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Jacobi decomposition of weighted
Triebel-Lizorkin and Besov spaces

by

GEORGE KYRIAZIS (Nicosia), PENCHO PETRUSHEV (Columbia, SC)
and YUAN XU (Eugene, OR)

Abstract. The Littlewood—Paley theory is extended to weighted spaces of distribu-
tions on [—1, 1] with Jacobi weights w(t) = (1—t)*(1+¢)?. Almost exponentially localized
polynomial elements (needlets) {pe}, {1} are constructed and, in complete analogy with
the classical case on R", it is shown that weighted Triebel-Lizorkin and Besov spaces can
be characterized by the size of the needlet coefficients {(f, p¢)} in respective sequence
spaces.

1. Introduction. The g-transform of Frazier and Jawerth [6, 7, 8] is
a powerful tool for decomposition of spaces of functions or distributions
on R™. Our goal in this paper is to develop similar tools for decomposition
of weighted spaces of distributions on [—1, 1] with Jacobi weights

(1.1) w(z) = wap(x) = (1 —2)*1+2)’, o f>-1/2.

We will build upon the elements constructed in [13] and termed needlets. The
targeted spaces are weighted Triebel-Lizorkin and Besov spaces on [—1, 1].
The main vehicle in constructing our building blocks will be the clas-

sical Jacobi polynomials {PT(LO"B ) o s Which form an orthogonal basis for

L?(w) := L*([~1,1],w) and are normalized by Pff"ﬁ)(l) = (”:O‘) [18]. In
particular,

1
(1.2) S P (2) PP ()w(z) do = 6 pmh @),

-1

where h%a’ﬁ ) ~ n~1 with constants of equivalence depending only on « and (3.

Then the normalized Jacobi polynomials P, (z) = p(o-?) (x), defined by
(13) Pa(e) i= (D) V2PED(),  n=0,1,...,
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form an orthonormal basis for L?(w), where the inner product is defined by
1

(1.4) (f.9) = | f(a)g(@)w(z) dx.
-1

Consequently, for every f € L?(w),

(1.5) F=> an(f)Pn with an(f):=(f,Pn).

Then the kernel of the nth partial sum operator is

(1.6) Kn(z,y) =Y Pu(z)P,(y
v=0

Our construction of needlets relies on the fundamental fact [13] that
if the coefficients on the right in (1.6) are “smoothed out” by sampling
a compactly supported C*° cut-off function, then the resulting kernel has
nearly exponential localization around the main diagonal y = x in [-1,1]%.
To be more specific, let

(L.7) Lute) =30 ( L )Pytpyo)

j=0

with @ admissible in the sense of the following definition:

DEFINITION 1.1. A function @ € C*°[0,00) is said to be admissible of
type

(a) if suppa C [0,2] and a(t) =1 on [0, 1], and of type

(b) if suppa C [1/2,2].

As a companion to the weight w(z) we introduce the quantity
(1.8)  W(n;x) = Wapg(n;z) i= (1 — x4+ n"2)F V21 4 2 4 n~2)0+1/2,
We will also need the distance on [—1, 1] defined by
(1.9) d(z,y) := |arccos x — arccos y|.

Now one of the main results from [13] can be stated as follows: Let @ be
admissible. Then for any ¢ > 0 there is a constant ¢, > 0 depending only
on o, «, 3, and a such that

(1.10)  |Ln(z, )| t

\/W 2)v/W(n;y)(1+nd(z, y))?

The kernels L, (z,y) are the main ingredient in constructing needlet sys-
tems here. Our construction utilizes a semidiscrete Calderén type decompo-
sition combined with discretization using the Gaussian quadrature formula
(see §3). Earlier in [11] a similar scheme has been used for the construction
of frames on the sphere.

,  xyy € [—1,1].
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Denoting by {¢¢}eex and {t¢}ecx the constructed analysis and synthe-
sis needlet systems, indexed by a multilevel set X' = U;io X, we show that
every distribution f on [—1,1] (f € D’) has the representation

F="Y {fee)te.

fex

In this article we use the needlets to characterize two scales of weighted
Triebel-Lizorkin (F-spaces) and Besov spaces (B-spaces) on [—1,1] defined
via Jacobi expansions. The idea of using orthogonal or spectral decomposi-
tions for introducing Triebel-Lizorkin and Besov spaces is natural and well
known (see [15, 19]). To be more precise, let

oo
~ v .
¢O(xay) = Po(CC)Po(y), @j(xay) = Zoa(”l) PV(:I:)PV(y)a J > 17
V=
where @ is admissible of type (b) (see Definition 1.1) and @ > 0 on [3/5,5/3].
The first scale of F-spaces F,? with s € R, 0 < p < 00, 0 < q < o0, is
defined (§4) as the space of all distributions f on [—1,1] such that

> . 1/q
v Sy e
17z = | (@15« 70007) ..,
7=0
We define a second scale of F-spaces 7,7 (8§5) as the space of all f € D’ such
that

< 0.
Lr(w)

111z := H(ipst@j;')s@j *f(')\]q)l/q’
=0

(For the definition of @;x f, see (2.32).) The corresponding scales of weighted
Besov spaces Bp! (see [16, 19]) and Bp? with s € R, 0 < p, g < 00, are defined
(§6-7) via the (quasi-)norms
e ) 1/q
1l = (D@71, % o))
3=0

and
o

Il = (DT )75 % FC)llnn]?)

J=0

1/q

To some extent the second scales of F- and B-spaces are more natural than
the first since they embed correctly with respect to the smoothness parame-
ter s (see §5, §7 for details). Also, the second scale of B-spaces provides the
smoothness spaces of nonlinear n-term approximation from needlets (§8).
One of our main results (§4) asserts that for all indices the weighted
Triebel-Lizorkin spaces Fj,? can be characterized in terms of the size of the
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needlet coefficients, namely,

£l ~ || (2 3 Wirpedve) |

7=0 fGXj

Lp(w)

The needlet characterization of the Besov spaces Bp? (§6) takes the form

1711330 ~ (izsjq[z I perelig] ")

7=0 EEX]'
Characterizations of similar nature are obtained for the second scales of
weighted Triebel-Lizorkin and Besov spaces Fp? and B,? (see §5, §7). Using
LP(w) multipliers we show that the space F192 = ]-"192 can be identified as
LP(w) for 1 < p < oo.

This is a follow-up paper of [13]; it is closely related to [11] and [9],
where needlet decompositions of Triebel-Lizorkin and Besov spaces on the
unit sphere and ball are developed.

The rest of the paper is organized as follows. In §2, some auxiliary facts
are given, including localized and reproducing polynomial kernels, Gaussian
quadrature, the maximal inequality, and basics of distributions on [—1,1].
In §3, we construct the needlets and show some of their properties. The
first and second scales of weighted Triebel-Lizorkin spaces are defined and
characterized via neadlets in §4 and §5, respectively, while the first and
second scales of Besov spaces are defined and characterized via needlets in §6
and §7. In §8, Besov spaces are applied to weighted nonlinear approximation
from needlets; a Jackson theorem is proved. Section 9 is an appendix, where
the proofs of some statements are given.

Throughout the paper we use the following notation:

: 1/p
1l = (§ 1@ Pw@)ds) ", 0<p<os, |Iflei= sup |f(@)]
e} z€[—1,1]
For a measurable set £ C [—1,1], we set u(E) := {,w(y)dy; 1g is the
characteristic function of E and 1 := |u(FE)|""/?1g is the L?(w) normal-
ized characteristic function of E. Also, II,, denotes the set of all univariate
algebraic polynomials of degree < n. Positive constants are denoted by c,
C1,Cx,... and they may vary at every occurrence. The notation A ~ B
means c1A < B < ¢y A.

2. Preliminaries

2.1. Localized kernels induced by Jacobi polynomials. To a large ex-
tent our development in this paper relies on the nearly exponential lo-
calization (1.10) of kernels L, (z,y) of the form (1.7) with admissible @,
established in [13]. To avoid some potential confusion, we note that the
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inner product in [13] is defined by (f,g) := ca S£1 f(z)g(x)w(zr) dx with
cglﬁ = 51_1 w(x) dr and as a result L, (z,y) from (1.7) is a constant multi-

ple of LA (x,y) from [13]. A similar remark applies to the constants ple?)

from (1.2) and [13].
The proof of estimate (1.10) (see [13]) is based on the almost exponential
localization of the univariate polynomial:

o o~ (5 (@B -1 plen o,
2.1) L") r:2“<n><h§ NP )P (@),
7=0

THEOREM 2.1 ([1, 13]). Assume that o > 3 > —1/2 and let @ be admis-
sible. Then for every k > 1 there exists a constant ¢ > 0 depending only
on k, a, B, and a such that

20+2
T+ nfyFa’

The dependence of ci on a is of the form ¢, = c(a, B, k) maxi<, <k 1@ 11

(2.2) |L2B (cos 0)| < ¢ 0<0<m.

This estimate was proved in [13] with @ admissible of type (b) and in [1]
with @ admissible of type (a) (for a proof, see also [14]).

In [13, Proposition 1] it is shown that (1.10) yields the following upper
bound for the weighted LP integrals of |L,(z,y)|:

1 p—1
n
(2.3) —81 Lo (2, y)[Pw(y) dy < C(W) ;o <o <1, 0<p<oo.

The next theorem shows that in a sense the kernel L, (x,y) from (1.7) is
Lip 1 in z (and y).

THEOREM 2.2. Let o, 3 > —1/2. Suppose a is admissible and o > 0 is
an arbitrary constant. If x,y,2,& € [-1,1], d(z,€) < can™! and d(z,€) <

cxn~ b with n > 1, ¢, > 0, then
2
d
(24)  |Ln(2,y) — Lo(&,9)| < ¢y n?d(z, )

VWi y) W (ns; 2)(1 + nd(y, 2))°

where ¢, > 0 depends only on o, «, B, ¢k, and a.

The proof of this theorem is given in the appendix.
Lower bound estimates for the integrals of |L,(x,y)| are nontrivial and
will be vital for our further development.

PROPOSITION 2.3. Let a be admissible and |a(t)] > ¢ > 0 for t €
[3/5,5/3]. Then
1
@5) | |La(ey)Puly)dy > enaWimsz)l, 1<z <1
-1
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Proof. By the definition of L, (z,y) in (1.7) and the orthogonality of the
Jacobi polynomials, it follows that
1

[ Lot oy e S kPP @)
-1 k=[n/2]
Since |a(t)| > ¢ > 0 for ¢t € [3/5,5/3] and Py(x) = (hl(co"m)*lﬂP]ga’ﬁ)(x) ~
kl/QPlga”g) (x), it suffices to prove that
[5n/3]
> B@P = W) e>0,
k=[3n/5]

which is established in the following proposition. =

PRrROPOSITION 2.4. If o, > —1 and € > 0, then
n+[en]
(2.6) An(z):= > [PV@)P > Wma)t,  ze[-1,1],n>1/e,
k=n
where ¢ > 0 depending only on «, 3, and ¢.

This proposition is nontrivial and its proof is given in the appendix.

2.2. Reproducing kernels and best polynomial approximation. We let
E,(f)p denote the best approximation of f € LP(w) from II,, i.e.

2.7 E = inf —9|lp-
(2.7) n(f)p gleI}Yn 1f = gllp

To simplify our notation we introduce the following “convolution”: For
functions @ : [~1,1]> — C and f : [-1,1] — C, we write

1

(2.8) G f(x):= | &(x,9)f(y)w(y) dy.

-1

LEMMA 2.5. Suppose a is admissible of type (a) and let L,(x,y) be the
kernel defined in (1.7).

(i) Ln(x,y) is a symmetric reproducing kernel for II,, i.e. L, xg = g

for g € II,.
(ii) For any f € LP(w), 1 < p < oo, we have Ly, * f € Iy,
(2.9) [Ln fllp < cllfllp and [|f = Ly * fllp < cEn(f)p-

Proof. Part (i) is immediate since a(rv/n) = 1 for 0 < v < n. The left-
hand estimate in (2.9) follows from (2.3) when p = 1 and p = oo; the general
case follows by interpolation. The right-hand estimate in (2.9) follows from
the left-hand estimate and (i). m
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Lemma 2.5(1) and (2.3) are instrumental in proving Nikolski type in-
equalities.

PROPOSITION 2.6. For 0 <g<p<oo and g € II,,
(2.10) lgll, < enGH2min{0madaSiHA/a=1/p)| g

furthermore, for any s € R,
(2.11) W2 g(C)llp < en' VP W(ns )P g () .
The proof of this proposition is given in the appendix.

2.3. Quadrature formula and subdivision of [—1,1]. For the construction
of our building blocks (needlets) we will utilize an appropriate Gaussian
quadrature formula. Let &;,, =: cosf,, v =1,2,...,2/7! be the zeros of the

Jacobi polynomials PQ(JO‘ ff ) ordered so that

0< O < <BOyi41 <.
It is well known that uniformly (see [5] and also (9.9)—(9.10) below)

(2.12) 0,41 —60, ~27 and hence 6, ~ 277,
Define now
) o
(2.13) Xp={g, v=12..2M} >0 X:=[]a.
§=0

As is well known [18] the zeros of the Jacobi polynomial Pz(f f ) serve as
knots of the Gaussian quadrature

1
(2.14) | f@)w(@)dz~ ) cef(6),

—1 ﬁEXj
which is exact for all polynomials of degree at most 2712 — 1. Furthermore,
the coefficients c¢ are positive and have the asymptotics

(2.15) ce ~ A1 (€) ~ 2 7w(€)(1— &) ~ 279W(2;¢),

where Agj+1(t) is the Christoffel function and the constants of equivalence
depend only on «, 3 (cf. e.g. [12]).

We next introduce the jth level weighted dyadic intervals. Set as above
&j,v =: cosB, and define

(2.16) I, == [(§us1+&0)/2, (Go1+&0)/2, v=2,3,..., 2T -1,
(2.17) Ig; = (652 + &) /2, 1], Ifj,2j+1 = [—1, (fj,2j+1 + fj,2j+1—1)/2]-
For § € X; we will briefly write I¢ :=I¢, , if £ = ;.

It follows by (2.12) that there exist constants c1,ca > 0 such that
(2.18) Be(c1279) C I € Be(c2277),
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where By(r) := {x € [-1,1] : d(z,y) < r} with d(-,-) being the distance
from (1.9). Also, it is straightforward to show that

(2.19) ple) =\ w(z)de ~ 279W(278) ~ e, € X, >0
Ie
It will be useful to note that
(2.20) W(n;cos8) ~ (sinf +n-1)2t  0<<21/3,
(2.21) W(n;cosf) ~ (sinf +n~ 12+ 1/3<60 <.

The following simple inequality will be instrumental in various proofs:
(2.22)  W(n;z) <eW(n; y)(14nd(z, y))?madef+1 0 4y e [-1,1], n> 1.
For the proof see the appendix.

2.4. The mazimal inequality. For every 0 < t < oo and x € [—1,1], we
define

1/t
(2.23) Misa) =sup (s N wl) dy)
I>x :U(I ) I

where the sup is over all intervals I C [—1, 1] containing z. It is not hard
to see that u is a doubling measure on [—1, 1] and hence the general theory
of maximal inequalities applies. In particular the Fefferman—Stein vector-
valued maximal inequality holds (see [17]): If 0 < p < 00, 0 < g < o0 and
0 < t < min{p, ¢} then for any sequence of functions {f,}>2, on [-1,1],

e (S mdhor) ], < (o mor)

We need to estimate (M1}, )(x) for the intervals I¢ from (2.16)—(2.17)
and other intervals.

LEMMA 2.7. Letn € [0,1] and 0 < e < m. Then for z € [—1,1],

dina)\ () dla) )T
(2.25) (Mg, ())(z) <1+ - ) 1+€+d(77,1)
and hence

d —(2a+2)/t d i

Here the constants depend only on «, B, and t.

A similar lemma holds for n € [—1,0). We relegate the proof of this
lemma to the appendix.
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2.5. Distributions on [—1,1]. Here we give some basic and well known
facts about distributions on [—1,1]. We will use as test functions the set

D := C*®[—1,1] of all infinitely differentiable complex-valued functions on
[—1, 1], where the topology is induced by the seminorms

Note that the Jacobi polynomials {P,,} belong to D. More importantly, the
space D of test functions ¢ can be completely characterized by the coefhi-
cients of their Jacobi expansions: a,(¢) := (¢, Py) := 8171 d(x)Pp(z)w(x) de.
Define
(2.28) Ni(@) = sup (n + 1)*]an(9)].

LEMMA 2.8. (a) ¢ € D if and only if an(¢) = O(n=*) for all k.

(b) For every ¢ € D we have ¢ = > an($)Py,, where the convergence
1s in the topology of D.

(¢) The topology in D can be equivalently defined by the norms N(+),
k=0,1,....

Proof. If ¢ € D, then due to the orthogonality of P, to II,,_1, we have
forn=1,2,...,

lan(d)] = (3, Pu)| = [{¢ — Qn1,Pn)| < En_1(¢)2 < cxn¥6"]|,

where Q,,_1 € II,_1 is the polynomial of best L?(w) approximation to ¢.
Here we used a simple Jackson estimate for approximation from algebraic
polynomials (Ep(¢)ee < cxn *||¢*)||s). Therefore, a,(¢) = O(n~*) and
Nk(¢) < Ck”gf)Hk for k = 0, 1, M

On the other hand, by Markov’s inequality it follows that

IPS | oo 1.1y < P2 ([Pl ooy < en®Fhy V2P (1) < en® ot/

Hence, if a,(¢) = O(n~F) for all k, then ¢F) = 3" an(qﬁ)Png) with the

series converging uniformly and
|plk < CZ |an(¢)|(n + 1)2RFat1/2 < cNogtlari/zg+1(9), k=0,1,...,

which completes the proof of the lemma. =

The space D' := D'[—1, 1] of distributions on [—1, 1] is defined as the set
of all continuous linear functionals on D. The pairing of f € D" and ¢ € D
will be denoted by (f, ¢) := f(¢), which will be shown to be consistent with

the inner product (f,g) := 81_1 f(z)g(x)w(x) dz in L?(w). We will need the
representation of distributions from D’ in terms of Jacobi polynomials.
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LEMMA 2.9. (a) A linear functional f on D is a distribution (f € D')
if and only if there exists k > 0 such that

(2.29) [(f, 0| < cuNi(¢)  forall ¢ € D,
For f € D', denote a,(f) := (f,Pn). Then for some k > 0,
(2.30) (f,Po)| < cp(n+1)*  n=01,....

(b) Every f € D' has the representation f =Y > an(f)Pr in distribu-
tional sense, i.e.

(2'31) <fa ¢> - Z an(f)<Pna ¢> - Zan(f)an((g) for all ¢ € D,
n=0 n=0

where the series converges absolutely.

Proof. (a) Part (a) follows immediately from the fact that the topology
in D can be defined by the norms Nj(-) defined in (2.28).
(b) Using Lemma 2.8(b) we get, for ¢ € D,

N N o0
= li < n Pn>:1 ni ;Pn: n niv
(f.6) = lim_ fzo (4) Ngnoonzoa (&)(f. Pn) ZO (Fan($)
where for the last equality we used (2.30) and the fact that a,(¢) are rapidly
decaying. =
It is convenient to extend the “convolution” from (2.8) to the case of
distributions.

DEFINITION 2.10. Assuming that f € D' and @ : [-1,1]? — C is such
that @(x,y) belongs to D as a function of y (&(z,-) € D), we define & * f by

(2.32) P« f(x) = ([, P(x, ")),

where on the right f acts on @(x,y) as a function of y.

3. Construction of building blocks (needlets). Following the ideas
from [13] we next construct two sequences of companion “analysis” and “syn-
thesis” needlets. Our construction is based on a Calderén type reproducing
formula. Let 6,5 satisfy the conditions

(3.1) Z“Z,/b\e C*°[0, 0), suppa,/b\c [1/2,2],
(3.2) @), [b(t)| > c>0 ifte[3/55/3],
(3.3) alt)b(t) +a0)b2t) =1 ift € [1/2,1).
Hence,

(3.4) ia(r%ﬁ(z—%) =1, tell,o00).

v=0
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It is easy to show that if @ satisfies (3.1)—(3.2), then there exists b satisfying
(3.1)—(3.2) such that (3.3) holds true (see e.g. [7]).

~

Assuming that a, b satisfy (3.1)—(3.3), we define @o(x,y) = ¥(z,y) =
Po(2)Po(y),

(35 #y(0) = Y0 )PuoP). 02 L
v=0
(3. (@) = 3557 )PP, 321

Let X be the set of knots of the quadrature formula (2.14), defined in (2.13),
and let c¢ be the coefficients of the same quadrature. We define the jth level
needlets by

1/2 1/2
(3.7 @ela)=c®i(2,6) and ye(x) = cPWy(,6), €€ A,
As in (2.13) we write X' := J;Z &, where equal points from different levels

A& are considered as distinct elements of X', so that X can be used as an
index set. We define the analysis and synthesis needlet systems ¢ and ¥ by

(3.8) P = {peheex, V= {Ueleer
By estimate (1.10) it follows that the needlets have nearly exponential
localization, namely, for z € [-1,1],
o2’

)| < 4 - , Vo,
VW(2;€)/W (27, 2) (1 + 29d(€, )7

(3.9  |2;(& ), [¥5(& z
and hence

310)  [gela)lle(a) o2
. )|, ) < . ;
e W) (1 + 27d(€, 2))7
Note that x in the term /W(2J;x) above can be replaced by £ (upon re-
placing ¢, by a larger constant), namely,
B1) e lue(o) o2
. we(x)], x)| < . .
S WETE) (1 + 2id(¢,2))7

This estimate follows from (3.10) and (2.22).

We will need to estimate the norms of the needlets. We have, for 0 <
P =< 00,

Vo.

N 0 1/2—-1/p
312 e~ e~ il ~ (3mrg )+ £

Moreover, there exist constants ¢*,¢® > 0 such that

o 1/2
(3.13) [Pl oo (Be(er2-9))s 1Vl Loo(Be(er2-d)) = C°<W(2j;§>> :
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where Bg(c *2’3') = {x € [~1,1] : d(&,x) < ¢*277}, which is an interval.
(3.1)-

Notice that if @, b in (3.3) are real-valued then by Proposition 2.4,

; 1/2
(3.14) pe(€). e (€) > C(wé@) e

For the proofs of (3.12)—(3.13), see the appendix.
Our next goal is to establish needlet decompositions of D" and LP(w).

PROPOSITION 3.1. (a) For f € D', we have

(3.15) f= ZJIj x @« [ inD,
(3.16) f=> (foe)e inD.
cex

(b) If f € LP(w), 1 <p < oo, then (3.15)—(3.16) hold in LP(w). More-
over, if 1 < p < oo, then the convergence in (3.15)—(3.16) is unconditional.

Proof. (a) Let f € D'. By (2.32) and Lemma 2.9, we have

28—
(3.17) a1 = Y a5 Joul P,
v=0
and further
2
(3.18) By By f = Za(;_l)Z(zf_l)axf)Py.
v=0

Now (3.15) follows from (3.4) and Lemmas 2.8-2.9.

Note that ¥;(x,y) and @;(x,y) are symmetric functions (e.g. ¥;(y,z) =
Wj(z,y)) and hence ¥; x ®;(z,y) is well defined. Also, ¥; x (®; * f) =
(W; % ®;) * f. We observe that ¥;(x, u)®;(y, u) belongs to Ilyj+1_; as a func-
tion of v and apply the quadrature formula from (2.14) to obtain

1

o+ Pj(x,y) = S Uj(x, u)®;(y, u)w(u) du

—205!730{ ng

EeX; teX;
Hence,

Wi Djx f = (f e

EEX]'
Substituting this in (3.15) yields (3.16).
(b) To prove (3.15) in LP(w) we observe that Zé‘:o UjxPjxf=L;«f
with L; := Z;ZO W ®;. Because of (3.4), L;(z,y) is a reproducing kernel
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for polynomials exactly as the kernels L, (z,y) from Lemma 2.5. Hence,
Zé‘:o W« ®;* f — fin LP(w) (1 < p < 00). Then (3.16) in LP(w) follows
as above. The unconditional convergence in LP(w), 1 < p < oo, follows from
Proposition 4.11 and Theorem 4.5 below. u

REMARK 3.2. It is easy to see that there exists a function @ > 0 satisfying
(3.1)-(3.2) such that @(¢) + a%(2t) = 1, t € [1/2,1]. Suppose that in the
above construction b = @ and @ > 0. Then ®; =¥, and @¢ = Y¢. Now (3.16)
becomes f = > ¢ v (f,1e)e. It is easily seen that {1)¢ : { € X'} is a tight
frame for L?(w) (see [13]).

4. First scale of weighted Triebel-Lizorkin spaces on [—1,1]. In
analogy to the classical case on R? we will define our first scale of weighted
Triebel-Lizorkin spaces by means of the Littlewood—Paley expressions em-
ploying the kernels @;, defined by

Do (z,y) := Po(x)Po(y),

(4.1) Qj(x,y) == Zb\(QJI/_l) P.(z)Pu(y), J=>1,

v=0
where @ satisfies the conditions
(4.2) a € C*[0,00), suppa C [1/2,2],
(4.3) la(t)| >c>0 ifte[3/5,5/3].

DEFINITION 4.1. Let s € R, 0 < p < o0, and 0 < ¢ < oo. Then the
weighted Triebel-Lizorkin space F,? := F,%(w) is defined as the set of all
f € D' such that

(1.4) e = || (21 + son)"| <o
=0

with the usual modification when ¢ = co.

Observe that the above definition is independent of the choice of @ as
long as it satisfies (4.2)—(4.3) (see Theorem 4.5 below).

PROPOSITION 4.2. For every s € R, 0 < p < 00, and 0 < ¢ < oo, Fp? is
a quasi-Banach space which is continuously embedded in D'.

Proof. We will only prove the continuous embedding of F,? in D’. Then
the completeness follows by a standard argument (see e.g. [19, p. 49]).

Suppose the kernels @, are as in the definition of F,? with @ satis-
fying (4.2)-(4.3) which are the same as (3.1)-(3.2). Then as was already
mentioned, there is a function b satisfying (3.1)—(3.2) such that (3.3) holds
as well. Let ¥; be defined by (3.6). Then by Proposition 3.1 any function
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f € F,? has the representation f = >0 «®; % f in D'. Hence for ¢ € D
we have (f, ¢) = >°72(¥; * D; * f,¢). Using (3.17)~(3.18) we find that

27 —
_ [ v \~f v .
Wty f = Y a5 )i Jetate) G22)
v=20—241
and applying the Cauchy—Schwarz inequality yields

(45) (@ %D+ f,0)| < e B x flla max ()]

212 <y <2

< 2IHD| g g, ypaxlay(¢)]
v

< 27| | g Ni(9).

where k > 2/p+3/2—s, Ni(+) is from (2.28), and we used inequality (2.10).
Consequently, |(f,#)| < c]|f||Fpsq./\/'k(gb), which is the claimed embedding. =

Associated to F? is the sequence space fp? defined as follows.

DEFINITION 4.3. Let s € R, 0 < p < 00, and 0 < ¢ < oo. Then fp7 is
defined as the space of all complex-valued sequences h := {h¢}¢cx such that

> i ~ 1/q
(4.6) IRl = {| (30290 37 (el (0)7) | < o0
=0  gex; P
with the usual modification for ¢ = co. Recall that L& = u(If)_lﬂllIE.

We now introduce the “analysis” and “synthesis” operators
A7) Sp:fe{(fipe)teer and Ty :{heheer — Y hete.
fex
The next lemma shows that the operator Ty, is well defined on fp9.
LEMMA 4.4. Let s € R, 0 < p < 00, and 0 < g < oco. Then for any
h e fp?, Tyh = de)( hee converges in D'. Moreover, the operator Ty,
»! — D' is continuous, that is,

(4.8) (Typh, )| < CNk(¢)||h|]f;q forall he f9,¢ €D.
Proof. Let h € f,?. Then by the definition of f,? it follows that
(4.9) 2% he| |1 llp < IRl gge, €€ X5, 5> 0.

By (2.19), u(le) ~ 279W(27;¢€) and obviously 2-(2e+28+1)5 < Ww(27;¢)
< 220420+1 which implies
Hi[gH;l — M(Ié)l/%l/p < 29 (2at20)1/2-1/p]
Combining this with (4.9) we get
(4.10)  |he| < 2 |hl|gse, £ € Xy, = (2a+28)[1/2—-1/p| — 5.
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On the other hand, for a given ¢ € D, by Lemma 2.8, ¢ = > >° (¢, P,)Pp
in D, and using the definition of )¢ in (3.6)—(3.7) we have
27
1/2 ~( v .
(We,0) =c* Y b<2]_1> (Pu, 9)PL(E)  (j =2).
v=21—-241
We use this and the rough estimates [Py |0 < cv®+1/2 and ¢ < ¢ to
obtain
27
(e, o) <22 N [Py, @), = a+B+1/2
v=27-241
Combining this with (4.10) we get

(411) D [hel [(We, o) < D D [hel (e, 0|

£ex 7=0 £€X]’

< cllhll g D PR Y (P9

Jj=1 20-2<y<2i

(oo}
Sclhflpad 27 > (w+ )RR, ¢))|
Jj=1 2i—2<y<2J
(oo}

< |l e Nk () D277 < el|| 2 Ni(6) < o0,
j=1
where k := [y1 + 72| + 4 and for convenience P,/ := Pg. Therefore, the
above series converges and hence the series de + hete converges in D'. We
define Tyh by (Typh, ¢) = 3 ¢cx he(Ye, @) for all ¢ € D. We finally note
that estimate (4.8) is immediate from (4.11). m

Here is our main result concerning the weighted F-spaces.

THEOREM 4.5. Let s € R, 0 < p < 00 and 0 < g < oco. Then the
operators Sy, : Fp? — fp7 and Ty : fp? — Fp? are bounded and Ty 0 S,
= Id on F,?. Consequently, for f € D' we have f € F,? if and only if
{(f, e)}eex € fp1. Furthermore,

@12) | flle ~ v g~ [ (2 10 eere) |

3=0 EeX;
In addition, the definition of F,? is independent of the selection of @ satis-
fying (4.2)—(4.3).

For the proof of this theorem we will need several lemmas whose proofs
are given in the appendix.
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LEMMA 4.6. If £ € X}, j >0, and 0 <t < oo, then

(413) |Lp§($)‘, |T/)£($)| < C(Mtilg)(x)a LS [_L 1]7
(4.14) T, (2) < (M) (@), e M) (), @ € [-1,1].
LEMMA 4.7. For any o > 0 there exists a constant c, > 0 such that
27/2

. D * T Co ; j ’
(4.15) | ()| < W27, 2)(1 + 29d(E, )

£eX, j—1<v<j+l,
and Pjxipe(x) =0 foré € Xy, v > j+2 orv < j—2. Here X, := 0 if v <O0.
DEFINITION 4.8. For a collection of complex numbers {h¢}ecx; we let

. [
(4.16) he : n;j (1+27d(n,€))"

Here o > 1 is sufficiently large and will be selected later on.

LEMMA 4.9. Suppose that P € Ily;,j > 0, and let a¢ := maxgey, |P(z)|.
There exists r > 1, depending only on o, «, and 3, such that if

be := max{min |[P(2)| : 7 € Xjir, Le N 1y # 0},
n

then
(4.17) ag ~ bg
with constants of equivalence independent of P, j and &.

LEMMA 4.10. Assume t > 0 and let {be}ecx; (j > 0) be a collection of
complex numbers. Suppose that o > (dmax{a, 8} +3)/t+1 in the definition
(4.16) of bg. Then

bt () < th( 3 |bn|]l[n>(a:), vl £€ X,

neX;

Proof of Theorem 4.5. Suppose a > (. Fix 0 < ¢t < min{p, ¢} and let
o > (4a+3)/t+1. We first note that the right-hand side equivalence in (4.12)
follows immediately from Lemma 4.6 and the maximal inequality (2.24).

Assume that {@;} are from the definition of weighted Triebel-Lizorkin
spaces, i.e. ¢; are defined by (4.1), where @ satisfies (4.2)-(4.3), the same
as (3.1)-(3.2). As already mentioned, there exists a function b satisfying
(3.1)—(3.2) such that (3.3) holds. Let ¥; be defined by (3.6) using this b.
Also, let {¢¢}eex and {t¢}ecx be the associated needlet systems defined as
in (3.7).

Further, let {5]} be a second sequence of kernels like the kernels {&;}
above but defined by a different function a. Also, we assume that a se-
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quence of companion kernels {@} is constructed as above and let {@¢},
{Jg} be the associated needlet systems, defined as in (3.5)—(3.7). So, we
have two totally different systems of kernels and associated needlet sys-
tems.

We first establish the boundedness of Ty : fpt — F,%, where the space

Fp? is defined by {®;}. Let h € fp" and define f := 3, hetbe. Using (4.15)
we have, for z € [-1,1],

@55 f@)] = | 3 he@y @) < D0 D Ihel 19+ e(a)]

gex J—1<v<j+1E€X,

< 93/2 Z Z ‘h£|
N VW2V ) (1 + 2vd(€, )T

J—1<v<j+1EeX,

Fix n € Xj and set Yy := {£ € X1 UX; U Xy 2 [N Iy # 0} (A = 0).
Notice that #)),, < const and d(z,&) < 277 if x € I and £ € ). Hence,
we have, for z € I,),

|Pj  f(z)]| < 2/ Z Z Z \/T”Lg’]leZd (&, w))°

J—1<v<j+1 weynﬂ% EEX,

/2 *7
< c2 Z \/Ta} Zh

wEYy wEYn

where we also used (2.19). We now insert this in (4.4) and use Lemma 4.10
and the maximal inequality (2.24) to obtain

@) Ul <o (27 2 3 weine])"|
=0 NEX; WDy
<c (i [9si Z hzilé(')}qy/qH
=0 tex; P
(S B 5 PO, <t
Jj=0 EeX;

For the second estimate above it was important that #), < c. Therefore,
the operator TJ : f»¥ — F,;? is bounded.

We next prove the boundedness of the operator S, : Fp? — f;?, where
we assume this time that F,? is defined in terms of {®;}. Let f € F,%. Then
5]» x f € Ily;. For £ € X}, we set

ag :=max |®; x f(x)|, be = max{min|®; x f(z)|: n € Xj4p, I¢ N I, # 0}.
:I)Elg ZEIn
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Assuming that r above is the constant from Lemma 4.9, it follows from the
same lemma that az ~ bZ' Therefore,

(Fre)] = 218 = F(O)] < enlTe)Pag < ep(Ie)?af < cp(Ie)"/?b;.

From this, taking into account that Ls = ,u(Ig)_l/QJlQ, we obtain

(419) () Hige = || (D2 [|<f,90s>|ifs(‘>]q>l/qu

3>0 {6?(
< (X 3 o)
0 fex; P
<ec (Zstq [/\/lt( Z bfﬂlf)(')]q>1/qH
>0 ¢EX; P
. 1
<c (;0 i Ez); )

where for the second inequality above we used Lemma 4.10 and for the third
the maximal inequality (2.24).

Let my, := mingeg, |@; * f(z)] for £ € Xj1, and define, for £ € X},
X]+7«(§) = {w S Xj+7~ : Iw N Ig # @}
Evidently, #X;4,(§) < ¢, ¢ = ¢(r). Hence, d(w,n) < ¢(r)2797" for w,n €
Xjir(§) and therefore
MMy

Mo < € 1+ 2it7d(w,n) < iy,
Consequently, for any £ € X and 1 € X;4,(§), we have be = max,cx, ., (6) Mw

< cm;“] and hence

bg]l[5 S C Z m;;]l[".
nGXj+r(£)
Using this estimate in (4.19) we get

el < (T2 X minn o))",
J>0 NEXjyr
<e(S 2 X mans)o]) |
§>0 NEXjr
<o (S (2 3 mennt)") |
>0 fex; P
<d|(Seim )
j=0

Thus the boundedness of S, : F,? — fp? is established.
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The identity T3, o S, = Id follows from Proposition 3.1.

It remains to show that F,? is independent of the particular selection of
a in the definition of {®;}. Denote for the moment by || f|| s4(5) the F-norm
defined by {®;}. Then by the above proof it follows that

[ lEga@y < cll{Cf, @ blgge and  [{{f, 0e) Hipze < cllfllpsaa)
and hence
£ gocay < el gzt < el

Now the desired independence follows by reversing the roles of {®;}, {@},
and their complex conjugates. m

It is natural to define the weighted potential space (generalized weighted
Sobolev space) HY := HE(w), s >0, 1 < p < oo, on [—1,1] as the set of all
f € D' such that

(4.20) e 2= | S+ Doan( P < e,
n=0

p

where a,,(f) := (f,Py) as in Lemma 2.9.
In the next statement we identify certain weighted Triebel-Lizorkin
spaces as weighted potential spaces or LP(w).

PROPOSITION 4.11. We have
E?~HP, s>0,1<p<oo,
and
E? ~ HY ~ LP(w), 1<p< o0,

with equivalent norms. Therefore, for any f € LP(w), 1 < p < oo,

151~ [ (3 3 1 eieR) |

J=0£eX;

One proves this proposition in a standard way using e.g. the multipliers
from [3]. The proof can be carried out exactly as in the case of spherical
harmonic expansions, given in [11, Proposition 4.3], and will be omitted.

5. Second scale of weighted Triebel-Lizorkin spaces on [—1,1].
We introduce our second scale of Triebel-Lizorkin spaces by utilizing again
the kernels @; defined by (4.1) with @ satisfying (4.2)-(4.3) (compare
with §4).

DEFINITION 5.1. Let s € R, 0 < p < o0, and 0 < ¢ < oo. Then the
weighted Triebel-Lizorkin space Fp? := Fp?(w) is defined as the set of all
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f € D’ such that

o o 1/q

G0 le= || (W@ ey« 101) 7 <o
§=0

with the usual modification when ¢ = occ.

Observe that the above definition is independent of the choice of a as
long as a satisfies (4.2)—(4.3) (see Theorem 5.3 below). Following in the
footsteps of the development from §4, it is easy to show that F,? is a com-
plete quasi-Banach space, which is continuously embedded in D’. For the
latter one proceeds as in the proof of Proposition 4.2, where in (4.5) one,
in addition, uses the obvious estimate [|g]l2 < en?||W(n;-)%g(+)||2, where
v := (2min{a, 8} + 1)sy, which is immediate from ¢;n=2mir{eft-1 <
W(n;x) < ca, x € [—1,1]. We skip the details.

The sequence space f,7 associated with F,? is now defined as follows.

DEFINITION 5.2. Let s € R, 0 < p < oo, and 0 < ¢ < oo. Then £,7 is
defined as the space of all complex-valued sequences h := {h¢}¢cx such that

(5.2 Il = || (S btz Inelir (1) ™| < oo

feXx
with the usual modification when ¢ = co.
To characterize the Triebel-Lizorkin spaces F,? we use again the oper-

ators S, and Ty from (4.7). (One shows that Ty, is well defined on f3? in
much the same way as in Lemma 4.4.)

THEOREM b5.3. Let s € R, 0 < p < 00 and 0 < q¢ < oco. Then the
operators Sy : Fpt — £,9 and Ty, : £,9 — Fp? are bounded and Ty 0 S, = 1d
on Fpl. Consequently, for f € D' we have that f € Fp? if and only if
{(f. ) }eex € £, Furthermore,

(5:3) Iz ~ IGF e Hlggo ~ || (Do lT) 1 f, pe)vse (')Hq)l/qH |

gex P
In addition, the definition of Fp? is independent of the selection of @ satis-
fying (4.2)-(4.3).
The proof of this theorem is similar to the proof of Theorem 4.5. The
only new ingredient is the following lemma.

LEMMA 5.4. Let t >0 and s € R. Suppose {b¢}ecx; (j > 0) is a collec-
tion of complex numbers and let o > (4max{a, 5} +3)(1/t +|s|) + 1 in the
definition (4.16) of b;. Then

(5.4)  p(I) b (@) < eMi( D plI) " Ioylir, ) (@), @€l € € X,
nEXj
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Proof. For & € Xj, p(I¢) ~ 277W(27;€) and hence, using (2.22),
—spx VW27, €)"°|by]
p(le)7bg < c Z , -
22 ([ 2idie,)
295W(275m) ~* by
< -
< 2 Trvde e ©

where 01 := 0 — (2max{«, 5} + 1)|s| > (4max{a, 5} + 3)/t + 1. Now (5.4)
follows from Lemma 4.10. =

e(p(dn)~"by )",

Now the proof of Theorem 5.3 can be carried out as the proof of The-
orem 4.5, using Lemma 5.4 in place of Lemma 4.10 and selecting ¢ in the
definitions of h,z and aZ, bz sufficiently large. We skip the further details.

In a sense the spaces Fp? are more natural than the spaces F? from §4
since they embed “correctly” with respect to the smoothness index s.

PROPOSITION 5.5. Let 0 < p < p1 < 00, 0 < q,q1 < 00, and —oc0 <
51 < § < 00. Then we have the continuous embedding

(5.5) FACF M if s—1/p=s1—1/p1.

The proof of this embedding result can be carried out as the proof of
Proposition 4.11 in [9] (the argument is similar to the one in the classical
case of R", see e.g. [19, p. 129]). We omit it.

6. First scale of weighted Besov spaces on [—1,1]. To introduce
the first scale of weighted Besov spaces we use the kernels @; defined in (4.1)
with @ satisfying (4.2)—(4.3) (see [16, 19]).

DEFINITION 6.1. Let s € R and 0 < p,q < co. Then the weighted Besov
space By := Bp(w) is defined as the set of all f € D’ such that
.- sj q 1/a
Il = (327095 f11,)7) < oc,
=0
where the [,-norm is replaced by the sup-norm if ¢ = oo.

Note that as in the case of weighted Triebel-Lizorkin spaces the above
definition is independent of the choice of @ satisfying (4.2)—(4.3) (see The-
orem 6.4). Also, the Besov space Bp!(w) is a quasi-Banach space which is
continuously embedded in D’.

It is natural to associate to the weighted Besov space B, the sequence
space by! defined as follows.

DEFINITION 6.2. Let s € R and 0 < p,q < oo. Then by} := by!(w) is
defined to be the space of all complex-valued sequences h := {h¢}¢cx such
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that
N s 3 a/p\1/q
e = (32279 D (uae) /7= 2nel?] ™) T < o
7=0 §€Xj
with the usual modification for p = oo or ¢ = cc.

The analysis and synthesis operators S, and T, defined in (4.7) will play
a distinctive role in this section. The next lemma shows that the operator
Ty is well defined on b)’.

LEMMA 6.3. Let s € R, 0 < p,q < oco. Then for any h € by, Tyh :=
dex hee converges in D'. Moreover, the operator Ty : bp? — D' is con-
tinuous.

The proof of this lemma is similar to the proof of Lemma 4.4 and will
be omitted.

Our main result in this section is the following characterization of
weighted Besov spaces.

THEOREM 6.4. Let s € R and 0 < p,q < oo. The operators S, :
B! — byl and Ty : b)! — Bp! are bounded and Ty o S, = Id on Bp'.
Consequently, for f € D' we have f € By if and only if {{f, pe)}ecx € byl.
Moreover,

63)  IFlsg ~ 1ot ~ (3290 3 1k eowelz] ™)

7=0 £eX;
In addition, the definition of Byl is independent of the selection of a satis-
fying (4.2)—(4.3).
To prove this theorem we will need the following lemma whose proof is
presented in the appendix.

LEMMA 6.5. For every P € I, 7 >0, and 0 < p < o0,

1/p
(6.2) (X max|P@)Putie)) < el P
EEX; ¢
Proof of Theorem 6.4. Note first that the right-hand equivalence of (6.1)

follows immediately from (3.12).

As in the proof of Theorem 4.5, assume that the kernels @; are defined
by (4.1), where @ satisfies (4.2)—(4.3). Let b be such that (3.1)~(3.3) hold
and let ¥; be defined by (3.6) using this b. Also, let {peteexr and {P¢tecx
be the associated needlet systems defined as in (3.7). Further, assume that
{5]-}, {@j}, {@e}s {1;5} is a second set of kernels and needlets.

We first prove the boundedness of the operator T : by’ — Bpf, where
By is defined via {®@;}. Let 0 < t < min{p,1} and ¢ > (2a+2)/t+a+1/2.
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Assume h € by’ and set f := > ¢cx hetbe. Employing Lemmata 2.7, 4.7, and
(2.22) we get

D% f(@) < D D lhel1B) % ()]

J—1Sv<j+1gex,

27/2
<c | he] ,
J— 1;]+1£§V \/71;)(1+23d(§’x))0
93/2

<c

- 1<Zu<]+1£§u’ g VW(25€) (1 + 2d(g, )71/
<c > > ’hf‘U(Iﬁ)_l/QMt(]llg)(x) (X_1:=10),

J—1Sv<j+1Eex,

where we also used the inequality o > (2a + 2)/t + a + 1/2. Using the
maximal inequality (2.24) it follows that

|8 % fIIb < H Z Z ‘hé‘ﬂ(fg)_l/QthQ)(')HZ

J—1<v<j+1€€X,

<c D> |helPulle)” UI&() (z) dz

Jo1<v<j+1£€X,

<c Y > |helPulIe)r.

Go1<v<j+1£€X,

Multiplying by 27¢ and summing over j > 0 we get [ fllzsa < cl[{hetlpse-
We next prove the boundedness of the operator S, : By — by, where
we assume that Bp? is defined in terms of {®;}. Note first that

(f, pe)| ~ u(Ie) 2185 % F(E)], €€ X

Since qu * f € Ily;, by Lemma 6.5 we obtain

Yo uI) PR )P < e Y plle) sup |+ f(2)P < By x f,

€EX; €eX; z€le

which yields [[{(f, ) }[p2 < el fll pgs-

The identity Ti, o S, = 1d follows from Proposition 3.1.

The independence of B,? from the particular selection of @ in the defini-
tion of {@;} follows from the above exactly as in the Triebel-Lizorkin case
(see the proof of Theorem 4.5). m

Our next goal is to link the weighted Besov spaces with best polyno-
mial approximation in LP(w). Denote by A,! the approximation space of all
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functions f € LP(w) such that
> - 1/q
(6.3) 1 lLage = 1o+ (D @B ()p)7) " < o0,
=0
where E,(f), denotes the best approximation of f € LP(w) from II,
(see (2.7)).

PROPOSITION 6.6. Let s > 0,1 < p < o0, and 0 < ¢ < oco. Then
f € By if and only if f € Ayl Moreover,

(6.4) 1 llaze ~ £l e

Proof. Let f € Bp%. It is easy and standard to show that under the
assumptions on s, p, and ¢ the space Bp! is continuously embedded in LP(w),
Le. f can be identified as a function in LP(w) and || f|[, < c|[f]|pga-

It is easy to construct (see e.g. [6]) a function a@ > 0 satisfying (4.2)—(4.3)
such that a(t) +a(2t) =1 for t € [1/2,1] and hence

[ee]
(6.5) daEet) =1, tell o)

v=0
Assume that {®;} are defined by (4.1) with such an @. As in Proposition 3.1,
it is easy to see that f = Z;io ®;* f in LP(w). Hence, since @; * f € Iy,

o0
(6.6) Ey(Dp < D2 11955 fllp, 120,
j=l+1

Now, a standard argument using (6.6) shows that || f|| 450 < c[[f| pse-

To prove the estimate in the other direction, we note that @; x f = &, *
(f—Q) for Q € Ily;—= (j > 2). Hence, as in Lemma 2.5, ||@;x f||, < ¢/ f—Q|l,-
Therefore,

125 % fllp < cBy2(Hpy 522, 185% fllp < cllf s
which implies Hf||B;q < ch||A;q.

Above we used the fact that the definition of B,? is independent of the
selection of @, satisfying (4.2)—(4.3). =

REMARK 6.7. It is worth mentioning that E,(f), can be characterized
via the weighted moduli of smoothness of Ditzian—Totik [4]. Consequently,
the weighted moduli of smoothness can be used for characterization of
weighted Besov spaces as well.

7. Second scale of weighted Besov spaces on [—1,1]. We introduce
a second scale of weighted Besov spaces by using again as in §6 the kernels &;,
defined by (4.1) with a satisfying (4.2)—(4.3).
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DEFINITION 7.1. Let s € R and 0 < p, ¢ < 0o. Then the weighted Besov
space Bp! := Bp!(w) is defined as the set of all f € D’ such that
© C 1/q
Il = (DRHIWE )5 FO1) < oo,
§=0
where the /,-norm is replaced by the sup-norm if ¢ = oc.

As for the other weighted Besov and Triebel-Lizorkin spaces consid-
ered here the above definition is independent of the choice of @ satisfying
(4.2)-(4.3). Also, the Besov space By!(w) is a quasi-Banach space which is
continuously embedded in D’.

The main advantages of the spaces Bp! over Bp? are that, first, they
embed “correctly” with respect to the smoothness index s, and secondly,
the right smoothness spaces in nonlinear n-term weighted approximation
from needles are defined in terms of spaces B! (see §8 below).

PROPOSITION 7.2. Let 0 < p < p; <00, 0<q<q1 <00, and —o0 <
51 < s < 00. Then we have the continuous embedding
(7.1) Byt CcB" if s—1/p=s1—1/p1.

This embedding result follows readily by applying inequality (2.11).
We now define the sequence space by!(w) companion to By (w).

DEFINITION 7.3. Let s € R and 0 < p,q < oo. Then by! := by!(w) is
defined to be the space of all complex-valued sequences h := {h¢}¢cx such

that
Hth;q = (Z[Z (M(Ig)—s-l-l/p—l/zlhd)p} q/p>1/q .

J=0 £eX;
with the usual modification for p = co or ¢ = .
For the characterization of weighted Besov spaces B!, we again employ

the operators S, and Ty, from (4.7). An argument similar to the proof of
Lemma 4.4 shows that T}, is well defined on by’ (see also Lemma 6.3).

THEOREM 7.4. Let s€R and 0 <p,q < oo. The operators S, : By — bp!
and Ty : by — By are bounded and Ty 0 S, = 1d on B)?. Consequently,
for f € D" we have f € By if and only if {(f,¢e)}eca € bp!. Moreover,

(7.2) Il ~ I pel g ~ (30| D0 wlI) ™IS, wedvels] Q/p)l/q-

7=0 fEXj
In addition, the definition of Bp? is independent of the selection of @ satis-
fying (4.2)—(4.3).

The following additional lemma is needed for the proof of Theorem 7.4.
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LEMMA 7.5. For every P € 155,57 > 0, and 0 < p < o0,

@3 (W s PEPuo) < AW PO,
ger TEle

The proof of this lemma is similar to the proof of Lemma 6.5, where one
uses Lemma 5.4 in place of Lemma 4.10. We skip it.

For the proof of Theorem 7.4, one proceeds as in the proof of Theo-
rem 6.4, using Lemma 7.5 instead of Lemma 6.5. The proof will be omitted.

8. Application of weighted Besov spaces to nonlinear approx-
imation. We consider here nonlinear n-term approximation for a needlet
system {¢, }pex with @, = ¢, defined as in (3.5)(3.8) with b =@, @ > 0.
Then a satisfies

ai(t)+a2t)=1, tell1/2,1].

Hence {4, } are real-valued.
Denote by X, the nonlinear set consisting of all functions g of the form

9= Z agthe,
e
where A C X, #A < n, and A is allowed to vary with g. Let o, (f), denote
the error of best LP(w)-approximation to f € LP(w) from X,,:
on(f)p = giengn 1f = gllp-

The approximation will take place in LP(w), 0 < p < oco. Assume in the
following that 0 < p < o0, s > 0, and 1/7 := s+ 1/p. We write briefly
B2 =BT,

By Theorem 7.4 and (3.12) it follows that

(5.) Il =~ (2 s vewellp)

{ex
The embedding of B? into LP(w) plays an important role here.

ProprosITION 8.1. If f € B}, then f can be identified as a function
f e LP(w) and

(8:2) £l < || 30 15 we)be )| < ellflss-
cex P
We now state our main result in this section.

THEOREM 8.2 (Jackson estimate). If f € B2, then
(8.3) on(flp < en”*| fllss,

where ¢ depends only on s, p, and the parameters of the needlet system.
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The proofs of this theorem and of Proposition 8.1 can be carried out
exactly as the proofs of the respective Jackson estimate and embedding
result in [9, 11] and will be omitted.

It is an open problem to prove the Bernstein estimate companion
to (8.3):

(8.4) lgllss < en®ligllp  forg e Xn, 1 <p < oo

This would enable one to characterize the rates (approximation spaces) of
nonlinear n-term approximation in LP(w) (1 < p < oo) from needlet sys-
tems.

9. Proofs

Proof of Proposition 2.2. We need the following integral representation
of Ly(x,y) from [13] (see (2.15)):

(9-1) Lu(z,y) = cap |\ L (t(a, y,7,0)) dima p(r, ),

O e
O e

where LY (t) is defined by (2.1),
t(z,y,m ) = 5 (1+2)(1+y)+5(1-2)1-y)r* +rV1 - 22\/1 — y? cosy—1,

the integral is against
dmea,g(r, ) == (1 — rz)o‘_ﬁ_lrzﬁﬂ(sin w)wdrdw,
and the constant c, g is determined from

w1

Ca,B S S Ldmgg(r,v) = 1.
00
For any u € [—1, 1] we will denote by 6,, the only angle in [0, 7] such that
u = cos,.
We will need the following lemma contained in the proof of Theorem 2.4
in [13)].

LEMMA 9.1. Let a,3 > —1/2 and k > 2a + 203 + 3. Then there is a
constant ¢, > 0 depending only on k, a, and [ such that for x,y € [—1,1],

7§§ n2a+1 dma,ﬁ(rﬂﬁ)
ob (L4+ny/1—t(x,y,r )k

< ¢k

)

VWa,5(1152)/Wa,p(n:y) (1 + 1[0, — 0, ])
where 0 = k — 2a — 20 — 3.
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Identity (9.1) yields
(92)  |Ln(z,y) — Ln(&, )]

w1l

< e\ VILeP (e, y,r, ) — LEP (S, y, )| dma (r, ¥)
00
w1

< e\ VIOLG P (Ve (1, ) [ty 7, 00) = HE y, 7, 0) | dmg g, 40),
00

where 0f = f' and I,, is the interval with end points t(z,y,r, 1) and
HEy,m, ).
From estimate (2.16) in [13] and Markov’s inequality, for any k there

exists a constant ¢, > 0 such that
n20¢+4

9.3 OLEP ()] 700 <
(9:3) oLy ()l (zr,w)_cku@% R s

< an® (L +ny/1—t(e,y,r,9)) "+ (L+ny/1 =&y, ) 7.

For the rest of the proof we assume that k > 0 is sufficiently large.
From the definition of ¢(x,y,r, 1) one easily obtains

0, — 6 0 0
1 —t(z,y,7,9) = 2sin’ % + 2sin? ?xsim2 é/ (1—r%
+ sin 6, sin 6, (1 — rcos 1),

which implies
t(x,y, ) —t(& y,r ) = cos(fg — 0y) — cos(0, — 0,)
+ (cos f¢ — cos 0,,) sin? 92—3/ (1 —7?%) + (sinf¢ — sin ;) sin O, (1 — 7 cos1p).
It is readily seen that
|cos(0¢ — 0) — cos(b, — 0,)| = 2|sin b + 9; =20y sin be ; b
< 0 — 02](10: — Oy +en™),

where we used the inequalities |6, — 0] < en™! and |6, — 6¢] < en™l.
Therefore,

(94) ‘t(‘rayanw) - t(fayﬂ”ﬂﬁ)‘
< |0 — 0,][(105 — Oy| + cn™ 1) + sin? %y (1 —7%) +sind, (1 —rcos))).

We use this and (9.3) in (9.2) to obtain
[ Ln(z,y) = Ln(& y)| < clfe — 02(A1L + B1 + Az + By + Az + Bs),

where A; and Bj are integrals of the same type with A; involving t(z, y, 7, ¥)
and B; involving t(§,y,r,1); the indices j = 1,2,3 correspond to the three
terms on the right-hand side of (9.4). We will estimate them separately.
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CASE 1. We first estimate the integral
1 —
Ay =2t (| 0= — 0y +cn”!

oo (L4ny/1—t(z,y,r )"

as well as the integral Bj, which is the same as A; but with ¢(§,y,r,¢) in
place of t(x,y,r, V).

Using the estimate in Lemma 9.1 and the fact that |6, — 6,| ~ |0, — 0,
+ cen~t, we have

ma,ﬁ(ra 111)

n3(|6. — 0, + cn™t)
\/an\/Wny J(1+n|b, —6,])°

77,2

=cC .
\/W(n; ) \/W(na y)(1+nl0, — 9y|)071
On account of (2.22) this gives the desired estimate.
The integral Bj is estimated similarly with the same bound.

CASE 2. We now estimate the integrals

w1 s 20y 2
e | Pk Gk M)
oo (L4+ny/1—t(x,y,r9))F
and By which is the same but has (£, y,r, %) in place of t(z,y,r, ).
By the definition of dmg g(r, 1), (1 — r2)dmag(r,v) = dmai1,5(r, ).
Then using the estimate from Lemma 9.1 with « replaced by a + 1, we
get

<2 Yy
nsim- 35

Ay <e 2
VWar1,8(n; )/ Wag1,5(n

77,2

>cC )
VWa,5(n; )/ W (15 9) (1 + 1|0z — 0y[)°

where we used the fact that W,1 5(71 y) = Wy 5(n;9)(sin®(0,/2)+n~2) and
hence Wa+1 B(n;x) > Wy g(n;x)n™=. The equivalence |0, — 0| ~ |6, — 0,]
+cn~! and (2.22) then give the desired estimate. The integral By is esti-
mated similarly.

»y) (1470, — 6,)°

CASE 3. We finally estimate the integrals

w1

L on4d sin @y (1 — rcos )
A3 = SS 1+n\/1—t(x y,r 7¢)) i ”8( w)

and Bs which has (&, y,r,1) in place of t(z,y,r, ©).
Assume first that [sin@,| > n~!. Using the fact that

1 —t(x,y,r,¢) > sinb, sinb, (1 — rcosp),
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we conclude that

2a+2 71
< ) e )
x()()(l—i_n 1_t($,y77',1/}))
w1 1
< en?ats S S d (r, ).

m
00(1+n\/ 1_t($7y7r7w))k_2 o

Now the estimate from Lemma 9.1 can be applied to get the desired estimate.
Let |sinf,| < n~!. We have

|sin 0| < [sin @y, — sin 6| + [sin 0| < |0, — 0] +n "

and use the fact that
0, —0
1 —t(z,y,71) > 2sin’ Ty > c(0; — 0,)*

to conclude that
w1 1
Az < en?ots dme, g(r, 7).
éé (1+ny/1—t(z,y,r,9))k2
Applying the estimate from Lemma 9.1 we obtain the desired result. Bj is
estimated in the same way.
Putting the above estimates together completes the proof of The-
orem 2.2. m

Proof of Proposition 2.4. Note first that it suffices to prove (2.6) only
for n > ng, where ng is sufficiently large. This follows from the fact that

Pfla’ﬁ ) and Pﬁf ) do not have common zeros and W(n;x) ~ 1 if n < const.

Furthermore, since Pkga’ﬁ )(—:c) = (—1)’“P,§ﬁ ) (z), it is sufficient to consider
only the case x € [0, 1].

k;a)

~ k% and using Markov’s inequality it follows that P,ga’ﬁ) () > ck® for
1—0k=2 <2 <1, where § > 0 is a sufficiently small constant. From this one
readily infers that (2.6) holds for 1 —&n~2 <z < 1, 6; > 0. Define 6 € [0, 7]
from x = cosf. Then the latter condition on x is apparently equivalent to
0 < 0 < dyn~! with d being a positive constant.

To estimate A, (cos @) for c*n~! < @ < 7/2 with ¢* > 0 sufficiently large,
we need the following asymptotic formula of the Jacobi polynomials: For
a, 8> —1,

@ 8 1/2
(sin g) <cos g) P (cosf) = N~ F(n—l—a+1)< o > Jo(INO)

n! sin 6

Note that the Jacobi polynomials are normalized by P,ia’ﬁ )(1) = (

+020(n=3/%)
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if con™! < 6 < 7/2, where N = n +n with n := (a + 8+ 1)/2, J, is
the Bessel function, and ¢p > 0 is an arbitrary but fixed constant (see [18,
Theorem 8.21.12, p. 195]).

Since 2/m < (sin#)/0 < 1 and (cosf)/2 ~ 1 on [0,7/2], and also
I'(n+4 a+1)/n! ~ n® we infer from the above that

2c
(Si“ 9) [P (cos )] > 1 [Ta((k +n)8)]> — cak™/20 2|1 (K + n)6)].

2
Recall the well known asymptotic formula
9\ 1/2
i) = (2) eostz )+ 0G5

where v = —an/2 — 7w /4.
All of the above leads to

0 2
(9.5) (sin 2) Ay (cosB)
n+[en]

> > (el Jalk +mO)* — k220" 2| To((k + n)0)))
k=n
n+[en]

Cc 2 / -1 |
> — —
y: kE:n [cos”(kO + b(0)) — ' (nh) ] — "en™ ",

for con™' < 6 < /2, where b(0) = ((o + 8+ 1)/2)6 + v. We now use the
well known identities for the Dirichlet kernel and its conjugate to obtain,
for m > n,

sin(m —n+1)60 cos(n+m)0

- 1
Z cos®(kO+b) = B (m—n+1)-+(cos 2b+sin 2b)

2sin 6
k=n
Therefore,
n+[en] 1 9
2
> - =
kz;b cos” (k0 + b(0)) > 5 ([en] +1) <1 (EIE sin9>
1

whenever (27/¢)n~! < 6 < /2. Substituting this in (9.5) we obtain

(9.6) sing 2a/l (cos9) c (en_cen) e
' 2 " “nb\ 4 nb n

cc(1 ¢ d'e
> —|-——| - > — ° >0
—9<4 c*> =9 70

V
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if c*n=! < 0 < /2 with ¢* := max{co, 8¢, 27/} and n is sufficiently large.
Hence,

> —2«
(9.7) Ay (cos@) > % (sin 2) > 09_(20‘“), cnTl<o< /2,
for sufficiently large n, which yields (2.6) in this case.

For the remaining case don~! < 6 < ¢*n~!, we need further properties

of Jacobi polynomials. Let z,, = cosf,, denote the zeros of the Jacobi

polynomial P}f"ﬁ ), where

0<b1p<bop<---<bp,<m.

It is well known that 6,,, ~ v/n, but we will need a much more precise as-
ymptotic representation for 6, ,, (see below). The Jacobi polynomials satisfy
the following relation (see e.g. [12, Theorem 3.3, p. 171]):

not1/2

a+1/2?
Vg

(9.8) PB) (cos0) ~ nt/2|0 — 6, .| 0 € [0,n],

where vy denotes the index of the zero z,,, 1 < v < n, which is (one of)
the closest to x (z = cos@).

We will need the asymptotics of the zeros of the Jacobi polynomials
from [5]:

Jawp 1 5 1\1—tcott o?—p? t 9 _3
99) Oup="+— —= - tan — | +t°O
(99 v N+4N2[<a 4) 21 ptang [HEOMT,
where N = n + n as before, j,, is the vth positive zero of the Bessel
function J,(z) and t = j,,/N. Here the O-term is uniformly bounded for
v=1,...,[yn], where vy € (0,1). It is easy to verify that (1—tcott)/t = O(t)
as t — 0 and obviously 1/(n +n) — 1/n = O(n~2). Hence

(910) eyn: ]aT’V_’_O(n_2)7 V= 1”[7”}

‘We will also use the fact that
0<jag <Ja2<--- and jo, — o0.

Let Japmax = Max{ja,y : Jap < (1 +e)c*} and J = {Ja.1, Ja.2) - - -+ Jovmax |-
Notice that vmax is a constant independent of n. Suppose that J # () (the
case J = () is easier).

Fix don~! <0 < ¢*n~1. Then by (9.8) it follows that

P (cos B) ~ k>0 — 6, 4,

where the vy’s involved are bounded by a constant independent of n. Hence,
(9.10) can be used to represent 6,, ; for n <k < n + [en] if n is sufficiently
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large. Using the above we get

n+[en] n+[en]
An(cos0) > en®* 2 N " 10— 0y, k> = en® > kO — kb, 1]
k=n k=n
n+[en]
> en® > (k0 = jaw* — CETHEO = o))
k=n
n+[en]
> cn2a< Z L A c’c*e),
k=n

where we used (9.10). Therefore,

n+[en]
(9.11) Ay (cos ) > cnm( Z dist(k0, J)? — c°>, c,c® >0,
k=n

where dist(kf, J) denotes the distance of kf from the set J, that is, the
distance of kf# from the nearest zero of the Bessel function J,(z).

It remains to estimate the sum in (9.11). Define K := {n,n +1,...,
n+[en]} and let ICp be the set of all indices k € K such that dist(k6, J) < mb,
where m := [en/(6Vmax)|. Evidently

#Ko < (2m + Dvmax < (2[en/(6Vmax)] + 1)Vmax < en/2  if n > 6upmaxe L.

Then #K\ Ko > [en] + 1 —en/2 > en/2 and hence

n+[en)
Z dist(k6, 7)? > Z (mh)? > ¢ Z (nB)? > cd2en > cyn, ¢y > 0.
k=n kek\Ko kek\Ko

Inserting this in (9.11) we obtain
Ap(cosB) > en®*(cun — ¢©) > en? Tt

for sufficiently large n. This implies the stated inequality (2.6) with = cos 6
in the case don~! < 6 < ¢*n~!. The proof of Proposition 2.4 is complete. =

Proof of Proposition 2.6. Suppose a« > (3 and let 1 < g < oco. By
Lemma 2.5(i) we have g = L, * g and using Holder’s inequality, (2.3), and
the fact that W(n;x) > cn=2"! we obtain

1/q
n (0%
90 < clalle (s ) < e elglly, 2 €11

n;x
which leads to

(9.12) lglloc < en®¥D/jglly, 1< g < oo,
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If 0 < ¢ < 1, then the above inequality with ¢ = 2 gives
1

lgllZ, < en®* 2 |g()I>~g(y)|"w(y) dy < en®*F2(|g]1 257 lglld,
—1

which shows that (9.12) holds for 0 < ¢ < 1 as well.
Let 0 < g < p < 0o (the case p = oo is contained in (9.12)). Then using
(9.12) we obtain

1

-~ 1/p
lglly = (§ lot@)P~|g(w) %0 () dz)
-1
< Cn(2a+2)(1/q—1/p)||g||gp—q)/p”g||g/p — cn(20‘+2)(1/‘1_1/p)]|g|\q.

On the other hand, by [12, p. 114],
lgllp < en® =12 gl

Putting the above two estimates together gives (2.10).
To prove (2.11) we will need the following inequality:

1

w(y) dy

_Sl W(n; y)P/2(1 + nd(z, y))°

(9.13)

1
<
=¢ nW(n; z)P/2+r—1’

where 7 € R and o is sufficiently large. The proof of (9.13) is contained in the
proof of Proposition 1 in [13]. Assume 1 < ¢ < co. Then using Lemma 2.5(i),
Holder’s inequality (1/¢ +1/¢' = 1), and (1.10) we have, for z € [-1,1],

lg(@)| < [W(n; )P~ Yag( )y

x € [-1,1],

: / 1/q
x ( V1L, y)W(nsy) === /PH T w(y) dy)
-1

1 1/q
M w(y) dy
= W(n; z)1/? (Sl W(n;y)7/27(1 4 nd(z, y))")

X [W(n; )= Hag( )],
with v = ¢/(s+1/p — 1/q). Now, applying (9.13) we infer that

nl/q

Winiz) 1/ W(n; )P Hag (),

lg(z)| < ¢

which implies

(9:14)  [W(n;-)"Pg( Yoo < en U Wins-) TP g( ) g, 1<q< o0,
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If 0 < ¢ <1, then by (9.14) with ¢ = 2,
W (n: )P g () oo en' 2 [W(ns )P 20 ()

<en' 2 W(n; ) TPg ()2 Wing ) P ag ()14,
which shows that (9.14) holds for 0 < ¢ < 1 as well. Let p < oco. Using (9.14),

we get
1

I Vgl = (§ WG 2 ga) P s ) g ) o) dr

-1

1/p

1

. . . W(n; 2)°g(x)|? e
< ent /P W )P g ) q/p( - w(@)de
q O Win; x)P—a)/p

= en VP (g g ),

Thus (2.11) is established if p < co. When p = oo, (2.11) follows from
(9.14). m

Proof of estimate (2.22). We only consider the case when —1/2 < z,y
< 1 since the other cases are similar or simpler. Choose 6, ¢ € [0,27/3] so
that © = cos 6, y = cos ¢. Then d(x,y) = |6 — ¢|. We have

sinf +n~! < |sinf —sing| +sing+n"t <0 —¢| +sing+n?
< (14n|0— @|)(sing +n~1).
Then (2.22) follows using (2.20). =
Proof of Lemma 2.7. We first show that for y € [0,1] and 0 < r < 7,
(9.15) W(By(r) = | w(@)de ~r(d(y, 1) + )2,
By(r)

Indeed, choose 0 < ¢ < 7/2 so that y = cos( and consider the case when
¢+r < 2m/3 (the case ( +r > 27/3 is trivial; then p(By(r)) ~ 1). We have

¢+r CHr
p(By(r)) ~ S (1 —cosu)®sinudu ~ S w2t g
max{¢—r,0} max{¢—7,0}

~ (¢ = max{C =1, 0})(C +r)*Fh ~ (¢ 4 )Pt

which yields (9.15).

We now proceed with the proof of (2.25). Write J,, := By, (¢), which is an
interval. Equivalence (2.25) is trivial when x € J,,.

Assume z € [—1,1] \ J,. Denote by I, the interval with end points x
and 7. By the definition of the maximal operator in (2.23) it readily follows
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that
u(Ty) < (1) )Y
(i) = wano = (f5)
and since p(lzy) < p(Jy ULy y) < p(Jy) + p(lzy) < cp(lyy), we have
1/t
(9.16) (M, )(z) ~ < :(%3)) .

We will only consider the case when = € [—1/2,1], since the case x €
[—1,—1/2] is simpler. Choose «y € [0, 7/2] and ¢ € [0, 27/3] so that n = cos~y
and x = cos¢. Then d(n,z) = |y — ¢|. By (9.15) and (9.16) it follows
that
e(d(n,1) + )

=@l (v+¢ | lv—9l\2a+]
7o (52 + 152)

e ( d(n, 1) +e >2a+1
d(n, z) \d(n, ) + d(n, 1) ’
which implies (2.25). Estimates (2.26) are immediate from (2.25). =
Proof of (3.12)-(3.13). The equivalence ’|i[§||p ~ (27IW(27;€))1/P=1/2
follows from (2.19).
From (2.3) and (2.15) it follows that, for { € X; and 0 < p < oo,

9.17 cor( 2N (2 N
917)  leellp, [[Yellp < CC¢ <VV(23,£)> = C<W(2j;£)) :

When p = oo, similar estimates follow from (3.11).

To estimate [|¢¢l|p, ||¢¢l|p from below, we first note that from (2.5) and
(9.17) it follows that |¢¢ll2 ~ [|tell2 ~ 1. Let 2 < p < oo and 1/p+1/p’ = 1.
Using Holder’s inequality and (9.17) we obtain

(ML) ()] ~

) 2j 1/2—-1/p’
0 < < liell < Ielblicl < leelh( 550555 )

and similarly for . Hence

9 1/2—1/p
(9.18) leellps llvellp = C<W(2j€)> .

In the case p = 0o, we proceed similarly and obtain the same estimate.
If 0 < p < 2, then

2 2— 2 e
0 <<l < leelBllvel? < cleel (g )
which implies (9.18) and similarly for |[¢¢||,.
Finally, (3.13) follows from the lower bound in (9.18) with p = oo

and (3.10). n
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Proof of Lemma 4.6. Estimate (4.13) is immediate from (3.11) and Lem-
ma 2.7 (see (2.26) and (2.19)).

For the proof of (4.14) we first observe that by (3.13) there exists a
point ¢ € Be(c*277) such that |pe(¢)] > ©(27/W(27;€))1/2. By (2.4) it
follows that
231124 (x, ¢) i
lpe(x) —pe(Q)l <c W L€ Be(e27),

and hence for sufficiently small constant ¢’ > 0 we have
e ()] > % (27 )W(2TE)Y? for x € Be(¢"277) N [-1,1].
Therefore, there exists an interval J, := B, (c277) C [—1,1] such that
lpeloe(s,) = e /W)Y and d(n,€) < c27.
Hence,
(Mipe)(x) = c(Mily, ) (x) = el (z),

where for the last estimate we used (2.25). Thus (4.14) is established for .
The proof for 9 is the same. =

Proof of Lemma 4.7. From the orthogonality of Jacobi polynomials it
follows that @; * 1¢(x) =0if £ € X, where v > j+2o0or v < j — 2.

Assume that £ € &, j — 1 < v < j + 1. From the localization of the
kernels @;,¥, (see (3.9)) and the definition of c¢ (see (2.14)) we see that for
any o > 0 there is a constant ¢, > 0 such that

95 % e \—f\ W, (y, )w(y) dy

1

; . w(y)
< W) S By O DO

Setting £ = cosf, x = cosn for some 0 < 6,n < 7w and applying the substi-
tution y = cos ¢, we obtain

D * e ()]

< 203/ (99 1)1/ w(cos @) sin ¢

W(;cos 6) (1 + 2] — o)) (1 + 210 — 9|7

d¢

1
14+ 2|0 —¢[)7(1 + 2716 — ¢[)°

< 232 W(27 )12 d¢

)
t

< 2 W(@I5 ) VA (14 2y — 0)
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where we used the inequality
1

23'5 : :
z L+ 2[n—9¢[)7(1+2710 — ¢[)”

dp <c(14+2/n—6))". u

For the proof of Lemma 4.9 we will need this lemma:

LEMMA 9.2. Let P € Ily;, j > 0 and £ € Xj. Suppose 1,22 € [—1,1]
and d(x,,€) < 279, v =1,2. Then for any o > 0,

|P(a1) — P(as)| < co2d(z1,72) >
neEX;

[P(n)
(14 27d(&,m)”

where ¢, > 0 depends only on o, «, 3, and cy.

Proof. Let P € Ily;. Suppose Ly;(z,y) is the reproducing kernel from
Lemma 2.5 with n = 27. Then Ly; * P = P. Since Lyj(x, )P(-) € IIyj+2,
using the fact that the quadrature (2.14) is exact for all polynomials from
1I5j+2 we get

1

P(z) = | Ly(z,y)P(y)w(y)dy = Y cyLoi(z,m)P(n), =€ [-1,1].
-1 neX;

Recall that ¢, ~ 279W(27;n). Now, using Theorem 2.2 we obtain, for
x1, w2 € [—1,1] with d(z,,€) <277, v=1,2,
1
[P(a1) = Plwg)| = | | [Las (21,9) = Loy (w2, 9)] P(y)uly) dy
1

<> eyl Lo (w1,m) = Lo (w1,m)| | P(n)]
neX;

SN 1/2
< cvilonen) Y (al) o

s, W) (L 2d(E )
' [P(n)]
< c22d(xq,x2) ‘ |
n;j (14 27d(&,n))o—max{af}-1/2

where for the last inequality we used (2.22). Since o > 0 can be arbitrarily
large the result follows. =

Proof of Lemma 4.9. Clearly a¢ < be + d¢, where
d¢ == max{|P(z1) — P(x2)|: x1 € I¢, d(z1,22) < 2" Tt
and ¢y is the constant appearing in (2.18). By Lemma 9.2 it follows that

)
PO
de < c2 ngj (14 27d(&,m))°’

e A
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Then recalling the definition of dz in (4.16) we infer that

S ()]
=2 D D Ui vdwn)r (T DAE W)

weX; nEX);

- [P(n)] -
<e27 ) : 5 < c27ag,
ez, (L+2d(.6))

where for the second inequality we switched the order of summation and
used the simple fact that for o > 1,

Z 1 <e 1
2, T+ 2d(w,n) (L 2dE w)7 = [T+ 2d(,€)7

Consequently, az < bz + dz < bz + c2”az with ¢ > 0 independent of r.
Choosing r sufficiently large we obtain az < cbg. The estimate in the other
direction is trivial. =

Proof of Lemma 4.10. We may assume that o > 3. Fix { € &} and
define Yy := {n € &X; : d(n, &) < 2277} and

Y ={nea;: 27T < d(n, &) < 27T m > 1,
where ¢ > 0 is from (2.18). Using (2.18) we have #Y,,, < ¢2™. Also, let
i = Be(c2(2M+1)279) = {z € [-1,1] : d(n,€) < c2(2™+1)277},  m > 0.

Evidently, Jp, is an interval and I, C J,, if n €Y,, 0 <v <m.
We next show that

(9.19) (1(Jm) < c2mEeF) (1) for all i € Y.

Suppose £ € [0,1]; the case £ € [—1,0] is the same. Let J,,, =: [y1,y2] and
choose ¢1,¢2 € [0,7] so that y; =: cos¢; and ya =: cosda (Pp1 > ¢2).
Exactly as in the proof of Lemma 2.7,

u(Tm) = | w(y)dy < c(g1 — ¢2)d7* T < c277TMW(27 1),
JIm
and by (2.22),
(9.20) u(Jm) < c27TTMW(T€)(1+ 2d(yn, €))%
< c2—j+(2a+2)mw(2j; é—)

On the other hand, using again (2.22) we get

p(ly) Z c279W(2 ) 2 c2W(2 ) (1 + 2d(n, €))7

> C2—j—(2a+1)mw(2j;£)‘

Combining this with (9.20) gives (9.19).
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Let ¢ := max{0,1 — 1/t} < 1. Using Holder’s inequality if ¢ > 1 and the
t-triangle inequality if 0 < t < 1, we have

* b —mo
6622( +2"7d’77§ 22 Z‘bn‘

nex. m>0 nEYm
ey rmea( T )

We next use (9.19) to obtain, for z € I¢,

1
b= e 3220 (§ [ 5 balutty) 1, 0] wiey o)
m=20 -1 neYp
Jt
oy (L { <u<Jm>>”f } )
gcmzzf (u(Jm) J§n Ezym (1) |by|11, (2) | w(z)dz
1/t
<e X2t (L § [ 5 it )] i) )
m>0 T 1EYm
< c/\/lt( Z |bw|]llw)($) Z g—m(o—1-(4a+3)/t)
weX; m>0
< CMt( Z ‘bw’ﬂ1w>($),
weX)

where for the last inequality we used the fact that o > (4da+3)/t+ 1. =
Proof of Lemma 6.5. For { € Xj, we set ag := maxger, |P(z)], me =
mingez, | P(x)| and
be = max{;reliln |P(z)| : w € Xjyp, Ly N I # 0},

where r > 1 (sufficient large) is the constant from Lemma 4.9. If 0 <t < p
then

(9.21) ( > alu(Ie) )1/p _ H Z aglp, (- Hp < cH ;}; bzllzg(-)Hp
€4

EeX;
(S ol <ol 5 ks
§eX; £eX;

where for the first inequality we used Lemma 4.9 and for the second Lem-
ma 4.10. Also, for £ € &j let Xj1.,.(§) := {w € Xjir : L,NI¢ # 0}. Evidently,
#Xj1r(€) < c. Then for w,n € Xj4r(£) we have d(w,n) < ¢(r)2797" and
hence

My < C MM < cm?k.
1+ 2747d(w, n) K
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Therefore, for any £ € X; and n € X;4,(§) we have be = max,ex,,, (6) Mw <

cm;“7 and hence

bgﬂjé < Z m:]]l]n.
77er+7‘(£)

Using this in (9.21) we get

(3 dhutt)” <o 3 mig 0 <t 3 mans )0

geX; NEXjtr NEXjtr

<c| 32 main,0) <P,
p
neEXjr

which completes the proof. =
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