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Regular vector lattices of continuous functions

and Korovkin-type theorems—Part II

by

Francesco Altomare and Mirella Cappelletti Montano (Bari)

Abstract. By applying the results of the first part of the paper, we establish some
Korovkin-type theorems for continuous positive linear operators in the setting of regular
vector lattices of continuous functions. Moreover, we present simple methods to construct
Korovkin subspaces for finitely defined operators and for the identity operator and we
determine those classes of operators which admit finite-dimensional Korovkin subspaces.
Finally, we give a Korovkin-type theorem for continuous positive projections.

1. Introduction. In this second part of the paper, by using the results
of [3], we establish some Korovkin-type theorems for continuous positive
linear operators on particular lattices of continuous functions on a locally
compact Hausdorff space X, called regular vector lattices on X, which we
have introduced in [3, Definition 2.2].

In the sequel, we keep the same notations used in [3].

Let (E, τ) be a regular vector lattice on a locally compact Hausdorff
space X. In [3, (3.11) and (3.12)] we have introduced suitable envelopes for
functions of E and we have studied their properties. Here, given a continuous
positive linear operator T from E into E, we shall use these properties in
order to characterize those subspaces H of E which are Korovkin subspaces
in E for T and τ , i.e. for every τ -equicontinuous net (Li)

≤
i∈I of positive linear

operators from E into E satisfying lim
i∈I

≤ Li(h) = T (h) for every h ∈ H in

(E, τ), one has lim
i∈I

≤ Li(f) = T (f) for every f ∈ E in (E, τ).

Our results generalize those of many previous papers. For example,
H. Bauer and K. Donner (see [8]) and F. Altomare and M. Campiti (see
[1]) have considered the case where E = C0(X, R), and W. Roth has stud-
ied in [17] the case where E is a weighted function space (see [15], [16]) and
T is the identity operator on E.
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Moreover, M. W. Grossman (see [13]) (resp., H. Bauer in [6], [7] for the
identity operator) has studied similar problems in the context of adapted
spaces of continuous functions in the sense of Choquet (see [9], [14], [18]).
Finally in [12] (see also [10], [11]) H. Flösser, R. Irmisch and W. Roth have
determined, with a partially different approach, Korovkin-type theorems in
the setting of sequentially complete M -spaces with topological orthogonal
systems.

We also present simple methods to construct Korovkin subspaces for
particular positive linear operators, called finitely defined operators, and for
the identity operator. Moreover, we exhibit examples of finite-dimensional
Korovkin subspaces for these operators and we show that finitely defined
operators are the only ones which admit finite-dimensional Korovkin sub-
spaces.

We also prove that the Korovkin subspaces for the identity operator are
Korovkin subspaces for every (τ, τ)-continuous lattice homomorphism on E.

Finally, we present a Korovkin-type theorem for a continuous positive
projection T . Denoting by HT the range of such a projection, we character-
ize the Choquet boundary of HT in terms of the given projection and we
determine particular Korovkin subspaces for this operator. This last part of
the paper is a generalization of a previous work of the authors (see [2]) in
the framework of adapted spaces (see also [1, Sect. 3.3]).

2. Korovkin closures for positive linear operators. Let (E, τ) be
a regular vector lattice on a locally compact Hausdorff space X (see [3, Def-
inition 2.2]) and denote by Uτ the neighborhood base of (E, τ) consisting
of absolutely convex sublattices defined in [3, Definition 2.2, property (i)].
Moreover, consider T ∈ L+

τ (E) (see [3, (3.9)]). In this section, we charac-
terize those subspaces of E (if any) such that every τ -equicontinuous net of
positive linear operators from E into E converging to T on them, automat-
ically converges to T on the whole space E.

To this end, we recall that a net (Li)
≤
i∈I of positive linear operators from

E into E is said to be equicontinuous if for every neighborhood V of the
origin of E there exists a neighborhood U of the origin of E such that
Li(f) ∈ V for every f ∈ U and i ∈ I.

In the next definition we introduce the subspace we are mainly interested
in (see [1], [10]–[12], [17]).

Definition 2.1. Let (E, τ) be a regular vector lattice on a locally com-
pact Hausdorff space X, H a subspace of E, and T ∈ L+

τ (E). The subspace
of E defined by
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Kor(H)τ,T := {f ∈ E | if (Li)
≤
i∈I is a τ -equicontinuous net of positive

linear operators from E into E satisfying

lim
i∈I

≤ Li(h) = T (h) in (E, τ) for every h ∈ H, then

lim
i∈I

≤ Li(f) = T (f) in (E, τ)}

is said to be the Korovkin closure of H in E for the operator T and the
topology τ .

Moreover, H is said to be a Korovkin subspace in E for the operator T
and the topology τ if Kor(H)τ,T = E.

We now give a characterization of Kor(H)τ,T .

Theorem 2.2. Let (E, τ) be a regular vector lattice on a locally compact

Hausdorff space X, H a subspace of E, and T ∈ L+
τ (E). Then

Kor(H)τ,T = Ĥτ,T

=
{
f ∈ E

∣∣∣
\
f dµ = T (f)(x) for every x ∈ X and µ ∈ MT

τ,x(H)
}
,

where Ĥτ,T and MT
τ,x(H) are defined as in (3.14) and (3.15) of [3], respec-

tively.

Proof. The second equality is obvious, by Corollary 3.6 of [3].
We proceed to prove that, if f ∈ Kor(H)τ,T , then

T
f dµ = T (f)(x) for

every x ∈ X and µ ∈ MT
τ,x(H). To this end, given x ∈ X and µ ∈ MT

τ,x(H),
choose a compact neighborhood Q0 of x, and denote by B the fundamental
system of neighborhoods of x consisting of all (relatively compact) neigh-
borhoods of x contained in Q0.

For every Q ∈ B there exists a function qQ ∈ Cc(X, R) such that 0 ≤
qQ ≤ 1, qQ(x) = 1 and qQ(y) = 0 for every y 6∈ Q; then, for every Q ∈ B, set

ϕQ := inf{qQ, qQ0
}

and consider the positive linear operator LQ defined by

(1) LQ(g) :=
(\

g dµ
)
ϕQ + T (g) − T (g)ϕQ (g ∈ E).

Since Cc(X, R) ⊂ E (see [3, Definition 2.2, property (iii)]), each LQ acts
from E to E. Moreover, (LQ)⊃Q∈B is a τ -equicontinuous net. Indeed, for
every Q ∈ B we get

|LQ(g)| ≤
∣∣∣
\
g dµ

∣∣∣ϕQ0
+ |T (g)|.

Choose V ∈ Uτ and W ∈ Uτ such that W + W ⊂ V ; since T is (τ, τ)-
continuous, there exists U ∈ Uτ such that T (g) ∈ W for every g ∈ U
and thus |T (g)| ∈ W . Moreover, there exists λ > 0 such that λϕQ0

∈ W .
Accordingly, there exists U ′ ∈ B such that |

T
g dµ| ≤ λ for every g ∈ U ′.
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Therefore, for every g ∈ U ∩ U ′ and Q ∈ B,

|LQ(g)| ∈ W + W ⊂ V.

This shows that (LQ)⊃Q∈B is equicontinuous.

We proceed to show that lim
V ∈B

⊃ LV (h) = T (h) for every h ∈ H in (E, τ).

First, note that if Q ∈ B, then for every h ∈ H,

(2) |LQ(h) − T (h)| ≤ |T (h) − T (h)(x)|ϕQ.

Moreover, if V ∈ Uτ , then by [3, Proposition 2.8], there exists a neighborhood
P ⊂ Q0 of x such that

|T (h) − T (h)(x)|ϕ ∈ V

for every ϕ ∈ Cc(X, R) with 0 ≤ ϕ ≤ 1 and supp(ϕ) ⊂ P . Choose a compact
neighborhood Q1 of x such that Q1 ⊂ P . Then Q1 ∈ B and for every Q ∈ B
with Q ⊂ Q1, we get supp(ϕQ) ⊂ Q1 ⊂ P ; thus,

|LQ(h) − T (h)| ≤ |T (h) − T (h)(x)|ϕQ ∈ V.

Accordingly, lim
V ∈B

⊃ LV (h) = T (h) in (E, τ). Therefore, lim
V ∈B

⊃ LV (f) = T (f)

in (E, τ), so that, since LV (f)(x) =
T
f dµ for every V ∈ B, it follows thatT

f dµ = T (f)(x).

We now proceed to show that if f ∈ Ĥτ,T , then f ∈ Kor(H)τ,T . To this

end, given a τ -equicontinuous net (Li)
≤
i∈I of positive linear operators from

E into E satisfying lim
i∈I

≤ Li(h) = T (h) for every h ∈ H in (E, τ), fix V ∈ Uτ

and consider W ∈ Uτ such that W + W + W + W + W + W ⊂ V . Then, by
assumption, there exists U ∈ Uτ with U ⊂ W such that

(3) Li(g) ∈ W, T (g) ∈ W

for every g ∈ U and i ∈ I. According to Theorem 3.7 of [3], there exist
k1, . . . , kn, k′

1, . . . , k
′
m ∈ H such that

(f − kp)
+ ∈ U, (k′

q − f)+ ∈ U

for every p = 1, . . . , n and q = 1, . . . , m and

inf
1≤p≤n

T (kp) − sup
1≤q≤m

T (k′
q) ∈ U.

Set u := sup1≤p≤n(f − kp)
+ ∈ U and v := sup1≤q≤m(k′

q − f)+ ∈ U ; from (3)
it follows that Li(u), Li(v), T (u), T (v) ∈ W for every i ∈ I. Furthermore,
since for every p = 1, . . . , n and q = 1, . . . , m,

k′
q − v ≤ k′

q − (k′
q − f)+ ≤ f ≤ kp + (f − kp)

+ ≤ kp + u,

it follows that for every i ∈ I,

Li(k
′
q) − Li(v) ≤ Li(f) ≤ Li(kp) + Li(u)
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and

T (k′
q) − T (v) ≤ T (f) ≤ T (kp) + T (u);

hence

sup
1≤q≤m

Li(k
′
q) − Li(v) ≤ Li(f) ≤ inf

1≤p≤n
Li(kp) + Li(u)

and

sup
1≤q≤m

T (k′
q) − T (v) ≤ T (f) ≤ inf

1≤p≤n
T (kp) + T (u).

Consequently,

Li(f) − T (f) ≤ inf
1≤p≤n

Li(kp) + Li(u) − sup
1≤q≤m

T (k′
q) + T (v)

= inf
1≤p≤n

Li(kp) − inf
1≤p≤n

T (kp) + inf
1≤p≤n

T (kp) − sup
1≤q≤m

T (k′
q) + Li(u) + T (v)

≤
n∑

p=1

|Li(kp) − T (kp)| + inf
1≤p≤n

T (kp) − sup
1≤q≤m

T (k′
q) + Li(u) + T (v).

By a similar reasoning, we also get

T (f) − Li(f) ≤ inf
1≤p≤n

T (kp) + T (u) − sup
1≤q≤m

Li(k
′
q) + Li(v)

= inf
1≤p≤n

T (kp) − sup
1≤q≤m

T (k′
q) + sup

1≤q≤m
T (k′

q) − sup
1≤q≤m

Li(k
′
q) + T (u) + Li(v)

≤ inf
1≤p≤n

T (kp) − sup
1≤q≤m

T (k′
q) +

m∑

q=1

|T (k′
q) − Li(k

′
q)| + T (u) + Li(v).

Accordingly,

|Li(f) − T (f)| ≤
n∑

p=1

|Li(kp) − T (kp)| +
m∑

q=1

|Li(k
′
q) − T (k′

q)|

+ | inf
1≤p≤n

T (kp) − sup
1≤q≤m

T (k′
q)| + Li(u) + T (v) + T (u) + Li(v).

Fix now U∗ ∈ Uτ such that

U∗ + · · · + U∗
︸ ︷︷ ︸

n+m times

⊂ U.

Since lim
i∈I

≤ Li(h) = T (h) in (E, τ) for every h ∈ H, there exists i0 ∈ I such

that for every i ∈ I with i ≥ i0,

Li(kp) − T (kp) ∈ U∗ and Li(k
′
q) − T (k′

q) ∈ U∗

for every p = 1, . . . , n and q = 1, . . . , m; hence
n∑

p=1

|Li(kp) − T (kp)| +
m∑

q=1

|Li(k
′
q) − T (k′

q)| ∈ U ⊂ W.
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Consequently, for every i ∈ I with i ≥ i0, we get

Li(f) − T (f) ∈ W + W + W + W + W + W ⊂ V,

and this completes the proof.

In the following result, we characterize those subspaces H of E which
are Korovkin subspaces in E for T and τ . Its proof, taking Corollary 3.6 of
[3] into account, is straightforward.

Corollary 2.3. Under the assumptions of Theorem 2.2, H is a Ko-

rovkin subspace in E for T and τ if and only if ∂T
τ,HX = X, where ∂T

τ,HX
is defined by [3, (3.17)].

3. Korovkin subspaces for finitely defined operators. In this sec-
tion we describe several methods to construct Korovkin subspaces for a class
of positive linear operators, namely finitely defined operators. This class of
operators was studied in [1, Section 3.4] in the framework of continuous func-
tions which vanish at infinity; by using similar methods, we extend those
results to arbitrary regular vector lattices.

Moreover, we exhibit some examples of finite-dimensional Korovkin sub-
spaces for finitely defined operators and we prove that, in some sense, they
are the only class of positive linear operators which admit finite-dimensional
Korovkin subspaces.

First, we introduce the following definition.

Definition 3.1. Let (E, τ) be a regular vector lattice on a locally com-
pact Hausdorff space X. Every positive linear operator T : E → E of the
form

(3.1) T (f) :=

n∑

i=1

λi(f ◦ ϕi) (f ∈ E),

where λi ∈ C(X, R), λi ≥ 0, ϕi : X → X is continuous and λi(f ◦ ϕi) ∈ E
for every f ∈ E (1 ≤ i ≤ n), is said to be a finitely defined operator of
order n.

In general, a finitely defined operator T with a representation (3.1) is not
necessarily (τ, τ)-continuous, unless τ is the topology τc of uniform conver-
gence on compact subsets of X or the topology τs of pointwise convergence
on X.

For a fixed finitely defined operator T ∈ L+
τ (E) with a representa-

tion (3.1), we denote by n(x) the number of distinct points of the set
{ϕ1(x), . . . , ϕn(x)} (x ∈ X); without loss of generality, we assume that,
up to a suitable permutation, these points are {ϕ1(x), . . . , ϕn(x)(x)}.

Under these assumptions, we give sufficient conditions for a subspace H
of E to be a Korovkin subspace for T and τ .
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Theorem 3.2. Let (E, τ) be a regular vector lattice on a locally compact

Hausdorff space X, T ∈ L+
τ (E) a finitely defined operator of order n with a

representation (3.1), and H a subspace of E. Assume that :

(i) For every x ∈ X there exist h1, . . . , hn(x) ∈ H such that

det (hi(ϕj(x)))1≤i,j≤n(x) 6= 0.

(ii) For every x ∈ X, every ε > 0 and every compact subset K of X
satisfying K ∩ {ϕ1(x), . . . , ϕn(x)} = ∅, there exists h ∈ H such that

h ≥ 0, h ≥ 1 on K and h(ϕj(x)) < ε for every j = 1, . . . , n.

Then H is a Korovkin subspace in E for T and τ .

Proof. By Corollary 2.3, it suffices to show that ∂T
τ,HX = X. To this end,

choose x ∈ X and µ ∈ MT
τ,x(H); we will prove that µ =

∑n
j=1 λj(x)εϕj(x).

We note first that supp(µ)⊂{ϕ1(x), . . . , ϕn(x)(x)}. Indeed, if y ∈ supp(µ)
with y 6∈ {ϕ1(x), . . . , ϕn(x)(x)}, then for a given compact neighborhood K of
y such that K ∩ {ϕ1(x), . . . , ϕn(x)(x)} = ∅, there would exist f ∈ Cc(X, R),
0 ≤ f ≤ 1, such that supp(f) ⊂ K and

T
f dµ > 0. Hence, given ε > 0, there

would exist h ∈ H with h ≥ 0, h ≥ 1 on K and h(ϕj(x)) < ε for every
j = 1, . . . , n. Consequently, f ≤ h and

0 <
\
f dµ ≤

\
h dµ = T (h)(x) =

n∑

j=1

λj(x)h(ϕj(x)) < ε

n∑

j=1

λj(x),

which is impossible, since ε > 0 was arbitrarily chosen.
Accordingly, supp(µ) ⊂ {ϕ1(x), . . . , ϕn(x)(x)} and thus there exist β1,

. . . , βn(x) ∈ R
+ such that µ =

∑n(x)
j=1 βjεϕj(x). By assumption, there exist

h1, . . . , hn(x) ∈ H with det (hi(ϕj(x)))1≤i,j≤n(x) 6= 0, so that for every i =
1, . . . , n(x) we get

n∑

j=1

λj(x)hi(ϕj(x)) = T (hi)(x) =
\
hi dµ =

n(x)∑

j=1

βjhi(ϕj(x)).

Hence, for every i = 1, . . . , n(x),
n(x)∑

j=1

(
λj(x) − βj +

∑

mj∈{n(x)+1,...,n}
ϕmj

(x)=ϕj(x)

λmj
(x)

)
hi(ϕj(x)) = 0.

But the system

n(x)∑

j=1

hi(ϕj(x))αj = 0, i = 1, . . . , n(x),

has α1 = · · · = αn(x) = 0 as its only solution; consequently, we have µ =∑n
j=1 λj(x)εϕj(x), and this completes the proof.
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In what follows we provide some methods to construct Korovkin sub-
spaces for finitely defined operators. First, we give some consequences of
Theorem 3.2.

Corollary 3.3. Let (E, τ) be a regular vector lattice on a locally com-

pact Hausdorff space X, T ∈ L+
τ (E) a finitely defined operator of order n

with a representation (3.1), and H a subspace of E. Assume that

(i) For every x ∈ X there exist h1, . . . , hn(x) ∈ H such that

det (hi(ϕj(x)))1≤i,j≤n(x) 6= 0.

(ii)′ For every x ∈ X and every y ∈ X \ {ϕ1(x), . . . , ϕn(x)}, there exists

h ∈ H such that h ≥ 0, h(y) > 0 and h(ϕi(x)) = 0 for every

i = 1, . . . , n.

Then H is a Korovkin subspace in E for T and τ .

Proof. We verify assumption (ii) of Theorem 3.2. To this end, fix x ∈ X
and a compact subset K of X satisfying K ∩ {ϕ1(x), . . . , ϕn(x)} = ∅; then,
for every y ∈ K there exists h ∈ H, h ≥ 0, such that h(ϕi(x)) = 0 for every
i = 1, . . . , n and h(y) > 0. There exists a neighborhood Vy of y such that
h(z) > 0 for every z ∈ Vy, so that, by the compactness of K, there exist
y1, . . . , ym ∈ K such that K ⊂ Vy1

∪ · · · ∪ Vym
.

Consequently, we can find m positive functions k1, . . . , km ∈ H, with
kl(ϕi(x)) = 0 for every i = 1, . . . , n and l = 1, . . . , m, satisfying the following
condition:

for every y ∈ K there exists l ∈ {1, . . . , m} such that kl(y) > 0.

Hence, if we set k0 :=
∑m

l=1 kl and α := miny∈K k0(y) > 0, then the function
h := (1/α)k0 satisfies (ii) of Theorem 3.2 for every ε > 0.

If f0 ∈ E and S is a subset of E, we set

(3.2) f0S
n := {f0 · g

n | g ∈ S} (n ≥ 1).

Corollary 3.4. Let (E, τ) be a regular vector lattice on a locally com-

pact Hausdorff space X and T ∈ L+
τ (E) a finitely defined operator of order

n with a representation (3.1). Moreover , suppose that there exist a strictly

positive function f0 ∈ E and a subset S of E such that f0S∪f0S
2∪· · ·∪f0S

2n

⊂ E and , in addition, the following conditions are satisfied :

(i) For every x ∈ X there exists h0 ∈ S such that h0(ϕi(x)) 6= 0 for

every i = 1, . . . , n and , if n > 1, h0(ϕi(x)) 6= h0(ϕj(x)) whenever

ϕi(x) 6= ϕj(x).
(ii) For any x, y ∈ X with y 6∈ {ϕ1(x), . . . , ϕn(x)}, there exists h ∈ S

such that h(y) 6= h(ϕi(x)) for every i = 1, . . . , n.

Then the subspace H generated by {f0} ∪ f0S ∪ · · · ∪ f0S
2n is a Korovkin

subspace in E for T and τ .



Vector lattices of continuous functions 77

Proof. We show that H satisfies (i) and (ii)′ of Corollary 3.3. Fix x ∈ X
and assume that, up to a suitable permutation, {ϕ1(x), . . . , ϕn(x)(x)} is the
set of all distinct points of {ϕ1(x), . . . , ϕn(x)}. We shall prove that there
exist h1, . . . , hn(x) ∈ H such that det (hi(ϕj(x)))1≤i,j≤n(x) 6= 0.

Indeed, by assumption, there exists h0 ∈ S such that h0(ϕi(x)) 6= 0 for
every i = 1, . . . , n and, if n > 1, h0(ϕi(x)) 6= h0(ϕj(x)) for every i, j =
1, . . . , n(x), i 6= j. Consequently, if we set h1 = h0 and hi := f0h

i
0 for

1 < i ≤ n(x), we get

det (hi(ϕj(x)))1≤i,j≤n(x)

= f0(ϕ1(x)) · · · f0(ϕn(x)(x))h0(ϕ1(x)) · · ·h0(ϕn(x)(x))

×
∏

1≤i<j≤n(x)

(h0(ϕi(x)) − h0(ϕj(x))) 6= 0.

Moreover, for every y ∈ X \{ϕ1(x), . . . , ϕn(x)}, there exists h ∈ S such that
h(y) 6= h(ϕi(x)) for every i = 1, . . . , n. Choose a polynomial p of degree
less than or equal to n satisfying p(h(y)) = 1 and p(h(ϕi(x))) = 0 for every
i = 1, . . . , n. Then the function k := f0p

2(h) satisfies (ii)′ of Corollary 3.3
for every ε > 0, and this completes the proof.

The next result gives sufficient conditions for assumption (i) of Theorem
3.2 (and of Corollary 3.3) to hold.

Lemma 3.5. Let X be a locally compact Hausdorff space, H a subspace

of R
X , and {x1, . . . , xm} a set of distinct points of X, m ≥ 2. If for every

l = 1, . . . , m and every ε > 0 there exists k ∈ H satisfying k ≥ 0, k(xl) ≥ 1
and k(xi) < ε for every i = 1, . . . , m, i 6= l, then there exist h1, . . . , hm ∈ H
such that det (hi(xj))1≤i,j≤m 6= 0.

Proof. If l = 1, then by assumption given ε > 0, there exists h1 ∈ H
such that h1 ≥ 0, h1(x1) ≥ 1 and h1(xi) < ε for every i = 2, . . . , m; hence
h1(x1) 6= 0.

Let now 1 ≤ l < m be such that there exist h1, . . . , hl ∈ H with
det (hi(xj))1≤i,j≤l 6= 0. We proceed to prove that there exists hl+1 ∈ H such
that det (hi(xj))1≤i,j≤l+1 6= 0. Otherwise, for every h ∈ H we would have

∣∣∣∣∣∣∣∣∣∣

h1(x1) h1(x2) · · · h1(xl+1)

h2(x1) h2(x2) · · · h2(xl+1)
...

... · · ·
...

h(x1) h(x2) · · · h(xl+1)

∣∣∣∣∣∣∣∣∣∣

= 0.

By expanding this determinant with respect to the last row, there would
exist α1, . . . , αl+1 ∈ R, with αl+1 = det (hi(xj))1≤i,j≤l 6= 0, such that∑l+1

i=1 αih(xi) = 0 for every h ∈ H.
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Note that
∑n

i=1 |αi| > 0. Indeed, by assumption, given ε > 0, there exists
k ∈ H such that k ≥ 0, k(xi) < ε for every i = 1, . . . , l and k(xl+1) ≥ 1. If
α1 = · · · = αn = 0 we would have

αl+1k(xl+1) = −
l∑

i=1

αik(xi) = 0

and thus k(xl+1) = 0 contrary to assumption, since αl+1 6= 0.
To finish the proof, for every ε > 0 and k ∈ H as above we get

|αl+1| ≤ |αl+1|k(xl+1) =
∣∣∣−

l∑

i=1

αik(xi)
∣∣∣

≤
l∑

i=1

|αi|k(xi) < ε
l∑

i=1

|αi|.

Since ε > 0 was arbitrarily chosen, we conclude that αl+1 = 0, in contradic-
tion with our assumption.

Our statement now follows by induction.

Given n ∈ N, we denote by Fτ
n(X) the set of all (τ, τ)-continuous finitely

defined operators of order n with a representation (3.1) such that for every
x ∈ X the set {ϕ1(x), . . . , ϕn(x)} consists of n distinct points of X.

Definition 3.6. Let (E, τ) be a regular vector lattice on a locally com-
pact Hausdorff space X, and H a subspace of E. Then H is said to be a
Korovkin subspace of order n in E for τ if H is a Korovkin subspace in E
for τ and for every finitely defined operator T ∈ Fτ

n(X).

The next results give some methods to construct Korovkin subspaces of
order n in E.

Theorem 3.7. Let X be a locally compact Hausdorff space with at least

n + 1 points, (E, τ) a regular vector lattice on X, and H a subspace of E.

Assume that

(∗) For every set of distinct points x1, . . . , xn ∈ X, every compact subset

K of X satisfying K ∩ {x1, . . . , xn} = ∅ and every ε > 0 there exists

h ∈ H such that h ≥ 0, h ≥ 1 on K and h(xi) < ε for every i =
1, . . . , n.

Then H is a Korovkin subspace of order n in E for τ .

Proof. Fix T ∈ Fτ
n(X). We verify assumptions (i) and (ii) of Theorem

3.2. Indeed, (ii) obviously follows from (∗).
Moreover, for given l = 1, . . . , n and ε > 0, fix x ∈ X\{ϕ1(x), . . . , ϕn(x)};

then, by applying (∗) to K := {ϕl(x)} and to the subset {ϕ1(x), . . . , ϕl−1(x),
x, ϕl+1(x), . . . , ϕn(x)} of X, there exists k ∈ H, k ≥ 0, such that k(ϕl(x))
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≥ 1 and k(ϕi(x)) < ε for every i = 1, . . . , n, i 6= l; by Lemma 3.5, this
completes the proof.

Corollary 3.8. Let X be a locally compact Hausdorff space with at

least n + 1 points, (E, τ) a regular vector lattice on X, and H a subspace

of E. Assume that

(∗∗) For every set of distinct points x1, . . . , xn ∈ X, every ε > 0 and every

x ∈ X \ {x1, . . . , xn}, there exists h ∈ H such that h ≥ 0, h(x) > 0
and h(x1) = · · · = h(xn) = 0.

Then H is a Korovkin subspace of order n in E for τ .

Proof. We verify (∗) of Theorem 3.7. To this end, fix distinct x1, . . . , xn

∈ X and a compact subset K of X satisfying K ∩{x1, . . . , xn} = ∅. Arguing
as in the proof of Corollary 3.3, we can find h1, . . . , hm ∈ H, hj ≥ 0, hj(x1) =
· · · = hj(xn) = 0 for every j = 1, . . . , m, such that for every x ∈ K there
exists j = 1, . . . , m with hj(x) > 0.

Accordingly, if we set h0 :=
∑m

j=1 hj and α := minx∈K h0(x) > 0, then
the function h := (1/α)h0 ∈ H, satisfies (∗).

Corollary 3.9. Let X be a locally compact Hausdorff space with at

least n+1 points, and (E, τ) a regular vector lattice on X. Moreover , suppose

that there exist a subset S of E and a strictly positive function f0 ∈ E
such that f0S ∪ · · · ∪ f0S

2n ⊂ E, where f0S
i is defined by (3.2) for every

i = 1, . . . , 2n and , in addition,

(∗∗∗) For any distinct x1, . . . , xn ∈ X and x ∈ X \ {x1, . . . , xn}, there

exists h ∈ S such that h(x) 6= h(xi) for every i = 1, . . . , n.

Then the subspace H generated by {f0} ∪ f0S ∪ · · · ∪ f0S
2n is a Korovkin

subspace of order n in E for τ .

Proof. We verify (∗∗) of Corollary 3.8. Indeed, given distinct x1, . . . , xn

of X and x ∈ X \ {x1, . . . , xn}, by assumption, there exists h ∈ S such that
h(x) 6= h(xi) for every i = 1, . . . , n. Let P be a polynomial of degree less
than or equal to n with P (h(x)) = 1 and P (h(xi)) = 0 for every i = 1, . . . , n.
Then the function k := f0P (h)2 ∈ H satisfies (∗∗) for every ε > 0.

Examples 3.10. 1. Let X be a locally compact Hausdorff space, (E, τ)
a regular vector lattice, and assume that there exists a strictly positive
one-to-one function f0 ∈ E such that f2

0 , . . . , f2n+1
0 ∈ E. Then the subspace

generated by {f0, f
2
0 , . . . , f2n+1

0 } is a Korovkin subspace of order n in E
for τ .

For example, let X be an interval of R. Then, for every α 6= 0, the
subspace generated by {eαx, . . . , e(2n+1)αx} is a Korovkin subspace of order
n in every regular vector sublattice of C(X, R) containing these functions.
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Let X be a subinterval of ]0, +∞[. Then the subspace generated by
{x, x2, . . . , x2n+1} is a Korovkin subspace of order n in every regular vector
sublattice of C(X, R) containing these functions.

Let X be a subinterval of [1, +∞[. Then the subspace generated by
{x−1, . . . , x−2n−1} is a Korovkin subspace of order n in every regular vector
sublattice of C(X, R) containing these functions.

2. Set f0 := 1 and f1(x) = x for every x ∈ R; Corollary 3.9 applied to f0

and S := {f1} shows that the subspace generated by {1, x, x2, . . . , x2n} is a
Korovkin subspace of order n in every regular vector sublattice of C(X, R)
containing these functions.

The previous examples show that finitely defined operators, under suit-
able assumptions, admit finite-dimensional Korovkin subspaces. We con-
clude this section with a result which ensures that they are the only positive
linear operators with this property.

Proposition 3.11. Let (E, τ) be a regular vector lattice on a locally

compact Hausdorff space X, H an n-dimensional subspace of E, n ≥ 1 and

T ∈ L+
τ,τs

(E) (see [3, (3.8)]). Then there exist λ1, . . . , λn+2 ∈ R
X with λi ≥ 0

for every i = 1, . . . , n + 2, and ϕ1, . . . , ϕn+2 : X → X such that

T (h) =
n+2∑

i=1

λi(h ◦ ϕi) for every h ∈ H.

Moreover , if T ∈ L+
τ (E) and H is a Korovkin subspace in E for T and τ ,

then

(3.3) T (f) =
n+2∑

i=1

λi(f ◦ ϕi) for every f ∈ E.

Proof. The first part follows by applying [11, Proposition 2.1] and [3,
Lemma 2.4] to each continuous positive linear functional µx on E (x ∈ X)
defined by µx(f) := T (f)(x) (f ∈ E). The second part is a consequence of
Corollary 2.3.

4. Korovkin closure for the identity operator. In this section,
applying the results of Section 2, we characterize the Korovkin closure of
a subspace of a regular vector lattice for the identity operator I on E.
We also describe several methods to construct Korovkin subspaces for the
identity operator and hence for every continuous lattice homomorphism T ∈
L+

τ (E). These methods will be used to exhibit examples of finite-dimensional
Korovkin subspaces for the identity operator.

To this end, we recall the following specialization of Definition 2.1.

Definition 4.1. Let (E, τ) be a regular vector lattice on a locally com-
pact Hausdorff space X, and H a subspace of E. The subspace of E defined
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by

Kor(H)τ := {f ∈ E | if (Li)
≤
i∈I is a τ -equicontinuous net of positive

linear operators from E into E satisfying

lim
i∈I

≤ Li(h) = h in (E, τ) for every h ∈ H, then

lim
i∈I

≤ Li(f) = f in (E, τ)}

is said to be the Korovkin closure of H in E for τ (and for the opera-
tor I).

Moreover, H is said to be a Korovkin subspace in E for τ (and for the
operator I) if Kor(H)τ = E.

The following consequence of Theorem 2.2 gives a characterization of the
Korovkin closure of H in E for τ .

Theorem 4.2. Let (E, τ) be a regular vector lattice on a locally compact

Hausdorff space X, and H a subspace of E. Then

Kor(H)τ = Ĥτ

=
{

f ∈ E
∣∣∣
\
f dµ = f(x) for every x ∈ X and µ ∈ Mτ,x(H)

}
,

where Ĥτ and Mτ,x(H) are defined by (4.1) and (4.2) of [3], respectively.

Korovkin subspaces for τ are characterized as follows.

Corollary 4.3. Under the assumptions of Theorem 4.2, H is a Ko-

rovkin subspace in E for τ if and only if ∂τ,HX = X, where ∂τ,HX is

defined by [3, (4.3)]. In particular , if ∂τ,HX = X, then H is also a Korovkin

subspace in E for τ and for every lattice homomorphism T ∈ L+
τ (E).

Proof. This is a consequence of Corollary 2.3 and Corollaries 4.2 and 4.6
of [3].

In what follows, we find simpler criteria to establish whether a subspace
of E is a Korovkin subspace in E and hence for every lattice homomorphism
T ∈ L+

τ (E). To this end, we introduce the following definition (see [1, Section
2.6]).

Definition 4.4. Let (E, τ) be a regular vector lattice on a locally com-
pact Hausdorff space X and H a subspace of E.

A point x0 ∈ X is said to be an H-peak-point if:

(i) There exists h ∈ H such that h(x0) 6= 0.
(ii) For every y ∈ X, y 6= x0, there exists k ∈ H such that k ≥ 0,

k(x0) = 0 and k(y) > 0.

We denote by ΓHX the set of all H-peak-points of X.
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As a matter of fact, we shall prove that ΓHX is a subset of ∂τ,HX;
consequently, by Corollary 4.3, to show that H is a Korovkin subspace for
τ , it is enough to prove that ΓHX = X. First, we state a preliminary lemma
(see [5, Section 2]).

Lemma 4.5. Let (E, τ) be a regular vector lattice on a locally compact

Hausdorff space X, x ∈ X, and H a subspace of E. Suppose that :

(i) For every ε > 0 and every compact subset K of X with K ∩ {x} = ∅
there exists u ∈ H such that u ≥ 0, u ≥ 1 on K and u(x) < ε;

(ii) There exists h ∈ H such that h(x) 6= 0.

Then x ∈ ∂τ,HX.

Proof. Fix a measure µ ∈ Mτ,x(H); we will prove that µ = εx.

Arguing as in the proof of Theorem 3.2, one can show that supp(µ) ⊂ {x}
and hence µ = λεx with λ ≥ 0. Since there exists h ∈ H such that h(x) 6= 0,
we get

h(x) =
\
h dµ = λh(x),

and this completes the proof.

We are now in a position to prove the following result (see [1, Theorem
2.2.6]).

Theorem 4.6. Let (E, τ) be a regular vector lattice on a locally compact

Hausdorff space X, and H a subspace of E. Then ΓHX ⊂ ∂τ,HX. Conse-

quently , if ΓHX = X, then H is a Korovkin subspace in E for τ and for both

the identity operator on E and every lattice homomorphism T ∈ L+
τ (E).

Proof. Fix x ∈ ΓHX. In order to show that x ∈ ∂τ,HX, we prove that x
satisfies conditions (i) and (ii) of Lemma 4.5.

Indeed, for a given compact subset K of X such that K ∩ {x} = ∅, by
applying the same reasoning of the proof of Corollary 3.3, one can show that
there exist h1, . . . , hn ∈ H with hi ≥ 0 and hi(x) = 0 for every i = 1, . . . , n,
and with the following property:

for every y ∈ K there exists i ∈ {1, . . . , n} such that hi(y) > 0.

If we set h0 :=
∑n

i=1 hi and α := miny∈K h0(y) > 0, the function u :=
(1/α)h0 clearly satisfies (i) of Lemma 4.5 for every ε > 0. Moreover, since
x ∈ ΓHX, (ii) also holds, so that x ∈ ∂τ,HX.

The second part is a consequence of Corollary 4.3 and of [3, Corollary
4.6].

From Theorem 4.6 or from Corollary 3.9 for n = 1, one can deduce the
following results.
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Proposition 4.7. Let (E, τ) be a regular vector lattice on a locally com-

pact Hausdorff space X. Assume that there exist a strictly positive func-

tion f0 ∈ E and a subset S of E separating the points of X such that

f0S, f0S
2 ⊂ E, where f0S

i is defined by (3.2) for i = 1, 2. Then the subspace

generated by {f0} ∪ f0S ∪ f0S
2 is a Korovkin subspace in E for τ .

Proposition 4.8. Let X be a locally compact Hausdorff space and (E, τ)
a regular vector lattice on X. Assume that there exist a strictly positive

function f0 ∈ E and a finite subset S := {h1, . . . , hn} of E separating the

points of X such that f0S, f0S
2 ⊂ E. Then the subspace H generated by

{f0, f0h1, . . . , f0hn, f0
∑n

i=1 h2
i } is a Korovkin subspace in E for τ .

Proof. Fix distinct x, y ∈ X; by assumption, there exists i ∈ {1, . . . , n}
such that hi(x) 6= hi(y). Since the function

k := f0

n∑

i=1

(hi − hi(x))2 ∈ H

satisfies condition (ii) of Definition 4.4, we have x ∈ ΓHX; hence, our state-
ment follows from Theorem 4.6.

In addition to Examples 3.10, with n = 1, we now list some other ex-
amples of Korovkin subspaces for τ and either for I or for every lattice
homomorphism T ∈ L+

τ (E). Other examples in the setting of C0(X, R) or
C(X, R), with X compact, can be found in [1, Ch. 4 and Appendix C].

Examples 4.9. 1. Let X be an interval of R. Then the subspace gener-
ated by {1, x, x2} is a Korovkin subspace in every regular vector sublattice
of C(X, R) containing these functions.

2. Let X be a locally compact subset of R
p, p ≥ 1, and for every i =

1, . . . , p, consider the mapping pri : X → R defined by pri(x) := xi for
x = (x1, . . . , xp) ∈ X. Then the subspace generated by

{
1, pr1, . . . , prp,

p∑

i=1

pr2i

}

is a Korovkin subspace in every regular vector sublattice of C(X, R) con-
taining these functions.

3. Proposition 4.8 applied to the mappings f0(x) := exp(−‖x‖2) and
h1(x) := x1 exp(−‖x‖2), . . . , hn(x) := xn exp(−‖x‖2), hn+1(x) = f0(x), x =
(x1, . . . , xn) ∈ R

n shows that the subspace generated by

{exp(−‖x‖2), exp(−2‖x‖2), x1 exp(−2‖x‖2), . . .

. . . , xn exp(−2‖x‖2), (1 + ‖x‖2) exp(−3‖x‖2)}

is a Korovkin subspace in every regular vector sublattice of C(X, R) con-
taining these functions.
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We now give an application of these results. For every α > 0 denote by
Eα the subspace of all f ∈ C([0, +∞[, R) such that

‖f‖α := sup
x≥0

e−αx|f(x)| < +∞.

Moreover, set

E0
α := {f ∈ C([0, +∞[, R) | lim

x→+∞
e−αx|f(x)| = 0} ⊂ Eα.

Clearly, for every 0 < α < β we have

(4.1) Eα ⊂ E0
β and ‖ · ‖β ≤ ‖ · ‖α on Eα.

Set

(4.2) E∞ :=
⋃

α>0

Eα, E :=
⋂

α>0

E0
α.

Then E, endowed with the locally convex topology τ generated by the family
(‖ · ‖α)α>0, is a weighted function space ([3, Ex. 2.3,3]) and hence a regular
vector lattice.

Fix λ ∈ C([0, +∞[, R) with 0 ≤ λ ≤ 1, and for every n ≥ 1, f ∈ E∞ and
x ≥ 0 set

(4.3) Mn,λ(f)(x)

:=
n∑

p=0

∞∑

h=0

(
n

p

)
λ(x)p(1 − λ(x))n−pe−px (px)h

h!
f

(
h + (n − p)x

n

)
.

These positive operators have been introduced in [4]. It is known that they
are well defined on E∞ and, moreover, that Mn,λ(E∞) ⊂ E∞.

Note also that, for λ = 1, the operators Mn,1 become the classical Szász–
Mirakjan operators defined by

Mn(f)(x) =

∞∑

h=0

e−nx (nx)h

h!
f

(
h

n

)
(f ∈ E∞, x ≥ 0).

In [4, Prop. 1.1,1] it was shown that, if α > 0 and f ∈ Eα then for every
n ≥ 1,

(4.4) Mn,λ(f) ∈ Eγ and ‖Mn,λ(f)‖γ ≤ ‖f‖α,

where γ := n(exp((α/n)) − 1) > α.

Proposition 4.10. Let (E, τ) be the weighted function space (4.2) and

(Mn,λ)n≥1 the sequence of positive linear operators (4.3). Then

(i) Mn,λ(E) ⊂ E for every n ≥ 1 and the sequence (Mn,λ)n≥1 is equicon-

tinuous from (E, τ) into (E, τ).
(ii) limn→∞ Mn,λ(f) = f in (E, τ) for every f ∈ E.
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Proof. (i) Fix f ∈ E and n ≥ 1. Given β > 0, choose 0 < γ < β;
as f ∈ Eα for α := n log(γ/n + 1), from (4.1) and (4.4) it follows that
Mn,λ(f) ∈ Eγ ⊂ E0

β. Accordingly, Mn,λ(f) ∈ E.
To show that the sequence (Mn,λ)n≥1 is equicontinuous, fix β > 0 and

choose again γ > 0 such that γ < β.
Note that the function ϕ(x) := x log(γ/x + 1) (x ≥ 1) is continuous,

strictly positive and has a finite limit as x → +∞. Therefore ϕ has a min-
imum value on [1, +∞[ which is strictly positive. Thus we can consider
α0 := infn≥1 n log(γ/n + 1) > 0.

Now for every f ∈ E and n ≥ 1, setting α := n log(γ/n + 1) ≥ α0 and
combining (4.1) and (4.4), we obtain

‖Mn,λ(f)‖β ≤ ‖Mn,λ(f)‖γ ≤ ‖f‖α ≤ ‖f‖α0
,

which proves (i).
(ii) We shall use Example 4.9(1): the subspace generated by {e0, e1, e2}

is a Korovkin subspace in E, where ei(x) := xi for i = 0, 1, 2 and x ≥ 0.
Indeed, we have Mn,λ(e0) = e0, Mn,λ(e1) = e1 and Mn,λ(e2) = e2 +

(λ/n)e1 for every n ≥ 1; hence Mn,λ(ek) → ek in (E, τ) for k = 0, 1, 2 and
so the result follows.

5. Korovkin subspaces for positive continuous projections. In
a previous paper (see [2]), in the framework of adapted spaces of contin-
uous functions, we have studied a particular class of positive projections,
which we have called affine projections; in particular, in that paper we have
presented some characterizations of the Choquet boundary of the ranges
of these projections and we have determined suitable Korovkin subsets for
them.

In what follows, we generalize the results of [2] to the setting of regular
vector lattices of continuous functions.

From now on, we fix a locally compact Hausdorff space X, a regular
vector lattice (E, τ) on X and a projection T ∈ L+

τ,τs
(E), i.e. a positive

linear (τ, τs)-continuous operator such that

T (T (f)) = T (f) for every f ∈ E.

Moreover, we set

HT := T (E) = {f ∈ E | T (f) = f},(5.1)

H2
T := {h2 | h ∈ HT }.(5.2)

Below we list some examples of such projections; for further examples, see
[2, Examples 2.2].

Examples 5.1. 1. If X := ]0, 1] and (E, τ), where τ ∈ {τs, τc}, is a
regular vector lattice on X containing the function e1(x) = x (0 < x ≤ 1),



86 F. Altomare and M. Cappelletti Montano

then the operator T : E → E defined by

T (f)(x) := xf(1) (f ∈ E, 0 < x ≤ 1)

is a positive linear (τ, τ)-continuous projection.

2. If X := [0, +∞[ and (E, τ), where τ ∈ {τs, τc}, is a regular vector
lattice containing the function e2(x) = exp(−x) (x ≥ 0), then the operator
T : E → E defined by

T (f)(x) := exp(−x)f(0) (f ∈ E, x ≥ 0)

is a positive linear (τ, τ)-continuous projection.

From (5.1) it follows that, for a given projection T ∈ L+
τ,τs

(E), for every
x ∈ X the Borel regular measure µx on X (whose existence is guaranteed
by [3, Theorem 2.6]), such that E ⊂ L1(E, µx) and

(5.3) T (f)(x) =
\
f dµx (f ∈ E),

is an HT -representing measure for x with respect to τ .

T is said to be a sub-markovian operator if µx(X) ≤ 1 for every x ∈ X.
T is said to be a markovian operator if µx(X) = 1 for every x ∈ X.

Clearly, if 1 ∈ E and T (1) = 1, then T is a markovian operator. The
projections in Examples 5.1 are sub-markovian.

In order to characterize the Choquet boundary of HT in terms of the
projection T , we give a preliminary lemma.

Lemma 5.2. Let (E, τ) be a regular vector lattice on a locally compact

Hausdorff space X, and T ∈ L+
τ,τs

(E) a sub-markovian projection such that

H2
T ⊂ E, where H2

T is defined by (5.2). Then, for every f ∈ HT ,

(5.4) f2(x) ≤ T (f2)(x) (x ∈ X).

Proof. Indeed, for every x ∈ X and f ∈ HT , from the Hölder inequality
and (5.3) it follows that

|f(x)| = |T (f)(x)| =
∣∣∣
\
f dµx

∣∣∣ ≤
\
|f | dµx

≤
(\

f2 dµx

)1/2(\
1 dµx

)1/2
≤ (T (f2)(x))1/2 (f ∈ HT ).

From now on, we assume that T ∈ L+
τ,τs

(E) is a positive projection whose
range HT separates linearly the points of X, i.e. for any distinct x, y ∈ X
there exist h, k ∈ HT such that h(x)k(y) 6= h(y)k(x).

In this case, for every x ∈ X there exists h ∈ HT such that h(x) 6= 0.

Theorem 5.3. Let (E, τ) be a regular vector lattice on a locally compact

Hausdorff space X, and T ∈ L+
τ,τs

(E) a sub-markovian projection whose

range HT separates linearly the points of X and satisfies H2
T ⊂ E, where
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H2
T is defined by (5.2). Then

(5.5) ∂τ,HT
X = {x ∈ X | T (f)(x) = f(x) for every f ∈ E}.

If , in addition, S is a subset of HT separating the points of X, then

(5.6) ∂τ,HT
X = {x ∈ X | T (f2)(x) = f2(x) for every f ∈ S}.

Finally , if (un)n≥1 is a sequence in HT separating the points of X such that

the series u :=
∑∞

n=1 u2
n is pointwise convergent on X and u ∈ E, then

(5.7) ∂τ,HT
X = {x ∈ X | T (u)(x) = u(x)}.

Proof. Let x ∈ ∂τ,HT
X; then, clearly, from (5.3) it follows that for every

f ∈ E,

T (f)(x) =
\
f dµx =

\
f dεx = f(x).

Conversely, consider x ∈ X such that T (f)(x) = f(x) for every f ∈ E, i.e.
µx = εx. We shall prove that x ∈ ∂τ,HT

X; for this purpose, by Theorem 4.6,
we shall show that x ∈ ΓHT

X.
Indeed, fix y ∈ X, y 6= x. Since HT separates linearly the points of X,

there exist h, k ∈ HT such that h(x)k(y) 6= h(y)k(x). Set p := T ((h(x)k −
k(x)h)2) ∈ HT ; then p ≥ 0,

p(x) =
\
(h(x)k − k(x)h)2 dµx =

\
(h(x)k − k(x)h)2 dεx = 0

and, finally, according to Lemma 5.2,

0 < (h(x)k(y) − k(x)h(y))2 ≤ p(y).

Hence, x ∈ ΓHT
X, and this completes the proof of (5.5).

Consider now a subset S of HT separating the points of X. Since (5.5)
holds, in (5.6) we only have to show that if x ∈ X and T (f2)(x) = f2(x) for
every f ∈ S, then µx = εx.

In fact, for f ∈ S, we get

0 ≤
\
(f − f(x))2 dµx =

\
f2 dµx − 2f(x)

\
f dµx + f2(x)µx(X)

≤ f2(x) − 2f2(x) + f2(x) = 0,

so that \
(f − f(x))2 dµx = 0;

hence,

supp(µx) ⊂
⋂

f∈S

{y ∈ X | f(y) = f(x)} = {x}.

Accordingly, there exists λ ≥ 0 such that µx = λεx. Since there exists
h ∈ HT such that h(x) 6= 0, we get

h(x) =
\
h dµx = λh(x)

and consequently µx = εx.
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Finally, in order to prove (5.7), assume that T (u)(x) = u(x) for some
x ∈ X. According to the Beppo Levi theorem,

∞∑

n=1

u2
n(x) = u(x) =

\
u dµx =

∞∑

n=1

\
u2

n dµx =
∞∑

n=1

T (u2
n)(x).

Lemma 5.2 shows that u2
n ≤ T (u2

n) for every n ≥ 1 and hence\
u2

n dµx = u2
n(x) for every n ≥ 1.

From (5.6) applied to S := {un | n ≥ 1}, it follows that x ∈ ∂τ,HT
X.

By means of Theorem 5.3 and Corollary 2.3, we can determine some
Korovkin subspaces for (τ, τ)-continuous positive projections on E:

Theorem 5.4. Let (E, τ) be a regular vector lattice on a locally compact

Hausdorff space X, and T ∈ L+
τ (E) a sub-markovian projection whose range

HT separates linearly the points of X and satisfies H2
T ⊂ E, where H2

T is

defined by (5.2). Assume that there exists a subset UT of E such that

(i) u ≤ T (u) for every u ∈ UT .

(ii) ∂τ,HT
X = {x ∈ X | T (u)(x) = u(x) for every u ∈ UT }.

Then the subspace H̃T generated by HT ∪ UT is a Korovkin subspace in E
for T and τ .

Proof. Applying Corollary 2.3, we shall prove that ∂T
τ,H̃T

X = X. Indeed,

for x ∈ X and µ ∈ MT
τ,x(H̃T ), we have\

k dµ = T (k)(x) = k(x) for every k ∈ HT

and \
u dµ = T (u)(x) for every u ∈ UT ,

so that, clearly, µ ∈ Mτ,x(HT ).

Furthermore, for u ∈ UT we get\
T (u) dµ = T (u)(x) =

\
u dµ

and thus
T
(T (u) − u) dµ = 0. Accordingly,

supp(µ) ⊂ {x ∈ X | T (u)(x) = u(x) for every u ∈ UT} = ∂τ,HT
X.

Hence, taking Theorem 5.3 into account, we get\
f dµ =

\
T (f) dµ = T (f)(x)

for every f ∈ E, which completes the proof.

Remarks 5.5. 1. Note that under the assumptions of Theorem 5.4, if
(Li)

≤
i∈I is a τ -equicontinuous net of positive linear operators from E into E
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such that

lim
i∈I

≤Li(h) = h for every h ∈ H in (E, τ)

and

lim
i∈I

≤Li(u) = T (u) for every u ∈ UT in (E, τ),

one gets

lim
i∈I

≤Li(f) = T (f) for every f ∈ E in (E, τ).

2. According to Theorems 5.3 and 5.4, if S is a subset of HT separating
the points of X, then the subspace generated by HT ∪ S2 is a Korovkin
subspace in E for T and τ .

Moreover, if (un)n≥1 is a sequence in HT separating the points of X,
such that the series u :=

∑∞
n=1 u2

n is pointwise convergent in X and u ∈ E,
then the subspace generated by HT ∪ {u} is Korovkin subspace in E for T
and τ .
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