ means that we are summing over all those multi-indies whose �rst
[(N − (m− 1)k)/(k − 1)] distint entries are ordered. This implies

∑

j∈D

∣∣∣
∑

α∈Aj,1

ãα

∣∣∣
p
ω(j) ≤ F (k,m,N)p

∑

j∈D

∑
′

α∈Aj,1

|ãα|pω̃(α).

On the other hand, the same reasoning shows that
F (k,m,N)

∑

j∈D

∑
′

|α|=j

|ãα|pω̃(α) ≤ ‖f‖Nℓpωand we obtain the estimate(13) ∑

j∈D

∣∣∣
∑

α∈Aj,1

ãα

∣∣∣
p
ω(j) ≤ F (k,m,N)p−1‖f‖Nℓpω .To handle the seond sum in (12) we introdue the set B of multi-indies

α = (α1, . . . , αN ) suh that ãα an be written in the form
ãα = akl alk+1

· · · alN ,where σ(l) < t. Clearly, ⋃
j∈D Aj,2 ⊂ B, whih implies the inequality

∑

j∈D

∣∣∣
∑

α∈Aj,2

ãα

∣∣∣
p
ω(j) ≤

∑

α∈B

|ãα|pω̃(α).

Moreover,
∑

α∈B

|ãα|pω̃(α) =

(
N

k

) ∑

σ(l)<t

|al|kpω(l)k
∑

α∈DN−k

|ãα|pω̃(α)

= ‖f‖N−k
ℓpω

(
N

k

) ∑

σ(l)<t

|al|kpω(l)k.

Now use the oe�ient estimate (8) to onlude that
∑

σ(l)<t

|al|kpω(l)k ≤ tk−1r(f)k−1‖f‖ℓpω ,



Uniform spetral radius 41whih gives(14) ∑

j∈D

∣∣∣
∑

α∈Aj,2

ãα

∣∣∣
p
ω(j) ≤

∑

α∈B

|ãα|pω̃α ≤
(
N

k

)
tk−1r(f)k−1‖f‖N−k+1

ℓpω
.

To estimate the third sum in (12) we note that if α = (α1, . . . , αN ) ∈ Aj,3and
ãα = akl1 · · · aklmalkm+1

· · · alNthen σ(lν) ≥ t, 1 ≤ ν ≤ m, and hene
ω(j) ≤ ω̃(α)

m∏

ν=1

ω(klν)

ω(lν)k
≤ ω̃(α) sup

σ(l)>t

ω(kl)m

ω(l)km
.Then

∑

j∈D

∣∣∣
∑

Aj,3

ãα

∣∣∣
p
ω(j) ≤ sup

σ(j)>t

ω(kj)m

ω(j)km

∑

j∈D

∑

Aj,3

|ãα|pω̃(α)(15)
≤ sup

σ(j)>t

ω(kj)m

ω(j)km
‖f‖Nℓpω .The result now follows from (12) and the estimates (13)�(15).Let us now turn to the estimates of the uniform spetral radii. To stateour result we need the following notation. Given an unbounded sequene

(µn) of positive numbers we de�ne, for arbitrary sequenes (An),
lim

µn→∞
An = sup{ lim

k→∞
Ank

: lim
k→∞

µnk
= ∞}.We obviously have the equality

lim
µn→∞

An = lim
t→∞

sup{An : µn > t}.Corollary 4.2. Let ω : D → (0,∞) be a weight funtion and let
p ∈ (0, 1).(i) If supn∈D σ(n) <∞ then for all integers N ≥ 3 we have

rN (ℓpω(D))N ≤ N !(p−1).(ii) Let (σ(n))n∈D be unbounded , let k,m,N be positive integers with
1 < k ≤ mk < N and set F (k,m,N) = [(N − (m − 1)k)/(k − 1)]!.Then

lim
σ(n)→∞

ω(nN)

ω(n)N
≤ rN (ℓpω(D))N ≤ F (k,m,N)p−1 + lim

σ(n)→∞

ω(kn)m

ω(n)km
.Proof. Reall that for a spetral null sequene f = (fn) we have ‖fn‖ℓpω

≤ 1 and limn→∞ r(fn) = 0. Then by an appliation of Theorem 4.1 we obtain



42 A. Aleman and A. Dahlnerthe inequality(16) rN (f)N = lim
n→∞

‖fNn ‖ℓpω ≤ F (k,m,N)p−1 + sup
σ(j)>t

ω(kj)m

ω(j)km
,whenever k,m,N, t satisfy the onditions in the statement. Then (i) followsby letting k = 2, m = 1 and t > supn∈D σ(n). Reall also that in this asethe supremum on the right hand side of (16) is taken to be zero.For (ii), to see the lower estimate onsider a sequene nj in D suh that

limj→∞ σ(nj) = ∞ and let fj be de�ned by f̂j(z) = znj/ω(nj)
1/p. Clearly

(fj) is a spetral null sequene, and thus
rN (ℓpω(D))N ≥ lim

j→∞
‖fNj ‖ℓpω = lim

j→∞

ω(njN)

ω(nj)N
,whih gives the desired inequality. For the upper estimate we just apply (16)and let the parameter t tend to in�nity.Corollary 4.3. Let ω : D → (0,∞) be a weight funtion and let p ∈

(0, 1). If (σ(n))n∈D is bounded then r∞(ℓpω(D)) = 0 and if (σ(n))n∈D isunbounded then
r∞(ℓpω(D)) = inf

N≥2
lim

σ(n)→∞

ω(nN)1/N

ω(n)
.Proof. The �rst part of the statement is just a diret appliation of Corol-lary 4.2(i). Further, from the �rst inequality in part (ii) of the same orollarywe see that

r∞(ℓpω(D)) ≥ inf
N≥2

lim
σ(n)→∞

ω(nN)1/N

ω(n)
.To see the reverse inequality, �x an integer k ≥ 2 and a onstant c ∈ (0, 1),and let m,N → ∞ in suh a manner that mk/N → c. Then

N − (m− 1)k

k − 1
→ ∞ and N − (m− 1)k

N(k − 1)
→ 1 − c

k − 1
,whih (due to Stirling's formula) implies that F (k,m,N)(p−1)/N → 0. Thenfrom the seond inequality in Corollary 4.2(ii) we dedue that

rN (ℓpω(D)) ≤ F (k,m,N)(p−1)/N + lim
σ(n)→∞

ω(kn)m/N

ω(n)km/Nand by the above onsiderations, when m,N → ∞ so that mk/N → c, wehave
r∞(ℓpω(D)) ≤

(
lim

σ(n)→∞

ω(kn)1/k

ω(n)

)c

.Sine k ≥ 2 and c ∈ (0, 1) were arbitrary the result follows.



Uniform spetral radius 43We should point out here that the value of the in�mum in Corollary 4.3an be obtained by letting N → ∞. This follows immediately from the fatthat the weight is submultipliative.Next we want to apply Theorem 3.1 to the algebras ℓpω(D), 0 < p < 1.It is fairly easy to hek that the Gelfand transform of ℓpω(D) is ompat ifand only if
lim

n∈D, |n|→∞
σ(n) = ∞.Indeed, if the Gelfand transform is ompat one an use the test funtionsde�ned by fn(z) = znω(n)−1/p to onlude that the above limit is in�-nite. Conversely, if the limit is in�nite then the inlusion map from ℓpω(D)into ℓ1ω0

(D), where ω0(±n) = r
n/p
± , n ≥ 0, is ompat. Moreover, ℓ1ω0

(D)is ontinuously ontained in C(Ω(ω)), whih proves the ompatness of theGelfand transform. Note that for suh weights ω Corollary 4.3 gives
r∞(ℓpω(D)) = inf

k≥1
lim

|n|→∞

ω(nk)1/k

ω(n)
.Corollary 4.4. Let ω : D → (0,∞) be a weight funtion suh that

inf
k≥1

lim
|n|→∞

ω(nk)1/k

ω(n)
= 0.Then the Gelfand transform of ℓpω(D) is ompat for 0 < p ≤ 1. Moreover ,if 0 < p < 1, then δ1(ℓpω(D)) = 0.Proof. Let us assume D = N, the statement for D = Z is idential.By Theorem 3.1 and Corollary 4.3 the seond half of the statement followsfrom the �rst. By the remarks preeding this proof it su�es to show that

σ(n) → ∞ as n→ ∞. Note that the hypothesis is equivalent to
inf
k≥1

lim
n→∞

σ(nk)1/k

σ(n)
= 0.Moreover, sine r+ = infn ω(n)1/n it follows that σ(n) ≥ 1. Thus,

0 = inf
k≥1

lim
n→∞

σ(nk)1/k

σ(n)
≥ lim

n→∞

1

σ(n)and the proof is omplete.Expliit examples of weights satisfying the assumption of Corollary 4.4are ω : n 7→ (1+ |n|)α and ω : n 7→ exp(|n|β), where α > 0 and β ∈ (0, 1). Infat, for these weights limn ω(kn)/ω(n)k = 0 for all k > 1. Our next exampleshows that there are weights ω suh that the Gelfand transform of ℓpω(D) isompat, but r∞(ℓpω(D)) > 0.



44 A. Aleman and A. DahlnerExample 4.5. Let 0 < p ≤ 1. Given α ∈ (0, 1] there is a weight funtion
ω on N suh that limn→∞ σ(n) = ∞ and

r∞(ℓpω(N)) = α.Proof. In the ase when p ∈ (0, 1) we see from Corollary 4.3 that itsu�es to onstrut a weight funtion ωα : N → R with the properties
limωα(n) = ∞, r+(ω) = 1 and

inf
k≥1

lim
n→∞

ωα(nk)1/k

ωα(n)
= α.Assume �rst that α = 1 and onsider a rapidly inreasing sequene of posi-tive integers n1, n2, . . . , where by rapidly inreasing we mean that for every

k > 1 there are in�nitely many n suh that nj < n < kn ≤ nj+1 for some
j (depending on n). De�ne f : N → (0, 1) by f(n) = 1/j if nj < n ≤ nj+1and note that f has the following properties: f(n) dereases to 0 as n growsto in�nity, limnf(n) = ∞, and for k �xed we have f(nk) − f(n) = 0 forin�nitely many n. In other words, ω1 : n 7→ exp(nf(n)) satis�es all theonditions above. To extend the result to the ase when p = 1 we usethe following inequalities. If ω is a weight funtion on N with σ(n) → ∞then

inf
k≥1

lim
n→∞

ω(nk)1/k

ω(n)
≤ r∞(ℓ1ω(N))

≤ inf
k≥1

lim
M→∞

sup
n1,...,nk≥M

(
ω(n1 + · · · + nk)

ω(n1) · · ·ω(nk)

)1/k

.The upper estimate follows from [2℄, while the lower estimate is obtainedexatly as in Corollary 4.2, using spetral null sequenes (fj) with f̂j(z) =
znj/ω(nj)

1/p. This ompletes our onstrution in the ase when α = 1.To see the general ase, let α ∈ (0, 1) and de�ne ωα by ωα(0) = 1 and
ωα(n) = α−1ω1(n) otherwise. Then limωα(n) = ∞, r+(ωα) = 1 and asimple alulation based on the above estimates of r∞(ℓpω(N)) shows that
r∞(ℓpωα(N)) = α.The simple onstrution given in this example has been suggested to usby S. Naboko. It is interesting to observe that for the weight ω1 onstrutedabove we have δ1(ℓpω(N)) = 1/2. Indeed, sine r∞(ℓpω(N)) = 1, Corollary 2.4implies that δ1(ℓpω(N)) ≥ 1/2. The reverse inequality is a lassial result. Itsproof an be found in [3℄ or [8℄.Proposition 4.6. If ω is a weight funtion on N and 0 < p ≤ 1, then

δ1(ℓ
p
ω(N)) ≤ 1/2.



Uniform spetral radius 45Proof. Fix δ > 1/2. Suppose f ∈ ℓpω(N) satis�es ‖f‖ℓpω ≤ 1 and |f̂(z)|p≥ δfor all z ∈ Ω(ω). Then |f̂(0)|p ≥ δ and
‖f−1‖ℓpω =

1

|f̂(0)|p
‖(1 + (f − f̂(0))/f̂(0))−1‖ℓpω

≤ 1

|f̂(0)|p
∞∑

n=0

‖f − f̂(0)‖n
ℓpω

|f̂(0)|np
≤ 1

2δ − 1
.
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