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Wavelet transform for functions with values in UMD spaces

by

Cornelia Kaiser (Paderborn) and Lutz Weis (Karlsruhe)

Abstract. We extend the classical theory of the continuous and discrete wavelet
transform to functions with values in UMD spaces. As a by-product we obtain equivalent
norms on Bochner spaces in terms of g-functions.

1. Introduction. In this paper we study the continuous and discrete
wavelet transform for functions with values in Banach spaces that have a
certain geometrical property (the UMD property). A Banach space X is
called a UMD space if the Hilbert transform extends to a bounded operator
on Lp(R, X) for some (all) p ∈ (1,∞). Most of the reflexive Banach spaces of
distributions commonly used in the theory of partial differential equations
are UMD spaces (cf. [2, pp. 141–147]).

What we basically will show is that the classical scalar-valued results
carry over to the UMD setting. In this sense our results can be considered
as an extension and continuation of the work of Figiel. In his paper [13]
he proved that certain orthonormal wavelet bases {ψj,k} are unconditional
in Lp(RN , X), where p ∈ (1,∞) and X is a UMD space. In particular,
the reconstruction formula f =

∑
j,k〈x, ψj,k〉ψj,k holds, with unconditional

convergence of the series involved. We show in this paper that the quoted
result can be extended to redundant discrete wavelet transforms (wavelet
frames). Moreover, we obtain boundedness results for certain localization
operators connected with the discrete wavelet transform, where the symbols
are operator-valued. For this we use an operator-valued version of the T (1)
theorem from [24].

Our main focus, however, will be on the continuous wavelet transform,
for which we will prove a norm estimate and a reconstruction formula
corresponding to the classical scalar-valued Littlewood–Paley theory (see
e.g. [16]). To do this we replace the square functions appearing in the es-
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timates with the generalized square functions introduced in [26]. In partic-
ular this leads to equivalent norms on Bochner spaces extending Hardy–
Littlewood g-functions. The main tool is a recent generalization of the
Mikhlin Fourier multiplier theorem to operator-valued multipliers ([37]). As
a consequence we obtain results on the boundedness of localization operators
for the continuous wavelet transform.

2. Definitions, notations, and main tools. Throughout this paper
X, Y , and Z are complex Banach spaces. By L(X,Y ) we denote the space
of bounded linear operators from X to Y and X ′ = L(X,C) is the dual
space of X. The Schwartz class S(RN , X) is the space of X-valued rapidly
decreasing smooth functions on RN .

N = {1, 2, . . . } is the set of natural numbers and N0 = {0} ∪ N. If r is
a positive real number, then [r] = max{n ∈ N0 : n ≤ r}. We denote by R∗
the multiplicative group R+, endowed with its invariant measure dt

t .
We will need the following notions from Banach space theory.

Definition 2.1.

(a) A Banach space X has type p ∈ [1, 2] if there is a constant τ < ∞
such that for all n ∈ N and all vectors x1, . . . , xn ∈ X,∥∥∥ n∑

k=1

rkxk

∥∥∥
L2([0,1],X)

≤ τ
( n∑
k=1

‖xk‖p
)1/p

,

where rk(t) = sign sin(2kπt) are the Rademacher functions on [0, 1].
(b) A Banach space X has cotype q ∈ [2,∞] if there is a constant κ <∞

such that for all n ∈ N and all vectors x1, . . . , xn ∈ X,( n∑
k=1

‖xk‖q
)1/q

≤ κ
∥∥∥ n∑
k=1

rkxk

∥∥∥
L2([0,1],X)

for q <∞,

max
1≤k≤n

‖xk‖ ≤ κ
∥∥∥ n∑
k=1

rkxk

∥∥∥
L2([0,1],X)

for q =∞.

The smallest such κ is denoted by Cq(X).

Remark 2.2. Every Banach space has type 1 and the notion becomes
more restrictive as p increases to 2. Similarly, every Banach space has cotype
∞ and the notion becomes more restrictive as q decreases to 2. By a result
of Kwapień, a Banach space with both type and cotype 2 is isomorphic to
a Hilbert space (see e.g. [10, Corollary 12.20]). Each closed subspace of a
Banach space X has the same type and cotype as X. A Banach space has
type p > 1 if and only if it is B-convex ([32], [10, Chapter 13]). Every Banach
space with type p > 1 has finite cotype (see e.g. [10, Chapters 11 and 13]).
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Definition 2.3. A Banach space X has Fourier type r ∈ [1, 2] if the
Fourier transform F defined by

(Ff)(u) = f̂(u) = (2π)−N/2
�

RN
e−iuvf(v) dv, f ∈ S(R, X),

extends to a bounded linear operator from Lr(R, X) to Lr′(R, X), where
1/r + 1/r′ = 1.

Remark 2.4. The notion of Fourier type was introduced by Peetre [31].
Each Banach space has Fourier type 1 and the notion becomes more restric-
tive as r increases to 2. A Banach space has Fourier type 2 if and only if it is
isomorphic to a Hilbert space [27]. The dual space and each closed subspace
of a Banach space X has the same Fourier type as X. Bourgain [4, 5] has
shown that each B-convex Banach space has some nontrivial Fourier type
r > 1.

Definition 2.5. A Banach space X is a UMD space if the Hilbert trans-
form

(Hf)(u) = PV-
� f(v)
u− v

dv, f ∈ S(R, X),

extends to a bounded linear operator on Lp(R, X) for some (and thus for
each) p ∈ (1,∞).

Remark 2.6. There are several equivalent definitions of UMD spaces
(see [2, pp. 141–142] and the references given there). It is clear from the
definition that each Hilbert space is a UMD space. The dual space and each
closed subspace of a UMD space is a UMD space. A UMD space X always
has a uniformly convex renorming [1] and therefore is super-reflexive [12].
In particular, `1 is not finitely representable in X. Hence X is B-convex
[10, Theorem 13.6]. This implies in particular that every UMD-space has
type p > 1, cotype q < ∞, and some nontrivial Fourier type r > 1 (cf.
Remarks 2.2 and 2.4).

Remark 2.7. Let (Ω,Σ, µ) be a σ-finite measure space, s ∈ [1,∞]
and X a Banach space. If X has type p ∈ [1, 2] and cotype q ∈ [2,∞],
then Ls(Ω,µ,X) has type min{p, s, 2} and cotype max{q, s, 2} [10, Theo-
rem 11.12]. If X has Fourier type r ∈ [1,∞], then Ls(Ω,µ,X) has Fourier
type min{r, s, s′} [17]. If X is a UMD space and s ∈ (1,∞), then Ls(Ω,µ,X)
is a UMD space [2, p. 145].

Definition 2.8. Let X be a Banach space.

(a) A function a ∈ L∞(RN , X) is an atom if a has its support in a
cube Q ⊆ RN ,

	
RN a(t) dt = 0, and ‖a‖L∞ ≤ |Q|−1. The Hardy space

H1(RN , X) is the space of all f ∈ L1(RN , X) which can be written as
f =

∑∞
k=1 ckak for some sequence (ak) of atoms and some sequence
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(ck) ∈ `1. The norm ‖f‖H1(RN ,X) is the infimum of ‖(ck)‖`1 over all
such representations.

(b) The space of all X-valued functions with bounded mean oscillation
is denoted by BMO(RN , X). More precisely, BMO(RN , X) contains
all locally integrable functions f : RN → X for which the seminorm

‖f‖BMO(RN ,X) = sup |Q|−1
�

Q

‖f(t)− fQ‖X dt

is finite. Here the supremum is taken over all cubes Q in RN and
fQ := |Q|−1

	
Q f(t) dt denotes the mean value of f on the cube Q.

Remark 2.9. If X ′ has the Radon–Nikodym property (in particular, if
X is reflexive), then (see [6])

(H1(RN , X ′))′ = BMO(RN , X).

In this case, the Schwartz class S(RN , X) is weak∗ dense in BMO(RN , X).

Definition 2.10. Let X,Y be Banach spaces, q ∈ (1,∞), and M :
RN \ {0} → L(X,Y ) be a bounded measurable function. For f ∈ S(RN , X)
consider

(1) Tf := F−1[M(·)f̂(·)] ∈ L∞(RN , Y ).

(a) M is a Fourier multiplier from Lq(RN , X) to Lq(RN , Y ) provided
there is a constant Cq so that

‖Tf‖Lq(RN ,Y ) ≤ Cq‖f‖Lq(RN ,X)

for each f ∈ S(RN , X). The unique extension of T to an operator in
L(Lq(RN , X), Lq(RN , Y )) is denoted by TM .

(b) M is a Fourier multiplier from H1(RN , X) to H1(RN , Y ) provided
there is a constant C1 so that

‖Tf‖H1(RN ,Y ) ≤ C1‖f‖H1(RN ,X)

for each f ∈ S(RN , X) with
	
RN f(t) dt = 0. The unique extension

of T to a bounded linear operator from H1(RN , X) to H1(RN , Y ) is
denoted by TM .

(c) M is a Fourier multiplier from BMO(RN , X) to BMO(RN , Y ) pro-
vided there is an operator TM ∈ L(BMO(RN , X),BMO(RN , Y )) sat-
isfying

Tf = TMf for all f ∈ S(RN , X),
TM is weak∗-to-weak∗ continuous.

If X,Y are reflexive, then TM is uniquely determined by T , since
S(RN , X) is weak∗ dense in the space BMO(RN , X).

Now we recall the notion of R-boundedness.
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Definition 2.11. Let X,Y be Banach spaces. A set of operators τ ⊆
L(X,Y ) is called R-bounded if there is a constant C < ∞ such that for all
m ∈ N, all T1, . . . , Tm ∈ τ and all x1, . . . , xm ∈ X we have

(2)
∥∥∥ m∑
k=1

rkTkxk

∥∥∥
L2([0,1],Y )

≤ C
∥∥∥ m∑
k=1

rkxk

∥∥∥
L2([0,1],X)

,

where rk(t) = sign sin(2kπt) are the Rademacher functions on [0, 1]. The
infimum over all C such that (2) holds is called the R-bound of τ .

If X and Y are Hilbert spaces, then R-boundedness reduces to bound-
edness. Therefore the following Mikhlin type Fourier multiplier theorem can
be seen as a generalization of a corresponding result in the Hilbert space
case by Schwartz [3].

Theorem 2.12 ([22, 18]). Let X and Y be UMD spaces with Fourier type
r ∈ (1, 2], N ∈ N, and l = [N/r] + 1. Let M be an L(X,Y )-valued function
on RN . If for each multi-index α ∈ {0, 1}N with |α| ≤ l the distributional
derivatives DαM are represented by measurable functions and the set

{|ξ||α|(DαM)(ξ) : ξ ∈ RN \ {0}}

is R-bounded , then M is a Fourier multiplier from E(RN , X) to E(RN , Y ),
where E ∈ {Lp, H1,BMO : p ∈ (1,∞)}.

Remark 2.13. Suppose the conditions of Theorem 2.12 are satisfied.
Then [M(·)]′ : RN \{0} → L(Y ′, X ′) also satisfies the conditions of Theorem
2.12 (cf. e.g. [38, Theorem 2.2.14]).

Square function estimates are a well-known tool in harmonic analysis.
For instance the Littlewood–Paley characterization of Lp(Rn) is a charac-
terization of that space in terms of certain square functions (cf. [16]). For
our generalization of the classical Littlewood–Paley theorem to X-valued
Lp-spaces we need the generalized square functions that were introduced
in [26]. For convenience we include here the definitions and main results we
will use in this paper. For a more general theory, the proofs and further
references we refer to [26] (see also [32, 34]).

For the rest of this section let (gk) be a sequence of independent standard
Gaussian random variables on a probability space (Γ,G, P ).

Definition 2.14. If H is a Hilbert space, X is a Banach space and
u : H → X is a linear operator, we define

‖u‖γ(H,X) := sup
(
E
∥∥∥∑

k

gku(ek)
∥∥∥2)1/2

,

where the sup is taken over all finite orthonormal systems (ek) in H. More-
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over, we define γ(H,X) as the completion of the finite rank operators in
L(H,X) with respect to ‖ · ‖γ(H,X) (1).

By definition, (γ(H,X), ‖·‖γ(H,X)) is a Banach space. It is even a Banach
ideal ([26, Prop. 4.3]; see also [15, 32, 34]).

Remark 2.15. If X does not contain c0 and H is separable, then

‖u‖γ(H,X) =
(
E
∥∥∥ ∞∑
k=1

gku(ek)
∥∥∥2)1/2

,

independently of the chosen orthonormal basis {ek} of H (cf. [26, 28]). In
particular, γ(H,X) is isometrically embedded into L2(Γ, P,X). This means
that the properties UMD, Fourier type, type and cotype lift from X to
γ(H,X), since they lift to L2(Γ, P,X) (cf. Remark 2.7).

Now let H = L2(Ω,µ), where (Ω,Σ, µ) is a σ-finite measure space with
countably generated σ-algebra Σ. Then H is separable (cf. [8, p. 110]). If
f : Ω → X is a µ-measurable function that is weakly in H (i.e., x′ ◦ f ∈ H
for each x′ ∈ X ′), then we can define a bounded linear operator uf : H → X
by the formula

〈x′, ufh〉 =
�

Ω

〈x′, f(ω)〉h(ω) dµ(ω), x′ ∈ X ′, h ∈ H.

For a proof that uf is indeed bounded from H to X see [26]. We write
f ∈ γ(Ω,µ,X) if uf ∈ γ(H,X), and set

‖f‖γ(Ω,µ,X) := ‖uf‖γ(H,X).

If Ω = Z with the counting measure, i.e. H = `2, then we use the notation
γ(Z, X).

Remark 2.16. If X is a Banach space not containing c0, then the set
{uf : f ∈ γ(Ω,µ,X)} is a dense subset of γ(H,X). Therefore one may
consider the operator space γ(H,X) as the completion of the function space
γ(Ω,µ,X) (cf. [26, Remark 4.7]).

Remark 2.17. If X has type > 1, then γ(H,X ′) is a closed subspace of
γ(H,X)′, the dual of γ(H,X) with respect to trace duality ([26, Section 5]).
If h ∈ H, x′ ∈ X ′, and y ∈ γ(H,X), then

(3) 〈h⊗ x′, y〉γ = 〈x′, y(h)〉X .
Remark 2.18. If X is some Lq-space with 1 < q <∞, then ‖ · ‖γ(Ω,µ,X)

is equivalent to the classical square function norm:

‖f‖γ(Ω,µ,Lq) ∼
∥∥∥( �

Ω

|f(ω)|2 dµ(ω)
)1/2∥∥∥

Lq
.

(1) In the literature, the spaces γ(H,X) are also denoted by `(H,X).
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3. An estimate for random series. The main condition in the mul-
tiplier theorem 2.12 is the R-boundedness of the multiplier function and its
derivatives. To check this in our setting we need an estimate of the following
type. If xk ∈ X and mk ∈ L2(Ω,µ), we would like to have∥∥∥ n∑

k=1

rk(·)mk ⊗ xk
∥∥∥
L2([0,1],γ(Ω,µ,X))

. max
k≤n
‖mk‖2

∥∥∥ n∑
k=1

rk(·)xk
∥∥∥
L2([0,1],X)

,

where the constant in the estimate has to be independent of the choice of n,
xk and mk, but may depend on the Banach space X. If X is some Lq-space
with q ∈ [1,∞), this estimate is a simple consequence of Remark 2.18,
Khinchin’s (respectively Kahane’s) inequality, and the contraction principle
(see [25]). To prove the desired estimate in a more general setting we will use
part (b) of the following lemma, which should be of some interest in itself.

In this section X is always a complex Banach space.

Lemma 3.1. For k ∈ N let σk be positve real numbers and gk (not nec-
essarily independent) Gaussian random variables on some probability space
(Γ,G, P ) with mean 0 and variance σ2

k.
(a) There is a constant c > 0 such that for all n ∈ N and all vectors

x1, . . . , xn ∈ X,

cmin
k≤n

σk

∥∥∥ n∑
k=1

rk(·)xk
∥∥∥
L2([0,1],X)

≤
(
E
∥∥∥ n∑
k=1

gkrk(·)xk
∥∥∥2

L2([0,1],X)

)1/2
.

(b) If X has finite cotype, then there is a constant C <∞ such that for
all n ∈ N and all vectors x1, . . . , xn ∈ X,(

E
∥∥∥ n∑
k=1

rk(·)gkxk
∥∥∥2

L2([0,1],X)

)1/2
≤ C max

k≤n
σk

∥∥∥ n∑
k=1

rk(·)xk
∥∥∥
L2([0,1],X)

.

Remark 3.2. For independent Gaussian random variables gk, Lem-
ma 3.1 follows from well-known results on Gaussian and Rademacher sums
(see e.g. Proposition 12.11 and Theorem 12.27 in [10], cf. also [34]), because
in this case

E
∥∥∥ n∑
k=1

rk(·)gkxk
∥∥∥2

L2([0,1],X)
= E

∥∥∥ n∑
k=1

gkxk

∥∥∥2

(cf. [10, Lemma 11.2]). If the gk are not independent, we cannot use the
known results directly, but the proofs can be adapted to this more general
setting.

Proof of Lemma 3.1. If g is a Gaussian random variable with mean 0
and variance σ2 for some σ > 0, then the rth moment of g is

(4)
( �
Γ

|g(ω)|r dP (ω)
)1/r

= σmr,

where mr is the rth moment of a standard Gaussian random variable.
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(a) Using Kahane’s contraction principle and (4), we obtain∥∥∥ n∑
k=1

rk(·)xk
∥∥∥
L2([0,1],X)

≤ max
k≤n

[(m1σk)−1]
∥∥∥ n∑
k=1

rk(·)
�

Γ

|gk(ω)| dP (ω)xk
∥∥∥
L2([0,1],X)

.

By Minkowski’s and Hölder’s inequalities

m1 min
k≤n

σk

∥∥∥ n∑
k=1

rk(·)xk
∥∥∥
L2([0,1],X)

≤
( �
Γ

∥∥∥ n∑
k=1

rk(·)|gk(ω)|xk
∥∥∥2

L2([0,1],X)
dP (ω)

)1/2

=
( �
Γ

∥∥∥ n∑
k=1

rk(·)gk(ω)xk
∥∥∥2

L2([0,1],X)
dP (ω)

)1/2
.

In the last step we used the fact that, for any choice of εk = ±1,∥∥∥ n∑
k=1

rk(·)yk
∥∥∥
L2([0,1],X)

=
∥∥∥ n∑
k=1

rk(·)εkyk
∥∥∥
L2([0,1],X)

(cf. [10, Lemma 11.2]).
(b) Fix x1, . . . , xn ∈ X. Define u ∈ L(`n∞, L2([0, 1], X)) by u(ek) =

rk(·)xk for k = 1, . . . , n. Here ek denotes the standard unit vector in `n∞, the
n-dimensional space Rn with sup-norm. Observe that by Kahane’s contrac-
tion principle

(5) ‖u‖ =
∥∥∥ n∑
k=1

rk(·)xk
∥∥∥
L2([0,1],X)

.

Using our assumption that X has cotype q ∈ [2,∞) and Pietsch’s domi-
nation theorem ([10, Theorem 2.12]) one can show that there are nonnegative
λk with

∑n
k=1 λk = 1 such that

‖u(b)‖L2([0,1],X) ≤ Cq(X)‖u‖
( n∑
k=1

λk|bk|r
)1/r

for all b = (bk) ∈ `n∞,

where r is some real number > q (cf. the proof of Theorem 12.27 in [10]).
Therefore, with our notation above,( �

Γ

∥∥∥ n∑
k=1

rk(·)gk(ω)xk
∥∥∥2

L2([0,1],X)
dP (ω)

)1/2

=
( �
Γ

‖u((gk(ω))k)‖2L2([0,1],X) dP (ω)
)1/2
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≤ Cq(X)‖u‖
( �
Γ

( n∑
k=1

λk|gk(ω)|r
)2/r

dP (ω)
)1/2

.

By Hölder’s inequality and (4),( �
Γ

( n∑
k=1

λk|gk(ω)|r
)2/r

dP (ω)
)1/2

≤
( n∑
k=1

λk
�

Γ

|gk(ω)|r dP (ω)
)1/r

=
( n∑
k=1

λkσ
r
k

)1/r
mr ≤ mr max

k≤n
σk.

Together with (5) this completes the proof.

Remark 3.3. The proof of Lemma 3.1 shows that we can choose c = m1

and C = Cq(X)mr, provided X has cotype q and 2 ≤ q < r <∞.

Corollary 3.4. Let (gj) be a sequence of independent standard Gaus-
sian variables on some probability space. If X has finite cotype, then there is
a constant C <∞ such that for all m,n ∈ N, all vectors x1, . . . , xn ∈ X and
all complex numbers ajk (j = 1, . . . ,m, k = 1, . . . , n), we have the estimate(

E
∥∥∥ n∑
k=1

rk(·)
m∑
j=1

gjajkxk

∥∥∥2

L2([0,1],X)

)1/2

≤ C max
k≤n

( m∑
j=1

|ajk|2
)1/2∥∥∥ n∑

k=1

rk(·)xk
∥∥∥
L2([0,1],X)

.

Proof. Suppose first that the ajk are real. Since (gj) are independent
standard Gaussian variables, g̃k =

∑m
j=1 gjajk is a Gaussian variable with

mean 0 and variance σ2
k =

∑m
j=1 |ajk|2 for each k (cf. [10, p. 238]). (Note

that (g̃k) do not have to be independent any more.) Now we can apply
Lemma 3.1(b).

If the ajk are complex numbers, we treat the real and imaginary parts
separately.

Remark 3.5. It is also possible to obtain a reverse inequality, without
any assumptions on the geometry of the Banach space X. Namely, let (gj) be
a sequence of independent standard Gaussian variables on some probability
space. Then there is a constant c > 0 such that for all m,n ∈ N, all vectors
x1, . . . , xn ∈ X and all complex numbers ajk (j = 1, . . . ,m, k = 1, . . . , n),

cmin
k≤n

( m∑
j=1

|ajk|2
)1/2∥∥∥ n∑

k=1

rk(·)xk
∥∥∥
L2([0,1],X)

≤
(
E
∥∥∥ n∑
k=1

rk(·)
m∑
j=1

gjajkxk

∥∥∥2

L2([0,1],X)

)1/2
.
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If the ajk are real numbers, this is just a simple consequence of Lemma 3.1(a)
by the same argument as in the proof of Corollary 3.4. In the complex case
we observe that (with the notation from the proof above) 2−1/2σkm1 ≤	
Γ |g̃k(ω)| dP (ω) ≤ 2σkm1. Now a slight modification of the argument in

the proof of Lemma 3.1 gives the desired result. For further details see [20,
Sect. 3.7].

Now we come back to the estimate we stated at the beginning of this
section. It now follows easily from what we did so far.

Corollary 3.6. Let X be a Banach space of cotype q ∈ [2,∞) and
(Ω,Σ, µ) a σ-finite measure space with countably generated σ-algebra Σ.
Then there is a constant C < ∞ such that for all n ∈ N, all m1, . . . ,mn ∈
L2(Ω,µ) and all x1, . . . , xn ∈ X,( 1�

0

∥∥∥ n∑
k=1

rk(t)mk(·)xk
∥∥∥2

γ(Ω,µ,X)
dt
)1/2

≤ C max
k≤n
‖mk‖2

( 1�

0

∥∥∥ n∑
k=1

rk(t)xk
∥∥∥2

X
dt
)1/2

.

Proof. Choose an orthonormal basis {ej}∞j=1 in L2(Ω,µ) and m ∈ N
such that

ajk :=
�

Ω

mk(ω)ej(ω) dµ(ω) = 0 for all j > m and all k.

Then ‖mk‖22 =
∑m

j=1 |ajk|2, and by Corollary 3.4,(1�

0

∥∥∥ n∑
k=1

rk(t)mk(·)xk
∥∥∥2

γ(Ω,µ,X)
dt
)1/2

=
(1�

0

E
∥∥∥ n∑
k=1

rk(t)
∞∑
j=1

gj
�

Ω

mk(ω)ej(ω) dµ(ω)xk
∥∥∥2

X

)1/2

=
(
E
∥∥∥ n∑
k=1

rk(·)
m∑
j=1

gjajkxk

∥∥∥2

L2([0,1],X)

)1/2

≤ C sup
k

( m∑
j=1

|ajk|2
)1/2∥∥∥ n∑

k=1

rk(·)xk
∥∥∥
L2([0,1],X)

.

Remark 3.7. It is clear from Remark 3.5 and the argument in the proof
above that we also have a reverse inequality, involving the minimum over
the L2-norms of the mk instead of the maximum. Again we do not need any
assumptions on the geometry of the Banach space for this reverse estimate.
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4. The continuous wavelet transform. Let X be a UMD space with
Fourier type r ∈ (1, 2], N ∈ N and l := [N/r]+1. We will need the following
two assumptions on the wavelet ψ ∈ L2(RN ):

(C1) For all α ∈ {0, 1}N with |α| ≤ l, the distributional derivatives Dαψ̂
are represented by measurable functions and

Cα(ψ) := sup
|ξ|=1

(∞�
0

t2|α||(Dαψ̂)(tξ)|2 dt
t

)1/2

<∞,

(C2) c0(ψ) := inf
|ξ|=1

(∞�
0

|ψ̂(tξ)|2 dt
t

)1/2

> 0.

For t ∈ R\{0} we write ψt for the function defined by ψt(s) = |t|−Nψ(t−1s),
s ∈ RN .

Definition 4.1. The continuous wavelet transform Wψf of a function
f ∈ S(RN , X) with respect to the wavelet ψ is given by

(Wψf)(t, s) := (ψt ∗ f)(s) =
�

RN
t−Nψ

(
s− u
t

)
f(u) du, t > 0, s ∈ RN .

It is the goal of this section to prove that one can characterize the func-
tion spaces Lp(RN , X) (1 < p <∞), H1(RN , X), and BMO(RN , X) in terms
of the continuous wavelet transform. In the following theorem E(RN , X)
stands for one of these spaces.

Theorem 4.2. Let X be a UMD space with Fourier type r ∈ (1, 2],
p ∈ (1,∞), N ∈ N, and l := [N/r] + 1.

(a) If ψ ∈ L2(RN ) satisfies (C1), thenWψ defines a bounded linear oper-
ator from E(RN , X) to E(RN , γ(R∗, X)), where E∈{Lp, H1,BMO}.

(b) If ψ ∈ L2(RN ) satisfies (C1) and (C2), then

(6) ‖Wψf‖E(RN ,γ(R∗,X)) ∼ ‖f‖E(RN ,X)

for all f ∈ E(RN , X) with E ∈ {Lp, H1,BMO}.

Proof. (a) The main idea of the proof is to define the operator-valued
multiplier

(7)
Mψ : RN \{0} → L(X,Y ),
Mψ(ξ)x = [t 7→ ψ̂t(ξ)x] = [t 7→ ψ̂(tξ)x],

and to apply the multiplier theorem 2.12. Here Y is the completion of
γ(R∗, X), which can be identified with γ(L2(R∗), X) (cf. Remark 2.16).
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First we make the following two observations:

(1) The map J : L2(R∗)→ L(X,Y ) given by (Jh)x = [t 7→ h(t)x] is an
isometric embedding since

‖Jh‖ = sup
‖x‖=1

‖(Jh)x‖Y = sup
‖x‖=1

‖h(·)x‖Y = ‖h‖L2(R∗).

This implies in particular that, for each ξ ∈ RN \ {0}, Mψ(ξ) =
J [ψ̂(· ξ)] is a bounded linear operator from X to Y . So Mψ is well-
defined.

(2) If m : RN \ {0} → C is measurable with m(· ξ) ∈ L2(R∗) for all
ξ ∈ RN \ {0}, then ξ 7→ m(· ξ) is measurable as a function from
RN \ {0} to L2(R∗). This follows from Pettis’ theorem, since L2(R∗)
is separable and ξ 7→ m(· ξ) is weakly measurable.

By our assumption (C1) and observation (2), the distributional deriva-
tives of order α with |α| ≤ l of the function ξ 7→ ψ̂(· ξ), given by ξ 7→ [t 7→
t|α|(Dαψ̂)(tξ)], are measurable functions from RN \ {0} to L2(R∗). Using
observation (1) we deduce that, for |α| ≤ l, the distributional derivatives
DαMψ have the form (DαMψ)(ξ)x = [t 7→ t|α|(Dαψ̂)(tξ)x] and are measur-
able functions from RN \ {0} to L(X,Y ).

Fix α ∈ N0 with |α| ≤ l. Then the set {|ξ||α|(DαMψ)(ξ) : ξ ∈ RN \ {0}}
is R-bounded for |α| ≤ l. Indeed, for all m ∈ N, all ξk ∈ RN \ {0} and all
xk ∈ X, k = 1, . . . ,m,∥∥∥ m∑

k=1

rk|ξk||α|DαMψ(ξk)xk
∥∥∥
L2([0,1],Y )

≤ cX sup
k

(∞�
0

|tξk|2|α||(Dαψ̂)(tξk)|2
dt

t

)1/2∥∥∥ m∑
k=1

rkxk

∥∥∥
L2([0,1],X)

≤ cXCα(ψ)
∥∥∥ m∑
k=1

rkxk

∥∥∥
L2([0,1],X)

by Corollary 3.6 and (C1). Now Theorem 2.12 implies that Mψ is a Fourier
multiplier from E(RN , X) to E(RN , Y ), where E ∈ {Lp, H1,BMO}. Since
for f ∈ S(RN , X) we have

(Wψf)(· , s) = (ψ. ∗ f)(s) = (2π)−N/2(F−1[Mψf̂ ])(s),

this completes the proof of part (a) of the theorem.
(b) Observe first, that if ψ ∈ L2(RN ) satisfies (C1) and (C2), then ϕ

defined by

ϕ̂(ξ) :=
(∞�

0

|ψ̂(tξ)|2 dt
t

)−1

ψ̂(ξ), ξ ∈ RN ,
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also satisfies (C1) and (C2). Indeed, using our assumptions on ψ we see
immediately that ϕ ∈ L2(RN ) and ϕ satisfies (C2). To show that ϕ satisfies
(C1), we look at h defined by h(ξ) =

	∞
0 |ψ̂(tξ)|2 dt/t, ξ ∈ RN \ {0}. By

our assumptions on ψ, it follows that h and its distributional derivatives of
order ≤ l are bounded. Moreover, 1/h is bounded and therefore has bounded
distributional derivatives of order ≤ l. Using Leibniz’ formula and the fact
that h is positively homogeneous of degree 0 (i.e. h(tξ) = h(ξ) for all t > 0
and all ξ ∈ RN \ {0}), we obtain

(tξ)α(Dαϕ̂)(tξ) =
∑
β≤α

(
α

β

)
ξα−β

(
Dα−β 1

h

)
(ξ)(tξ)β(Dβψ̂)(tξ).

Hence ϕ satisfies (C2).
For ξ ∈ RN \ {0} and y ∈ Y = γ(L2(R∗), X) we define

(8) Nϕ(ξ)y := y(ϕ̂(· ξ)).
Then Nϕ(ξ) ∈ L(Y,X), since

‖Nϕ(ξ)y‖X ≤ ‖y‖L(L2(R∗),X)‖ϕ̂(· ξ)‖L2(R∗) ≤ C0‖y‖Y .

Now let Mϕ : RN \ {0} → L(X ′, γ(L2(R∗), X ′)) be defined as in (7). From
Remark 2.17 we know that γ(L2(R∗), X ′) is a closed subspace of Y ′. More-
over, by (3), we obtain for x′ ∈ X ′ and ξ ∈ RN \ {0} the duality relation

〈Mϕ(ξ)x′, y〉γ = 〈ϕ̂(· ξ)x′, y〉γ = 〈x′, y(ϕ̂(· ξ))〉X = 〈x′, Nϕ(ξ)y〉X .
Therefore, Nϕ(ξ) = Mϕ(ξ)′ and Nϕ satisfies the conditions of Theorem
2.12, since Mϕ does (cf. Remark 2.13). Thus Nϕ is a Fourier multiplier from
E(RN , Y ) to E(RN , X), where E ∈ {Lp, H1,BMO}. But

〈x′, Nϕ(ξ)Mψ(ξ)x〉X = 〈x′, uMψ(ξ)x(ϕ̂(· ξ))〉X =
∞�

0

ϕ̂(tξ)〈x′, ψ̂(tξ)x〉 dt
t

=
∞�

0

ϕ̂(tξ)ψ̂(tξ)
dt

t
〈x′, x〉 = 〈x′, x〉.

So Nϕ(ξ)Mψ(ξ) = IdX for all ξ ∈ RN \ {0}.
Remark 4.3 (Classical square functions). (a) If X = Lq(Ω,µ) for some

q ∈ (1,∞) and a σ-finite measure space (Ω,Σ, µ), then the norm equivalence
in Theorem 4.2 reads (cf. Remark 2.18)∥∥∥∥(∞�

0

|(Wψf)(t, ·)|2 dt
t

)1/2∥∥∥∥
Lp(RN ,X)

∼ ‖f‖Lp(RN ,X).

(b) Let P (x) = cn(1 + |x|2)−(n+1)/2, where cn > 0 is such that P̂ (ξ) =
e−|ξ|. Then Pt(x) = t−nP (x/t) is the Poisson kernel. Let ψ(x) := d

dtPt(x)|t=1.
Then ψ satisfies conditions (C1) and (C2). Indeed, ψ̂(ξ) = d

dt P̂t(ξ)|t=1 =
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d
dt P̂ (tξ)|t=1 = −|ξ|e−|ξ|. A direct calculation of the derivatives completes
the argument.

In the same way one can show that ϕ(x) = d
dtG

√
t(x)|t=1 satisfies (C1)

and (C2). Here G√t denotes the Gaussian kernel with G(x) = e−|x|
2/2.

With these choices of ϕ and ψ we obtain vector-valued analogues of the
g-function of Littlewood–Paley ([33], see also [36]).

Remark 4.4 (Reconstruction formula). Suppose ψ,ϕ ∈ L2(R) satisfy
(C1) and

	
R ϕ̂(tξ)ψ̂(tξ) dtt = 1 for almost all ξ ∈ RN \ {0}. Let us denote by

Mϕ the Fourier multiplier operator associated with the multiplier function
Nϕ defined in (8). Then the proof of part (b) of Theorem 4.2 implies that
Mϕ is a bounded linear operator from E(RN , Y ) to E(RN , X) and that

f =MϕWψf

for all f ∈ E(RN , X). If f ∈ S(RN , X), this reconstruction formula can be
written as

f = (2π)−N
∞�

0

ϕt ∗ ψt ∗ f
dt

t
.

Indeed, for g ∈ S(RN , X ′), Fubini’s theorem yields
�

RN
〈g(s), f(s)〉X ds =

�

RN

∞�

0

ϕ̂(tξ)ψ̂(tξ)
dt

t
〈ĝ(−ξ), f̂(ξ)〉X dξ

=
∞�

0

�

RN
〈ĝ(−ξ), ϕ̂(tξ)ψ̂(tξ)f̂(ξ)〉X dξ

dt

t

=
∞�

0

�

RN
〈g(s), (2π)−N (ϕt ∗ ψt ∗ f)(s)〉X ds

dt

t

= lim
ε→0
R→∞

�

RN

〈
g(s), (2π)−N

R�

ε

(ϕt ∗ ψt ∗ f)(s)
dt

t

〉
X

ds.

(Observe that ‖ϕt ∗ ψt ∗ f‖L∞ ≤ t−1‖ϕ‖2‖ψ‖2‖f‖1.) Now it is not hard to
show that for each f ∈ S(RN , X) ∩ E(RN , X),

f = (2π)−N lim
ε→0
R→∞

R�

ε

ϕt ∗ ψt ∗ f
dt

t
,

where the limit is taken in E(RN , X) for E ∈ {Lp, H1,BMO : p ∈ (1,∞)}.
If we assume in addition that ϕ,ψ ∈ L1(RN ), then the identity holds for all
f ∈ Lp(RN , X).

Remark 4.5 (Characterization of homogeneous Sobolev spaces). Let X
be a UMD space and p ∈ (1,∞). Then, as noted above, Theorem 4.2(b)
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implies that the space Lp(RN , X) can be characterized in terms of the con-
tinuous wavelet transform. This is also true for the homogeneous Sobolev
spaces

Ḣs
p(RN , X) = {f ∈ S ′(RN , X)/P(RN , X) : ‖f‖Ḣs

p(RN ,X) <∞},

‖f‖Ḣs
p(RN ,X) := ‖F−1(| · |sf̂)‖Lp(RN ,X),

where s is some real number and P(RN , X) are the polynomials on RN with
coefficients in X.

Indeed, assume that the wavelet ψ ∈ L2(RN ) is chosen such that for all
α ∈ {0, 1}N with |α| ≤ l, the distributional derivatives Dαψ̂ are represented
by measurable functions,

sup
|ξ|=1

(∞�
0

t2|α|−2s|(Dαψ̂)(tξ)|2 dt
t

)1/2

<∞,

and

inf
|ξ|=1

(∞�
0

t−2s|ψ̂(tξ)|2 dt
t

)1/2

> 0.

If we denote by Hs the Hilbert space L2((0,∞), t−2s−1dt), then

(9) ‖Wψf‖Lp(RN ,γ(Hs,X)) ∼ ‖f‖Ḣs
p(RN ,X).

This can be shown in the same way as Theorem 4.2: as multiplier functions
take

Mψ,s : RN \ {0} → L(X, γ(Hs, X)), Mψ,s(ξ)x = [t 7→ |tξ|−sψ̂(tξ)x]

and

Nϕ,s : RN \ {0} → L(γ(Hs, X), X), Nϕ,s(ξ)y := y(| · ξ|−sϕ̂(· ξ)),

where ϕ ∈ L2(RN ) is defined by

ϕ̂(ξ) :=
(∞�

0

|tξ|−2s|ψ̂(tξ)|2 dt
t

)−1

ψ̂(ξ), ξ ∈ RN .

Remark 4.6. In Theorem 4.2, it is necessary that X has the UMD
property. Indeed, the UMD property can be characterized in terms of the
wavelet transform: Let X be an arbitrary Banach space and let Ψ be the
set of all wavelets in L2(R) satisfying (C1) and (C2) with l = 1. Then the
following three assertions are equivalent:

(i) X is a UMD space.
(ii) (6) holds for all ψ ∈ Ψ .
(iii) There exists ψ ∈ Ψ such that (6) holds for ψ and ψ̃ = F−1(sign · ψ̂).
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That (i) implies (ii) has been shown in Theorem 4.2. (ii)⇒(iii) is clear since
F−1(sign · ψ̂) ∈ Ψ if ψ ∈ Ψ . It remains to show that (iii) implies (i). For this
we prove that the Hilbert transform H extends to a bounded linear operator
on L2(R, X). Let f ∈ S(R, X). Then

WψHf = F−1(−iπ sign(·)M(·)f̂(·)) = −iπW eψf.
Now we use (6) for ψ and ψ̃.

Our approach to the vector-valued wavelet transform can be used to
generalize the localization operators from [9, 21, 39] to localization operators
with operator-valued symbols on vector-valued Lp spaces.

Let F : R∗×RN → L(X,Z) be strongly measurable and bounded and let
ϕ,ψ ∈ L2(RN ) be wavelets satisfying (C1). We would like to give meaning
to the localization formula

(10) LF,ϕ,ψf :=Mϕ[F (·, ·)(Wψf)(·, ·)], f ∈ Lp(RN , X),

and show that it defines a bounded operator from Lp(RN , X) to Lp(RN , Z).
Here the name “localization operator” is motivated by the important exam-
ple F (·, ·) = χG(·, ·)IdX , where G is a measurable subset of R∗ × RN and
X = Z. If G = R∗ ×RN and ϕ is chosen as in the proof of Theorem 4.2(b),
then (10) corresponds to the reconstruction formula from Remark 4.4.

Now assume that

(11) sup
s∈RN

R({F (t, s) : t ∈ R∗}) <∞.

But by [26, Sect. 5] we have for all g ∈ γ(R∗, X) the estimate

‖F (·, s)g(·)‖γ(R∗,Y ) ≤ R({F (t, s) : t ∈ R∗})‖g‖γ(R∗,X).

Hence (F̃ f)(t, s) = F (t, s)[f(t, s)] defines a bounded operator

F̃ : Lp(RN , γ(R∗, X))→ Lp(RN , γ(R∗, Z)).

Since LF,ϕ,ψ =Mϕ ◦ F̃ ◦Wψ, we have shown

Proposition 4.7. Let X and Z be UMD spaces, p ∈ (1,∞) and let
ϕ,ψ ∈ L2(RN ) be wavelets satisfying (C1). If F : R∗ × RN → L(X,Z) is
strongly measurable and satisfies (11), then the operator LF,ϕ,ψ is bounded
from Lp(RN, X) to Lp(RN , Z).

Remark 4.8. Note that (11) is satisfied if F (· , ·) = m(· , ·)IdX , where
m : R∗ × RN → C is a bounded measurable function.

5. The semidiscrete wavelet transform. Let X be a UMD space
with Fourier type r ∈ (1, 2], N ∈ N and l := [N/r] + 1. We now assume that
ψ ∈ L2(RN ) and a > 1 with:
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(S1) for all α ∈ {0, 1}N with |α| ≤ l, the distributional derivatives Dαψ̂
are represented by measurable functions and

C ′α(ψ) := sup
1≤|ξ|<a

(∑
j∈Z

a2j|α||(Dαψ̂)(ajξ)|2
)1/2

<∞,

(S2) c′0(ψ) := inf
1≤|ξ|<a

(∑
j∈Z
|ψ̂(ajξ)|2

)1/2
> 0.

Remark 5.1. It is not hard to see that (S1) implies (C1), and (S2)
implies (C2). Indeed, suppose (S1) holds. Let ω ∈ RN with |ω| = 1 and
write ξ = tω. Integrating over 1 ≤ t ≤ a with respect to the measure dt

t
yields

a�

1

∑
j∈Z

a2j|α||(Dαψ̂)(ajtω)|2 dt
t
≤ C ′α(ψ)2 log a.

But
a�

1

∑
j∈Z

a2j|α||(Dαψ̂)(ajtω)|2 dt
t

=
∑
j∈Z

aj+1�

aj

a2j|α||(Dαψ̂)(tω)|2 dt
t

≥
∑
j∈Z

aj+1�

aj

(
t

a

)2|α|
|(Dαψ̂)(tω)|2 dt

t
= a−2|α|

∞�

0

t2|α||(Dαψ̂)(tω)|2 dt
t
.

Therefore (C1) holds. For (S2) we proceed in a similar way (see also [7]).

Definition 5.2. Let a > 0. The semidiscrete wavelet transform Wa,ψf
of a function f ∈ S(RN , X) with respect to the wavelet ψ is given by

(Wa,ψf)(j, s) := (Wψf)(aj , s), j ∈ Z, s ∈ RN .

Theorem 5.3. Let X be a UMD space with Fourier type r ∈ (1, 2], n ∈ N
and l := [N/r] + 1.

(a) If ψ∈L2(RN ) and a>1 with (S1), thenWa,ψ defines a bounded linear
operator fromE(RN, X) toE(RN, γ(Z, X)), whereE∈{Lp, H1,BMO}.

(b) If ψ ∈ L2(RN ) and a > 1 satisfy (S1) and (S2), then

(12) ‖Wa,ψf‖E(RN ,γ(Z,X)) ∼ ‖f‖E(RN ,X)

for all f ∈ E(RN , X) with E ∈ {Lp, H1,BMO}.
The proof of this theorem is very similar to the one in the continuous

case and will be omitted here.

Remark 5.4 (Classical square functions). (a) If X = Lq(Ω,µ) for some
q ∈ (1,∞) and a σ-finite measure space (Ω,Σ, µ), then the norm equivalence
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in Theorem 5.3 reads (cf. Remark 2.18)∥∥∥(∑
k∈Z
|ψaj ∗ f |2

)1/2∥∥∥
Lp(RN ,X)

∼ ‖f‖Lp(RN ,X).

(b) We can also formulate an analogue of Remark 4.5 for the semidiscrete
wavelet transform. This gives a vector-valued version of the fact that for
p ∈ (1,∞) and s ∈ R the homogeneous Triebel–Lizorkin spaces Ḟ sp,2(RN ) are
isomorphic to the homogeneous Sobolev spaces Ḣs

p(RN ) (cf. [35, pp. 168 ff.],
[16]).

Remark 5.5 (Reconstruction formula). Suppose that ψ,ϕ ∈ L2(RN )
and a > 1 satisfy (S1) with∑

j∈Z
ϕ̂(ajξ)ψ̂(ajξ) = 1

for almost all ξ ∈ RN \ {0}. As in Remark 4.4 we can show that

f =Ma,ϕWa,ψf

for all f ∈ E(RN , X). If f ∈ S(RN , X) ∩ E(RN , X), this reconstruction
formula can be written as

(13) f = (2π)−N
∑
j∈Z

ϕaj ∗ ψaj ∗ f.

If we assume in addition that ϕ,ψ ∈ L1(RN ), then the identity holds for all
Lp(RN , X).

Remark 5.6 (Localization operators). Let X and Y be UMD spaces
and let F : Z×RN → L(X,Y ) be a strongly measurable function satisfying
the R-boundedness assumption

sup
s∈RN

R({F (j, s) : j ∈ Z}) <∞.

In the same way as in (10) we can define the localization operator LF,ϕ,ψ
and show that it is bounded from Lp(RN , X) to Lp(RN , Y ).

If we take X = Y , F (j, ·) ≡ εj with εj ∈ {−1, 1} and ϕ,ψ are as in
Remark 5.5, then we deduce that the reconstruction formula (13) converges
unconditionally in Lp(RN , X).

6. The discrete wavelet transform. Let a > 1, b > 0. For ψ ∈
L2(RN ) and j ∈ Z, k ∈ ZN we write

ψ
(a,b)
j,k (u) = a−Nj/2ψ(a−ju− bk).
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We will consider the following two conditions on ψ:

(D1) {ψ(a,b)
j,k } is a frame, i.e. for all f ∈ L2(RN ),

A‖f‖22 ≤
∑
j∈Z

∑
k∈ZN

|〈ψ(a,b)
j,k , f〉|2 ≤ B‖f‖22.

(D2) ψ satisfies the estimates

|ψ(u)|, |∇ψ(u)| ≤ c(1 + |u|)−(N+1)−ε.

Remark 6.1. If ψ ∈ L2(RN ) satisfies (D1), then for almost all ξ ∈ R,

A ≤
(

2π
b

)N∑
j∈Z
|ψ̂(ajξ)|2 ≤ B.

This can be shown in a similar way to [9, pp. 63–66] (see also [7]).
If in addition (D2) holds, then ψ ∈ L1(RN ). Hence ψ̂ is continuous and

therefore
	
RN ψ(u) du = ψ̂(0) = 0.

In analogy to Section 5, where we studied localization operators for the
continuous wavelet transform, we now investigate localization (or filtering)
operators for the discrete wavelet transform. Again the multiplier function is
operator-valued. Our next result can be seen as an extension of a martingale
transform theorem from [19].

Theorem 6.2. Let X,Y be UMD spaces, p ∈ (1,∞), and τ = {Mj,k :
j ∈ Z, k ∈ ZN} an R-bounded subset of L(X,Y ). If ψ,ϕ ∈ L2(RN ) satisfy
(D1) and (D2), then the operator

(14) Lf =
∑
j∈Z

∑
k∈ZN

Mj,k〈ψ
(a,b)
j,k , f〉ϕ(a,b)

j,k , f ∈ X ⊗ S(RN ),

extends to a bounded linear operator from E(RN , X) to E(RN , Y ), where
E ∈ {Lp, H1}. The sum in (14) converges unconditionally in E(RN , X) for
all f ∈ E(RN , X).

As a corollary we obtain a reconstruction formula for the discrete wavelet
transform. For this we will need an additional assumption on the wavelets
ϕ,ψ:

(D3) for all f ∈ S(RN ),

f =
∑
j∈Z

∑
k∈ZN

〈ψ(a,b)
j,k , f〉ϕ(a,b)

j,k .

Corollary 6.3. Let X be a UMD space, p ∈ (1,∞), and f ∈ E(RN , X),
where E ∈ {Lp, H1}. If ψ,ϕ ∈ L2(RN ) satisfy (D1) and (D2), then the series∑

j∈Z

∑
k∈ZN

〈ψ(a,b)
j,k , f〉ϕ(a,b)

j,k
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converges unconditionally in E(RN , X). If , in addition, (D3) holds, then

f =
∑
j∈Z

∑
k∈ZN

〈ψ(a,b)
j,k , f〉ϕ(a,b)

j,k

in E(RN , X).

This corollary is a generalization of a theorem by Figiel [13]. See also
[23] for a related result on vector-valued Hardy spaces.

Before we come to the proof of Theorem 6.2, we give some examples of
wavelets ϕ,ψ for which the assumptions (D1)–(D3) are satisfied.

Example 6.4.

(a) Suppose {ψ(a,b)
j,k } is an orthonormal basis in L2(RN ) and ϕ = ψ.

Then (D1) and (D3) hold. For the existence of functions ψ such that
in addition (D2) is satisfied, see e.g. [9], [29].

(b) Suppose {ψ(a,b)
j,k } is a tight frame, i.e., A = B in (D1), and ϕ = ψ.

Then (D3) holds (cf. [9], [29]).
(c) Suppose ψ ∈ S(RN ) with supp ψ̂ ⊆ {ξ ∈ RN : 1/2 ≤ |ξ| ≤ 2} and
|ψ̂(ξ)| ≥ c > 0 for 3/5 ≤ |ξ| ≤ 5/3. Then conditions (D1), (D2)
are satisfied with a = 2 (cf. [9], [29]). Moreover, by [16, pp. 54–56],
there is a ϕ ∈ L2(RN ) satisfying (D1) and (D2) such that (D3) holds
for ϕ,ψ.

For the proof of Theorem 6.2, we need a vector-valued version of the
classical T (1) theorem. For scalar-valued kernels, such a theorem was proved
by Figiel [14]. Since our kernels will be operator-valued, we use the following
result, which was proved in a much more general version in [24].

To state this theorem we need the following notion. We say that ϕ is
a normalized bump function associated with the unit ball if ϕ ∈ C∞c (RN )
with suppϕ ⊆ B(0, 1) and ‖Dαϕ‖∞ ≤ 1 for all |α| ≤ n, where n is a large
fixed number. Hence the L2(RN )-norm of any normalized bump function is
bounded by a constant only depending on N .

Theorem 6.5 ([24]). Let X,Y be UMD spaces, p ∈ (1,∞), and K ⊆
L1(RN×RN ,L(X,Y )). For K∈K we define TK :L∞(RN , X)→L1(RN , Y ) by

TKf =
�

RN
K(·, v)f(v) dv

and assume that there is a constant C <∞ such that , for all K ∈ K,

(1) K satisfies the standard R-estimates

R(|u− v|NK(u, v) : u, v ∈ RN ) ≤ C,
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R

(
|u− v|N+1 K(u, v)−K(u, ṽ)

|v − ṽ|
: |u− v| > 2|v − ṽ| > 0

)
≤ C,

R

(
|u− v|N+1 K(u, v)−K(ũ, v)

|u− ũ|
: |u− v| > 2|u− ũ| > 0

)
≤ C,

(2) TK(1) = T ′K(1) = 0, i.e.
	
RN K(·, v) dv =

	
RN K(u, ·)′ du = 0, and

(3) TK has the weak R-boundedness property , i.e. for every pair of nor-
malized bump functions ϕ, ϕ̃ associated with the unit ball we have

R(〈ϕ, T r,sϕ̃〉 : s > 0, r ∈ RN ) ≤ C,

where 〈ϕ, T r,sϕ̃〉 ∈ L(X,Y ) is defined by

〈ϕ, T r,sϕ̃〉x = r−N
�

RN
ϕ

(
t− s
r

)
T

[
ϕ̃

(
· − s
r

)
x

]
(t) dt, x ∈ X.

Then each TK defines a bounded operator from E(RN , X) to E(RN , Y ),
where E ∈ {Lp, H1}. The family {TK : K ∈ K} is uniformly bounded in
L(E(RN , X), E(RN , Y )).

Now we can prove Theorem 6.2.

Proof of Theorem 6.2. Let E ∈ {Lp, H1 : p ∈ (1,∞)}.

Step 1. Let f ∈ E(RN , X). Since E(RN , Y ) has finite cotype, it does not
contain c0. Therefore the series

∑
j∈Z
∑

k∈ZN Mj,k〈ψ
(a,b)
j,k , f〉ϕ(a,b)

j,k converges
unconditionally in E(RN , Y ) if and only if it converges weakly uncondition-
ally in E(RN , Y ) (see e.g. [11, p. 45]). We will prove that there is a constant
C such that, for all finite subsets F of Z × ZN , all f ∈ E(RN , X) and all
g ∈ [E(RN , Y )]′,

(15)
∣∣∣〈 ∑

(j,k)∈F

Mj,k〈ψ
(a,b)
j,k , f〉ϕ(a,b)

j,k , g
〉
E(RN ,X)

∣∣∣ ≤ C‖f‖E(RN ,X)‖g‖[E(RN ,X)]′ .

Step 2. For a finite subset F of Z × ZN , we define an operator-valued
kernel KF : RN × RN → L(X,Y ) by

KF (u, v) =
∑

(j,k)∈F

Mj,kψ
(a,b)
j,k (u)ϕ(a,b)

j,k (v), u, v ∈ RN .

Then KF ∈ L1(RN × RN ,L(X,Y )) by (D2), and

LF f := TKF f =
�

RN
KF (·, v)f(v) dv, f ∈ L∞(RN , X),

is well-defined. We show that K = {KF : F is a finite subset of Z × ZN}
satisfies the conditions of Theorem 6.5.
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Step 3. To prove condition (1) of Theorem 6.5, we observe that

|u− v|NKF (u, v) = |u− v|N
∑

(j,k)∈F

ψ
(a,b)
j,k (u)ϕ(a,b)

j,k (v)Mj,k.

By (D2) and Lemma 6.6 below, we see that

sup
{
|u− v|N

∑
(j,k)∈F

|ψ(a,b)
j,k (u)ϕ(a,b)

j,k (v)| : u, v ∈ RN
}

≤ sup
{
|u− v|N

∑
j∈Z

∑
k∈ZN

a−Nj

× [(1 + |a−ju− bk|)(1 + |a−jv − bk|)]−N−1−ε : u, v ∈ RN
}

=: C1 <∞.

Hence {|u− v|NKF (u, v) : u, v ∈ RN} ⊆ C1 absco(τ) and therefore

R(|u− v|NKF (u, v) : u, v ∈ RN ) ≤ 2C1R(τ).

Next we consider

|u− v|N+1 KF (u, v)−KF (u, ṽ)
|v − ṽ|

= |u− v|N+1
∑

(j,k)∈F

ψ
(a,b)
j,k (u)

ϕ
(a,b)
j,k (v)− ϕ(a,b)

j,k (ṽ)

|v − ṽ|
Mj,k.

But

sup
{
|u− v|N+1

∑
(j,k)∈F

|ψ(a,b)
j,k (u)|

×
|ϕ(a,b)
j,k (v)− ϕ(a,b)

j,k (ṽ)|
|v − ṽ|

: |u− v| > 2|v − ṽ| > 0
}

≤ cN sup
{
|u− w|N+1

∑
(j,k)∈F

|ψ(a,b)
j,k (u)| |(∇ϕ(a,b)

j,k )(w)| : u,w ∈ RN
}

≤ cN sup
{
|u− w|N+1

∑
j∈Z

∑
k∈ZN

a−(N+1)j

× [(1 + |a−ju− bk|)(1 + |a−jw − bk|)]−N−1−ε : u,w ∈ RN
}

=: C2

by (D2) and Lemma 6.6 below. So

R

(
|u− v|N+1 KF (u, v)−KF (u, ṽ)

|v − ṽ|
: |u− v| > 2|v − ṽ| > 0

)
≤ 2C2R(τ).

In the same way we show

R

(
|u− v|N+1 KF (u, v)−KF (u, ṽ)

|u− ũ|
: |u− v| > 2|u− ũ| > 0

)
≤ 2C3R(τ).
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Step 4. Condition (2) of Theorem 6.5 follows easily from the fact that	
RN ψ(t) dt =

	
RN ϕ(t) dt = 0. Indeed,

�

RN
KF (·, v) dv =

�

RN

∑
(j,k)∈F

Mj,kψ
(a,b)
j,k (·)ϕ(a,b)

j,k (v) dv

=
∑

(j,k)∈F

Mj,kψ
(a,b)
j,k (·)

�

RN
ϕ

(a,b)
j,k (v) dv = 0

and
�

RN
KF (u, ·)′ du =

�

RN

∑
(j,k)∈F

M ′j,kψ
(a,b)
j,k (u)ϕ(a,b)

j,k (·) du

=
∑

(j,k)∈F

M ′j,kϕ
(a,b)
j,k (·)

�

RN
ψ

(a,b)
j,k (u) du = 0.

Step 5. To prove (3), let ϕ, ϕ̃ be a pair of normalized bump functions
associated with the unit ball. We obtain, for r > 0 and s ∈ RN ,

〈ϕ,Lr,sF ϕ̃〉 = r−N
〈
ϕ

(
· − s
r

)
,
∑

(j,k)∈F

Mj,k

〈
ψ

(a,b)
j,k , ϕ̃

(
· − s
r

)〉
ϕ

(a,b)
j,k

〉

= r−N
∑

(j,k)∈F

〈
ψ

(a,b)
j,k , ϕ̃

(
· − s
r

)〉〈
ϕ

(
· − s
r

)
, ϕ

(a,b)
j,k

〉
Mj,k

with

r−N
∑

(j,k)∈F

∣∣∣∣〈ψ(a,b)
j,k , ϕ̃

(
· − s
r

)〉〈
ϕ

(
· − s
r

)
, ϕ

(a,b)
j,k

〉∣∣∣∣
≤ r−N

( ∑
(j,k)∈F

∣∣∣∣〈ψj,k, ϕ̃( · − sr
)〉∣∣∣∣2)1/2( ∑

(j,k)∈F

∣∣∣∣〈ϕ( · − sr
)
, ϕj,k

〉∣∣∣∣2)1/2

≤ Br−N
∥∥∥∥ϕ( · − sr

)∥∥∥∥
2

∥∥∥∥ϕ̃( · − sr
)∥∥∥∥

2

= B‖ϕ‖2‖ϕ̃‖2

whereB is the constant from assumption (D1). Since ‖ϕ‖2, ‖ϕ̃‖2 are bounded
by some constant only depending on N , there is a constant C4 such that
{〈ϕ,Lr,sF ϕ̃〉 : r > 0, s ∈ RN} ⊆ C4 absco(τ). Hence

R(〈ϕ,La,bF ϕ̃〉 : a > 0, b ∈ RN ) ≤ 2C4R(τ).

Step 6. Now, by Steps 2 to 5, we can apply Theorem 6.5 and deduce
that the set

{LF : F is a finite subset of Z× ZN}

is bounded in L(E(RN , X), E(RN , Y )). Step 1 now implies that the sum
in (14) converges unconditionally in E(RN , Y ) for all f ∈ E(RN , X). By the
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uniform boundedness principle, L defines an bounded linear operator from
E(RN , X) to E(RN , Y ).

The following technical lemma was crucial in the proof of Theorem 6.2.
The proof is standard (cf. e.g. [30], [9]) and is omitted here.

Lemma 6.6. Let γ > 1 and N ∈ N. Then there is a constant C, only
depending on γ, a, b, and N , such that for all x, y ∈ RN with x 6= y,∑

j∈Z

∑
k∈ZN

a−Nj [(1 + |a−jx− bk|)(1 + |a−jy − bk|)]−Nγ ≤ C|x− y|−N .

Remark 6.7. In the multi-dimensional case, one is also interested in or-
thonormal wavelet bases generated by shifts and dilates of a finite collection
Ψ of L2-functions. (A prominent example is the tensor wavelets generated by
tensor products from a one-dimensional wavelet and its corresponding scal-
ing function, see e.g. [9, pp. 313–319].) If we assume that in addition each
ψ ∈ Ψ satisfies condition (D2) and that the parameters a, b are the same for
all ψ ∈ Ψ , then our methods can be applied to obtain results corresponding
to Theorem 6.2 and Corollary 6.3 in this setting.
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sertation, Universitätsverlag Karlsruhe, 2004.

[21] M. Holschneider, Wavelets. An Analysis Tool , Oxford Math. Monogr., Clarendon
Press, New York, 1995.

[22] T. Hytönen, Fourier embeddings and Mihlin-type multiplier theorems, Math. Nachr.
274/275 (2004), 74–103.

[23] — , Vector-valued wavelets and the Hardy space H1(Rn, X), Studia Math. 172
(2006), 125–147.

[24] T. Hytönen and L. Weis, A T1 theorem for integral transformations with operator-
valued kernel, J. Reine Angew. Math. 599 (2006), 155–200.

[25] C. Kaiser, Wavelet transforms for functions with values in Lebesgue spaces, in: Proc.
SPIE Optics and Photonics 2005 Conf. on Mathematical Methods: Wavelets XI
5914, 2005.

[26] N. Kalton and L. Weis, The H∞-functional calculus and square function estimates,
preprint.
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