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Jacobi decomposition of weighted
Triebel–Lizorkin and Besov spaces

by

George Kyriazis (Nicosia), Pencho Petrushev (Columbia, SC)
and Yuan Xu (Eugene, OR)

Abstract. The Littlewood–Paley theory is extended to weighted spaces of distribu-
tions on [−1, 1] with Jacobi weights w(t) = (1−t)α(1+t)β . Almost exponentially localized
polynomial elements (needlets) {ϕξ}, {ψξ} are constructed and, in complete analogy with
the classical case on Rn, it is shown that weighted Triebel–Lizorkin and Besov spaces can
be characterized by the size of the needlet coefficients {〈f, ϕξ〉} in respective sequence
spaces.

1. Introduction. The ϕ-transform of Frazier and Jawerth [6, 7, 8] is
a powerful tool for decomposition of spaces of functions or distributions
on Rn. Our goal in this paper is to develop similar tools for decomposition
of weighted spaces of distributions on [−1, 1] with Jacobi weights

(1.1) w(x) := wα,β(x) := (1− x)α(1 + x)β, α, β > −1/2.

We will build upon the elements constructed in [13] and termed needlets. The
targeted spaces are weighted Triebel–Lizorkin and Besov spaces on [−1, 1].

The main vehicle in constructing our building blocks will be the clas-
sical Jacobi polynomials {P (α,β)

n }∞n=0, which form an orthogonal basis for
L2(w) := L2([−1, 1], w) and are normalized by P

(α,β)
n (1) =

(
n+α
n

)
[18]. In

particular,

(1.2)
1�

−1

P (α,β)
n (x)P (α,β)

m (x)w(x) dx = δn,mh
(α,β)
n ,

where h(α,β)
n ∼ n−1 with constants of equivalence depending only on α and β.

Then the normalized Jacobi polynomials Pn(x) = P
(α,β)
n (x), defined by

(1.3) Pn(x) := (h(α,β)
n )−1/2P (α,β)

n (x), n = 0, 1, . . . ,
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form an orthonormal basis for L2(w), where the inner product is defined by

(1.4) 〈f, g〉 :=
1�

−1

f(x)g(x)w(x) dx.

Consequently, for every f ∈ L2(w),

(1.5) f =
∞∑
n=0

an(f)Pn with an(f) := 〈f,Pn〉.

Then the kernel of the nth partial sum operator is

(1.6) Kn(x, y) :=
n∑
ν=0

Pν(x)Pν(y).

Our construction of needlets relies on the fundamental fact [13] that
if the coefficients on the right in (1.6) are “smoothed out” by sampling
a compactly supported C∞ cut-off function, then the resulting kernel has
nearly exponential localization around the main diagonal y = x in [−1, 1]2.
To be more specific, let

(1.7) Ln(x, y) :=
∞∑
j=0

â

(
j

n

)
Pj(x)Pj(y)

with â admissible in the sense of the following definition:

Definition 1.1. A function â ∈ C∞[0,∞) is said to be admissible of
type

(a) if supp â ⊂ [0, 2] and â(t) = 1 on [0, 1], and of type
(b) if supp â ⊂ [1/2, 2].

As a companion to the weight w(x) we introduce the quantity

(1.8) W(n;x) =Wα,β(n;x) := (1− x+ n−2)α+1/2(1 + x+ n−2)β+1/2.

We will also need the distance on [−1, 1] defined by

(1.9) d(x, y) := |arccosx− arccos y|.
Now one of the main results from [13] can be stated as follows: Let â be
admissible. Then for any σ > 0 there is a constant cσ > 0 depending only
on σ, α, β, and â such that

(1.10) |Ln(x, y)|≤cσ
n√

W(n;x)
√
W(n; y)(1+nd(x, y))σ

, x, y ∈ [−1, 1].

The kernels Ln(x, y) are the main ingredient in constructing needlet sys-
tems here. Our construction utilizes a semidiscrete Calderón type decompo-
sition combined with discretization using the Gaussian quadrature formula
(see §3). Earlier in [11] a similar scheme has been used for the construction
of frames on the sphere.
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Denoting by {ϕξ}ξ∈X and {ψξ}ξ∈X the constructed analysis and synthe-
sis needlet systems, indexed by a multilevel set X =

⋃∞
j=0Xj , we show that

every distribution f on [−1, 1] (f ∈ D′) has the representation

f =
∑
ξ∈X
〈f, ϕξ〉ψξ.

In this article we use the needlets to characterize two scales of weighted
Triebel–Lizorkin (F-spaces) and Besov spaces (B-spaces) on [−1, 1] defined
via Jacobi expansions. The idea of using orthogonal or spectral decomposi-
tions for introducing Triebel–Lizorkin and Besov spaces is natural and well
known (see [15, 19]). To be more precise, let

Φ0(x, y) := P0(x)P0(y), Φj(x, y) :=
∞∑
ν=0

â

(
ν

2j−1

)
Pν(x)Pν(y), j ≥ 1,

where â is admissible of type (b) (see Definition 1.1) and â > 0 on [3/5, 5/3].
The first scale of F-spaces F sqp with s ∈ R, 0 < p < ∞, 0 < q ≤ ∞, is

defined (§4) as the space of all distributions f on [−1, 1] such that

‖f‖F sqp :=
∥∥∥( ∞∑

j=0

(2sj |Φj ∗ f(·)|)q
)1/q∥∥∥

Lp(w)
<∞.

We define a second scale of F -spaces Fsqp (§5) as the space of all f ∈ D′ such
that

‖f‖Fsqp :=
∥∥∥( ∞∑

j=0

[2sjW(2j ; ·)−s|Φj ∗ f(·)|]q
)1/q∥∥∥

Lp(w)
<∞.

(For the definition of Φj∗f , see (2.32).) The corresponding scales of weighted
Besov spaces Bsq

p (see [16, 19]) and Bsqp with s ∈ R, 0 < p, q ≤ ∞, are defined
(§6–7) via the (quasi-)norms

‖f‖Bsqp :=
( ∞∑
j=0

(2sj‖Φj ∗ f‖Lp(w))
q
)1/q

and

‖f‖Bsqp :=
( ∞∑
j=0

[2sj‖W(2j ; ·)−sΦj ∗ f(·)‖Lp(w)]
q
)1/q

.

To some extent the second scales of F- and B-spaces are more natural than
the first since they embed correctly with respect to the smoothness parame-
ter s (see §5, §7 for details). Also, the second scale of B-spaces provides the
smoothness spaces of nonlinear n-term approximation from needlets (§8).

One of our main results (§4) asserts that for all indices the weighted
Triebel–Lizorkin spaces F sqp can be characterized in terms of the size of the
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needlet coefficients, namely,

‖f‖F sqp ∼
∥∥∥( ∞∑

j=0

2sjq
∑
ξ∈Xj

|〈f, ϕξ〉ψξ(·)|q
)1/q∥∥∥

Lp(w)
.

The needlet characterization of the Besov spaces Bsq
p (§6) takes the form

‖f‖Bsqp ∼
( ∞∑
j=0

2sjq
[∑
ξ∈Xj

‖〈f, ϕξ〉ψξ‖pp
]q/p)1/q

.

Characterizations of similar nature are obtained for the second scales of
weighted Triebel–Lizorkin and Besov spaces Fsqp and Bsqp (see §5, §7). Using
Lp(w) multipliers we show that the space F 02

p = F02
p can be identified as

Lp(w) for 1 < p <∞.
This is a follow-up paper of [13]; it is closely related to [11] and [9],

where needlet decompositions of Triebel–Lizorkin and Besov spaces on the
unit sphere and ball are developed.

The rest of the paper is organized as follows. In §2, some auxiliary facts
are given, including localized and reproducing polynomial kernels, Gaussian
quadrature, the maximal inequality, and basics of distributions on [−1, 1].
In §3, we construct the needlets and show some of their properties. The
first and second scales of weighted Triebel–Lizorkin spaces are defined and
characterized via neadlets in §4 and §5, respectively, while the first and
second scales of Besov spaces are defined and characterized via needlets in §6
and §7. In §8, Besov spaces are applied to weighted nonlinear approximation
from needlets; a Jackson theorem is proved. Section 9 is an appendix, where
the proofs of some statements are given.

Throughout the paper we use the following notation:

‖f‖p :=
( 1�

−1

|f(x)|pw(x) dx
)1/p

, 0 < p <∞, ‖f‖∞ := sup
x∈[−1,1]

|f(x)|.

For a measurable set E ⊂ [−1, 1], we set µ(E) :=
	
E w(y) dy; 1E is the

characteristic function of E and 1̃E := |µ(E)|−1/2
1E is the L2(w) normal-

ized characteristic function of E. Also, Πn denotes the set of all univariate
algebraic polynomials of degree ≤ n. Positive constants are denoted by c,
c1, c∗, . . . and they may vary at every occurrence. The notation A ∼ B
means c1A ≤ B ≤ c2A.

2. Preliminaries

2.1. Localized kernels induced by Jacobi polynomials. To a large ex-
tent our development in this paper relies on the nearly exponential lo-
calization (1.10) of kernels Ln(x, y) of the form (1.7) with admissible â,
established in [13]. To avoid some potential confusion, we note that the
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inner product in [13] is defined by 〈f, g〉 := cα,β
	1
−1 f(x)g(x)w(x) dx with

c−1
α,β :=

	1
−1w(x) dx and as a result Ln(x, y) from (1.7) is a constant multi-

ple of Lα,β(x, y) from [13]. A similar remark applies to the constants h(α,β)
n

from (1.2) and [13].
The proof of estimate (1.10) (see [13]) is based on the almost exponential

localization of the univariate polynomial:

(2.1) Lα,βn (x) :=
∞∑
j=0

â

(
j

n

)
(h(α,β)
j )−1P

(α,β)
j (1)P (α,β)

j (x).

Theorem 2.1 ([1, 13]). Assume that α ≥ β > −1/2 and let â be admis-
sible. Then for every k ≥ 1 there exists a constant ck > 0 depending only
on k, α, β, and â such that

(2.2) |Lα,βn (cos θ)| ≤ ck
n2α+2

(1 + nθ)k+α−β
, 0 ≤ θ ≤ π.

The dependence of ck on â is of the form ck = c(α, β, k) max1≤ν≤k ‖â(ν)‖L1.

This estimate was proved in [13] with â admissible of type (b) and in [1]
with â admissible of type (a) (for a proof, see also [14]).

In [13, Proposition 1] it is shown that (1.10) yields the following upper
bound for the weighted Lp integrals of |Ln(x, y)|:

(2.3)
1�

−1

|Ln(x, y)|pw(y) dy ≤ c
(

n

W(n;x)

)p−1

, −1 ≤ x ≤ 1, 0 < p <∞.

The next theorem shows that in a sense the kernel Ln(x, y) from (1.7) is
Lip 1 in x (and y).

Theorem 2.2. Let α, β > −1/2. Suppose â is admissible and σ > 0 is
an arbitrary constant. If x, y, z, ξ ∈ [−1, 1], d(x, ξ) ≤ c∗n

−1 and d(z, ξ) ≤
c∗n
−1 with n ≥ 1, c∗ > 0, then

(2.4) |Ln(x, y)− Ln(ξ, y)| ≤ cσ
n2d(x, ξ)√

W(n; y)
√
W(n; z)(1 + nd(y, z))σ

,

where cσ > 0 depends only on σ, α, β, c∗, and â.

The proof of this theorem is given in the appendix.
Lower bound estimates for the integrals of |Ln(x, y)| are nontrivial and

will be vital for our further development.

Proposition 2.3. Let â be admissible and |â(t)| ≥ c > 0 for t ∈
[3/5, 5/3]. Then

(2.5)
1�

−1

|Ln(x, y)|2w(y) dy ≥ cnW(n;x)−1, −1 ≤ x ≤ 1.
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Proof. By the definition of Ln(x, y) in (1.7) and the orthogonality of the
Jacobi polynomials, it follows that

1�

−1

|Ln(x, y)|2w(y) dy ≥ c
2n∑

k=[n/2]

|â(k/n)|2[P(α,β)
k (x)]2.

Since |â(t)| ≥ c > 0 for t ∈ [3/5, 5/3] and Pk(x) = (h(α,β)
k )−1/2P

(α,β)
k (x) ∼

k1/2P
(α,β)
k (x), it suffices to prove that

[5n/3]∑
k=[3n/5]

[P (α,β)
k (x)]2 ≥ cW(n;x)−1, c > 0,

which is established in the following proposition.

Proposition 2.4. If α, β > −1 and ε > 0, then

(2.6) Λn(x) :=
n+[εn]∑
k=n

[P (α,β)
k (x)]2 ≥ cW(n;x)−1, x ∈ [−1, 1], n ≥ 1/ε,

where c > 0 depending only on α, β, and ε.

This proposition is nontrivial and its proof is given in the appendix.

2.2. Reproducing kernels and best polynomial approximation. We let
En(f)p denote the best approximation of f ∈ Lp(w) from Πn, i.e.

(2.7) En(f)p := inf
g∈Πn

‖f − g‖p.

To simplify our notation we introduce the following “convolution”: For
functions Φ : [−1, 1]2 → C and f : [−1, 1]→ C, we write

(2.8) Φ ∗ f(x) :=
1�

−1

Φ(x, y)f(y)w(y) dy.

Lemma 2.5. Suppose â is admissible of type (a) and let Ln(x, y) be the
kernel defined in (1.7).

(i) Ln(x, y) is a symmetric reproducing kernel for Πn, i.e. Ln ∗ g = g
for g ∈ Πn.

(ii) For any f ∈ Lp(w), 1 ≤ p ≤ ∞, we have Ln ∗ f ∈ Π2n,

(2.9) ‖Ln ∗ f‖p ≤ c‖f‖p and ‖f − Ln ∗ f‖p ≤ cEn(f)p.

Proof. Part (i) is immediate since â(ν/n) = 1 for 0 ≤ ν ≤ n. The left-
hand estimate in (2.9) follows from (2.3) when p = 1 and p =∞; the general
case follows by interpolation. The right-hand estimate in (2.9) follows from
the left-hand estimate and (i).
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Lemma 2.5(i) and (2.3) are instrumental in proving Nikolski type in-
equalities.

Proposition 2.6. For 0 < q ≤ p ≤ ∞ and g ∈ Πn,

(2.10) ‖g‖p ≤ cn(2+2min{0,max{α,β}})(1/q−1/p)‖g‖q,
furthermore, for any s ∈ R,

(2.11) ‖W(n; ·)sg(·)‖p ≤ cn1/q−1/p‖W(n; ·)s+1/p−1/qg(·)‖q.

The proof of this proposition is given in the appendix.

2.3. Quadrature formula and subdivision of [−1, 1]. For the construction
of our building blocks (needlets) we will utilize an appropriate Gaussian
quadrature formula. Let ξj,ν =: cos θν , ν = 1, 2, . . . , 2j+1, be the zeros of the
Jacobi polynomials P (α,β)

2j+1 ordered so that

0 < θ1 < · · · < θ2j+1 < π.

It is well known that uniformly (see [5] and also (9.9)–(9.10) below)

(2.12) θν+1 − θν ∼ 2−j and hence θν ∼ ν2−j .

Define now

(2.13) Xj := {ξj,ν : ν = 1, 2, . . . , 2j+1}, j ≥ 0, X :=
∞⋃
j=0

Xj .

As is well known [18] the zeros of the Jacobi polynomial P (α,β)

2j+1 serve as
knots of the Gaussian quadrature

(2.14)
1�

−1

f(x)w(x) dx ∼
∑
ξ∈Xj

cξf(ξ),

which is exact for all polynomials of degree at most 2j+2 − 1. Furthermore,
the coefficients cξ are positive and have the asymptotics

(2.15) cξ ∼ λ2j+1(ξ) ∼ 2−jw(ξ)(1− ξ2)1/2 ∼ 2−jW(2j ; ξ),

where λ2j+1(t) is the Christoffel function and the constants of equivalence
depend only on α, β (cf. e.g. [12]).

We next introduce the jth level weighted dyadic intervals. Set as above
ξj,ν =: cos θν and define

Iξj,ν := [(ξj,ν+1 +ξj,ν)/2, (ξj,ν−1 +ξj,ν)/2], ν = 2, 3, . . . , 2j+1−1,(2.16)
Iξj,1 := [(ξj,2 + ξj,1)/2, 1], Iξ

j,2j+1
:= [−1, (ξj,2j+1 + ξj,2j+1−1)/2].(2.17)

For ξ ∈ Xj we will briefly write Iξ := Iξj,ν if ξ = ξj,ν .
It follows by (2.12) that there exist constants c1, c2 > 0 such that

(2.18) Bξ(c12−j) ⊂ Iξ ⊂ Bξ(c22−j),
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where By(r) := {x ∈ [−1, 1] : d(x, y) ≤ r} with d(·, ·) being the distance
from (1.9). Also, it is straightforward to show that

(2.19) µ(Iξ) :=
�

Iξ

w(x) dx ∼ 2−jW(2j ; ξ) ∼ cξ, ξ ∈ Xj , j ≥ 0.

It will be useful to note that

W(n; cos θ) ∼ (sin θ + n−1)2α+1, 0 ≤ θ ≤ 2π/3,(2.20)

W(n; cos θ) ∼ (sin θ + n−1)2β+1, π/3 ≤ θ ≤ π.(2.21)

The following simple inequality will be instrumental in various proofs:

(2.22) W(n;x)≤ cW(n; y)(1+nd(x, y))2max{α,β}+1, x, y ∈ [−1, 1], n≥ 1.

For the proof see the appendix.

2.4. The maximal inequality. For every 0 < t < ∞ and x ∈ [−1, 1], we
define

(2.23) Mtf(x) := sup
I3x

(
1

µ(I)

�

I

|f(y)|tw(y) dy
)1/t

,

where the sup is over all intervals I ⊂ [−1, 1] containing x. It is not hard
to see that µ is a doubling measure on [−1, 1] and hence the general theory
of maximal inequalities applies. In particular the Fefferman–Stein vector-
valued maximal inequality holds (see [17]): If 0 < p < ∞, 0 < q ≤ ∞ and
0 < t < min{p, q} then for any sequence of functions {fν}∞ν=1 on [−1, 1],

(2.24)
∥∥∥( ∞∑

ν=1

|Mtfν(·)|q
)1/q∥∥∥

p
≤ c
∥∥∥( ∞∑

ν=1

|fν(·)|q
)1/q∥∥∥

p
.

We need to estimate (Mt1Iξ)(x) for the intervals Iξ from (2.16)–(2.17)
and other intervals.

Lemma 2.7. Let η ∈ [0, 1] and 0 < ε ≤ π. Then for x ∈ [−1, 1],

(2.25) (Mt1Bη(ε))(x) ∼
(

1 +
d(η, x)
ε

)−1/t(
1 +

d(η, x)
ε+ d(η, 1)

)−(2α+1)/t

and hence

(2.26) c′
(

1 +
d(η, x)
ε

)−(2α+2)/t

≤ (Mt1Bη(ε))(x) ≤ c
(

1 +
d(η, x)
ε

)−1/t

.

Here the constants depend only on α, β, and t.

A similar lemma holds for η ∈ [−1, 0). We relegate the proof of this
lemma to the appendix.
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2.5. Distributions on [−1, 1]. Here we give some basic and well known
facts about distributions on [−1, 1]. We will use as test functions the set
D := C∞[−1, 1] of all infinitely differentiable complex-valued functions on
[−1, 1], where the topology is induced by the seminorms

(2.27) |φ|k := ‖φ(k)(t)‖∞, k = 0, 1, . . . .

Note that the Jacobi polynomials {Pn} belong to D. More importantly, the
space D of test functions φ can be completely characterized by the coeffi-
cients of their Jacobi expansions: an(φ) := 〈φ,Pn〉 :=

	1
−1 φ(x)Pn(x)w(x) dx.

Define

(2.28) Nk(φ) := sup
n≥0

(n+ 1)k|an(φ)|.

Lemma 2.8. (a) φ ∈ D if and only if an(φ) = O(n−k) for all k.
(b) For every φ ∈ D we have φ =

∑∞
n=0 an(φ)Pn, where the convergence

is in the topology of D.
(c) The topology in D can be equivalently defined by the norms Nk(·),

k = 0, 1, . . . .

Proof. If φ ∈ D, then due to the orthogonality of Pn to Πn−1, we have
for n = 1, 2, . . . ,

|an(φ)| = |〈φ,Pn〉| = |〈φ−Qn−1,Pn〉| ≤ En−1(φ)2 ≤ ckn−k‖φ(k)‖∞,

where Qn−1 ∈ Πn−1 is the polynomial of best L2(w) approximation to φ.
Here we used a simple Jackson estimate for approximation from algebraic
polynomials (En(φ)∞ ≤ ckn

−k‖φ(k)‖∞). Therefore, an(φ) = O(n−k) and
Nk(φ) ≤ ck‖φ‖k for k = 0, 1, . . . .

On the other hand, by Markov’s inequality it follows that

‖P(k)
n ‖L∞[−1,1] ≤ n2k‖Pn‖L∞[−1,1] ≤ cn2kh−1/2

n Pn(1) ≤ cn2k+α+1/2.

Hence, if an(φ) = O(n−k) for all k, then φ(k) =
∑∞

n=0 an(φ)P(k)
n with the

series converging uniformly and

|φ|k ≤ c
∞∑
n=0

|an(φ)|(n+ 1)2k+α+1/2 ≤ cN2k+[α+1/2]+1(φ), k = 0, 1, . . . ,

which completes the proof of the lemma.

The space D′ := D′[−1, 1] of distributions on [−1, 1] is defined as the set
of all continuous linear functionals on D. The pairing of f ∈ D′ and φ ∈ D
will be denoted by 〈f, φ〉 := f(φ), which will be shown to be consistent with
the inner product 〈f, g〉 :=

	1
−1 f(x)g(x)w(x) dx in L2(w). We will need the

representation of distributions from D′ in terms of Jacobi polynomials.
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Lemma 2.9. (a) A linear functional f on D is a distribution (f ∈ D′)
if and only if there exists k ≥ 0 such that

(2.29) |〈f, φ〉| ≤ ckNk(φ) for all φ ∈ D,
For f ∈ D′, denote an(f) := 〈f,Pn〉. Then for some k ≥ 0,

(2.30) |〈f,Pn〉| ≤ ck(n+ 1)k, n = 0, 1, . . . .

(b) Every f ∈ D′ has the representation f =
∑∞

n=0 an(f)Pn in distribu-
tional sense, i.e.

(2.31) 〈f, φ〉 =
∞∑
n=0

an(f)〈Pn, φ〉 =
∞∑
n=0

an(f)an(φ) for all φ ∈ D,

where the series converges absolutely.

Proof. (a) Part (a) follows immediately from the fact that the topology
in D can be defined by the norms Nk(·) defined in (2.28).

(b) Using Lemma 2.8(b) we get, for φ ∈ D,

〈f, φ〉 = lim
N→∞

〈
f,

N∑
n=0

an(φ)Pn
〉

= lim
N→∞

N∑
n=0

an(φ)〈f,Pn〉 =
∞∑
n=0

an(f)an(φ),

where for the last equality we used (2.30) and the fact that an(φ) are rapidly
decaying.

It is convenient to extend the “convolution” from (2.8) to the case of
distributions.

Definition 2.10. Assuming that f ∈ D′ and Φ : [−1, 1]2 → C is such
that Φ(x, y) belongs to D as a function of y (Φ(x, ·) ∈ D), we define Φ∗f by

(2.32) Φ ∗ f(x) := 〈f, Φ(x, ·)〉,
where on the right f acts on Φ(x, y) as a function of y.

3. Construction of building blocks (needlets). Following the ideas
from [13] we next construct two sequences of companion “analysis” and “syn-
thesis” needlets. Our construction is based on a Calderón type reproducing
formula. Let â, b̂ satisfy the conditions

â, b̂ ∈ C∞[0,∞), supp â, b̂ ⊂ [1/2, 2],(3.1)

|â(t)|, |̂b(t)| > c > 0 if t ∈ [3/5, 5/3],(3.2)

â(t) b̂(t) + â(2t) b̂(2t) = 1 if t ∈ [1/2, 1].(3.3)

Hence,

(3.4)
∞∑
ν=0

â(2−νt) b̂(2−νt) = 1, t ∈ [1,∞).
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It is easy to show that if â satisfies (3.1)–(3.2), then there exists b̂ satisfying
(3.1)–(3.2) such that (3.3) holds true (see e.g. [7]).

Assuming that â, b̂ satisfy (3.1)–(3.3), we define Φ0(x, y) = Ψ0(x, y) :=
P0(x)P0(y),

Φj(x, y) :=
∞∑
ν=0

â

(
ν

2j−1

)
Pν(x)Pν(y), j ≥ 1,(3.5)

Ψj(x, y) :=
∞∑
ν=0

b̂

(
ν

2j−1

)
Pν(x)Pν(y), j ≥ 1.(3.6)

Let Xj be the set of knots of the quadrature formula (2.14), defined in (2.13),
and let cξ be the coefficients of the same quadrature. We define the jth level
needlets by

(3.7) ϕξ(x) := c1/2
ξ Φj(x, ξ) and ψξ(x) := c1/2

ξ Ψj(x, ξ), ξ ∈ Xj .
As in (2.13) we write X :=

⋃∞
j=0Xj , where equal points from different levels

Xj are considered as distinct elements of X , so that X can be used as an
index set. We define the analysis and synthesis needlet systems Φ and Ψ by

(3.8) Φ := {ϕξ}ξ∈X , Ψ := {ψξ}ξ∈X .
By estimate (1.10) it follows that the needlets have nearly exponential

localization, namely, for x ∈ [−1, 1],

(3.9) |Φj(ξ, x)|, |Ψj(ξ, x)| ≤ cσ2j√
W(2j ; ξ)

√
W(2j ;x)(1 + 2jd(ξ, x))σ

∀σ,

and hence

(3.10) |ϕξ(x)|, |ψξ(x)| ≤ cσ2j/2√
W(2j ;x)(1 + 2jd(ξ, x))σ

∀σ.

Note that x in the term
√
W(2j ;x) above can be replaced by ξ (upon re-

placing cσ by a larger constant), namely,

(3.11) |ϕξ(x)|, |ψξ(x)| ≤ cσ2j/2√
W(2j ; ξ)(1 + 2jd(ξ, x))σ

∀σ.

This estimate follows from (3.10) and (2.22).
We will need to estimate the norms of the needlets. We have, for 0 <

p ≤ ∞,

(3.12) ‖ϕξ‖p ∼ ‖ψξ‖p ∼ ‖1̃Iξ‖p ∼
(

2j

W(2j ; ξ)

)1/2−1/p

, ξ ∈ Xj .

Moreover, there exist constants c∗, c� > 0 such that

(3.13) ‖ϕξ‖L∞(Bξ(c∗2−j)), ‖ψξ‖L∞(Bξ(c∗2−j)) ≥ c
�
(

2j

W(2j ; ξ)

)1/2

,
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where Bξ(c∗2−j) := {x ∈ [−1, 1] : d(ξ, x) ≤ c∗2−j}, which is an interval.
Notice that if â, b̂ in (3.1)–(3.3) are real-valued then by Proposition 2.4,

(3.14) ϕξ(ξ), ψξ(ξ) ≥ c
(

2j

W(2j ; ξ)

)1/2

, c > 0.

For the proofs of (3.12)–(3.13), see the appendix.
Our next goal is to establish needlet decompositions of D′ and Lp(w).

Proposition 3.1. (a) For f ∈ D′, we have

f =
∞∑
j=0

Ψj ∗ Φj ∗ f in D′,(3.15)

f =
∑
ξ∈X
〈f, ϕξ〉ψξ in D′.(3.16)

(b) If f ∈ Lp(w), 1 ≤ p ≤ ∞, then (3.15)–(3.16) hold in Lp(w). More-
over , if 1 < p <∞, then the convergence in (3.15)–(3.16) is unconditional.

Proof. (a) Let f ∈ D′. By (2.32) and Lemma 2.9, we have

(3.17) Φj ∗ f =
2j∑
ν=0

â

(
ν

2j−1

)
aν(f)Pν

and further

(3.18) Ψj ∗ Φj ∗ f =
2j∑
ν=0

â

(
ν

2j−1

)
b̂

(
ν

2j−1

)
aν(f)Pν .

Now (3.15) follows from (3.4) and Lemmas 2.8–2.9.
Note that Ψj(x, y) and Φj(x, y) are symmetric functions (e.g. Ψj(y, x) =

Ψj(x, y)) and hence Ψj ∗ Φj(x, y) is well defined. Also, Ψj ∗ (Φj ∗ f) =
(Ψj ∗Φj) ∗ f . We observe that Ψj(x, u)Φj(y, u) belongs to Π2j+1−1 as a func-
tion of u and apply the quadrature formula from (2.14) to obtain

Ψj ∗ Φj(x, y) =
1�

−1

Ψj(x, u)Φj(y, u)w(u) du

=
∑
ξ∈Xj

cξΨj(x, ξ)Φj(y, ξ) =
∑
ξ∈Xj

ψξ(x)ϕξ(y).

Hence,
Ψj ∗ Φj ∗ f =

∑
ξ∈Xj

〈f, ϕξ〉ψξ.

Substituting this in (3.15) yields (3.16).
(b) To prove (3.15) in Lp(w) we observe that

∑l
j=0 Ψj ∗ Φj ∗ f = Ll ∗ f

with Ll :=
∑l

j=0 Ψj ∗ Φj . Because of (3.4), Ll(x, y) is a reproducing kernel
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for polynomials exactly as the kernels Ln(x, y) from Lemma 2.5. Hence,∑l
j=0 Ψj ∗ Φj ∗ f → f in Lp(w) (1 ≤ p ≤ ∞). Then (3.16) in Lp(w) follows

as above. The unconditional convergence in Lp(w), 1 < p <∞, follows from
Proposition 4.11 and Theorem 4.5 below.

Remark 3.2. It is easy to see that there exists a function â ≥ 0 satisfying
(3.1)–(3.2) such that â2(t) + â2(2t) = 1, t ∈ [1/2, 1]. Suppose that in the
above construction b̂ = â and â ≥ 0. Then Φj = Ψj and ϕξ = ψξ. Now (3.16)
becomes f =

∑
ξ∈X 〈f, ψξ〉ψξ. It is easily seen that {ψξ : ξ ∈ X} is a tight

frame for L2(w) (see [13]).

4. First scale of weighted Triebel–Lizorkin spaces on [−1, 1]. In
analogy to the classical case on Rd we will define our first scale of weighted
Triebel–Lizorkin spaces by means of the Littlewood–Paley expressions em-
ploying the kernels Φj , defined by

(4.1)

Φ0(x, y) := P0(x)P0(y),

Φj(x, y) :=
∞∑
ν=0

â

(
ν

2j−1

)
Pν(x)Pν(y), j ≥ 1,

where â satisfies the conditions

â ∈ C∞[0,∞), supp â ⊂ [1/2, 2],(4.2)

|â(t)| > c > 0 if t ∈ [3/5, 5/3].(4.3)

Definition 4.1. Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. Then the
weighted Triebel–Lizorkin space F sqp := F sqp (w) is defined as the set of all
f ∈ D′ such that

(4.4) ‖f‖F sqp :=
∥∥∥( ∞∑

j=0

(2sj |Φj ∗ f(·)|)q
)1/q∥∥∥

p
<∞

with the usual modification when q =∞.

Observe that the above definition is independent of the choice of â as
long as it satisfies (4.2)–(4.3) (see Theorem 4.5 below).

Proposition 4.2. For every s ∈ R, 0 < p <∞, and 0 < q ≤ ∞, F sqp is
a quasi-Banach space which is continuously embedded in D′.

Proof. We will only prove the continuous embedding of F sqp in D′. Then
the completeness follows by a standard argument (see e.g. [19, p. 49]).

Suppose the kernels Φj are as in the definition of F sqp with â satis-
fying (4.2)–(4.3) which are the same as (3.1)–(3.2). Then as was already
mentioned, there is a function b̂ satisfying (3.1)–(3.2) such that (3.3) holds
as well. Let Ψj be defined by (3.6). Then by Proposition 3.1 any function
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f ∈ F sqp has the representation f =
∑∞

j=0 Ψj ∗Φj ∗ f in D′. Hence for φ ∈ D
we have 〈f, φ〉 =

∑∞
j=0〈Ψj ∗ Φj ∗ f, φ〉. Using (3.17)–(3.18) we find that

〈Ψj ∗ Φj ∗ f, φ〉 =
2j∑

ν=2j−2+1

â

(
ν

2j−1

)
b̂

(
ν

2j−1

)
aν(f)aν(φ) (j ≥ 2)

and applying the Cauchy–Schwarz inequality yields

|〈Ψj ∗ Φj ∗ f, φ〉| ≤ c 2j/2‖Φj ∗ f‖2 max
2j−2<ν≤2j

|aν(φ)|(4.5)

≤ c 2j(2/p+1/2)‖Φj ∗ f‖p max
2j−2<ν≤2j

|aν(φ)|

≤ c 2−j‖f‖F sqp Nk(φ),

where k ≥ 2/p+3/2−s, Nk(·) is from (2.28), and we used inequality (2.10).
Consequently, |〈f, φ〉| ≤ c‖f‖F sqp Nk(φ), which is the claimed embedding.

Associated to F sqp is the sequence space fsqp defined as follows.

Definition 4.3. Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. Then fsqp is
defined as the space of all complex-valued sequences h := {hξ}ξ∈X such that

(4.6) ‖h‖fsqp :=
∥∥∥( ∞∑

j=0

2sjq
∑
ξ∈Xj

(|hξ|1̃Iξ(·))
q
)1/q∥∥∥

p
<∞

with the usual modification for q =∞. Recall that 1̃Iξ := µ(Iξ)−1/2
1Iξ .

We now introduce the “analysis” and “synthesis” operators

(4.7) Sϕ : f 7→ {〈f, ϕξ〉}ξ∈X and Tψ : {hξ}ξ∈X 7→
∑
ξ∈X

hξψξ.

The next lemma shows that the operator Tψ is well defined on fsqp .

Lemma 4.4. Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. Then for any
h ∈ fsqp , Tψh :=

∑
ξ∈X hξψξ converges in D′. Moreover , the operator Tψ :

fsqp → D′ is continuous, that is,

(4.8) |〈Tψh, φ〉| ≤ cNk(φ)‖h‖fsqp for all h ∈ fsqp , φ ∈ D.

Proof. Let h ∈ f sqp . Then by the definition of fsqp it follows that

(4.9) 2js|hξ| ‖1̃Iξ‖p ≤ ‖h‖fsqp , ξ ∈ Xj , j ≥ 0.

By (2.19), µ(Iξ) ∼ 2−jW(2j ; ξ) and obviously 2−(2α+2β+1)j ≤ W(2j ; ξ)
≤ 22α+2β+1, which implies

‖1̃Iξ‖
−1
p = µ(Iξ)1/2−1/p ≤ c2j(2α+2β)|1/2−1/p|.

Combining this with (4.9) we get

(4.10) |hξ| ≤ c2jγ1‖h‖fsqp , ξ ∈ Xj , γ1 := (2α+ 2β)|1/2− 1/p| − s.
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On the other hand, for a given φ ∈ D, by Lemma 2.8, φ =
∑∞

n=0〈φ,Pn〉Pn
in D, and using the definition of ψξ in (3.6)–(3.7) we have

〈ψξ, φ〉 = c1/2
ξ

2j∑
ν=2j−2+1

b̂

(
ν

2j−1

)
〈Pν , φ〉Pν(ξ) (j ≥ 2).

We use this and the rough estimates ‖Pν‖∞ ≤ cνα+β+1/2 and cξ ≤ c to
obtain

|〈ψξ, φ〉| ≤ c2jγ2
2j∑

ν=2j−2+1

|〈Pν , φ〉|, γ2 := α+ β + 1/2.

Combining this with (4.10) we get∑
ξ∈X
|hξ| |〈ψξ, φ〉| ≤

∞∑
j=0

∑
ξ∈Xj

|hξ| |〈ψξ, φ〉|(4.11)

≤ c‖h‖fsqp
∞∑
j=1

2j(γ1+γ2)(#Xj)
∑

2j−2≤ν≤2j

|〈Pν , φ〉|

≤ c‖h‖fsqp
∞∑
j=1

2−2j
∑

2j−2≤ν≤2j

(ν + 1)γ1+γ2+3|〈Pν , φ〉|

≤ c‖h‖fsqp Nk(φ)
∞∑
j=1

2−j ≤ c‖h‖fsqp Nk(φ) <∞,

where k := [γ1 + γ2] + 4 and for convenience P1/2 := P0. Therefore, the
above series converges and hence the series

∑
ξ∈X hξψξ converges in D′. We

define Tψh by 〈Tψh, φ〉 :=
∑

ξ∈X hξ〈ψξ, φ〉 for all φ ∈ D. We finally note
that estimate (4.8) is immediate from (4.11).

Here is our main result concerning the weighted F-spaces.

Theorem 4.5. Let s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. Then the
operators Sϕ : F sqp → f sqp and Tψ : fsqp → F sqp are bounded and Tψ ◦ Sϕ
= Id on F sqp . Consequently , for f ∈ D′ we have f ∈ F sqp if and only if
{〈f, ϕξ〉}ξ∈X ∈ fsqp . Furthermore,

‖f‖F sqp ∼ ‖{〈f, ϕξ〉}‖fsqp ∼
∥∥∥( ∞∑

j=0

2sjq
∑
ξ∈Xj

|〈f, ϕξ〉ψξ(·)|q
)1/q∥∥∥

p
.(4.12)

In addition, the definition of F sqp is independent of the selection of â satis-
fying (4.2)–(4.3).

For the proof of this theorem we will need several lemmas whose proofs
are given in the appendix.
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Lemma 4.6. If ξ ∈ Xj , j ≥ 0, and 0 < t <∞, then

(4.13) |ϕξ(x)|, |ψξ(x)| ≤ c(Mt1̃Iξ)(x), x ∈ [−1, 1],

(4.14) 1̃Iξ(x) ≤ c(Mtϕξ)(x), c(Mtψξ)(x), x ∈ [−1, 1].

Lemma 4.7. For any σ > 0 there exists a constant cσ > 0 such that

(4.15) |Φj ∗ ψξ(x)| ≤ cσ
2j/2√

W(2j ;x)(1 + 2jd(ξ, x))σ
,

ξ ∈ Xν , j − 1 ≤ ν ≤ j + 1,

and Φj ∗ψξ(x) = 0 for ξ ∈ Xν , ν ≥ j+2 or ν ≤ j−2. Here Xν := ∅ if ν < 0.

Definition 4.8. For a collection of complex numbers {hξ}ξ∈Xj we let

(4.16) h∗ξ :=
∑
η∈Xj

|hη|
(1 + 2jd(η, ξ))σ

.

Here σ > 1 is sufficiently large and will be selected later on.

Lemma 4.9. Suppose that P ∈ Π2j , j ≥ 0, and let aξ := maxx∈Iξ |P (x)|.
There exists r ≥ 1, depending only on σ, α, and β, such that if

bξ := max{min
x∈Iη
|P (x)| : η ∈ Xj+r, Iξ ∩ Iη 6= ∅},

then

(4.17) a∗ξ ∼ b∗ξ
with constants of equivalence independent of P , j and ξ.

Lemma 4.10. Assume t > 0 and let {bξ}ξ∈Xj (j ≥ 0) be a collection of
complex numbers. Suppose that σ > (4 max{α, β}+3)/t+1 in the definition
(4.16) of b∗ξ . Then

b∗ξ1Iξ(x) ≤ cMt

( ∑
η∈Xj

|bη|1Iη
)

(x), x ∈ Iξ, ξ ∈ Xj .

Proof of Theorem 4.5. Suppose α ≥ β. Fix 0 < t < min{p, q} and let
σ > (4α+3)/t+1. We first note that the right-hand side equivalence in (4.12)
follows immediately from Lemma 4.6 and the maximal inequality (2.24).

Assume that {Φj} are from the definition of weighted Triebel–Lizorkin
spaces, i.e. Φj are defined by (4.1), where â satisfies (4.2)–(4.3), the same
as (3.1)–(3.2). As already mentioned, there exists a function b̂ satisfying
(3.1)–(3.2) such that (3.3) holds. Let Ψj be defined by (3.6) using this b̂.
Also, let {ϕξ}ξ∈X and {ψξ}ξ∈X be the associated needlet systems defined as
in (3.7).

Further, let {Φ̃j} be a second sequence of kernels like the kernels {Φj}
above but defined by a different function â. Also, we assume that a se-
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quence of companion kernels {Ψ̃j} is constructed as above and let {ϕ̃ξ},
{ψ̃ξ} be the associated needlet systems, defined as in (3.5)–(3.7). So, we
have two totally different systems of kernels and associated needlet sys-
tems.

We first establish the boundedness of T eψ : fsqp → F sqp , where the space
F sqp is defined by {Φj}. Let h ∈ fsqp and define f :=

∑
ξ hξψξ. Using (4.15)

we have, for x ∈ [−1, 1],

|Φj ∗ f(x)| =
∣∣∣∑
ξ∈X

hξΦj ∗ ψ̃ξ(x)
∣∣∣ ≤ ∑

j−1≤ν≤j+1

∑
ξ∈Xµ

|hξ| |Φj ∗ ψ̃ξ(x)|

≤ c2j/2
∑

j−1≤ν≤j+1

∑
ξ∈Xν

|hξ|√
W(2ν ;x)(1 + 2νd(ξ, x))σ

.

Fix η ∈ Xj and set Yη := {ξ ∈ Xj−1 ∪ Xj ∪ Xj+1 : Iξ ∩ Iη 6= ∅} (X−1 := ∅).
Notice that #Yη ≤ const and d(x, ξ) ≤ c2−j if x ∈ Iξ and ξ ∈ Yη. Hence,
we have, for x ∈ Iη,

|Φj ∗ f(x)| ≤ c2j/2
∑

j−1≤ν≤j+1

∑
ω∈Yη∩Xν

∑
ξ∈Xν

|hξ|1ω(x)√
W(2ν ;ω)(1 + 2νd(ξ, ω))σ

≤ c2j/2
∑
ω∈Yη

h∗ω1ω(x)√
W(2j ;ω)

≤ c
∑
ω∈Yη

h∗ω1̃ω(x),

where we also used (2.19). We now insert this in (4.4) and use Lemma 4.10
and the maximal inequality (2.24) to obtain

‖f‖F sqp ≤ c
∥∥∥( ∞∑

j=0

[
2sj

∑
η∈Xj

∑
ω∈Yη

h∗ω1̃Iω(·)
]q)1/q∥∥∥

p
(4.18)

≤ c
∥∥∥( ∞∑

j=0

[
2sj

∑
ξ∈Xj

h∗ξ 1̃Iξ(·)
]q)1/q∥∥∥

p

≤ c
∥∥∥( ∞∑

j=0

[
Mt

( ∑
ξ∈Xj

2sj |hξ|1̃Iξ
)

(·)
]q)1/q∥∥∥

p
≤ c‖{hξ}‖fsqp .

For the second estimate above it was important that #Yη ≤ c. Therefore,
the operator T eψ : fsqp → F sqp is bounded.

We next prove the boundedness of the operator Sϕ : F sqp → fsqp , where
we assume this time that F sqp is defined in terms of {Φj}. Let f ∈ F sqp . Then
Φj ∗ f ∈ Π2j . For ξ ∈ Xj , we set

aξ := max
x∈Iξ
|Φj ∗ f(x)|, bξ := max{min

x∈Iη
|Φj ∗ f(x)| : η ∈ Xj+r, Iξ ∩ Iη 6= ∅}.
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Assuming that r above is the constant from Lemma 4.9, it follows from the
same lemma that a∗ξ ∼ b∗ξ . Therefore,

|〈f, ϕξ〉| = c1/2
ξ |Φj ∗ f(ξ)| ≤ cµ(Iξ)1/2aξ ≤ cµ(Iξ)1/2a∗ξ ≤ cµ(Iξ)1/2b∗ξ .

From this, taking into account that 1̃Iξ := µ(Iξ)−1/2
1Iξ , we obtain

‖{〈f, ϕξ〉}‖fsqp :=
∥∥∥(∑

j≥0

2jsq
∑
ξ∈Xj

[|〈f, ϕξ〉|1̃Iξ(·)]
q
)1/q∥∥∥

p
(4.19)

≤ c
∥∥∥(∑

j≥0

2jsq
∑
ξ∈Xj

[b∗ξ1Iξ(·)]
q
)1/q∥∥∥

p

≤ c
∥∥∥(∑

j≥0

2jsq
[
Mt

( ∑
ξ∈Xj

bξ1Iξ

)
(·)
]q)1/q∥∥∥

p

≤ c
∥∥∥(∑

j≥0

2jsq
∑
ξ∈Xj

bqξ1Iξ(·)
)1/q∥∥∥

p
,

where for the second inequality above we used Lemma 4.10 and for the third
the maximal inequality (2.24).

Let mη := minx∈Iη |Φj ∗ f(x)| for ξ ∈ Xj+r and define, for ξ ∈ Xj ,
Xj+r(ξ) := {w ∈ Xj+r : Iw ∩ Iξ 6= ∅}.

Evidently, #Xj+r(ξ) ≤ c̃, c̃ = c̃(r). Hence, d(w, η) ≤ c(r)2−j−r for w, η ∈
Xj+r(ξ) and therefore

mw ≤ c
mw

1 + 2j+rd(w, η)
≤ cm∗η.

Consequently, for any ξ ∈Xj and η ∈Xj+r(ξ), we have bξ = maxw∈Xj+r(ξ)mw

≤ cm∗η and hence
bξ1Iξ ≤ c

∑
η∈Xj+r(ξ)

m∗η1Iη .

Using this estimate in (4.19) we get

‖{〈f, ϕξ〉}‖fsqp ≤ c
∥∥∥(∑

j≥0

2jsq
( ∑
η∈Xj+r

m∗η1Iη(·)
)q)1/q∥∥∥

p

≤ c
∥∥∥(∑

j≥0

2jsq
[
Mt

( ∑
η∈Xj+r

mη1Iη

)
(·)
]q)1/q∥∥∥

p

≤ c
∥∥∥(∑

j≥0

(
2js

∑
ξ∈Xj

mξ1Iξ(·)
)q)1/q∥∥∥

p

≤ c
∥∥∥(∑

j≥0

(2js|Φj ∗ f |)q
)1/q∥∥∥

p
.

Thus the boundedness of Sϕ : F sqp → f sqp is established.
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The identity Tψ ◦ Sϕ = Id follows from Proposition 3.1.
It remains to show that F sqp is independent of the particular selection of

â in the definition of {Φj}. Denote for the moment by ‖f‖F sqp (Φ) the F-norm
defined by {Φj}. Then by the above proof it follows that

‖f‖F sqp (Φ) ≤ c‖{〈f, ϕ̃ξ〉}‖fsqp and ‖{〈f, ϕξ〉}‖fsqp ≤ c‖f‖F sqp (Φ)

and hence
‖f‖F sqp (Φ) ≤ c‖{〈f, ϕ̃ξ〉}‖fsqp ≤ c‖f‖F sqp (eΦ)

.

Now the desired independence follows by reversing the roles of {Φj}, {Φ̃j},
and their complex conjugates.

It is natural to define the weighted potential space (generalized weighted
Sobolev space) Hp

s := Hp
s (w), s > 0, 1 ≤ p ≤ ∞, on [−1, 1] as the set of all

f ∈ D′ such that

(4.20) ‖f‖Hp
s

:=
∥∥∥ ∞∑
n=0

(n+ 1)san(f)Pn(·)
∥∥∥
p
<∞,

where an(f) := 〈f,Pn〉 as in Lemma 2.9.
In the next statement we identify certain weighted Triebel–Lizorkin

spaces as weighted potential spaces or Lp(w).

Proposition 4.11. We have

F s2p ∼ Hp
s , s > 0, 1 < p <∞,

and
F 02
p ∼ H

p
0 ∼ L

p(w), 1 < p <∞,

with equivalent norms. Therefore, for any f ∈ Lp(w), 1 < p <∞,

‖f‖p ∼
∥∥∥( ∞∑

j=0

∑
ξ∈Xj

|〈f, ϕξ〉ψξ(·)|2
)1/2∥∥∥

p
.

One proves this proposition in a standard way using e.g. the multipliers
from [3]. The proof can be carried out exactly as in the case of spherical
harmonic expansions, given in [11, Proposition 4.3], and will be omitted.

5. Second scale of weighted Triebel–Lizorkin spaces on [−1, 1].
We introduce our second scale of Triebel–Lizorkin spaces by utilizing again
the kernels Φj defined by (4.1) with â satisfying (4.2)–(4.3) (compare
with §4).

Definition 5.1. Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. Then the
weighted Triebel–Lizorkin space Fsqp := Fsqp (w) is defined as the set of all
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f ∈ D′ such that

(5.1) ‖f‖Fsqp :=
∥∥∥( ∞∑

j=0

[2sjW(2j ; ·)−s|Φj ∗ f(·)|]q
)1/q∥∥∥

p
<∞

with the usual modification when q =∞.

Observe that the above definition is independent of the choice of â as
long as â satisfies (4.2)–(4.3) (see Theorem 5.3 below). Following in the
footsteps of the development from §4, it is easy to show that Fsqp is a com-
plete quasi-Banach space, which is continuously embedded in D′. For the
latter one proceeds as in the proof of Proposition 4.2, where in (4.5) one,
in addition, uses the obvious estimate ‖g‖2 ≤ cnγ‖W(n; ·)sg(·)‖2, where
γ := (2 min{α, β} + 1)s+, which is immediate from c1n

−2min{α,β}−1 ≤
W(n;x) ≤ c2, x ∈ [−1, 1]. We skip the details.

The sequence space f sqp associated with Fsqp is now defined as follows.

Definition 5.2. Let s ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. Then f sqp is
defined as the space of all complex-valued sequences h := {hξ}ξ∈X such that

(5.2) ‖h‖fsqp :=
∥∥∥(∑

ξ∈X
[µ(Iξ)−s|hξ|1̃Iξ(·)]

q
)1/q∥∥∥

p
<∞

with the usual modification when q =∞.

To characterize the Triebel–Lizorkin spaces Fsqp we use again the oper-
ators Sϕ and Tψ from (4.7). (One shows that Tψ is well defined on f sqp in
much the same way as in Lemma 4.4.)

Theorem 5.3. Let s ∈ R, 0 < p < ∞ and 0 < q ≤ ∞. Then the
operators Sϕ : Fsqp → f sqp and Tψ : f sqp → Fsqp are bounded and Tψ ◦ Sϕ = Id
on Fsqp . Consequently , for f ∈ D′ we have that f ∈ Fsqp if and only if
{〈f, ϕξ〉}ξ∈X ∈ f sqp . Furthermore,

‖f‖Fsqp ∼ ‖{〈f, ϕξ〉}‖fsqp ∼
∥∥∥(∑

ξ∈X
[µ(Iξ)−s|〈f, ϕξ〉ψξ(·)|]q

)1/q∥∥∥
p
.(5.3)

In addition, the definition of Fsqp is independent of the selection of â satis-
fying (4.2)–(4.3).

The proof of this theorem is similar to the proof of Theorem 4.5. The
only new ingredient is the following lemma.

Lemma 5.4. Let t > 0 and s ∈ R. Suppose {bξ}ξ∈Xj (j ≥ 0) is a collec-
tion of complex numbers and let σ > (4 max{α, β}+ 3)(1/t+ |s|) + 1 in the
definition (4.16) of b∗ξ . Then

(5.4) µ(Iξ)−sb∗ξ1Iξ(x) ≤ cMt

( ∑
η∈Xj

µ(Iη)−s|bη|1Iη
)

(x), x ∈ Iξ, ξ ∈ Xj ,
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Proof. For ξ ∈ Xj , µ(Iξ) ∼ 2−jW(2j ; ξ) and hence, using (2.22),

µ(Iξ)−sb∗ξ ≤ c
∑
η∈Xj

2jsW(2j ; ξ)−s|bη|
(1 + 2jd(ξ, η))σ

≤ c
∑
η∈Xj

2jsW(2j ; η)−s|bη|
(1 + 2jd(ξ, η))σ1

≤ c(µ(Iη)−s|bη|)∗,

where σ1 := σ − (2 max{α, β}+ 1)|s| > (4 max{α, β}+ 3)/t+ 1. Now (5.4)
follows from Lemma 4.10.

Now the proof of Theorem 5.3 can be carried out as the proof of The-
orem 4.5, using Lemma 5.4 in place of Lemma 4.10 and selecting σ in the
definitions of h∗ξ and a∗ξ , b

∗
ξ sufficiently large. We skip the further details.

In a sense the spaces Fsqp are more natural than the spaces F sqp from §4
since they embed “correctly” with respect to the smoothness index s.

Proposition 5.5. Let 0 < p < p1 < ∞, 0 < q, q1 ≤ ∞, and −∞ <
s1 < s <∞. Then we have the continuous embedding

(5.5) Fsqp ⊂ Fs1q1p1 if s− 1/p = s1 − 1/p1.

The proof of this embedding result can be carried out as the proof of
Proposition 4.11 in [9] (the argument is similar to the one in the classical
case of Rn, see e.g. [19, p. 129]). We omit it.

6. First scale of weighted Besov spaces on [−1, 1]. To introduce
the first scale of weighted Besov spaces we use the kernels Φj defined in (4.1)
with â satisfying (4.2)–(4.3) (see [16, 19]).

Definition 6.1. Let s ∈ R and 0 < p, q ≤ ∞. Then the weighted Besov
space Bsq

p := Bsq
p (w) is defined as the set of all f ∈ D′ such that

‖f‖Bsqp :=
( ∞∑
j=0

(2sj‖Φj ∗ f‖p)q
)1/q

<∞,

where the lq-norm is replaced by the sup-norm if q =∞.

Note that as in the case of weighted Triebel–Lizorkin spaces the above
definition is independent of the choice of â satisfying (4.2)–(4.3) (see The-
orem 6.4). Also, the Besov space Bsq

p (w) is a quasi-Banach space which is
continuously embedded in D′.

It is natural to associate to the weighted Besov space Bsq
p the sequence

space bsqp defined as follows.

Definition 6.2. Let s ∈ R and 0 < p, q ≤ ∞. Then bsqp := bsqp (w) is
defined to be the space of all complex-valued sequences h := {hξ}ξ∈X such
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that

‖h‖bsqp :=
( ∞∑
j=0

2jsq
[∑
ξ∈Xj

(µ(Iξ)1/p−1/2|hξ|)p
]q/p)1/q

<∞

with the usual modification for p =∞ or q =∞.

The analysis and synthesis operators Sϕ and Tψ defined in (4.7) will play
a distinctive role in this section. The next lemma shows that the operator
Tψ is well defined on bsqp .

Lemma 6.3. Let s ∈ R, 0 < p, q ≤ ∞. Then for any h ∈ bsqp , Tψh :=∑
ξ∈X hξψξ converges in D′. Moreover , the operator Tψ : bsqp → D′ is con-

tinuous.

The proof of this lemma is similar to the proof of Lemma 4.4 and will
be omitted.

Our main result in this section is the following characterization of
weighted Besov spaces.

Theorem 6.4. Let s ∈ R and 0 < p, q ≤ ∞. The operators Sϕ :
Bsq
p → bsqp and Tψ : bsqp → Bsq

p are bounded and Tψ ◦ Sϕ = Id on Bsq
p .

Consequently , for f ∈ D′ we have f ∈ Bsq
p if and only if {〈f, ϕξ〉}ξ∈X ∈ bsqp .

Moreover ,

‖f‖Bsqp ∼ ‖{〈f, ϕξ〉}‖bsqp ∼
( ∞∑
j=0

2sjq
[∑
ξ∈Xj

‖〈f, ϕξ〉ψξ‖pp
]q/p)1/q

.(6.1)

In addition, the definition of Bsq
p is independent of the selection of â satis-

fying (4.2)–(4.3).

To prove this theorem we will need the following lemma whose proof is
presented in the appendix.

Lemma 6.5. For every P ∈ Π2j , j ≥ 0, and 0 < p ≤ ∞,

(6.2)
( ∑
ξ∈Xj

max
x∈Iξ
|P (x)|pµ(Iξ)

)1/p
≤ c‖P‖p.

Proof of Theorem 6.4. Note first that the right-hand equivalence of (6.1)
follows immediately from (3.12).

As in the proof of Theorem 4.5, assume that the kernels Φj are defined
by (4.1), where â satisfies (4.2)–(4.3). Let b̂ be such that (3.1)–(3.3) hold
and let Ψj be defined by (3.6) using this b̂. Also, let {ϕξ}ξ∈X and {ψξ}ξ∈X
be the associated needlet systems defined as in (3.7). Further, assume that
{Φ̃j}, {Ψ̃j}, {ϕ̃ξ}, {ψ̃ξ} is a second set of kernels and needlets.

We first prove the boundedness of the operator T eψ : bsqp → Bsq
p , where

Bsq
p is defined via {Φj}. Let 0 < t < min{p, 1} and σ ≥ (2α+2)/t+α+1/2.
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Assume h ∈ bsqp and set f :=
∑

ξ∈X hξψξ. Employing Lemmata 2.7, 4.7, and
(2.22) we get

|Φj ∗ f(x)| ≤
∑

j−1≤ν≤j+1

∑
ξ∈Xν

|hξ| |Φj ∗ ψ̃ξ(x)|

≤ c
∑

j−1≤ν≤j+1

∑
ξ∈Xν

|hξ|
2j/2√

W(2j ;x)(1 + 2jd(ξ, x))σ

≤ c
∑

j−1≤ν≤j+1

∑
ξ∈Xν

|hξ|
2j/2√

W(2j ; ξ)(1 + 2jd(ξ, x))σ−α−1/2

≤ c
∑

j−1≤ν≤j+1

∑
ξ∈Xν

|hξ|µ(Iξ)−1/2Mt(1Iξ)(x) (X−1 := ∅),

where we also used the inequality σ ≥ (2α + 2)/t + α + 1/2. Using the
maximal inequality (2.24) it follows that

‖Φj ∗ f‖pp ≤
∥∥∥ ∑
j−1≤ν≤j+1

∑
ξ∈Xν

|hξ|µ(Iξ)−1/2Mt(1Iξ)(·)
∥∥∥p
p

≤ c
∑

j−1≤ν≤j+1

∑
ξ∈Xν

|hξ|pµ(Iξ)−p/2
1�

−1

1Iξ(x)w(x) dx

≤ c
∑

j−1≤ν≤j+1

∑
ξ∈Xν

|hξ|pµ(Iξ)1−p/2.

Multiplying by 2js and summing over j ≥ 0 we get ‖f‖Bsqp ≤ c‖{hξ}‖bsqp .
We next prove the boundedness of the operator Sϕ : Bsq

p → bsqp , where
we assume that Bsq

p is defined in terms of {Φj}. Note first that

|〈f, ϕξ〉| ∼ µ(Iξ)1/2|Φj ∗ f(ξ)|, ξ ∈ Xj .

Since Φj ∗ f ∈ Π2j , by Lemma 6.5 we obtain∑
ξ∈Xj

µ(Iξ)1−p/2|〈f, ϕξ〉|p ≤ c
∑
ξ∈Xj

µ(Iξ) sup
x∈Iξ
|Φj ∗ f(x)|p ≤ c‖Φj ∗ f‖pp,

which yields ‖{〈f, ϕ〉}‖bsqp ≤ c‖f‖Bsqp .
The identity Tψ ◦ Sϕ = Id follows from Proposition 3.1.
The independence of Bsq

p from the particular selection of â in the defini-
tion of {Φj} follows from the above exactly as in the Triebel–Lizorkin case
(see the proof of Theorem 4.5).

Our next goal is to link the weighted Besov spaces with best polyno-
mial approximation in Lp(w). Denote by Asqp the approximation space of all
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functions f ∈ Lp(w) such that

(6.3) ‖f‖Asqp := ‖f‖p +
( ∞∑
j=0

(2sjE2j (f)p)q
)1/q

<∞,

where En(f)p denotes the best approximation of f ∈ Lp(w) from Πn

(see (2.7)).

Proposition 6.6. Let s > 0, 1 ≤ p ≤ ∞, and 0 < q ≤ ∞. Then
f ∈ Bsq

p if and only if f ∈ Asqp . Moreover ,

(6.4) ‖f‖Asqp ∼ ‖f‖Bsqp .

Proof. Let f ∈ Bsq
p . It is easy and standard to show that under the

assumptions on s, p, and q the space Bsq
p is continuously embedded in Lp(w),

i.e. f can be identified as a function in Lp(w) and ‖f‖p ≤ c‖f‖Bsqp .
It is easy to construct (see e.g. [6]) a function â ≥ 0 satisfying (4.2)–(4.3)

such that â(t) + â(2t) = 1 for t ∈ [1/2, 1] and hence

(6.5)
∞∑
ν=0

â(2−νt) = 1, t ∈ [1,∞).

Assume that {Φj} are defined by (4.1) with such an â. As in Proposition 3.1,
it is easy to see that f =

∑∞
j=0 Φj ∗ f in Lp(w). Hence, since Φj ∗ f ∈ Π2j ,

(6.6) E2l(f)p ≤
∞∑

j=l+1

‖Φj ∗ f‖p, l ≥ 0.

Now, a standard argument using (6.6) shows that ‖f‖Asqp ≤ c‖f‖Bsqp .
To prove the estimate in the other direction, we note that Φj ∗ f = Φj ∗

(f−Q) forQ ∈ Π2j−2 (j ≥ 2). Hence, as in Lemma 2.5, ‖Φj∗f‖p ≤ c‖f−Q‖p.
Therefore,

‖Φj ∗ f‖p ≤ cE2j−2(f)p, j ≥ 2, ‖Φj ∗ f‖p ≤ c‖f‖p,
which implies ‖f‖Bsqp ≤ c‖f‖Asqp .

Above we used the fact that the definition of Bsq
p is independent of the

selection of â, satisfying (4.2)–(4.3).

Remark 6.7. It is worth mentioning that En(f)p can be characterized
via the weighted moduli of smoothness of Ditzian–Totik [4]. Consequently,
the weighted moduli of smoothness can be used for characterization of
weighted Besov spaces as well.

7. Second scale of weighted Besov spaces on [−1, 1]. We introduce
a second scale of weighted Besov spaces by using again as in §6 the kernels Φj ,
defined by (4.1) with â satisfying (4.2)–(4.3).
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Definition 7.1. Let s ∈ R and 0 < p, q ≤ ∞. Then the weighted Besov
space Bsqp := Bsqp (w) is defined as the set of all f ∈ D′ such that

‖f‖Bsqp :=
( ∞∑
j=0

[2sj‖W(2j ; ·)−sΦj ∗ f(·)‖p]q
)1/q

<∞,

where the lq-norm is replaced by the sup-norm if q =∞.

As for the other weighted Besov and Triebel–Lizorkin spaces consid-
ered here the above definition is independent of the choice of â satisfying
(4.2)–(4.3). Also, the Besov space Bsqp (w) is a quasi-Banach space which is
continuously embedded in D′.

The main advantages of the spaces Bsqp over Bsq
p are that, first, they

embed “correctly” with respect to the smoothness index s, and secondly,
the right smoothness spaces in nonlinear n-term weighted approximation
from needles are defined in terms of spaces Bsqp (see §8 below).

Proposition 7.2. Let 0 < p ≤ p1 < ∞, 0 < q ≤ q1 ≤ ∞, and −∞ <
s1 ≤ s <∞. Then we have the continuous embedding

(7.1) Bsqp ⊂ Bs1q1p1 if s− 1/p = s1 − 1/p1.

This embedding result follows readily by applying inequality (2.11).
We now define the sequence space bsqp (w) companion to Bsqp (w).

Definition 7.3. Let s ∈ R and 0 < p, q ≤ ∞. Then bsqp := bsqp (w) is
defined to be the space of all complex-valued sequences h := {hξ}ξ∈X such
that

‖h‖bsqp :=
( ∞∑
j=0

[∑
ξ∈Xj

(µ(Iξ)−s+1/p−1/2|hξ|)p
]q/p)1/q

<∞

with the usual modification for p =∞ or q =∞.

For the characterization of weighted Besov spaces Bsqp , we again employ
the operators Sϕ and Tψ from (4.7). An argument similar to the proof of
Lemma 4.4 shows that Tψ is well defined on bsqp (see also Lemma 6.3).

Theorem 7.4. Let s∈R and 0<p, q≤∞. The operators Sϕ :Bsqp →bsqp
and Tψ : bsqp → Bsqp are bounded and Tψ ◦ Sϕ = Id on Bsqp . Consequently ,
for f ∈ D′ we have f ∈ Bsqp if and only if {〈f, ϕξ〉}ξ∈X ∈ bsqp . Moreover ,

(7.2) ‖f‖Bsqp ∼ ‖{〈f, ϕξ〉}‖bsqp ∼
( ∞∑
j=0

[∑
ξ∈Xj

µ(Iξ)−sp‖〈f, ϕξ〉ψξ‖pp
]q/p)1/q

.

In addition, the definition of Bsqp is independent of the selection of â satis-
fying (4.2)–(4.3).

The following additional lemma is needed for the proof of Theorem 7.4.
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Lemma 7.5. For every P ∈ Π2j , j ≥ 0, and 0 < p ≤ ∞,

(7.3)
( ∑
ξ∈Xj

W(2j ; ξ)−sp sup
x∈Iξ
|P (x)|pµ(Iξ)

)1/p
≤ c‖W(2j ; ·)P (·)‖p.

The proof of this lemma is similar to the proof of Lemma 6.5, where one
uses Lemma 5.4 in place of Lemma 4.10. We skip it.

For the proof of Theorem 7.4, one proceeds as in the proof of Theo-
rem 6.4, using Lemma 7.5 instead of Lemma 6.5. The proof will be omitted.

8. Application of weighted Besov spaces to nonlinear approx-
imation. We consider here nonlinear n-term approximation for a needlet
system {ψη}η∈X with ϕη = ψη, defined as in (3.5)–(3.8) with b̂ = â, â ≥ 0.
Then â satisfies

â2(t) + â2(2t) = 1, t ∈ [1/2, 1].

Hence {ψη} are real-valued.
Denote by Σn the nonlinear set consisting of all functions g of the form

g =
∑
ξ∈Λ

aξψξ,

where Λ ⊂ X , #Λ ≤ n, and Λ is allowed to vary with g. Let σn(f)p denote
the error of best Lp(w)-approximation to f ∈ Lp(w) from Σn:

σn(f)p := inf
g∈Σn

‖f − g‖p.

The approximation will take place in Lp(w), 0 < p < ∞. Assume in the
following that 0 < p < ∞, s > 0, and 1/τ := s + 1/p. We write briefly
Bsτ := Bsττ .

By Theorem 7.4 and (3.12) it follows that

(8.1) ‖f‖Bsτ ≈
(∑
ξ∈X
‖〈f, ψξ〉ψξ‖τp

)1/τ
.

The embedding of Bsτ into Lp(w) plays an important role here.

Proposition 8.1. If f ∈ Bsτ , then f can be identified as a function
f ∈ Lp(w) and

(8.2) ‖f‖p ≤
∥∥∥∑
ξ∈X
|〈f, ψξ〉ψξ(·)|

∥∥∥
p
≤ c‖f‖Bsτ .

We now state our main result in this section.

Theorem 8.2 (Jackson estimate). If f ∈ Bsτ , then

(8.3) σn(f)p ≤ cn−s‖f‖Bsτ ,
where c depends only on s, p, and the parameters of the needlet system.
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The proofs of this theorem and of Proposition 8.1 can be carried out
exactly as the proofs of the respective Jackson estimate and embedding
result in [9, 11] and will be omitted.

It is an open problem to prove the Bernstein estimate companion
to (8.3):

(8.4) ‖g‖Bsτ ≤ cn
s‖g‖p for g ∈ Σn, 1 < p <∞.

This would enable one to characterize the rates (approximation spaces) of
nonlinear n-term approximation in Lp(w) (1 < p < ∞) from needlet sys-
tems.

9. Proofs

Proof of Proposition 2.2. We need the following integral representation
of Ln(x, y) from [13] (see (2.15)):

(9.1) Ln(x, y) = cα,β

π�

0

1�

0

Lα,βn (t(x, y, r, ψ)) dmα,β(r, ψ),

where Lα,βn (t) is defined by (2.1),

t(x, y, r, ψ) := 1
2(1+x)(1+y)+ 1

2(1−x)(1−y)r2+r
√

1− x2
√

1− y2 cosψ−1,

the integral is against

dmα,β(r, ψ) := (1− r2)α−β−1r2β+1(sinψ)2βdrdψ,

and the constant cα,β is determined from

cα,β

π�

0

1�

0

1 dmα,β(r, ψ) = 1.

For any u ∈ [−1, 1] we will denote by θu the only angle in [0, π] such that
u = cos θu.

We will need the following lemma contained in the proof of Theorem 2.4
in [13].

Lemma 9.1. Let α, β > −1/2 and k ≥ 2α + 2β + 3. Then there is a
constant ck > 0 depending only on k, α, and β such that for x, y ∈ [−1, 1],

π�

0

1�

0

n2α+1 dmα,β(r, ψ)
(1 + n

√
1− t(x, y, r, ψ))k

≤ ck
1√

Wα,β(n;x)
√
Wα,β(n; y)(1 + n|θx − θy|)σ

,

where σ = k − 2α− 2β − 3.
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Identity (9.1) yields

(9.2) |Ln(x, y)− Ln(ξ, y)|

≤ c
π�

0

1�

0

|Lα,βn (t(x, y, r, ψ))− Lα,βn (t(ξ, y, r, ψ))| dmα,β(r, ψ)

≤ c
π�

0

1�

0

‖∂Lα,βn (·)‖L∞(Ir,ψ)|t(x, y, r, ψ)− t(ξ, y, r, ψ)| dmα,β(r, ψ),

where ∂f = f ′ and Ir,ψ is the interval with end points t(x, y, r, ψ) and
t(ξ, y, r, ψ).

From estimate (2.16) in [13] and Markov’s inequality, for any k there
exists a constant ck > 0 such that

(9.3) ‖∂Lα,βn (·)‖L∞(Ir,ψ) ≤ ck max
u∈Ir,ψ

n2α+4

(1 + n
√

1− u)k

≤ ckn2α+4[(1 + n
√

1− t(x, y, r, ψ))−k + (1 + n
√

1− t(ξ, y, r, ψ))−k].

For the rest of the proof we assume that k > 0 is sufficiently large.
From the definition of t(x, y, r, ψ) one easily obtains

1− t(x, y, r, ψ) = 2 sin2 θx − θy
2

+ 2 sin2 θx
2

sin2 θy
2

(1− r2)

+ sin θx sin θy (1− r cosψ),
which implies

t(x, y, r, ψ)− t(ξ, y, r, ψ) = cos(θξ − θy)− cos(θx − θy)

+ (cos θξ − cos θx) sin2 θy
2

(1− r2) + (sin θξ − sin θx) sin θy (1− r cosψ).

It is readily seen that

|cos(θξ − θy)− cos(θx − θy)| = 2
∣∣∣∣sin θx + θξ − 2θy

2
sin

θξ − θx
2

∣∣∣∣
≤ |θξ − θx|(|θz − θy|+ cn−1),

where we used the inequalities |θz − θξ| ≤ cn−1 and |θx − θξ| ≤ cn−1.
Therefore,

(9.4) |t(x, y, r, ψ)− t(ξ, y, r, ψ)|

≤ |θξ − θx|[(|θz − θy|+ cn−1) + sin2 θy
2

(1− r2) + sin θy (1− r cosψ)].

We use this and (9.3) in (9.2) to obtain

|Ln(x, y)− Ln(ξ, y)| ≤ c|θξ − θx|(A1 +B1 +A2 +B2 +A3 +B3),

where Aj and Bj are integrals of the same type with Aj involving t(x, y, r, ψ)
and Bj involving t(ξ, y, r, ψ); the indices j = 1, 2, 3 correspond to the three
terms on the right-hand side of (9.4). We will estimate them separately.
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Case 1. We first estimate the integral

A1 := n2α+4
π�

0

1�

0

|θz − θy|+ cn−1

(1 + n
√

1− t(x, y, r, ψ))k
dmα,β(r, ψ)

as well as the integral B1, which is the same as A1 but with t(ξ, y, r, ψ) in
place of t(x, y, r, ψ).

Using the estimate in Lemma 9.1 and the fact that |θz − θy| ∼ |θx − θy|
+ cn−1, we have

A1 ≤ c
n3(|θz − θy|+ cn−1)√

W(n;x)
√
W(n; y)(1 + n|θx − θy|)σ

≤ c n2√
W(n;x)

√
W(n; y)(1 + n|θz − θy|)σ−1

.

On account of (2.22) this gives the desired estimate.
The integral B1 is estimated similarly with the same bound.

Case 2. We now estimate the integrals

A2 := n2α+4
π�

0

1�

0

sin2 θy
2 (1− r2)

(1 + n
√

1− t(x, y, r, ψ))k
dmα,β(r, ψ)

and B2 which is the same but has t(ξ, y, r, ψ) in place of t(x, y, r, ψ).
By the definition of dmα,β(r, ψ), (1 − r2)dmα,β(r, ψ) = dmα+1,β(r, ψ).

Then using the estimate from Lemma 9.1 with α replaced by α + 1, we
get

A2 ≤ c
n sin2 y

2√
Wα+1,β(n;x)

√
Wα+1,β(n; y)(1 + n|θx − θy|)σ

≤ c n2√
Wα,β(n;x)

√
Wα,β(n; y)(1 + n|θx − θy|)σ

,

where we used the fact thatWα+1,β(n; y) =Wα,β(n; y)(sin2(θy/2)+n−2) and
hence Wα+1,β(n;x) ≥ Wα,β(n;x)n−2. The equivalence |θz − θy| ∼ |θx − θy|
+ cn−1 and (2.22) then give the desired estimate. The integral B2 is esti-
mated similarly.

Case 3. We finally estimate the integrals

A3 := n2α+4
π�

0

1�

0

sin θy (1− r cosψ)
(1 + n

√
1− t(x, y, r, ψ))k

dmα,β(r, ψ)

and B3 which has t(ξ, y, r, ψ) in place of t(x, y, r, ψ).
Assume first that |sin θx| ≥ n−1. Using the fact that

1− t(x, y, r, ψ) ≥ sin θx sin θy (1− r cosψ),
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we conclude that

A3 ≤
n2α+2

sin θx

π�

0

1�

0

1
(1 + n

√
1− t(x, y, r, ψ))k−2

dmα,β(r, ψ)

≤ cn2α+3
π�

0

1�

0

1
(1 + n

√
1− t(x, y, r, ψ))k−2

dmα,β(r, ψ).

Now the estimate from Lemma 9.1 can be applied to get the desired estimate.
Let |sin θx| ≤ n−1. We have

|sin θy| ≤ |sin θy − sin θx|+ |sin θx| ≤ |θy − θx|+ n−1

and use the fact that

1− t(x, y, r, ψ) ≥ 2 sin2 θx − θy
2

≥ c(θx − θy)2

to conclude that

A3 ≤ cn2α+3
π�

0

1�

0

1
(1 + n

√
1− t(x, y, r, ψ))k−2

dmα,β(r, ψ).

Applying the estimate from Lemma 9.1 we obtain the desired result. B3 is
estimated in the same way.

Putting the above estimates together completes the proof of The-
orem 2.2.

Proof of Proposition 2.4. Note first that it suffices to prove (2.6) only
for n ≥ n0, where n0 is sufficiently large. This follows from the fact that
P

(α,β)
n and P

(α,β)
n+1 do not have common zeros and W(n;x) ∼ 1 if n ≤ const.

Furthermore, since P (α,β)
k (−x) = (−1)kP (β,α)

k (x), it is sufficient to consider
only the case x ∈ [0, 1].

Note that the Jacobi polynomials are normalized by P
(α,β)
k (1) =

(
k+α
k

)
∼ kα and using Markov’s inequality it follows that P (α,β)

k (x) ≥ ckα for
1−δk−2 ≤ x ≤ 1, where δ > 0 is a sufficiently small constant. From this one
readily infers that (2.6) holds for 1−δ1n−2 ≤ x ≤ 1, δ1 > 0. Define θ ∈ [0, π]
from x = cos θ. Then the latter condition on x is apparently equivalent to
0 ≤ θ ≤ δ2n−1 with δ2 being a positive constant.

To estimate Λn(cos θ) for c∗n−1 ≤ θ ≤ π/2 with c∗ > 0 sufficiently large,
we need the following asymptotic formula of the Jacobi polynomials: For
α, β > −1,(

sin
θ

2

)α(
cos

θ

2

)β
P (α,β)
n (cos θ) = N−α

Γ (n+ α+ 1)
n!

(
θ

sin θ

)1/2

Jα(Nθ)

+ θ1/2O(n−3/2)
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if c0n−1 ≤ θ ≤ π/2, where N = n + η with η := (α + β + 1)/2, Jα is
the Bessel function, and c0 > 0 is an arbitrary but fixed constant (see [18,
Theorem 8.21.12, p. 195]).

Since 2/π ≤ (sin θ)/θ ≤ 1 and (cos θ)/2 ∼ 1 on [0, π/2], and also
Γ (n+ α+ 1)/n! ∼ nα, we infer from the above that(

sin
θ

2

)2α

[P (α,β)
k (cos θ)]2 ≥ c1[Jα((k + η)θ)]2 − c2k−3/2θ1/2|Jα((k + η)θ)|.

Recall the well known asymptotic formula

Jα(z) =
(

2
πz

)1/2

[cos(z + γ) +O(z−1)], z →∞,

where γ = −απ/2− π/4.
All of the above leads to

(9.5)
(

sin
θ

2

)2α

Λn(cos θ)

≥
n+[εn]∑
k=n

(c1[Jα((k + η)θ)]2 − c2k−3/2θ1/2|Jα((k + η)θ)|)

≥ c

nθ

n+[εn]∑
k=n

[cos2(kθ + b(θ))− c′(nθ)−1]− c′′εn−1,

for c0n−1 ≤ θ ≤ π/2, where b(θ) = ((α + β + 1)/2)θ + γ. We now use the
well known identities for the Dirichlet kernel and its conjugate to obtain,
for m > n,
m∑
k=n

cos2(kθ+b) =
1
2

(m−n+1)+(cos 2b+sin 2b)
sin(m−n+1)θ cos(n+m)θ

2 sin θ
.

Therefore,
n+[εn]∑
k=n

cos2(kθ + b(θ)) ≥ 1
2

([εn] + 1)
(

1− 2
([εn] + 1) sin θ

)
≥ 1

2
εn

(
1− π

εnθ

)
≥ εn

4
,

whenever (2π/ε)n−1 ≤ θ ≤ π/2. Substituting this in (9.5) we obtain(
sin

θ

2

)2α

Λn(cos θ) ≥ c

nθ

(
εn

4
− c′εn

nθ

)
− c′′ε

n
(9.6)

≥ cε

θ

(
1
4
− c′

c∗

)
− c′′ε

n
≥ c�

θ
, c� > 0,
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if c∗n−1 ≤ θ ≤ π/2 with c∗ := max{c0, 8c′, 2π/ε} and n is sufficiently large.
Hence,

Λn(cos θ) ≥ c�

θ

(
sin

θ

2

)−2α

≥ cθ−(2α+1), c∗n−1 ≤ θ ≤ π/2,(9.7)

for sufficiently large n, which yields (2.6) in this case.
For the remaining case δ2n−1 ≤ θ ≤ c∗n−1, we need further properties

of Jacobi polynomials. Let xν,n = cos θν,n denote the zeros of the Jacobi
polynomial P (α,β)

n , where

0 < θ1,n < θ2,n < · · · < θn,n < π.

It is well known that θν,n ∼ ν/n, but we will need a much more precise as-
ymptotic representation for θν,n (see below). The Jacobi polynomials satisfy
the following relation (see e.g. [12, Theorem 3.3, p. 171]):

(9.8) P (α,β)
n (cos θ) ∼ n1/2|θ − θνθ,n|

nα+1/2

ν
α+1/2
θ

, θ ∈ [0, π],

where νθ denotes the index of the zero xν,n, 1 ≤ ν ≤ n, which is (one of)
the closest to x (x = cos θ).

We will need the asymptotics of the zeros of the Jacobi polynomials
from [5]:

(9.9) θν,n =
jα,ν
N

+
1

4N2

[(
α2− 1

4

)
1− t cot t

2t
−α

2− β2

4
tan

t

2

]
+t2O(n−3),

where N = n + η as before, jα,ν is the νth positive zero of the Bessel
function Jα(x) and t = jα,ν/N . Here the O-term is uniformly bounded for
ν = 1, . . . , [γn], where γ ∈ (0, 1). It is easy to verify that (1−t cot t)/t = O(t)
as t→ 0 and obviously 1/(n+ η)− 1/n = O(n−2). Hence

(9.10) θν,n =
jα,ν
n

+O(n−2), ν = 1, . . . , [γn].

We will also use the fact that

0 < jα,1 < jα,2 < · · · and jα,ν →∞.

Let jα,νmax := max{jα,ν : jα,ν ≤ (1 + ε)c∗} and J := {jα,1, jα,2, . . . , jα,νmax}.
Notice that νmax is a constant independent of n. Suppose that J 6= ∅ (the
case J = ∅ is easier).

Fix δ2n−1 ≤ θ ≤ c∗n−1. Then by (9.8) it follows that

P
(α,β)
k (cos θ) ∼ kα+1|θ − θνθ,k|,

where the νθ’s involved are bounded by a constant independent of n. Hence,
(9.10) can be used to represent θνθ,k for n ≤ k ≤ n+ [εn] if n is sufficiently
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large. Using the above we get

Λn(cos θ) ≥ cn2α+2

n+[εn]∑
k=n

|θ − θνθ,k|
2 ≥ cn2α

n+[εn]∑
k=n

|kθ − kθνθ,k|
2

≥ cn2α

n+[εn]∑
k=n

(|kθ − jα,νθ |
2 − c′k−1|kθ − jα,νθ |)

≥ cn2α
( n+[εn]∑

k=n

|kθ − jα,νθ |
2 − c′c∗ε

)
,

where we used (9.10). Therefore,

Λn(cos θ) ≥ cn2α
( n+[εn]∑

k=n

dist(kθ,J )2 − c�
)
, c, c� > 0,(9.11)

where dist(kθ,J ) denotes the distance of kθ from the set J , that is, the
distance of kθ from the nearest zero of the Bessel function Jα(x).

It remains to estimate the sum in (9.11). Define K := {n, n + 1, . . . ,
n+[εn]} and letK0 be the set of all indices k ∈ K such that dist(kθ,J ) < mθ,
where m := [εn/(6νmax)]. Evidently

#K0 ≤ (2m+ 1)νmax ≤ (2[εn/(6νmax)] + 1)νmax ≤ εn/2 if n ≥ 6νmaxε
−1.

Then #K \ K0 ≥ [εn] + 1− εn/2 ≥ εn/2 and hence

n+[εn]∑
k=n

dist(kθ,J )2 ≥
∑

k∈K\K0

(mθ)2 ≥ c
∑

k∈K\K0

(nθ)2 ≥ cδ22εn ≥ c∗n, c∗ > 0.

Inserting this in (9.11) we obtain

Λn(cos θ) ≥ cn2α(c∗n− c�) ≥ c̃n2α+1

for sufficiently large n. This implies the stated inequality (2.6) with x = cos θ
in the case δ2n−1 ≤ θ ≤ c∗n−1. The proof of Proposition 2.4 is complete.

Proof of Proposition 2.6. Suppose α ≥ β and let 1 < q < ∞. By
Lemma 2.5(i) we have g = Ln ∗ g and using Hölder’s inequality, (2.3), and
the fact that W(n;x) ≥ cn−2α−1 we obtain

|g(x)| ≤ c‖g‖q
(

n

W(n;x)

)1/q

≤ cn(2α+2)/q‖g‖q, x ∈ [−1, 1],

which leads to

(9.12) ‖g‖∞ ≤ cn(2α+2)/q‖g‖q, 1 < q ≤ ∞.
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If 0 < q ≤ 1, then the above inequality with q = 2 gives

‖g‖2∞ ≤ cn2α+2
1�

−1

|g(y)|2−q|g(y)|qw(y) dy ≤ cn2α+2‖g‖2−q∞ ‖g‖qq,

which shows that (9.12) holds for 0 < q ≤ 1 as well.
Let 0 < q < p <∞ (the case p =∞ is contained in (9.12)). Then using

(9.12) we obtain

‖g‖p =
( 1�

−1

|g(x)|p−q|g(x)|qw(x) dx
)1/p

≤ cn(2α+2)(1/q−1/p)‖g‖(p−q)/pq ‖g‖q/pq = cn(2α+2)(1/q−1/p)‖g‖q.

On the other hand, by [12, p. 114],

‖g‖p ≤ cn2(1/q−1/p)‖g‖q.

Putting the above two estimates together gives (2.10).
To prove (2.11) we will need the following inequality:

(9.13)
1�

−1

w(y)
W(n; y)p/2+γ(1 + nd(x, y))σ

dy

≤ c 1
nW(n;x)p/2+γ−1

, x ∈ [−1, 1],

where γ ∈ R and σ is sufficiently large. The proof of (9.13) is contained in the
proof of Proposition 1 in [13]. Assume 1 < q <∞. Then using Lemma 2.5(i),
Hölder’s inequality (1/q + 1/q′ = 1), and (1.10) we have, for x ∈ [−1, 1],

|g(x)| ≤ ‖W(n; ·)s+1/p−1/qg(·)‖q

×
( 1�

−1

|Ln(x, y)W(n; y)−s−1/p+1/q|q′w(y) dy
)1/q′

≤ c n

W(n;x)1/2

( 1�

−1

w(y) dy
W(n; y)q′/2+γ(1 + nd(x, y))σ

)1/q′

× ‖W(n; ·)s+1/p−1/qg(·)‖q
with γ = q′(s+ 1/p− 1/q). Now, applying (9.13) we infer that

|g(x)| ≤ c n1/q

W(n;x)s+1/p
‖W(n; ·)s+1/p−1/qg(·)‖q,

which implies

(9.14) ‖W(n; ·)s+1/pg(·)‖∞ ≤ cn1/q‖W(n; ·)s+1/p−1/qg(·)‖q, 1< q≤∞.
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If 0 < q ≤ 1, then by (9.14) with q = 2,

‖W(n; ·)s+1/pg(·)‖∞≤cn1/2‖W(n; ·)s+1/p−1/2g(·)‖2
≤cn1/2‖W(n; ·)s+1/pg(·)‖1−q/2∞ ‖W(n; ·)s+1/p−1/qg(·)‖q/2q ,

which shows that (9.14) holds for 0 < q ≤ 1 as well. Let p <∞. Using (9.14),
we get

‖W(n; ·)sg(·)‖p =
( 1�

−1

|W(n;x)sg(x)|p−q|W(n;x)sg(x)|qw(x) dx
)1/p

≤ cn1/q−1/p‖W(n; ·)s+1/p−1/qg(·)‖1−q/pq

( 1�

−1

|W(n;x)sg(x)|q

W(n;x)(p−q)/p
w(x) dx

)1/p

= cn1/q−1/p‖W(n; ·)s+1/p−1/qg(·)‖q.

Thus (2.11) is established if p < ∞. When p = ∞, (2.11) follows from
(9.14).

Proof of estimate (2.22). We only consider the case when −1/2 ≤ x, y
≤ 1 since the other cases are similar or simpler. Choose θ, φ ∈ [0, 2π/3] so
that x = cos θ, y = cosφ. Then d(x, y) = |θ − φ|. We have

sin θ + n−1 ≤ |sin θ − sinφ|+ sinφ+ n−1 ≤ |θ − φ|+ sinφ+ n−1

≤ (1 + n|θ − φ|)(sinφ+ n−1).

Then (2.22) follows using (2.20).

Proof of Lemma 2.7. We first show that for y ∈ [0, 1] and 0 < r ≤ π,

(9.15) µ(By(r)) :=
�

By(r)

w(x) dx ∼ r(d(y, 1) + r)2α+1.

Indeed, choose 0 ≤ ζ ≤ π/2 so that y = cos ζ and consider the case when
ζ + r ≤ 2π/3 (the case ζ + r > 2π/3 is trivial; then µ(By(r)) ∼ 1). We have

µ(By(r)) ∼
ζ+r�

max{ζ−r,0}

(1− cosu)α sinu du ∼
ζ+r�

max{ζ−r,0}

u2α+1 du

∼ (ζ + r −max{ζ − r, 0})(ζ + r)2α+1 ∼ r(ζ + r)2α+1,

which yields (9.15).
We now proceed with the proof of (2.25). Write Jη := Bη(ε), which is an

interval. Equivalence (2.25) is trivial when x ∈ Jη.
Assume x ∈ [−1, 1] \ Jη. Denote by Ix,η the interval with end points x

and η. By the definition of the maximal operator in (2.23) it readily follows
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that (
µ(Jη)

µ(Jη ∪ Ix,η)

)1/t

≤ (Mt1Jη)(x) ≤
(
µ(Jη)
µ(Ix,η)

)1/t

,

and since µ(Ix,η) ≤ µ(Jη ∪ Ix,η) ≤ µ(Jη) + µ(Ix,η) ≤ cµ(Ix,η), we have

(9.16) (Mt1Jη)(x) ∼
(
µ(Jη)
µ(Ix,η)

)1/t

.

We will only consider the case when x ∈ [−1/2, 1], since the case x ∈
[−1,−1/2] is simpler. Choose γ ∈ [0, π/2] and φ ∈ [0, 2π/3] so that η = cos γ
and x = cosφ. Then d(η, x) = |γ − φ|. By (9.15) and (9.16) it follows
that

[(Mt1Jη)(x)]t ∼ ε(d(η, 1) + ε)2α+1

|γ−φ|
2

(γ+φ
2 + |γ−φ|

2

)2α+1

∼ ε

d(η, x)

(
d(η, 1) + ε

d(η, x) + d(η, 1)

)2α+1

,

which implies (2.25). Estimates (2.26) are immediate from (2.25).

Proof of (3.12)–(3.13). The equivalence ‖1̃Iξ‖p ∼ (2−jW(2j ; ξ))1/p−1/2

follows from (2.19).
From (2.3) and (2.15) it follows that, for ξ ∈ Xj and 0 < p <∞,

(9.17) ‖ϕξ‖p, ‖ψξ‖p ≤ c c1/2
ξ

(
2j

W(2j ; ξ)

)1−1/p

≤ c
(

2j

W(2j ; ξ)

)1/2−1/p

.

When p =∞, similar estimates follow from (3.11).
To estimate ‖ϕξ‖p, ‖ψξ‖p from below, we first note that from (2.5) and

(9.17) it follows that ‖ϕξ‖2 ∼ ‖ψξ‖2 ∼ 1. Let 2 < p <∞ and 1/p+1/p′ = 1.
Using Hölder’s inequality and (9.17) we obtain

0 < c ≤ ‖ϕξ‖22 ≤ ‖ϕξ‖p‖ϕξ‖p′ ≤ ‖ϕξ‖p
(

2j

W(2j ; ξ)

)1/2−1/p′

and similarly for ψ. Hence

(9.18) ‖ϕξ‖p, ‖ψξ‖p ≥ c
(

2j

W(2j ; ξ)

)1/2−1/p

.

In the case p =∞, we proceed similarly and obtain the same estimate.
If 0 < p < 2, then

0 < c ≤ ‖ϕξ‖22 ≤ ‖ϕξ‖pp‖ϕξ‖2−p∞ ≤ c‖ϕξ‖pp
(

2j

W(2j ; ξ)

)1−p/2
,

which implies (9.18) and similarly for ‖ψξ‖p.
Finally, (3.13) follows from the lower bound in (9.18) with p = ∞

and (3.10).
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Proof of Lemma 4.6. Estimate (4.13) is immediate from (3.11) and Lem-
ma 2.7 (see (2.26) and (2.19)).

For the proof of (4.14) we first observe that by (3.13) there exists a
point ζ ∈ Bξ(c∗2−j) such that |ϕξ(ζ)| ≥ c�(2j/W(2j ; ξ))1/2. By (2.4) it
follows that

|ϕξ(x)− ϕξ(ζ)| ≤ c 23j/2d(x, ζ)√
W(2j ; ξ)

, x ∈ Bζ(c2−j),

and hence for sufficiently small constant c[ > 0 we have

|ϕξ(x)| ≥ c�

2
(2j/W(2j ; ξ))1/2 for x ∈ Bζ(c[2−j) ∩ [−1, 1].

Therefore, there exists an interval Jη := Bη(c2−j) ⊂ [−1, 1] such that

‖ϕξ‖L∞(Jη) ≥ c(2
j/W(2j ; ξ))1/2 and d(η, ξ) ≤ c2−j .

Hence,
(Mtϕξ)(x) ≥ c(Mt1̃Jη)(x) ≥ c1̃Iξ(x),

where for the last estimate we used (2.25). Thus (4.14) is established for ϕξ.
The proof for ψξ is the same.

Proof of Lemma 4.7. From the orthogonality of Jacobi polynomials it
follows that Φj ∗ ψξ(x) = 0 if ξ ∈ Xν , where ν ≥ j + 2 or ν ≤ j − 2.

Assume that ξ ∈ Xν , j − 1 ≤ ν ≤ j + 1. From the localization of the
kernels Φj , Ψν (see (3.9)) and the definition of cξ (see (2.14)) we see that for
any σ > 0 there is a constant cσ > 0 such that

|Φj ∗ ψξ(x)| = √cξ
∣∣∣ 1�

−1

Φj(x, y)Ψν(y, ξ)w(y) dy
∣∣∣

≤ c23j/2W(2j ;x)−1/2
1�

−1

w(y)
W(2j ; y)(1 + 2jd(x, y))σ(1 + 2jd(y, ξ))σ

dy.

Setting ξ = cos θ, x = cos η for some 0 ≤ θ, η ≤ π and applying the substi-
tution y = cosφ, we obtain

|Φj ∗ ψξ(x)|

≤ c 2j3/2W(2j ;x)−1/2
π�

0

w(cosφ) sinφ
W(2j ; cosφ)(1 + 2j |η − φ|)σ(1 + 2j |θ − φ|)σ

dφ

≤ c 2j3/2W(2j ;x)−1/2
π�

0

1
(1 + 2j |η − φ|)σ(1 + 2j |θ − φ|)σ

dφ

≤ c 2j/2W(2j ;x)−1/2(1 + 2j |η − θ|)−σ,
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where we used the inequality

2j
�

R

1
(1 + 2j |η − φ|)σ(1 + 2j |θ − φ|)σ

dφ ≤ c(1 + 2j |η − θ|)−σ.

For the proof of Lemma 4.9 we will need this lemma:

Lemma 9.2. Let P ∈ Π2j , j ≥ 0 and ξ ∈ Xj. Suppose x1, x2 ∈ [−1, 1]
and d(xν , ξ) ≤ c?2−j , ν = 1, 2. Then for any σ > 0,

|P (x1)− P (x2)| ≤ cσ2jd(x1, x2)
∑
η∈Xj

|P (η)|
(1 + 2jd(ξ, η))σ

,

where cσ > 0 depends only on σ, α, β, and c?.

Proof. Let P ∈ Π2j . Suppose L2j (x, y) is the reproducing kernel from
Lemma 2.5 with n = 2j . Then L2j ∗ P = P . Since L2j (x, ·)P (·) ∈ Π2j+2 ,
using the fact that the quadrature (2.14) is exact for all polynomials from
Π2j+2 we get

P (x) =
1�

−1

L2j (x, y)P (y)w(y) dy =
∑
η∈Xj

cηL2j (x, η)P (η), x ∈ [−1, 1].

Recall that cη ∼ 2−jW(2j ; η). Now, using Theorem 2.2 we obtain, for
x1, x2 ∈ [−1, 1] with d(xν , ξ) ≤ c?2−j , ν = 1, 2,

|P (x1)− P (x2)| =
∣∣∣ 1�

−1

[L2j (x1, y)− L2j (x2, y)]P (y)w(y) dy
∣∣∣

≤
∑
η∈Xj

|cη| |L2j (x1, η)− L2j (x1, η)| |P (η)|

≤ c 2jd(x1, x2)
∑
η∈Xj

(
W(2j ; η)
W(2j ; ξ)

)1/2 |P (η)|
(1 + 2jd(ξ, η))σ

≤ c 2jd(x1, x2)
∑
η∈Xj

|P (η)|
(1 + 2jd(ξ, η))σ−max{α,β}−1/2

,

where for the last inequality we used (2.22). Since σ > 0 can be arbitrarily
large the result follows.

Proof of Lemma 4.9. Clearly aξ ≤ bξ + dξ, where

dξ := max{|P (x1)− P (x2)| : x1 ∈ Iξ, d(x1, x2) ≤ c22−(j+r)},
and c2 is the constant appearing in (2.18). By Lemma 9.2 it follows that

dξ ≤ c 2−r
∑
η∈Xj

|P (η)|
(1 + 2jd(ξ, η))σ

, ξ ∈ Xj .
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Then recalling the definition of d∗ξ in (4.16) we infer that

d∗ξ ≤ c 2−r
∑
w∈Xj

∑
η∈Xj

|P (η)|
(1 + 2jd(w, η))σ(1 + 2jd(ξ, w))σ

≤ c 2−r
∑
η∈Xj

|P (η)|
(1 + 2jd(η, ξ))σ

≤ c 2−ra∗ξ ,

where for the second inequality we switched the order of summation and
used the simple fact that for σ > 1,∑

w∈Xj

1
(1 + 2jd(w, η))σ(1 + 2jd(ξ, w))σ

≤ c 1
(1 + 2jd(η, ξ))σ

.

Consequently, a∗ξ ≤ b∗ξ + d∗ξ ≤ b∗ξ + c2−ra∗ξ with c > 0 independent of r.
Choosing r sufficiently large we obtain a∗ξ ≤ cb∗ξ . The estimate in the other
direction is trivial.

Proof of Lemma 4.10. We may assume that α ≥ β. Fix ξ ∈ Xj and
define Y0 := {η ∈ Xj : d(η, ξ) ≤ c22−j} and

Ym := {η ∈ Xj : c22−j+m−1 < d(η, ξ) ≤ c22−j+m}, m ≥ 1,

where c2 > 0 is from (2.18). Using (2.18) we have #Ym ≤ c2m. Also, let

Jm := Bξ(c2(2m+1)2−j) = {x ∈ [−1, 1] : d(η, ξ) ≤ c2(2m+1)2−j}, m ≥ 0.

Evidently, Jm is an interval and Iη ⊂ Jm if η ∈ Yν , 0 ≤ ν ≤ m.
We next show that

(9.19) µ(Jm) ≤ c 2m(4α+3)µ(Iη) for all η ∈ Ym.

Suppose ξ ∈ [0, 1]; the case ξ ∈ [−1, 0] is the same. Let Jm =: [y1, y2] and
choose φ1, φ2 ∈ [0, π] so that y1 =: cosφ1 and y2 =: cosφ2 (φ1 > φ2).
Exactly as in the proof of Lemma 2.7,

µ(Jm) =
�

Jm

w(y) dy ≤ c(φ1 − φ2)φ2α+1
1 ≤ c 2−j+mW(2j ; y1),

and by (2.22),

µ(Jm) ≤ c 2−j+mW(2j ; ξ)(1 + 2jd(y1, ξ))2α+1(9.20)

≤ c 2−j+(2α+2)mW(2j ; ξ).

On the other hand, using again (2.22) we get

µ(Iη) ≥ c 2−jW(2j ; η) ≥ c 2−jW(2j ; ξ)(1 + 2jd(η, ξ))−2α−1

≥ c 2−j−(2α+1)mW(2j ; ξ).

Combining this with (9.20) gives (9.19).
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Let % := max{0, 1− 1/t} < 1. Using Hölder’s inequality if t > 1 and the
t-triangle inequality if 0 < t ≤ 1, we have

b∗ξ =
∑
η∈Xj

|bη|
(1 + 2jd(η, ξ))σ

≤ c
∑
m≥0

2−mσ
∑
η∈Ym

|bη|

≤ c
∑
m≥0

2−m(σ−%)
( ∑
η∈Ym

|bη|t
)1/t

.

We next use (9.19) to obtain, for x ∈ Iξ,

b∗ξ = c
∑
m≥0

2−m(σ−1)
( 1�

−1

[ ∑
η∈Ym

|bη|µ(Iη)−1/t
1Iη(x)

]t
w(x) dx

)1/t

≤ c
∑
m≥0

2−m(σ−1)

(
1

µ(Jm)

�

Jm

[ ∑
η∈Ym

(
µ(Jm)
µ(Iη)

)1/t

|bη|1Iη(x)
]t
w(x) dx

)1/t

≤ c
∑
m≥0

2−m(σ−1−(4α+3)/t)

(
1

µ(Jm)

�

Jm

[ ∑
η∈Ym

|bη|1Iη(x)
]t
w(x) dx

)1/t

≤ cMt

( ∑
w∈Xj

|bw|1Iω
)

(x)
∑
m≥0

2−m(σ−1−(4α+3)/t)

≤ cMt

( ∑
w∈Xj

|bw|1Iω
)

(x),

where for the last inequality we used the fact that σ > (4α+ 3)/t+ 1.

Proof of Lemma 6.5. For ξ ∈ Xj , we set aξ := maxx∈Iξ |P (x)|, mξ :=
minx∈Iξ |P (x)| and

bξ := max{min
x∈Iw

|P (x)| : w ∈ Xj+r, Iw ∩ Iξ 6= ∅},

where r ≥ 1 (sufficient large) is the constant from Lemma 4.9. If 0 < t < p
then ( ∑

ξ∈Xj

apξµ(Iξ)
)1/p

=
∥∥∥ ∑
ξ∈Xj

aξ1Iξ(·)
∥∥∥
p
≤ c
∥∥∥ ∑
ξ∈Xj

b∗ξ1Iξ(·)
∥∥∥
p

(9.21)

≤ c
∥∥∥Mt

( ∑
ξ∈Xj

bξ1Iξ

)
(·)
∥∥∥
p
≤ c
∥∥∥ ∑
ξ∈Xj

bξ1Iξ(·)
∥∥∥
p
,

where for the first inequality we used Lemma 4.9 and for the second Lem-
ma 4.10. Also, for ξ ∈ Xj let Xj+r(ξ) := {w ∈ Xj+r : Iw∩Iξ 6= ∅}. Evidently,
#Xj+r(ξ) ≤ c. Then for w, η ∈ Xj+r(ξ) we have d(w, η) ≤ c(r)2−j−r and
hence

mw ≤ c
mw

1 + 2j+rd(w, η)
≤ cm∗η.
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Therefore, for any ξ ∈ Xj and η ∈ Xj+r(ξ) we have bξ = maxw∈Xj+r(ξ)mw ≤
cm∗η and hence

bξ1Iξ ≤
∑

η∈Xj+r(ξ)

m∗η1Iη .

Using this in (9.21) we get( ∑
ξ∈Xj

apξµ(Iξ)
)1/p

≤ c
∥∥∥ ∑
η∈Xj+r

m∗η1Iη(·)
∥∥∥
p
≤ c
∥∥∥Mt

( ∑
η∈Xj+r

mη1Iη

)
(·)
∥∥∥
p

≤ c
∥∥∥ ∑
η∈Xj+r

mη1Iη(·)
∥∥∥
p
≤ c‖P‖p,

which completes the proof.
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