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Abstract. We study minimality properties of partly modified mixed Tsirelson spaces.
A Banach space with a normalized basis (ek) is said to be subsequentially minimal if for
every normalized block basis (xk) of (ek), there is a further block basis (yk) of (xk)
such that (yk) is equivalent to a subsequence of (ek). Sufficient conditions are given for
a partly modified mixed Tsirelson space to be subsequentially minimal, and connections
with Bourgain’s `1-index are established. It is also shown that a large class of mixed
Tsirelson spaces fails to be subsequentially minimal in a strong sense.

The class of mixed Tsirelson spaces plays an important role in the
structure theory of Banach spaces and has been well investigated (e.g.,
[2, 3, 5, 17, 20, 21]). In this paper, we will study aspects of the subspace
structure of mixed Tsirelson spaces and (partly) modified mixed Tsirelson
spaces (see definitions below). We are particularly interested in properties
connected with minimality. An infinite-dimensional Banach space X is mini-
mal if every infinite-dimensional subspace has a further subspace isomorphic
to X. The work of Gowers [15] had motivated some recent studies on mini-
mality (e.g., [11, 12, 22]).

A Banach space X with a normalized basis (ek) is said to be subse-
quentially minimal if for every normalized block basis (xk) of (ek), there is
a further block (yk) of (xk) such that (yk) is equivalent to a subsequence
of (ek). It is well known that the Tsirelson space T [(S1, 1/2)] has the prop-
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erty that every normalized block basis of its standard basis is equivalent to
a subsequence of (ek) (see [8]). In particular, it is subsequentially minimal.
In [18, Theorem 9], it was shown that if a nonincreasing null sequence (θn)
in (0, 1) is regular (θm+n ≥ θmθn) and satisfies

(†) lim
m→∞

lim sup
n→∞

θm+n

θn
> 0,

then the space T [(Sn, θn)∞n=1] is subsequentially minimal if and only if every
block subspace of T [(Sn, θn)∞n=1] admits an `1-Sω-spreading model, if and
only if every block subspace of T [(Sn, θn)∞n=1] has Bourgain `1-index greater
than ωω. In particular, if supn θ

1/n
n = 1, then the mixed Tsirelson space

T [(Sn, θn)∞n=1] is subsequentially minimal [20].
This paper is divided into two parts. In the first part, we investigate the

analogs of the results quoted above in the context of partly modified mixed
Tsirelson spaces. In this connection, it is worth pointing out that a subse-
quentially minimal partly modified mixed Tsirelson space is quasi-minimal
in the sense of Gowers [15]. Since these spaces are strongly asymptotic `1, by
[10] they do not contain minimal subspaces, and therefore they are strictly
quasi-minimal. The only typical known example of a strictly quasi-minimal
space was the Tsirelson space. While the unit vector basis of the Tsirelson
space has the block property (every normalized block basis is equivalent to
a subsequence of the unit vector basis) [8], among our examples of strictly
quasi-minimal spaces there are cases which do not have this property. The
subsequentially minimal mixed Tsirelson spaces, mentioned above, are also
quasi-minimal, but it is not known if they are strictly quasi-minimal (see
the remarks in [10]). In the second part of the paper, we give a general
sufficient condition for an (unmodified) mixed Tsirelson space to fail to be
subsequentially minimal in a strong sense.

In a recent article [13], Ferenczi and Rosendal undertook a deep anal-
ysis of minimality and proved several dichotomy results. Generally speak-
ing, their results show that in every (infinite-dimensional) Banach space,
one can find a further (infinite-dimensional closed) subspace that has either
some form of minimality or a related form of “tightness”. They also re-
fined Gower’s classification of Banach spaces. The subsequentially minimal
partly modified mixed Tsirelson spaces considered in §2 below all belong
to class 5c in the Ferenczi–Rosendal classification. (The fact that they are
tight with constants follows from Proposition 4.2 of [13].) This puts them
in the same class as Tsirelson’s space T . Every normalized block basis in T
has the block property. On the other hand, if (θn) is a regular sequence with
supn θ

1/n
n = 1, then our results show that T [(Sn, σn, θn)∞n=1] is saturated

with block sequences that have the block property and also saturated with
block sequences that fail to have the block property. (The same can be said
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for the space XM(1),u constructed in [3].) Thus it is unclear if there is a
further dichotomy within class 5c that can distinguish T from these other
spaces. Let us also mention that a dichotomy between subsequential mini-
mality on the one hand and a property called “tight by range” on the other
was established in [13, Theorem 1.3]. The property of being “tight by range”
is stronger than what we term “strongly non-subsequentially minimal” in
§4 below.

1. Preliminaries. Denote by N the set of natural numbers. For any
infinite subset M of N, let [M ] and [M ]<∞ be the sets of all infinite and
all finite subsets of M respectively. These are subspaces of the power set
of N, which is identified with 2N and endowed with the topology of pointwise
convergence. A subset F of [N]<∞ is said to be hereditary if G ∈ F whenever
G ⊆ F and F ∈ F . It is spreading if for all strictly increasing sequences
(mi)ki=1 and (ni)ki=1, (ni)ki=1 ∈ F if (mi)ki=1 ∈ F and mi ≤ ni for all i. We
also call (ni)ki=1 a spreading of (mi)ki=1. A regular family is a subset of [N]<∞

that is hereditary, spreading and compact (as a subspace of 2N). If I and J
are nonempty finite subsets of N, we write I < J to mean max I < min J . We
also allow that ∅ < I and I < ∅. For a singleton {n}, {n} < J is abbreviated
to n < J . If F ,G ⊆ [N]<∞, let

F [G] =
{ k⋃
i=1

Gi : Gi ∈ G, G1 < · · · < Gk, (minGi)ki=1 ∈ F
}
,

(F ,G) = {F ∪G : F < G, F ∈ F , G ∈ G}.
Inductively, set (F)1 = F and (F)n+1 = (F , (F)n) for all n ∈ N. It is clear
that F [G] and (F ,G) are regular if both F and G are. A class of regular
families that has played a central role is the class of generalized Schreier
families [1].

Let S0 consist of all singleton subsets of N together with the empty set.
Then define S1 to be the collection of all A ∈ [N]<∞ such that |A| ≤ minA
together with the empty set, where |A| denotes the cardinality of the set A.
If Sα has been defined for some countable ordinal α, set Sα+1 = S1[Sα]. For
a countable limit ordinal α, specify a sequence (αn) that strictly increases
to α. Then define

Sα = {F : F ∈ Sαn for some n ≤ minF} ∪ {∅}.
Given a nonempty compact family F ⊆ [N]<∞, let F (0) = F and F (1) be
the set of all limit points of F . Continue inductively to define F (α+1) =
(F (α))(1) for all ordinals α and F (α) =

⋂
β<αF (β) for all limit ordinals α.

The index ι(F) is the smallest α such that F (α+1) = ∅. Since [N]<∞ is
countable, ι(F) < ω1 for any compact family F ⊆ [N]<∞. It is well known
that ι(Sα) = ωα for all α < ω1 [1, Proposition 4.10].
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A sequence (xn) in a normed space said to dominate a sequence (yn) in a
possibly different space if there is a finite constant K such that ‖

∑
anyn‖ ≤

K‖
∑
anxn‖ for all (an) ∈ c00. If two sequences dominate each other, then

they are equivalent, and we write (xn) ∼ (yn). If (en) is a basic sequence and
F ⊆ N, then [(en)n∈F ] denotes the closed linear span of {en : n ∈ F}. If (en)
is a normalized basis of X, then (xn) ≺ (en) or (xn) ≺ X will indicate that
(xn) is a normalized block basis of (en). We say that Y is a block subspace
of X, written Y ≺ X, if X has a basis (xn) and Y = [(yn)n∈N] for some
(yn) ≺ (xn). A normalized sequence (xn) is said to be an `1-Sβ-spreading
model with constant K if ‖

∑
n∈F anxn‖ ≥ K−1

∑
n∈F |an| whenever F ∈ Sβ.

Partly modified mixed Tsirelson spaces. Let (θn) be a null sequence in
the interval (0, 1) and σn ∈ {U,M} for every n. We say that a family (Ei)ki=1

of subsets of N is (Sn, σn)-adapted if (minEi)ki=1 ∈ Sn and{
Ei ∩ Ej = ∅, 1 ≤ i 6= j ≤ k if σn = M,

Ei < Ei+1, 1 ≤ i < k if σn = U.

An (Sn, σn)-adapted family (Ei)ki=1 is said to be Sn-admissible (respectively
Sn-allowable) if σn = U (respectively σn = M). Define the space X =
T [(Sn, σn, θn)∞n=1] to be the completion of c00 under the implicitly defined
norm

(1) ‖x‖ = max
{
‖x‖c0 , sup

n
θn sup

∑
i

‖Eix‖
}
,

where the last supremum is taken over all (Sn, σn)-adapted families (Ei). If
σn = U for all n (respectively σn = M for all n), then X is a mixed Tsirelson
space (respectively modified mixed Tsirelson space). If σp0 = M for at least
one p0, we call X a partly modified mixed Tsirelson space.

Norming trees. Equation (1) can be viewed as an iterative prescription
for computing the norm. The procedure may be summarized in terms of
norming trees (see [7]), from which the existence and uniqueness of a norm
satisfying (1) also follows. An ((Sn, σn)n-)adapted tree T is a finite collection
(Emi ), 0 ≤ m ≤ r, 1 ≤ i ≤ k(m), of elements in [N]<∞ with the following
properties:

(1) k(0) = 1,
(2) every Em+1

i is a subset of some Emj ,
(3) for each j and m, the collection {Em+1

i : Em+1
i ⊆ Emj } is (Sk, σk)-

adapted for some k.

The set E0
1 is called the root of the adapted tree. The elements Emi are

called nodes of the tree. If Eni ⊆ Emj and n > m, we say that Eni is a
descendant of Emj and Emj is an ancestor of Eni . If, in the above notation,
n = m + 1, then Eni is said to be an immediate successor of Emj , and



Minimality of Tsirelson type spaces 237

Emj the immediate predecessor or parent of Eni . Nodes with no descendants
are called terminal nodes or leaves of the tree. The collection of all leaves
of T is denoted by L(T ). Assign tags to the individual nodes inductively
as follows. Let t(E0

1) = 1. If t(Emi ) has been defined and the collection
(Em+1

j ) of all immediate successors of Emi is (Sk, σk)-adapted, then define
t(Em+1

j ) = θkt(Emi ) for all immediate successors Em+1
j of Emi . If x ∈ c00 and

T is an adapted tree, let T x =
∑
t(E)‖Ex‖c0 , where the sum is taken over

all leaves in T . It follows from the implicit description (1) of the norm in
X that ‖x‖ = max T x, with the maximum taken over the set of all adapted
trees. Let us also point out that if E is a collection of pairwise disjoint nodes
of an adapted tree T so that E ⊆

⋃
E for every leaf E of T and x ∈ c00,

then T x ≤
∑

F∈E t(F )‖Fx‖. Given a node E ∈ T with tag t(E) =
∏m
i=1 θni ,

define ordT (E) =
∑m

i=1 ni. When there is no confusion, we write ord(E)
instead of ordT (E).

Let T be an adapted tree. A node E ∈ T is said to be a sibling of F ∈ T
if they have the same parent. If (zi) is a block sequence, we say that E begins
at zk if E ∩ supp zk 6= ∅ and E ∩ supp zj = ∅ for all j < k. To say that E
begins before zk means that E begins at zj for some j < k and we denote
this condition by E C zk.

`1-Trees and Bourgain’s `1-index. A tree in a Banach space B is a sub-
set T of

⋃∞
n=1B

n so that (x1, . . . , xn) ∈ T whenever (x1, . . . , xn, xn+1) ∈ T .
Elements of the tree are called nodes. The tree is well-founded if there is
no infinite sequence (xn) so that (x1, . . . , xm) ∈ T for all m. If B has a
basis, then a tree T is said to be a block tree (with respect to the basis) if
every node is a block basis of the given basis. For any well-founded tree T ,
its derived tree is the tree D(1)(T ) consisting of all nodes (x1, . . . , xn)
such that (x1, . . . , xn, x) ∈ T for some x. Inductively, set D(α+1)(T ) =
D(1)(D(α)(T )) for all ordinals α and D(α)(T ) =

⋂
β<αD(β)(T ) for all limit

ordinals α. The order of a tree T is the smallest ordinal o(T ) = α such that
D(α)(T ) = ∅.

Definition. Given a finite constant K ≥ 1, an `1-K-tree in a Banach
space B is a tree in B so that every node (x1, . . . , xn) is a normalized se-
quence such that ‖

∑
akxk‖ ≥ K−1

∑
|ak| for all (ak). If B has a basis, an

`1-K-block tree is a block tree that is also an `1-K-tree. Suppose that B
does not contain `1, and let I(B,K) = sup o(T ), where the sup is taken
over the set of all `1-K-trees in X. The Bourgain `1-index of B is defined
to be I(B) = supK<∞ I(B,K). The block `1-index Ib(B) is defined anal-
ogously using block trees if B has a basis. In [16, Lemmas 5.7 and 5.11],
it was shown that Ib(B) 6= Ib(B,K) and I(B) 6= I(B,K) for every K. In
particular, Ib(B), I(B) are limit ordinals. It was also shown [16, Corollary
5.13] that I(B) = Ib(B) when both are defined and are ≥ ωω each.
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2. Sufficient conditions for subsequential minimality. The pur-
pose of the present section is to give sufficient conditions for a partly modi-
fied mixed Tsirelson space to be subsequentially minimal. Prior experience
with mixed Tsirelson spaces [18] suggests that there may be some connec-
tion with the Bourgain `1-index. This indeed turns out to be the case but
the proof requires a different approach.

The main result of the section is the following theorem. The smallest
integer greater than or equal to a ∈ R is denoted by dae. For the rest of the
section, X will denote a partly modified mixed Tsirelson space.

Theorem 1. Let X be a partly modified mixed Tsirelson space. If Y ≺ X
and I(Y ) > ωω, then there exists (xn) ≺ Y such that (xn) ∼ (epn), where
pn = min suppxn. Consequently , X is subsequentially minimal if I(Y ) > ωω

for all Y ≺ X.

Let us remark that by Theorem 1 and Proposition 14, any partly modi-
fied mixed Tsirelson space X such that I(Y ) > ωω for all block subspaces Y
of X is saturated with subspaces with subsequentially minimal bases. Thus
X is sequentially minimal in the terminology of [13]. Before proceeding with
the proof of the theorem, let us draw the following corollary.

Corollary 2. Suppose that there exists ε > 0 such that

sup{n/m : θn ≥ εm} =∞.

Then X is subsequentially minimal. This holds in particular if sup θ1/n
n = 1.

Proof. Clearly, for any n ∈ N and any Y ≺ X, every normalized block
sequence in Y is an `1-Sn-spreading model with constant θ−1

n . By [16], if
Y contains an `1-S2n-spreading model with constant K, then it contains
an `1-Sn-spreading model with constant

√
K. With the assumption of the

corollary, for any k ∈ N, there are m,n so that n/m ≥ 2k and θn ≥ εm.
Choose i and j so that 2i ≤ m < 2i+1 and 2j ≤ n < 2j+1. Then any
Y ≺ X contains an `1-S2j -spreading model with constant θ−1

n , and hence,
by the remark above, an `1-S2j−i-spreading model with constant θ−1/2i

n .
Since θ

−1/2i

n ≤ ε−2 and 2j−i ≥ k, Y has an `1-Sk-spreading model with
constant ε−2 for all k. Hence there is an `1-ε−2-tree on Y of order ωω. Thus
Ib(Y, ε−2) ≥ ωω and so I(Y ) = Ib(Y ) > Ib(Y, ε−2) ≥ ωω. The desired result
now follows from Theorem 1.

Finally, assume that sup θ1/n
n = 1. Given 0 < ε < 1 and k ∈ N, there

exists n > k such that θ1/n
n > ε1/k. Set m = dn/ke ≥ 2. Then θn ≥ εm and

n/m ≥ k(1− 1/m) ≥ k/2.

The proof of Theorem 1 is in two stages. First we show that from any
block subspace of X with a high `1-index a “slow-growing” block sequence
may be extracted (see property (∗) defined below). In the second part, we
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show that this block sequence is equivalent to a subsequence of the unit
vector basis (ek).

Definition. Let Y = [(yk)] be a block subspace ofX. We say that Y has
property (∗) if there exists a constant C <∞ such that for all n ∈ N, there
exists a normalized vector x ∈ Yn = span{(yk)∞k=n} such that

∑
‖Eix‖ ≤ C

whenever (Ei) is Sn-allowable.

First we recall a lemma.

Lemma 3 ([17, Proposition 14]). Let T be a well-founded block tree in a
Banach space B with a basis. Define

H = {(max suppxj)rj=1 : (xj)rj=1 ∈ T },
G = {G : G is a spreading of a subset of some H ∈ H}.

Then G is hereditary and spreading. If G is compact , then ι(G) ≥ o(T ).

Lemma 4. If I(Y ) > ωω then Y has property (∗).
Proof. There exists K < ∞ such that Ib(Y,K) ≥ ωω. Let T be an

`1-K-block tree in Y such that o(T ) ≥ ωω. Given n ≥ p0, consider the tree
T̂ consisting of all nodes of the form (xj)rj=n for some (xj)rj=1 ∈ T , r ≥ n.
Then T̂ is an `1-K-block tree in Yn such that o(T̂ ) ≥ ωω. Define

H = {(max suppxj)rj=n : (xj)rj=n ∈ T̂ },
G = {G : G is a spreading of a subset of some H ∈ H}.

By Lemma 3, G is hereditary and spreading, and either G is non-compact or
it is compact with ι(G) ≥ o(T̂ ) ≥ ωω > ωn+1. By [14, Theorem 1.1], there
exists M ∈ [N] such that

Sn+1 ∩ [M ]<∞ ⊆ G.
Now [21, Proposition 3.6] gives a finite set G ∈ Sn+1∩[M ]<∞ and a sequence
(ap)p∈G of positive numbers such that

∑
ap = 1 and

∑
p∈F ap < (θp0)P ,

where P = dn/p0e, whenever F ⊆ G and F ∈ Sn. By definition, there exist
a node (xj)rj=n ∈ T̂ and a subset J of the integer interval [n, r] such that G
is a spreading of (max suppxj)j∈J . Denote by u the unique order preserving
bijection from J onto G and consider the vector y =

∑
j∈J au(j)xj . Since

(xj)rj=n is a normalized `1-K-block sequence in Yn and
∑
au(j) = 1, y ∈ Yn

and ‖y‖ ≥ 1/K.
Let (Ei) be Sn-allowable. Let J1 = {j ∈ J : some Ei begins at xj} and

J2 = JrJ1. Note that Sn ⊆ Sp0P = [Sp0 ]P . Thus for each j, (θp0)P
∑

i ‖Eixj‖
≤ ‖xj‖ = 1. Also, since {u(j) : j ∈ J1} ∈ Sn,

∑
j∈J1

au(j) < (θp0)P . Hence∑
i

∥∥∥Ei ∑
j∈J1

au(j)xj

∥∥∥ ≤∑
j∈J1

au(j)
∑
i

‖Eixj‖ ≤
∑
j∈J1

au(j)
1

(θp0)P
< 1.(2)
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On the other hand, the collection {Ei ∩ suppxj : Ei C xj} of pairwise
disjoint sets is S1-allowable and thus Sp0-allowable. Therefore,∑

i

∥∥∥Ei ∑
j∈J2

au(j)xj

∥∥∥≤∑
j∈J2

au(j)
∑
i

‖Eixj‖ =
∑
j∈J2

au(j)
∑
EiCxj

‖Eixj‖(3)

=
∑
j∈J2

au(j)
∑
EiCxj

‖(Ei ∩ suppxj)xj‖≤
∑
j∈J2

au(j)
1
θp0

.

Combining inequalities (2) and (3) gives∑
‖Eiy‖ =

∑∥∥∥Ei∑
j∈J

au(j)xj

∥∥∥
≤
∑∥∥∥Ei ∑

j∈J1

au(j)xj

∥∥∥+
∑∥∥∥Ei ∑

j∈J2

au(j)xj

∥∥∥ ≤ 1 +
1
θp0

.

It is clear that the normalized element x = y/‖y‖ satisfies the statement of
the lemma with the constant C = (1 + 1/θp0)K.

We record the quantitative restatement of Lemma 4 for future reference.

Lemma 5. Let T be an `1-K-block tree on a block subspace Y of X of
order o(T ) ≥ ωω. Then for all n ∈ N, there is a normalized vector x in
the span of a node of T such that

∑
‖Eix‖ ≤ K(1 + θ−1

p0 ) whenever (Ei) is
Sn-allowable.

For each n ∈ N, define

ξn = sup{θm1 · · · θmj : m1 + · · ·+mj > n}.
Then (ξn) is a null sequence. Assume that Y has property (∗). Taking n0 = 0,
choose a normalized, finitely supported vector x1 so that

∑
‖Esx1‖ ≤ C

whenever (Es) is Sn0-allowable. Since (ξn) is a null sequence, there exists
n1 > n0 so that ξn1‖x1‖`1 ≤ 1/2. Let q1 = max suppx1. We can choose a
normalized vector x2 ∈ span{(ek)∞k=2q1

} so that
∑
‖Esx1‖ ≤ C whenever

(Es) is Sn1-allowable. Continuing inductively, we obtain (xk) ≺ Y and a
strictly increasing sequence (nk), n0 = 1, so that for each k,

(α)
∑
‖Esxk‖ ≤ C whenever (Es) is Snk−1

-allowable,
(β) ξnk‖xk‖`1 ≤ 1/2k,
(γ) 2qk ≤ pk+1 for all k, where pk = min suppxk and qk = max suppxk.

Let (bk)Nk=1 ∈ c
+
00 and set x =

∑N
k=1 bkxk.

Lemma 6. Let T be an adapted tree. If E is a collection of pairwise
disjoint nodes of T such that ord(E) ≤ m for all E ∈ E , then E is Sm-
allowable.

Proof. Note that if T is an adapted tree, then it is an allowable tree with
nodes of the same orders. The conclusion follows from [19, Lemma 3].



Minimality of Tsirelson type spaces 241

Lemma 7. Given any adapted tree T , there exists an adapted tree T ′
such that

(a) if E ∈ T ′ and E ∩ suppxk 6= ∅, then ord(E) ≤ nk,
(b) T x ≤ T ′x+

∑
k bk/2

k.

Proof. Given an adapted tree T and F ⊆ N, define

TF = {E ∩ F : E ∈ T , E ∩ F 6= ∅}.

Clearly, TF is an adapted tree. For all k = 2, . . . , N, define a set Fk by

F ck =
⋃
{E ∩ suppxk : E ∈ T , ord(E) > nk}.

Then

T xk =
∑

E∈L(T )

t(E)‖Exk‖ =
∑

E∈L(T )
ord(E)≤nk

t(E)‖Exk‖+
∑

E∈L(T )
ord(E)>nk

t(E)‖Exk‖

≤ TFkxk + ξnk‖xk‖`1 ≤ TFkxk + 1/2k.

Let T ′ = TF2∩F3∩···∩FN . Note that T ′ satisfies (a) and T ′xk = TFkxk if
2 ≤ k ≤ N. Hence

T x =
∑

bkT xk ≤ b1T x1 +
N∑
k=2

bk

(
TFkxk +

1
2k

)
=
∑

bkT ′xk +
∑ bk

2k
= T ′x+

∑ bk
2k
.

Define Ek = {E ∈ T ′ : E begins at xk and has a sibling that begins
before xk}.

Lemma 8.
∑

E∈Ek ‖Exk‖ ≤ C for all k = 2, . . . , N .

Proof. Note that if E ∈ Ek, then E has a sibling E′ that begins before xk.
Hence ord(E) = ord(E′) ≤ nk−1 by property (a) of Lemma 7. By Lemma 6,
Ek is Snk−1

-allowable. The conclusion follows from condition (α).

Proof of Theorem 1. As (ek) is a 1-unconditional basis of X, it is enough
to consider nonnegative coefficients. As above, consider (bk)Nk=1 ∈ c

+
00 and

set x =
∑N

k=1 bkxk, y =
∑N

k=1 bkepk . It is easy to see that ‖y‖ ≤ ‖x‖. We will
show that ‖x‖ ≤ (2+C)‖y‖, where C is the constant in condition (α). Given
an adapted tree T , we obtain an adapted tree T ′ as in Lemma 7. We may
further assume that every node E ∈ T ′rL(T ′) is the union of its immediate
successors, that E ⊆

⋃
k suppxk for every E ∈ T ′ and that, upon relabeling

if necessary, the root of T ′ begins at x1. With these assumptions, every node
E ∈ L(T ′) that intersects suppxk, k ≥ 2, is a descendant of some node in Ek.
For each k ≥ 2, choose Ek ∈ Ek such that t(Ek) = max{t(E) : E ∈ Ek}. By
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Lemma 8, for k ≥ 2,

T ′xk =
∑
E∈Ek

t(E)‖Exk‖ ≤ t(Ek)
∑
E∈Ek

‖Exk‖ ≤ t(Ek)C.

Therefore,

T x ≤ T (b1x1) +
N∑
k=2

bkT ′xk +
N∑
k=2

bk
2k
≤ b1 + C

N∑
k=2

bkt(Ek) +
N∑
k=2

bk
2k

≤ C
N∑
k=2

t(Ek)bk + 2‖(bk)‖c0 ≤ C
N∑
k=2

t(Ek)bk + 2‖y‖.

To complete the proof, it suffices to appeal to Proposition 9 below to see
that

∑N
k=2 t(Ek)bk ≤ ‖y‖.

Remark. The proof above shows that if (xk) is a (possibly finite) nor-
malized block sequence in X satisfying conditions (α)–(γ) for some (nk),
then (xk) is (2 + C)-equivalent to (epk).

Proposition 9. There is an (Sn, σn)∞n=1-adapted tree T ′′ such that

T ′′y ≥
N∑
k=1

bkt(Ek).

In particular ,
∑N

k=1 bkt(Ek) ≤ ‖y‖.
Proof. The tree T ′′ is constructed by replacing each node E in T ′ with

one or two nodes, which we now proceed to describe. For each E ∈ T ′, define
GE = {pj : Ej ( E}. If E ∈ T ′ and E 6= Ek for any k, substitute GE for E.
If E = Ek for some k, put two nodes, namely {pk} and GE , in place of E.
The resulting collection of nodes is denoted by T ′′. Note that since the root
of T ′ begins at x1, it cannot be equal to Ek for any k. Thus the root of T ′
is replaced with a single node. If E ∈ T ′ has immediate successors (Fi)si=1

which form an (Sn, σn)-adapted family, then in the process, the Fi’s are
replaced with sets from the collection (GFi)

s
i=1 ∪P , where P = {{pk} : Fi =

Ek for some i}, whereas GE is one of the substitutes for E (perhaps the only
one). Claim 1 below shows that T ′′ remains a tree; Claims 2 and 3 show that
(GFi)

s
i=1 ∪ P is an (Sn, σn)-adapted family if (Fi)si=1 is (Sn, σn)-adapted.

Claim 1. (GFi)
s
i=1 ∪ P is a family of pairwise disjoint subsets of GE .

By definition, {pk} ⊆ GE for any {pk} ∈ P . Let us show that GFi ⊆ GE .
Indeed, if pj ∈ GFi , then Ej ( Fi ⊆ E. Thus pj ∈ GE .

Now, if i 6= i′, then Fi ∩Fi′ = ∅. By definition, GFi is disjoint from GFi′ .
If Fi = Ek for some i and k, then for any i′ (including i itself), Ek ( Fi′
cannot hold. Therefore, {pk} and GFi′ are disjoint for all i′. Since obviously
any two sets in P are disjoint, the claim is established.
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Claim 2. If (Fi)si=1 consists of successive sets, then so does (GFi)
s
i=1∪P .

First we show that if Fi < Fi′ , then GFi < GFi′ . Let pj ∈ GFi and
pj′ ∈ GFi′ . Then Ej ( Fi and Ej′ ( Fi′ . Since Ej begins at xj , Ej′ begins
at xj′ and Fi < Fi′ , it follows that j < j′ and hence pj < pj′ . This shows
that GFi < GFi′ .

Next, if Fi < Fi′ = Ek for some i, i′ and k, then we claim that GFi <
{pk} < GFi′ . To see the first inequality, pick a point pj ∈ GFi . Then Ej ( Fi.
In particular, Ej < Fi′ = Ek. Since Ej begins at xj and Ek begins at xk,
we deduce that j < k and thus pj < pk. Hence GFi < {pk}. Similarly, if
pj ∈ GFi′ , then Ej ( Fi′ = Ek. Since Ej begins at xj and Ek begins at xk,
we deduce that k < j. This shows that {pk} < GFi′ .

Let P̂ = {pk : {pk} ∈ P}.

Claim 3. (minGFi)
s
i=1 ∪ P̂ ∈ Sn.

The proof of this claim requires several short lemmas.

Lemma 10. For any E ∈ T ′, minGE ≥ 2 minE.

Proof. Suppose that pj ∈ GE . Then Ej ( E. Since Ej has a sibling that
begins before xj , E begins before xj . This implies that

2 minE ≤ 2qj−1 ≤ pj by (γ).

Lemma 11. P̂ is a spreading of a subset of (minFi)si=1 and pk ≥ 2 minF1

for all pk ∈ P̂ .

Proof. We may assume that minF1 < · · · < minFs. For each k, let Hk =
{minFi : minFi ∈ suppxk}. List the k’s such that Hk 6= ∅ in increasing
order as k1 < · · · < kr. Since every Fi begins at or after xk1 , Ek1 6= Fi for
any i. Therefore, P̂ ⊆ (pkl)

r
l=2. For each 2 ≤ l ≤ r, choose il−1 such that

minFil−1
∈ Hkl−1

. Then (pkl)
r
l=2 is a spreading of (minFil−1

)rl=2. Also note
that pk ≥ pk2 ≥ 2qk1 ≥ 2 minF1 for all pk ∈ P̂ .

It follows from Lemmas 10 and 11 that (minGFi)
s
i=1 ∪ P̂ can be written

as
⋃
j∈B Aj , where B = {2 minF1} ∪ (minFi)si=2, minAj ≥ j, and |Aj | ≤ 2

for all j ∈ B.

Lemma 12. Suppose that n ∈ N, L ∈ Sn and B is a spreading of L
such that minB ≥ 2 minL. If |Aj | ≤ 2 and minAj ≥ j for all j ∈ B, then⋃
j∈B Aj ∈ Sn.

Proof. It is easy to see that we may assume Aj < Aj′ if j < j′. Write
L =

⋃p
k=1 Lk, where L1 < · · · < Lp are in Sn−1 and p ≤ minL1. Then

B =
⋃p
k=1Bk, where each Bk is a spreading of Lk and B1 < · · · < Bp.

Denoting by A2 the collection of subsets of N having at most two elements,
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we appeal to [17, Remark on p. 312] to deduce that⋃
j∈Bk

Aj ∈ Sn−1[A2] ⊆ (Sn−1)2.

Hence
⋃
j∈B Aj =

⋃2p
k=1Ci, where C1 < · · · < C2p are in Sn−1. Since 2p ≤

2 minL1 ≤ minB ≤ minC1, the conclusion of the lemma follows.

Completion of proof of Proposition 9. It follows from the claims and
lemmas above that the nodes of T ′′ form an (Sn, σn)∞n=1-adapted tree, where
the tag of any node in T ′′ is the same as the tag of the node in T ′ for which
it is a substitute. Moreover, it follows from Claim 1 that all nodes in P are
terminal. Therefore,

T ′′y ≥
∑
{pk}∈P

t({pk})bk =
N∑
k=2

t(Ek)bk.

Recall that a Banach space Z is said to be minimal if every infinite-
dimensional subspace of Z has a further subspace isomorphic to Z. This
definition is due to Rosenthal. In [15], Gowers introduced the more general
notion of quasi-minimal spaces. Two Banach spaces are said to be totally
incomparable if they do not have isomorphic infinite-dimensional subspaces.
A Banach space is said to be quasi-minimal if it does not contain a pair of to-
tally incomparable infinite-dimensional closed subspaces. Using Theorem 1,
Corollary 2 and Proposition 14 below, we obtain

Corollary 13. Let X = T [(Sn, σn, θn)∞n=1] be a partly modified mixed
Tsirelson space so that I(Y )>ωω for every block subspace Y of X. Then X is
quasi-minimal. This holds if there exists ε > 0 such that sup{n/m : θn≥εm}
=∞, and in particular if sup θ1/n

n = 1.

Proposition 14. Let (pk) and (qk) be subsequences of N so that pk ≤
qk < 2qk ≤ pk+1 for all k. Then the sequences (epk) and (eqk) are 2-equi-
valent in any partly modified mixed Tsirelson space X = T [(Sn, σn, θn)∞n=1].

Proof. Define a sequence of norms on X follows. Let ‖x‖0 = ‖x‖c0 and

‖x‖i+1 = max
{
‖x‖0, sup

n
sup θn

∑
m

‖Emx‖i
}
,

where the final supremum is taken over all (Sn, σn)-adapted families (Em).
It is clear that ‖x‖ = lim ‖x‖i for all x ∈ X. For any finite subset E of (qk),
let the shift of E be the set s(E) = {pk : qk ∈ E}. We claim that for any i,
any (ak) ∈ c00 and any E ⊆ (qk), there exist pj ∈ s(E) and F ⊆ s(E) such
that pj < F and

(4)
∥∥∥E∑ akeqk

∥∥∥
i
≤ |aj |+

∥∥∥F∑ akepk

∥∥∥
i
.
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Once the claim is proved, it follows easily that ‖
∑
akeqk‖ ≤ 2‖

∑
akepk‖.

Since each Sn is spreading, we clearly have ‖
∑
akepk‖ ≤ ‖

∑
akeqk‖, and

the proof of the proposition would be complete. We now prove the claim (4)
by induction on i.

The case i = 0 is trivial. Suppose that the claim holds for some i. We
may assume that∥∥∥E∑ akeqk

∥∥∥
i+1

= θn

d∑
m=1

∥∥∥Em∑ akeqk

∥∥∥
i
,

where (Em)dm=1 is an (Sn, σn)-adapted family of subsets of E, arranged so
that (minEm)dm=1 is an increasing sequence. By induction, for each m, there
are pjm ∈ s(Em) and Fm ⊆ s(Em) such that pjm < Fm and∥∥∥Em∑ akeqk

∥∥∥
i
≤ |ajm |+

∥∥∥Fm∑ akepk

∥∥∥
i
.

Observe that for every m, 2 minEm ≤ 2qjm < pjm+1 ≤ minFm. Also, for
m ≥ 2, 2 minEm−1 ≤ min s(Em) ≤ pjm . Let m0 be such that pjm0

is the
minimum of the sequence (pjm)dm=1. Then (pjm)m6=m0 ∪ (minFm)dm=1 may
be written as

⋃
j∈B Aj , where B is a spreading of (minEm)dm=1 such that

minB ≥ 2 minE1, |Aj | ≤ 2 and Aj ≥ j for all j ∈ B. By Lemma 12,
(pjm)m 6=m0 ∪ (minFm)dm=1 ∈ Sn. Clearly, {{pjm} : m 6= m0} ∪ {Fm : 1 ≤
m ≤ d} is a pairwise disjoint family that is successive if (Em)dm=1 is. Thus,
this family is (Sn, σn)-adapted. We may then conclude that∥∥∥E∑ akeqk

∥∥∥
i+1

= θn

d∑
m=1

∥∥∥Em∑ akeqk

∥∥∥
i

≤ θn|ajm0
|+ θn

( ∑
m6=m0

|ajm |+
d∑

m=1

∥∥∥Fm∑ akepk

∥∥∥
i

)
≤ |ajm0

|+
∥∥∥F∑ akepk

∥∥∥
i+1
,

where F = {pjm : m 6= m0} ∪
⋃d
m=1 Fm ⊆ s(E) and F > pjm0

∈ s(E).

If X = T [(Sn, σn, θn)∞n=1] is a partly modified mixed Tsirelson space
where σp0 = M , then it is clear that every disjointly supported sequence
(xk)nk=1 in [(ek)∞k=n] is θ−1

p0 -equivalent to the unit vector basis of `1(n). Such
spaces are called strongly asymptotic `1 spaces. In [10], it was proved that
every minimal, strongly asymptotic Banach space with a basis is isomor-
phic to a subspace of `1. Since partly modified spaces are reflexive (this
may be proved using the arguments of [3]; alternatively, it follows from the
computation of the `1-index below (Theorem 17)), we deduce that no partly
modified mixed Tsirelson space contains a minimal subspace. Hence the class
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of partly modified mixed Tsirelson spaces X such that I(Y ) > ωω for every
subspace Y of X provides examples of strictly quasi-minimal Banach spaces
in the sense of Gowers [15]. By [9], Tsirelson’s space T does not contain a
minimal subspace. Also, T has the block property (see [8]): every normal-
ized block basis is equivalent to a subsequence of the unit vector basis. It
follows easily that T is strictly quasi-minimal. However, among the strictly
quasi-minimal partly modified mixed Tsirelson spaces are spaces that fail
the block property. Indeed, it can be deduced from the arguments in §2 of [3]
that the space XM(1),u constructed there is one such example. We may also
obtain further examples using the arguments in the present paper. Recall
that a regular sequence (θn) is a nonincreasing null sequence in (0, 1) so that
θm+n ≥ θmθn for all m,n. By [21, Lemma 4.13], θ = limn θ

1/n
n exists and is

equal to sup θ1/n
n .

Proposition 15. Let (θn) be a regular sequence so that sup θ1/n
n = 1.

Then X = T [(Sn, σn, θn)∞n=1] is saturated with block subspaces that fail to
have the block property.

Proof. If lim θ
1/n
n = 1, then the hypothesis of Theorem 23 below is ful-

filled. In fact, assume that there exists m such that

lim sup
n

inf
n1+···+ns≥n

θm+n

θn1 · · · θns
<

1
2
.

Since (θn) is regular, θn1 · · · θns ≤ θn if n1 + · · ·+ ns ≥ n. So we have

lim sup
n

θm+n

θn
<

1
2
.

Pick n0 so that θm+n/θn < 1/2 for n ≥ n0. For all k ∈ N,

θkm+n0 ≤
1
2
θ(k−1)m+n0

≤ · · · ≤
(

1
2

)k
θm+n0 .

Thus

lim sup
k

θ
1/km+n0

km+n0
≤ 1

21/m
,

a contradiction. By Theorem 23, X = T [(Sn, σn, θn)∞n=1] contains `1-Sm-
spreading models with uniform constant, say K.

Claim. For any ε > 0, there exists n0 so that

‖x‖ ≤ ε‖x‖`1 + ‖x‖Sn0

for all x ∈ X, where ‖x‖Sn0
= supE∈Sn0

‖Ex‖`1.

Let T be an adapted tree so that ‖x‖ =
∑
t(E)‖Ex‖c0 , where the sum

is taken over all leaves of T . It is clear that there exists n0 so that any leaf
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E ∈ T with t(E) > ε satisfies ord(E) ≤ n0. By Lemma 6, the set of all
leaves E with t(E) > ε is Sn0-allowable. Thus∑′

t(E)‖Ex‖c0 ≤ ‖x‖Sn0
,

where
∑′ is taken over all leaves in T with t(E) > ε. Let

∑′′ be the sum
over the remaining leaves. Then

‖x‖ ≤
∑′′

t(E)‖Ex‖c0 +
∑′

t(E)‖Ex‖c0 ≤ ε‖x‖`1 + ‖x‖Sn0
,

as desired.

Next, we show that there is a normalized block basis (yn) in X and a
subsequence (epn) of the unit vector basis of X with yn < epn < yn+1 for
all n so that (yn) is not equivalent to (epn). Indeed, if this were not true,
there would be a uniform constant M such that any two such sequences are
M -equivalent. Let K be the constant chosen before the Claim and let n0 be
obtained from the Claim corresponding to ε = 1/2KM . Take any m > n0.
There is a normalized block basis (yn) in X that is an `1-Sm-spreading model
with constant K and a subsequence (epn) of the unit vector basis of X such
that yn < epn < yn+1 for all n. For any finite sequence (an) supported on a
set in Sm, ∑

|an| ≤ K
∥∥∥∑ anyn

∥∥∥ ≤ KM∥∥∥∑ anepn

∥∥∥
≤ 1

2

∑
|an|+KM

∥∥∥∑ anepn

∥∥∥
Sn0

.

Hence ‖(an)‖Sm ≤ 2KM‖
∑
anepn‖Sn0

for any sequence (an). It is easy to
see that this does not hold since m > n0.

If X has the block property, then (yn) chosen above is equivalent to
some subsequence (epn) of the unit vector basis. From Proposition 14, we
obtain a subsequence (ynk) and r1 < r2 < · · · such that ynk < erk < ynk+1

.
Since (ynk) is still an `1-Sm-spreading model with constant K, the same
contradiction ensues.

The argument above may be carried out in any subspace [(eqn)] of X,
with (eqn) a subsequence of the unit vector basis. Since X is subsequentially
minimal by Corollary 2, it follows that X is saturated with block subspaces
that fail to have the block property and also saturated with normalized block
basic sequences (zn) such that (z2n−1) is not equivalent to (z2n).

3. The Bourgain `1-index. In this section, we develop the techniques
of §2 further to investigate the Bourgain `1-index of partly modified mixed
Tsirelson spaces. In the first part of the section, we show that I(X) does
not exceed ωω·2. In the second part, we pinpoint the value of I(X) in certain
cases in terms of the sequence of coefficients (θn).
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In the following proposition, we will require the concepts of block sub-
trees, minimal trees Tα and replacement trees T (α, β) defined, constructed
and developed in [16]. We refer the reader to that paper for details. The proof
below is comparable to that of [16, Lemma 4.2]. When two trees T and T ′ are
isomorphic, we write T ' T ′. Given two finite sequences ~x = (x1, . . . , xm)
and ~y = (y1, . . . , yn), let ~x t ~y = (x1, . . . , xm, y1, . . . , yn). We say that a
normalized vector x has property (∗) for the couple (n,C) ∈ N× R+ if∑
‖Eix‖ ≤ C whenever (Ei) is Sn-allowable.

Proposition 16. If T is an `1-K-block tree of order o(T ) ≥ ωω · α,
then for any n0 ∈ N and any positive sequence (εi), there exists a block
subtree T ′ of T , isomorphic to Tα, such that every node (x1, . . . , xd) ∈ T ′
satisfies:

(1) there exist n1 < · · · < nd−1, with n1 > n0, such that each xi has
property (∗) for the couple (ni−1, C), where C = (1 + θ−1

p0 )K,
(2) ξni‖xi‖`1 ≤ εi for 1 ≤ i < d,
(3) 2 max suppxi ≤ min suppxi+1 if 1 ≤ i < d.

Proof. The proof is by induction on α. The case α = 1 follows from
Lemma 5. Suppose that T is an `1-K-block tree of order o(T ) ≥ ωω ·(α+1).
According to [16, Lemma 3.7], upon replacing T by a subtree if necessary, we
may assume that T is isomorphic to the “replacement tree” T (α+ 1, ωω).
From the definition of T (α+ 1, ωω), we see that (T (α+ 1, ωω))(ω

ω ·α) is the
minimal tree Tωω . Applying the case α = 1 to T (ωω ·α) ' Tωω , we obtain a
normalized block y of a node ~x = (x1, . . . , xm) in T (ωω ·α) such that y has
property (∗) for the couple (n0, C). Choose n1 > n0 such that ξn1‖y‖`1 ≤ ε1.
Without loss of generality, we may assume that ~x is a terminal node in
T (ωω ·α). By the construction of T (α+ 1, ωω), the subtree T~x of T consisting
of all nodes ~z > ~x is isomorphic to T (α, ωω) and hence has order ωω · α.
Consider the “restricted subtree” R(T~x) [16, Definition 4.1] consisting of all
(wj , . . . , wk) where ~x t (w1, . . . , wk) ∈ T~x and j is the smallest integer such
that min suppwj ≥ 2 max suppxm. Then R(T~x) is an `1-K-block tree of
order ωω · α. Apply the inductive hypothesis to R(T~x) with the parameters
n1 and (εi+1) to obtain a block subtree T ′′ of R(T~x). Define T ′ = {(y)t ~w :
~w ∈ T ′′}. It is easy to check that T ′ satisfies the desired conclusion (for the
ordinal α+ 1).

Suppose that T is an `1-K-block tree of order o(T ) ≥ ωω · α, where
α is a limit ordinal. Let (αn) be a sequence of ordinals strictly increasing
to α. Then T contains pairwise disjoint subtrees Tn with o(Tn) ≥ ωω ·αn for
all n. For each n, apply the inductive hypothesis to obtain a block subtree
T ′n of Tn. The block subtree T ′ =

⋃
T ′n of T satisfies the conclusion of the

proposition.
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If (εi) is chosen to be (1/2i), then from the remark following the proof
of Theorem 1, we see that every node (x1, . . . , xd) ∈ T ′ is (2+C)-equivalent
to (epi), where pi = min suppxi. For y ∈ c00, let ‖y‖Sp = supE∈Sp ‖Ey‖`1 .

Theorem 17. The Bourgain `1-index of X = T [(Sn, σn, θn)∞n=1] is I(X)
≤ ωω·2.

Proof. If I(X) > ωω·2, then by [16, Corollary 5.13], there exists an
`1-K-block tree T with o(T ) ≥ ωω·2 for some K > 0. Let n be chosen so
that ξn < 1/2K(2 + C). By Proposition 16, we obtain an `1-K-block tree
T ′ of T with o(T ′) = ωn+1 such that every node (x1, . . . , xd) in T ′ is
(2 + C)-equivalent to (epi). Define

H = {(pj)rj=n : (xj)rj=n ∈ T ′},
G = {G : G is a spreading of a subset of some H ∈ H}.

By Lemma 3, G is hereditary and spreading, and either G is noncompact, or
it is compact with ι(G) ≥ o(T ′) ≥ ωn+1 > ω

n. By [14, Theorem 1.1], there
exists M ∈ [N] such that Sn ∩ [M ]<∞ ⊆ G. As in the proof of Lemma 4, we
obtain a node (xj)rj=n ∈ T ′, J ⊆ [n, r], an order preserving map u from J
onto a spreading of (pj)j∈J and a sequence (au(j))j∈J of positive numbers
such that

∑
j∈J au(j) = 1 and

∑
j∈A au(j) < ξn whenever {u(j) : j ∈ A} ∈

Sn−1. Let y =
∑

j∈J au(j)xj . Since (xj)j is a normalized `1-K-block sequence,
‖y‖ ≥ 1/K. On the other hand,

‖y‖ =
∥∥∥∑
j∈J

au(j)xj

∥∥∥ ≤ (2 + C)
∥∥∥∑
j∈J

au(j)epi

∥∥∥
≤ (2 + C)

(∥∥∥∑
j∈J

au(j)epj

∥∥∥
Sn−1

+ ξn‖(au(j))‖`1
)
≤ 2(2 + C)ξn,

contradicting the choice of n.

In the second half of the section, we obtain an estimate on the norms of
vectors spanned by normalized block sequences in X (Proposition 21), from
which the value of the Bourgain `1-index I(X) may be deduced. For the
remainder of the section, assume that (xk) is a normalized block sequence in
X = T [Sn, σn, θn)∞n=1], (ak) ∈ c00 and qk = max suppxk. Set x =

∑
akxk.

Recall the assumption that σp0 = M for some p0. Given a node E in an
adapted tree T , we say that it is a long node (with respect to x) if E ∩
suppxk 6= ∅ for more than one k. Otherwise, we term the node short.

Lemma 18. For any N , there exists an adapted tree T such that all long
nodes E ∈ T satisfy t(E) > θN and

‖x‖ ≤ T x+
θN
θp0
‖(ak)‖`1 .
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Proof. Choose an adapted tree T ′ such that ‖x‖ = T ′x. Let E be the
collection of minimal elements in the set of long nodes E with t(E) ≤ θN .
For each E ∈ E , let kE be the smallest k such that suppxk ∩ E 6= ∅, and
let FE = suppxkE ∩ E. For each k, the nonempty sets in the collection
{(E r FE) ∩ suppxk} are S1-allowable and hence Sp0-allowable. Thus,∑

E∈E
t(E)‖(E r FE)xk‖ ≤ θN

∑
E∈E
‖(E r FE)xk‖ ≤

θN
θp0

.

Then ∑
E∈E

t(E)‖(E r FE)x‖ ≤ θN
θp0
‖(ak)‖`1 .

Let T be the tree obtained from T ′ by changing all nodes G ∈ T ′, G ⊆ E
for some E ∈ E to G ∩ FE . Then T is an adapted tree such that every long
node H in T satisfies t(H) > θN . Moreover,

‖x‖ = T ′x ≤ T x+
∑
E∈E

t(E)‖(E r FE)x‖ ≤ T x+
θN
θp0
‖(ak)‖`1 .

Fix N and let T be the tree given by Lemma 18. For any ε > 0, let
k(ε) = max{n1 + · · · + nj : θn1 · · · θnj > ε}. Let E denote the set of all
minimal short nodes in T .

Lemma 19. If E1 = {E ∈ E : E has a long sibling}, then∑
E∈E1

t(E)‖Ex‖ ≤
∥∥∥∑ akeqk

∥∥∥
Sk(θN )

.

Proof. If E ∈ E1, then t(E) > θN and hence ord(E) ≤ k(θN ). Hence
by Lemma 6, E1 is Sk(θN )-allowable. Since each E ∈ E1 is a short node, it
follows that the set Q0 = {qk : suppxk ∩ E 6= ∅ for some E ∈ E1} ∈ Sk(θN ).
Thus ∑

E∈E1

t(E)‖Ex‖ ≤
∑
qk∈Q0

|ak| ≤
∥∥∥∑ akeqk

∥∥∥
Sk(θN )

.

For m,n ∈ N, define

ηm,n = inf
θm+n

θn1 · · · θns
,

where the infimum is taken over all n1, . . . , ns such that n1 + · · ·+ ns ≥ n,
with the additional requirement that σn1 = · · · = σns = M if σm+n = M.
Obviously, ηm,n majorizes the quantity

inf
n1+···+ns≥n

θm+n

θn1 · · · θns
,

which occurs in Theorem 23 below.
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Lemma 20. Suppose that

inf
m

lim sup
n

ηm,n = 0.

For any ε > 0, there exist m and n0 such that∑
E∈ErE1

t(E)‖Ex‖ ≤ ε‖(ak)‖`1 + 2
∥∥∥∑ akeqk

∥∥∥
Sk(θN )+n0+m

.

Proof. Choose m and n0 such that ηm,n < ε if n ≥ n0. Let D = (Di)
be the set of all parents of nodes in E r E1. In particular, each Di is a
long node and hence t(Di) > θN . It follows that ord(Di) ≤ k(θN ). Also, the
nodes in D are pairwise disjoint since no E ∈ E r E1 can have a long sibling.
For each i, there exists some ni such that Fi = {E ∈ E r E1 : E ⊆ Di} is
(Sni , σni)-adapted. Let I = {i : ni ≤ n0+m}. Then ord(E) = ord(Di)+ni ≤
k(θN )+n0 +m for all E ∈

⋃
i∈IFi. By Lemma 6,

⋃
i∈I Fi is an Sk(θN )+n0+m-

allowable collection of short nodes. It follows that

Q0 =
{
qk : suppxk ∩ E 6= ∅ for some E ∈

⋃
i∈I
Fi
}
∈ Sk(θN )+n0+m.

Therefore,

(5)
∑

E∈
S
i∈I Fi

t(E)‖Ex‖ ≤
∑
qk∈Q0

|ak| ≤
∥∥∥∑ akeqk

∥∥∥
Sk(θN )+n0+m

.

Now consider those i /∈ I. Let Fik = {E ∈ Fi : E ⊆ suppxk}. For each k,
let

Ik = {i /∈ I : {minE : E ∈ Fik} ∈ Sni−m},
I ′k = {i /∈ I : {minE : E ∈ Fik} /∈ Sni−m}.

Suppose that i ∈ Ik. Choose n(i)
1 , . . . , n

(i)
s such that n(i)

1 + · · ·+n
(i)
s ≥ ni−m,

θm+ni−m
θ
n

(i)
1

· · · θ
n

(i)
s

< ε

and σ
n

(i)
1

= · · · = σ
n

(i)
s

= M if σni = M. This is possible since i /∈ I implies
that ni −m ≥ n0 and hence ηm,ni−m < ε.

If σni = U, then the sets in Fi and hence Fik are successive. Since
{minE : E ∈ Fik} ∈ Sni−m, Fik is Sni−m-admissible and hence S

n
(i)
1 +···+n(i)

s
-

admissible. Then

(6)
∑
E∈Fik

θ
n

(i)
1

· · · θ
n

(i)
s
‖Exk‖ =

∑
E∈Fik

θ
n

(i)
1

· · · θ
n

(i)
s
‖EDixk‖ ≤ ‖Dixk‖.

If σni = M, then Fik is Sni−m-allowable and hence S
n

(i)
1 +···+n(i)

s
-allowable.

Since σ
n

(i)
1

= · · · = σ
n

(i)
s

= M , we obtain the same inequality as in (6).
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From inequality (6),∑
i∈Ik

∑
E∈Fik

t(E)‖Exk‖ =
∑
i∈Ik

t(Di)θni
∑
E∈Fik

‖Exk‖

≤ ε
∑
i∈Ik

t(Di)θn(i)
1

· · · θ
n

(i)
s

∑
E∈Fik

‖Exk‖

≤ ε
∑
i∈Ik

t(Di)‖Dixk‖ ≤ ε.

Therefore,

(7)
∑

{(i,k) : i∈Ik}

∑
E∈Fik

t(E)‖Ex‖ ≤ ε||(ak)||`1 .

For each i /∈ I, set Ji = {k : i ∈ I ′k}. Then {minE : E ∈ Fik} /∈ Sni−m for
each k ∈ Ji but

⋃
k{minE : E ∈ Fik} = {minE : E ∈ Fi} ∈ Sni . By [17,

Lemma 2], (min
⋃
E∈Fik E)k∈Ji ∈ Sm. Now ord(Di) ≤ k(θN ) for all i and

D consists of pairwise disjoint sets. Thus by Lemma 6, D is Sk(θN )-allowable.
Therefore, {qk : k ∈

⋃
i/∈I Ji} ∈ Sk(θN )+m. It follows that∑

{(i,k) : i∈I′k}

∑
E∈Fik

t(E)‖Ex‖ ≤
∑

k∈
S
i/∈I Ji

|ak| ≤
∥∥∥∑ akeqk

∥∥∥
Sk(θN )+m

.(8)

Combining (5), (7) and (8) yields∑
E∈ErE1

t(E)‖Ex‖ = ε‖(ak)‖`1 + 2
∥∥∥∑ akeqk

∥∥∥
Sk(θN )+n0+m

.

From Lemmas 18–20 we have

Proposition 21. Suppose that infm lim supn ηm,n = 0. Then given any
ε > 0 and N, there exist m and n0 such that

‖x‖ ≤
(
ε+

θN
θp0

)
‖(ak)‖`1 + 3

∥∥∥∑ akeqk

∥∥∥
Sk(θN )+n0+m

.

Theorem 22. If infm lim supn ηm,n = 0, then I(Y ) = ωω for all Y ≺ X.

Proof. Since Y contains `1-Sn-spreading models with constant θ−1
n for

all n and all Y ≺ X, it is clear that I(Y ) ≥ ωω. Suppose that I(Y ) > ωω

for some Y ≺ X. Then I(X) > ωω. There exist K > 1 and an `1-K-block
tree T such that o(T )>ωω. Let H(T ) = {(max suppxj)rj=1 : (xj)rj=1 ∈ T }
and G = {G : G is a spreading of a subset of some H ∈ H}. Then ι(G) ≥
o(T ) > ωω. Choose ε and N such that ε + θN/θp0 < 1/2K and let r =
k(θN ) + n0 + m, where n0,m are such that ηm,n < ε if n ≥ n0. By [14,
Theorem 1.1], there exists M ∈ [N] such that Sω ∩ [M ]<∞ ⊆ G. Hence, it
follows from [21, Proposition 3.6] that there exist G = (ti) ∈ G and (ai) ∈ c+00

such that
∑
ai = 1 and ‖

∑
aieti‖Sr < 1/6K.
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By definition, there exists a normalized `1-K-block sequence (xi)ki=1 in X
such that (ti) is a spreading of (qi) = (max suppxi). By Proposition 21,

1
K
≤
∥∥∥∑ aixi

∥∥∥ ≤ 1
2K
‖(ai)‖`1 + 3

∥∥∥∑ aieqi

∥∥∥
Sr

≤ 1
2K

+ 3
∥∥∥∑ aieti

∥∥∥
Sr
<

1
K
,

a contradiction.

Theorem 23. If

inf
m

lim sup
n→∞

inf
n1+···+ns≥n

θm+n

θn1 · · · θns
> 0,

then X contains `1-Sm-spreading models with a uniform constant. In par-
ticular , I(X) = ωω·2.

If X satisfies the hypothesis of Theorem 23 and is subsequentially min-
imal, as happens for instance if (θn) is regular and sup θ1/n

n = 1, then
I(Y ) = ωω·2 for all infinite-dimensional closed subspaces Y of X. This fol-
lows from the fact that the following construction can be carried out on any
subsequence of the unit vector basis.

Lemma 24. For any n ∈ N, ε > 0 and L ∈ [N], there exists x ∈ c00 such
that

‖x‖`1 = 1/θn, suppx ∈ SN+1 ∩ [L]<∞ and ‖x‖X ≤ 1 + 1/ε,

where N = max{n1 + · · ·+ ns : εθn1 · · · θns > θn}. (We take max ∅ = 0.)

Proof. According to [21, Proposition 3.6], there exists x ∈ c00 such that
‖x‖`1 = 1/θn, suppx ∈ SN+1 ∩ [L]<∞ and ‖x‖SN ≤ 1. If T is an adapted
tree, then

T x =
∑

E∈L(T )
εt(E)≤θn

t(E)‖Ex‖c0 +
∑

E∈L(T )
εt(E)>θn

t(E)‖Ex‖c0

≤ θn
ε
‖x‖`1 +

∑
E∈L(T )
εt(E)>θn

‖Ex‖c0 .

But εt(E) > θN implies that ord(E) ≤ N. It follows from Lemma 6 that
{E ∈ L(T ) : εt(E) > θn} is SN -allowable. Then T x ≤ 1/ε + ‖x‖SN ≤
1/ε+ 1.

Proof of Theorem 23. Let ε > 0 be such that

inf
m

lim sup
n→∞

inf
n1+···+ns≥n−m

θn
θn1 · · · θns

> ε.
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Given any m, choose n > m such that

inf
n1+···+ns≥n−m

θn
θn1 · · · θns

> ε.

Then N = max{n1 + · · · + ns : εθn1 · · · θns > θn} < n −m. Choose a block
sequence (xk) such that ‖xk‖`1 = 1/θn, suppxk ∈ SN+1 and ‖xk‖X ≤ 1+1/ε
for all k. Let pk = min suppxk for all k. If F ∈ Sm, then (pk)k∈F ∈ Sm and
hence

⋃
k∈F suppxk ∈ Sm+N+1 ⊆ Sn. Thus for any (ak) ∈ c00,∥∥∥∑

k∈F
akxk

∥∥∥ ≥ θn∥∥∥∑
k∈F

akxk

∥∥∥
`1

=
∑
k∈F
|ak|.

This shows that (xk/‖xk‖) is an `1-Sm-spreading model with constant
1 + 1/ε.

Let K be a fixed constant such that for each m, there is a normal-
ized block sequence (xmi )∞i=1 that is an `1-Sm-spreading model with con-
stant K. If F is a regular family, consider the tree T (F) in X consist-
ing of all sequences of the form (xm1

i )i∈I1 ∪ · · · ∪ (xmri )i∈Ir with Ik ∈ Smk ,
1 ≤ k ≤ r, ik+1 > maxi∈Ik max suppxmki for all ik+1 ∈ Ik+1, 1 ≤ k < r, and
(min I1, . . . ,min Ir) ∈ F . If (xm1

i )i∈I1 ∪ · · · ∪ (xmri )i∈Ir ∈ T (F (1)), take i0 =
maxi∈Ir max suppxmri . There exists j0 such that (min I1, . . . ,min Ir, j0) ∈ F .
Then (xm1

i )i∈I1 ∪ · · · ∪ (xmri )i∈Ir ∪ (xmi )i∈I ∈ T (F) provided I ∈ Sm and
I > max{i0, j0}. It follows easily that T (F (1)) ⊆ T (F)(ω

ω). Carrying on
inductively, one deduces that o(T (Sn)) ≥ ωω ·ωn for all n. Finally, note that
if (xm1

i )i∈I1 ∪ · · · ∪ (xmri )i∈Ir ∈ T (Sn), then for all scalars (ami ),∥∥∥ r∑
k=1

∑
i∈Ik

amki xmki

∥∥∥ ≥ θn r∑
k=1

∥∥∥∑
i∈Ik

amki xmki

∥∥∥ ≥ θn
K

r∑
k=1

∑
i∈Ik

|amki |.

Hence T (Sn) is an `1-Kθ−1
n -tree in X of order at least ωω+n. Thus I(X)

≥ ωω·2. The reverse inequality holds by Theorem 17.

Problem. If there are n1, n2 so that σn1 = M and σn2 = U , then
Theorems 22 and 23 leave the value of I(X) undetermined when

inf
m

lim sup
n→∞

ηm,n > 0 and inf
m

lim sup
n→∞

inf
n1+···+ns≥n

θm+n

θn1 · · · θns
= 0.

The gap is bridged if X is either boundedly modified or (completely)
modified.

Corollary 25. Suppose that there exists N such that σn = U for all
n > N, or that σn = M for all n. Then

(1) I(X) = ωω if

inf
m

lim sup
n→∞

inf
n1+···+ns≥n

θm+n

θn1 · · · θns
= 0,
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(2) I(X) = ωω·2 if

inf
m

lim sup
n→∞

inf
n1+···+ns≥n

θm+n

θn1 · · · θns
> 0.

In this case X has `1-Sm-spreading models with a uniform constant.

4. Mixed Tsirelson spaces that are strongly non-subsequentially
minimal. In the final section, it is shown that a large class of (unmodified)
mixed Tsirelson spaces fails to be subsequentially minimal in a strong sense.
We consider a mixed Tsirelson space X=T [(Sn, θn)∞n=1]=T [(Sn, σn, θn)∞n=1],
where σn = U for all n. In this case, we may assume without loss of generality
that (θn) is a regular sequence, i.e., (θn) is a nonincreasing null sequence
in (0, 1) such that θm+n ≥ θnθm for all m,n ∈ N. By [21, Lemma 4.13],
θ = limn θ

1/n
n exists and is equal to sup θ1/n

n . Also, we let ϕn = θn/θ
n.

Definition. We say that a Banach space X with a normalized basis
(ek) is strongly non-subsequentially minimal if for every normalized block
basis (xk) of (ek), there exists (yk) ≺ (xk) such that for all (zk) ≺ (yk), (zk)
is not equivalent to any subsequence of (ek).

The main result of this section is Theorem 35, where it is shown that X is
strongly non-subsequentially minimal if θ < 1 and 0 < inf ϕn ≤ supϕn < 1.

Proposition 26 ([19, Proposition 21]). If θ < 1 and inf ϕn > 0, then
(θn) satisfies

(¬†) lim
m

lim sup
n

θm+n

θn
= 0 and

(‡) There exists F : N→ R with limn→∞ F (n) = 0 such that for all
R, t ∈ N and any arithmetic progression (si)Ri=1 in N,

max
1≤i≤R

θsi+t
θsi
≤ F (R)

R∑
i=1

θsi+t
θsi

.

The main tool in our investigation is a construction of certain “layered
repeated averages” that can be carried out under the assumptions (¬†)
and (‡). The basic units of the construction are the repeated averages due
to Argyros, Mercourakis and Tsarpalias [6], which we recall here. An S0-
repeated average is a vector ek for some k ∈ N. For any p ∈ N, an Sp-repeated
average is a vector of the form (1/k)

∑k
i=1 xi, where x1 < · · · < xk are

Sp−1-repeated averages and k = min suppx1. Observe that any Sp-repeated
average x is a convex combination of {ek : k ∈ suppx} such that ‖x‖∞ ≤
(min suppx)−1 and suppx ∈ Sp.

Construction of layered repeated averages. Assume that (¬†) and (‡)
hold. Given N ∈ N and V ∈ [N], choose sequences (pk)Nk=1 and (Lk)Nk=1
in N, Lk ≥ 2, that satisfy the following conditions:
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(A) if 0 ≤M ≤ N − 2 and n ≥ pN , then

θpM+1+n

θn
≤ θ1

24N2

M∏
i=1

θLipi ,

(the vacuous product
∏0
i=1 θLipi is taken to be 1),

(B) if 0 < M ≤ N − 2, then pM+1 >
∑M

i=1 Lipi,
(C) if 0 < M ≤ N − 2, then

F (LM+1) ≤ θ1
144N2

M∏
i=1

θLipi .

If k ∈ N and 1 ≤M ≤ N, define rM (k) to be the integer in {1, . . . , LM}
such that LM | (k − rM (k)). We can construct sequences of vectors
x0, . . . ,xN with the following properties ((ek) is the unit vector basis of X =
T [(Sn, θn)∞n=1]):

(α) x0 is a subsequence of (ek)k∈V .
(β) Say xM = (xMj ) and mj = min suppxMj . Then there is a sequence

(IM+1
k ) of integer intervals such that

IM+1
k < IM+1

k+1 ,
∞⋃
k=1

IM+1
k = N

and each vector xM+1
k ∈ xM+1 is of the form

xM+1
k =

∑
j∈IM+1

k

ajx
M
j ,

where θrM+1(k)pM+1

∑
j∈IM+1

k
ajemj is an SrM+1(k)pM+1

-repeated av-
erage. Moreover, the sequence (aj)∞j=1 is decreasing.

Each xM+1
k is made up of components of diverse complexities. We ana-

lyze it by decomposing it into components of “pure forms” in the following
manner. We adhere to the notation in (β).

“Pure forms”. Given 1 ≤ ri ≤ Li, 1 ≤M ≤ N − 1, write

xM+1
k (rM ) =

∑
j∈IM+1

k
rM (j)=rM

ajx
M
j .

For 1 ≤ s < M , define

xM+1
k (rs, . . . , rM ) =

∑
j∈IM+1

k
rM (j)=rM

ajx
M
j (rs, . . . , rM−1).
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If 1 ≤ s ≤ M, it is clear that xM+1
k =

∑
xM+1
k (rs, . . . , rM ), where the sum

is taken over all possible values of rs, . . . , rM .
Given r1, . . . , rN , write p(r1, . . . , rj) =

∑j
i=1 ripi, 1 ≤ j ≤ N. Set

ΦNk =
θ1
2

∑
r1,...,rN−1

θp(r1,...,rN (k))θ
−1
rN (k)pN

N−1∏
i=1

θ−1
ripiL

−1
i .

If p ≥ N , define

Θp = Θp(N) = max
{ N∏
i=1

θli : li ∈ N,
N∑
i=1

li = p
}
.

The following estimates are crucial for subsequent computations. From here
on, we fix a k satisfying

(9) k ≥ 42N2
N∏
i=1

Liθ
−1
Lipi

.

Proposition 27 ([19, Theorem 20; see also the remark following the
proof of the theorem]).

‖xNk ‖ ≤
(

2
N

+ 4θ−1
1 sup

r1,...,rN−1

Θp(r1,...,rN (k))

θp(r1,...,rN (k))

)
ΦNk .

Proposition 28 ([19, Corollary 9]).

‖xNk (r1, . . . , rN−1)‖`1 ≥
1
2
θ−1
rN (k)pN

N−1∏
i=1

θ−1
ripiL

−1
i .

For all m ∈ N, z ∈ c00, define

‖z‖m = θm sup
{∑

‖Elz‖ : (El) is Sm-admissible
}
.

Proposition 29. Suppose that x = xNk =
∑l

i=1 biemi , (zi) is a normal-
ized block basis of (ek) with min supp zi = mi, q =

∑N
j=1 Ljpj , and there

exists K < ∞ such that ‖zi‖s ≥ 1/K for all 1 ≤ s ≤ q, 1 ≤ i ≤ l. Let
z =

∑l
i=1 bizi. Then

‖x‖ ≤
(

2
N

+ 4θ−1
1 sup

r1,...,rN−1

Θp(r1,...,rN (k))

θp(r1,...,rN (k))

)
Kθ1‖z‖.

Proof. According to Proposition 27, it suffices to show that ‖z‖ ≥
(θ1K)−1ΦNk . For each 1 ≤ i ≤ l, let (r1, . . . , rN−1) be the unique (N − 1)-
tuple such that mi ∈ suppxNk (r1, . . . , rN−1). Since ‖zi‖t ≥ 1/K for t =
q − p(r1, . . . , rN−1), there exists an St-admissible family Gi such that G ⊆
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supp zi for all G ∈ Gi and

(10) ‖zi‖t = θt
∑
G∈Gi

‖Gzi‖ ≥
1
K
.

We estimate the norm of z by means of a particular tree T . If 0 ≤ n ≤ N
and suppxN−nj ⊆ suppxNk , let

Enj =
⋃
{supp zi : mi ∈ suppxN−nj }, En = {Enj : suppxN−nj ⊆ suppxNk }.

By (β) in the construction of xN−n, Ens is an SrN−n(s)pN−n-admissible union
of the sets {En+1

j : suppxN−n−1
j ⊆ suppxNk } . Hence

⋃N
n=1En is an admis-

sible tree so that

(11) ord(En+1
j ) = ord(Ens ) + rN−n(s)pN−n if En+1

j ⊆ Ens .

Note that suppx0
j is a singleton {mi} for some i and hence ENj = supp zi.

It follows from (11) that ord(ENj ) = p(r1, . . . , rN−1) + rN (k)pN , where
(r1, . . . , rN−1) is the unique (N − 1)-tuple determined by mi. Set EN+1 =⋃l
i=1 Gi. Since Gi is an Sq−p(r1,...,rN−1)-admissible family with

⋃
G∈Gi G ⊆

supp zi = ENj ∈ EN , T =
⋃N+1
n=0 En is an admissible tree such that ord(G) =

q+rN (k)pN for each of the leavesG of T . By Lemma 6,
⋃l
i=1 Gi is SrN (k)pN+q-

admissible. Therefore,

‖z‖ ≥ θq+rN (k)pN

l∑
i=1

bi
∑
G∈Gi

‖Gzi‖

≥ θq+rN (k)pN

l∑
i=1

bi(Kθq−p(r1,...,rN−1))
−1 (by (10))

= θq+rN (k)pN

∑
r1,...,rN−1

(Kθq−p(r1,...,rN−1))
−1‖x(r1, . . . , rN−1)‖`1 .

By the regularity of (θn), θp(r1,...,rN−1,rN (k))θq−p(r1,...,rN−1) ≤ θq+rN (k)pN . Ap-
plying Proposition 28 to the above gives

‖z‖ ≥
θq+rN (k)pN

K

∑
r1,...,rN−1

θp(r1,...,,rN (k))

θq+rN (k)pN

(
1
2
θ−1
rN (k)pN

N−1∏
i=1

θ−1
ripiL

−1
i

)

=
1
K

(
1
2

∑
r1,...,rN−1

θp(r1,...,rN (k))θ
−1
rN (k)pN

N−1∏
i=1

θ−1
ripiL

−1
i

)
= (θ1K)−1ΦNk .

We need a few preparatory results in order to exploit the estimate es-
tablished in Proposition 29.

Lemma 30. If (xk) ≺ (ek), ε > 0 and p ∈ N, then there exists y ∈
span(xk), ‖y‖ = 1, such that ‖y‖Sp < ε.
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Proof. Assume the contrary. There exist ε > 0 and p ∈ N such that for
all y ∈ span{(xk)}, ‖y‖Sp ≥ ε‖y‖. On the other hand, ‖y‖ ≥ θp‖y‖Sp . Hence
‖ · ‖ and ‖ · ‖Sp are equivalent on span{(xk)}. However, the Schreier space
Sp is c0-saturated. It follows that [(xk)] and thus X contains a copy of c0,
contradicting the reflexivity of X.

Lemma 31. If (zk) ≺ (yk) ≺ (ek) and ‖yk‖Sk−1
≤ 1/2k+2 for all k, then

‖zk‖Sk−1
≤ 1

2k+1
for all k.

Proof. Write zk =
∑

j∈Jk ajyj . Note that |aj | ≤ ‖zk‖ = 1 for all j ∈ Jk.
Therefore,

‖zk‖Sk−1
≤
∑
j∈Jk

‖yj‖Sk−1

≤
∑
j∈Jk

‖yj‖Sj−1 (since k ≤ min Jk ≤ j)

≤
∑
j∈Jk

1
2j+2

≤ 1
2k+1

.

Lemma 32. Assume that θ < 1 and infn ϕn > 0. If (zk) ≺ (ek) and

‖zk‖Sk−1
≤ 1

2k+1
for all k,

then there is a constant K <∞ such that for all z ∈ span (zk)∞k=n, we have
‖z‖m ≥ (1/2K)‖z‖ for all 1 ≤ m ≤ n.

Proof. First observe that

(12)
θm+n

θmθn
=
ϕm+n

ϕmϕn
≤ 1

(inf ϕn)2
for all m,n.

Let K = 1/(inf ϕn)2. Suppose that z ∈ span (zk)∞k=n, ‖z‖= 1 and 1≤m≤ n.
Choose an admissible tree T of z so that

1 = ‖z‖ = T z =
∑

E∈L(T )

t(E)‖Ez‖c0

=
∑

E∈L(T )
ord(E)≤m

t(E)‖Ez‖c0 +
∑

E∈L(T )
ord(E)>m

t(E)‖Ez‖c0 .

Write z =
∑∞

k=n akzk. Then |ak| ≤ 1 as ‖z‖ = 1. Note that according
to Lemma 6, the collection {E ∈ L(T ) : ord(E) ≤ m} of leaves is Sm-



260 D. Kutzarova et al.

admissible. Therefore,∑
E∈L(T )

ord(E)≤m

t(E)||Ez‖c0 ≤
∑

E∈L(T )
ord(E)≤m

‖Ez‖c0 ≤ ‖z‖Sm ≤
∞∑
k=n

‖zk‖Sm

≤
∞∑
k=n

‖zk‖Sk−1
≤
∞∑
k=n

1
2k+1

≤ 1
2
.

Thus ∑
E∈L(T )

ord(E)>m

t(E)||Ez‖c0 ≥
1
2
.

Let E be the collection of all nodes E in T that are minimal subject to the
condition ord(E) > m. Also, let D be the set of all immediate predecessors of
nodes in E . If D ∈ D, let E(D) be the collection of its immediate successors.
For each E ∈ E(D), ord(D) ≤ m < ord(E). Therefore there exists an
Sm−ord(D)-admissible collection GD of subsets of D such that E(D) =

⋃
{E ∈

E(D) : E ⊆ G for some G ∈ GD} and {E ∈ E(D) : E ⊆ G} is Sord(E)−m-
admissible for each G ∈ GD. Now G =

⋃
D∈D GD is Sm-admissible and

θord(E) ≥ t(E) by the regularity of (θn). Hence

‖z‖m ≥ θm
∑
G∈G
‖Gz‖ ≥ θm

∑
G∈G

θord(E)−m
∑
E∈E
E⊆G

||Ez‖

≥
∑
G∈G

θord(E)

K

∑
E∈E
E⊆G

‖Ez‖ (by (12) and the definition of K)

≥ 1
K

∑
E∈E

t(E)||Ez‖ ≥ 1
K

∑
E∈L(T )

ord(E)>m

t(E)‖Ez‖ ≥ 1
2K

.

We shall show that, for appropriate (θn), if (zk) ≺ (ek) satisfies the
conclusion of Lemma 31, then it is not equivalent to a subsequence of (ek).

Lemma 33. If 0 < infn ϕn ≤ supn ϕn < 1, then

lim
N

sup
p≥N

Θp(N)
θp

= 0.

Proof. Let ε > 0. Choose N such that dN/c< ε, where 0 < c = infn ϕn ≤
supn ϕn = d < 1. Let p ∈ N. If (`i)Ni=1 is a sequence of positive integers such
that

∑N
i=1 `i = p, then

N∏
i=1

θ`i = θp
N∏
i=1

ϕ`i ≤ θ
pdN and θp = ϕpθ

p ≥ cθp.
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Thus

sup
p≥N

Θp(N)
θp

≤ dN

c
< ε.

Proposition 34. If (zk) is a normalized block basis that is equivalent
to a subsequence of (ek), then there is a subsequence (zkj ) of (zk) such that
(zkj ) is equivalent to (emj ), where mj = min supp zkj .

Proof. By [17, Proposition 9], two subsequences (eni) and (eli) of (ek)
are equivalent whenever max{ni, li} < min{ni+1, li+1} for all i. If (zk) is
equivalent to a subsequence of (ek), then there is a subsequence (zkj ) of (zk)
that is equivalent to a subsequence (enj ) of (ek) with

max{min supp zkj , nj} < min{min supp zkj+1
, nj+1} for all j.

Thus max{nj ,mj}<min{nj+1,mj+1} and hence (enj ) is equivalent to (emj ).
Consequently, (zkj ) is equivalent to (emj ).

We are now ready to prove the main result of this section.

Theorem 35. If 0 < infn ϕn ≤ supn ϕn < 1, then X is strongly non-
subsequentially minimal.

Proof. Let (xk) be a normalized block basis of (ek). By Lemma 30, there
exists (yk) ≺ (xk) such that ‖yk‖Sk−1

≤ 1/2k+2 for all k. Suppose that there
exists (zk) ≺ (yk) that is equivalent to a subsequence of (ek). Applying
Proposition 34, we may assume that (zk) is equivalent to (emk), where mk =
min supp zk. Pick ε > 0 so that

ε
∥∥∥∑ bkzk

∥∥∥ ≤ ∥∥∥∑ bkemk

∥∥∥ for all (bk) ∈ c00.

By a combination of Lemmas 31 and 32 there is a constant K < ∞ such
that ‖z‖s ≥ (1/2K)‖z‖ for all z ∈ span (zk)∞k=n, 1 ≤ s ≤ n. Use Lemma 33
to choose N such that

2
N

+ 4θ−1
1 sup

p

Θp(N)
θp

<
ε

2Kθ1
if p ≥ N.

With the chosen N and V = (mi)∞i=q construct the layered repeated av-
erage vector x = xNk =

∑l
i=q biemi with k satisfying inequality (9). Let

z =
∑l

i=q bizi. (Recall that q =
∑N

j=1 Ljpj , where (pj)Nj=1 and (Lj)Nj=1 are
chosen to satisfy conditions (A)–(C) once N is determined.) According to
Proposition 29,

‖x‖ ≤
(

2
N

+ 4θ−1
1 sup

r1,...,rN−1

Θp(r1,...,rN (k))

θp(r1,...,rN (k))

)
2Kθ1‖z‖ < ε‖z‖,

contrary to the choice of ε.

The following example shows that the condition supn ϕn < 1 is not
necessary for the conclusion of the theorem to hold.
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Example 36. If θ < 1, then there exists a regular sequence (θn) with
supn θ

1/n
n = θ and limn ϕn = 1 such that X is strongly non-subsequentially

minimal.

Proof. Suppose that 0 < θ < 1. In [19, Example 23], a regular sequence
(θn) is constructed such that supn θ

1/n
n = θ, limn ϕn = 1 and, for all N ∈ N,

there are sequences (pk)Nk=1 and (Lk)Nk=1 satisfying conditions (A)–(C) and

(13) lim
N→∞

sup
r1,...,rN−1

Θp(r1,...,rN (k))

θp(r1,...,rN (k))
= 0.

Following the arguments in Theorem 35 with Lemma 33 replaced by (13)
shows that X is strongly non-subsequentially minimal.

In view of Proposition 14, any subsequentially minimal partly modified
mixed Tsirelson space is quasi-minimal. However, the existence of strongly
non-subsequentially minimal mixed Tsirelson spaces prompts the following
question.

Question. Does every (partly modified) mixed Tsirelson space
T [(Sn, θn)∞n=1] (or T [(Sn, σn, θn)∞n=1]) contain a quasi-minimal subspace?
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