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Non-homogeneous strongly singular integrals

by

Bassam Shayya (Beirut)

Abstract. We study the Lp mapping properties of a family of strongly singular
oscillatory integral operators on Rn which are non-homogeneous in the sense that their
kernels have isotropic oscillations but non-isotropic singularities.

1. Introduction. Let n ≥ 2, 1 = b1 ≤ b2 ≤ · · · ≤ bn be given constants,
and for x ∈ Rn define

τ(x) = (x2b2b3...bn
1 + x2b1b3...bn

2 + · · ·+ x2b1b2...bn−1
n )1/(2b1b2...bn).

The function τ is a non-isotropic distance function on Rn in the sense that
τ is homogeneous with respect to the non-isotropic dilations

dt(x) = (tb1x1, t
b2x2, . . . , t

bnxn)

and the function τ(x − y) is a quasi-distance on Rn (as defined in [10,
pp. 10–11]). In particular, Rn equipped with the quasi-distance τ(x−y) and
the dilation group {dt}t>0 turns into a quasi-metric space of homogeneous
dimension

b = b1 + · · ·+ bn.

The purpose of this paper is to study the singular integral operator T defined
initially for f ∈ C∞0 (Rn) by

Tf(x) = p.v.
�

|y|≤1

ei/|y|
β

τ(y)α
f(x− y) dy,

where α and β are positive parameters. If α < b, then the kernel of T is
an L1 function (1), so we assume α ≥ b and ask how large β should be so
that, for a given p ∈ (1,∞), T extends to a bounded operator on Lp(Rn).
Informally, for a given p ∈ (1,∞), how much oscillations do we need to
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(1) This can be easily seen from Lemma 2(i) in Section 2.
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overcome a non-isotropic singularity of order α at the origin and obtain Lp

boundedness?
In the isotropic case, i.e. when 1 = b1 = · · · = bn, the operator T has

a long history. It was first studied in [12], where it was shown that T is
bounded on Lp(Rn) whenever

(1)
∣∣∣∣1p − 1

2

∣∣∣∣ < (n/2)β − α+ n

nβ
,

and that T fails to be bounded on Lp(Rn) if

(2)
∣∣∣∣1p − 1

2

∣∣∣∣> (n/2)β − α+ n

nβ
.

The question of whether or not T remains bounded on the critical spaces
Lp(Rn), |1/p − 1/2| = ((n/2)β − α + n)/(nβ), was first considered in [2],
where it was shown that T is of weak type (1, 1) if α = n. It was then shown
in [3] that T is bounded from H1(Rn) to L1(Rn) if α = n. Using complex
interpolation on Hardy spaces, it was also shown in [3] that if α > n, then
T is bounded on the critical Lp spaces.

The results of this paper generalize those of [12]. We show that T is
bounded on Lp(Rn) whenever

(3) β > 4(bn − 1) and
∣∣∣∣1p − 1

2

∣∣∣∣ < (n/2)β − α+ n

nβ
.

The negative result was addressed in [1], where it was shown that T fails to
be bounded on Lp(Rn) whenever

(4) β ≥ bn − 1 and
∣∣∣∣1p − 1

2

∣∣∣∣ > nβ − 2α+ n+ b

2n(1 + β)− 2b
.

Notice that when 1 = b1 = · · · = bn, (3) coincides with (1) and (4) coincides
with (2). In the general case, however, a gap remains between the positive
result in (3) and the negative result in (4). Before we carefully state our
results, we would like to generalize the situation a little further.

A {dt}-homogeneous distance function is a continuous function % : Rn →
[0,∞) satisfying %(dtx) = t%(x) for every t > 0, and %(x) 6= 0 for x 6= 0. Any
{dt}-homogeneous distance function % is comparable to τ . To prove this, let
Σ = {x ∈ Rn : τ(x) = 1} and notice that, since

0 < c1 = inf
Σ
% ≤ sup

Σ
% = c2,

we have
c1 ≤ %(x)/τ(x) = %(d1/τ(x)x) ≤ c2

for x 6= 0. Hence

(5) c1τ(x) ≤ %(x) ≤ c2τ(x)
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for all x ∈ Rn. For later reference let us note that (5) implies

(6) c3|x| ≤ %(x) ≤ c4|x|1/bn

for |x| ≤ 1, and

(7) c3|x|1/bn ≤ %(x) ≤ c4|x|

for |x| ≥ 1, where c3 = c1 infSn−1 τ and c4 = c2 supSn−1 τ . For further prop-
erties of these distance functions we refer to [11].

The results previously known about T are stated in the following the-
orem, which was proved in [5] in dimension n = 2 and in [1] in higher
dimensions.

Theorem A. Suppose β > α− b ≥ 0, % is a {δt}-homogeneous distance
function which is C1 in Rn − {0}, and for f ∈ C∞0 (Rn) define

(8) Tf(x) = p.v.
�

|y|≤1

ei/|y|
β

%(y)α
f(x− y) dy.

Let

Q(α, β) =
2b+ β − 2α

2β

and
Qj = Q(α, j(1 + β)− b1 − · · · − bj), j = 1, . . . , n.

Then:

(i) The principal value integral in (8) exists for every x ∈ Rn.
(ii) T extends to a bounded linear operator on Lp(Rn) whenever∣∣∣∣1p − 1

2

∣∣∣∣ < Q(α, β).

(iii) If ∣∣∣∣1p − 1
2

∣∣∣∣ > max[Q1, . . . , Qn],

then T is not bounded on Lp(Rn).

Notice that, putting bn+1 =∞, we have

bj ≤ 1 + β ≤ bj+1 ⇒ max[Q1, . . . , Qn] = Qj .

In particular, if 1 + β ≤ b2, then max[Q1, . . . , Qn] = Q1 = Q(α, β). So we
only have a sharp result (up to the end-points) in the case 1 + β ≤ b2. The
main result of this paper is stated in the following theorem.
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Theorem 1. Suppose β > α− b ≥ 0, % is a {δt}-homogeneous distance
function which is C∞ in Rn − {0}, and for f ∈ C∞0 (Rn) define

Tf(x) = p.v.
�

|y|≤1

ei/|y|
β

%(y)α
f(x− y) dy.

Then T extends to a bounded linear operator on Lp(Rn) whenever

β > 4(bn − 1) and
∣∣∣∣1p − 1

2

∣∣∣∣ < (n/2)β − α+ n

nβ
.

For further results on oscillatory strongly singular integral operators, we
refer the reader to [4] and [6]–[9].

The notation A <∼ B means A ≤ CB for an appropriate constant C, and
A ≈ B means A <∼ B and B <∼ A.

2. Fourier transform estimates. Let ϕ : Rn−1 → R be a C∞ func-
tion, and let Φ ∈ C∞0 (Rn−1) be such that ϕ has a unique critical point x0 ∈
suppΦ. Suppose, in addition, that this critical point is non-degenerate. Then
the method of stationary phase, in its most standard form (see e.g. [10]),
tells us that

�
eiλϕ(x)Φ(x) dx = λ−(n−1)/2

k−1∑
j=0

cjλ
−j +O(λ−(n−1)/2−k)

as λ→∞, where c0, . . . , ck−1, as well as the constants occurring in the error
term, are bounded by the L∞-norms of finitely many derivatives of ϕ and Φ.
But if the L2-norm of each derivative of Φ is much smaller than its L∞-norm
(as is the case with the function hδ defined in Lemma 2 below), then one
has to adjust the standard arguments in order to obtain new satisfactory
bounds. This is precisely what we plan to do in this section.

We shall use the principle of stationary phase in the following form.

Lemma 1. Let Φ ∈ C∞0 (Rn−1) be such that

‖DmΦ‖L2(Rn−1) ≤ Cm
A

δ|m|

for every multi-index m in Rn−1, and let k be a positive integer. Then
�
eπiλ|x|

2
Φ(x) dx = eπi(n−1)/4λ−(n−1)/2Φ(0) + λ−(n−1)/2

k−1∑
j=1

Ajλ
−j

+Aδ−(n−1)/2−2kO(λ−(n−1)/2−k)

with
|Aj | ≤

∑
|m|=2j

|DmΦ(0)| (j = 1, . . . , k − 1).
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In addition to being independent of δ, the constants in the error term are
independent of Φ and A (but , of course, depend on the Cm’s).

Proof. Since the distributional Fourier transform of eπiλ|x|
2

is

eπi(n−1)/4λ−(n−1)/2e−πiλ
−1|y|2 ,

it follows that�
eπiλ|x|

2
Φ(x) dx = eπi(n−1)/4λ−(n−1)/2

�
e−πiλ

−1|y|2Φ̂(y) dy.

Also

e−πiλ
−1|y|2 = 1 +

k−1∑
j=1

(
i

4π

)j λ−j
j!

((2πi)2|y|2)j +O(λ−k|y|2k)

= 1 +
k−1∑
j=1

(
i

4π

)j
λ−j

(∑
|m|=j

(2πiy)2m

m!

)
+O(λ−k|y|2k)

(m always denotes a multi-index in Rn−1), so that

�
eπiλ|x|

2
Φ(x) dx = eπi(n−1)/4λ−(n−1)/2Φ(0) + λ−(n−1)/2

k−1∑
j=1

Ajλ
−j + E(λ),

where

Aj =
(
i

4π

)j
eπi(n−1)/4

∑
|m|=j

1
m!

�
(2πiy)2mΦ̂(y) dy

=
(
i

4π

)j
eπi(n−1)/4

∑
|m|=j

1
m!

�
D̂2mΦ(y) dy

=
(
i

4π

)j
eπi(n−1)/4

∑
|m|=j

1
m!

D2mΦ(0)

and
|E(λ)| <∼ λ

−(n−1)/2−k
�
|y|2k|Φ̂(y)| dy.

To estimate this last integral we set Φδ(x) = Φ(δx), let N > n/2 be an
integer, and notice that�
|y|2k|Φ̂(y)| dy =

�
|y|2k|Φ̂δ(δy)|δn−1 dy = δ−2k

�
|v|2k|Φ̂δ(v)| dv

≤ δ−2k
� (1 + |v|)N+2k

(1 + |v|)N
|Φ̂δ(v)| dv <∼ δ

−2k
∑

|m|≤N+2k

� 1
(1 + |v|)N

|vmΦ̂δ(v)| dv

≈ δ−2k
∑

|m|≤N+2k

� 1
(1 + |v|)N

|D̂mΦδ(v)| dv <∼ δ
−2k

∑
|m|≤N+2k

‖D̂mΦδ‖L2(Rn−1)
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= δ−2k
∑

|m|≤N+2k

‖DmΦδ‖L2(Rn−1) = δ−2k
∑

|m|≤N+2k

δ|m|
(�
|DmΦ(δx)|2 dx

)1/2

= δ−2k
∑

|m|≤N+2k

δ|m|δ−(n−1)/2‖DmΦ‖L2(Rn−1)

<∼ δ
−2k

∑
|m|≤N+2k

Aδ−(n−1)/2 <∼ Aδ
−(n−1)/2−2k.

The following is the main result in this section.

Proposition 1. Let ψ ∈ C∞(Rn − {0}) be such that

‖Dνψ‖L2(Sn−1) ≤ Cν
A

δ|ν|

for every multi-index ν in Rn, and let k be a positive integer. Then, for
ξ = |ξ|ξ′ with |ξ| ≥ 1, we have

ψ̂dσ(ξ) = |ξ|−(n−1)/2(e−2πi(|ξ|−(n−1)/8) ψ(ξ′) + e2πi(|ξ|−(n−1)/8)ψ(−ξ′))

+ |ξ|−(n−1)/2
k−1∑
j=1

Bj |ξ|−j

+
(
Aδ−(n−1)/2−2k +

∑
|ν|≤(n+2k)/2

‖Dνψ‖L1(Sn−1)

)
O(|ξ|−(n−1)/2−k),

with

|Bj | <∼
∑
|ν|≤2j

(|Dνψ(ξ′)|+ |Dνψ(−ξ′)|) (j = 1, . . . , k − 1).

Proof. We shall denote multi-indices in Rn by ν or ν ′, and multi-indices
in Rn−1 by m or m′.

Notice that if R : Rn → Rn is a rotation with R(ξ′) = en = (0, 0, . . . , 1),
then ψ̂dσ(ξ) = ̂(ψ ◦R−1dσ)(|ξ|en) and

|Dν(ψ ◦R−1)(z)| <∼
∑
|ν′|=|ν|

|Dν′ψ(R−1z)|

for all z ∈ Rn−{0}. It is therefore enough to prove the theorem in the case
ξ′ = en.

Morse’s lemma tells us that there are neighborhoods V and V ′ of 0
in Rn−1 and a C∞ diffeomorphism G : V → V ′ such that

(9)
√

1− |Gx|2 = 1− |x|2/2

for all x∈V . Choose 0<s<1 such that B=B(0, s) ={x ∈ Rn−1 : |x| < s}
⊂ V ′ and put U = G−1(B). Then let {F1, . . . , Fr} be a system of local
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coordinates on Sn−1 where F1, F2 : B → Sn−1 are given by

F1(x) = (x,
√

1− |x|2) and F2(x) = (x,−
√

1− |x|2),

and F3, . . . , Fr map onto sets whose closures do not contain ∓en. Then

ψ̂dσ(ξ) =
�

B

e−2πiλ
√

1−|x|2ψ(F1(x))q1(x) dx

+
�

B

e2πiλ
√

1−|x|2ψ(F2(x))q2(x) dx

+
r∑
l=3

�

Rn−1

e−2πiλen·Fl(x)ψ(Fl(x))ql(x) dx

= I1(λ) + I2(λ) +
r∑
l=3

Il(λ),

where λ = |ξ|, q1, . . . , qr are real-valued C∞ functions, q1 is supported in B
and q1(0) = 1, q2 = q1, and supp ql ⊂ DomainFl.

The phase function of each of the integrals Il (3 ≤ l ≤ r) has no critical
points in supp ql. Thus standard non-stationary phase estimates tell us that

|Il| <∼ λ
−N

∑
|m|≤N

‖Dmηl‖L1(Rn−1)

for every positive integer N , where ηl = (ψ ◦ Fl)ql (this is essentially the
inequality |f̂(y)| <∼ (1 + |y|)−N

∑
|m|≤N ‖Dmf‖L1(Rn−1) applied after an ap-

propriate partition of unity on supp ql). Taking N = b(n+ 2k)/2c, we get

|Il| <∼ λ
−(n−1)/2−k

∑
|m|≤(n+2k)/2

‖Dmηl‖L1(Rn−1).

Now

|Dmηl(x)| <∼
∑

|m′|≤|m|

|Dm′(ψ ◦ Fl)(x)| <∼
∑
|ν|≤|m|

|Dνψ(Fl(x))|

for all x ∈ Rn−1, and it follows that

‖Dmηl‖L1(Rn−1)
<∼

∑
|ν|≤|m|

‖Dνψ‖L1(Sn−1).

Therefore

(10) |Il| <∼ λ
−(n−1)/2−k

∑
|ν|≤(n+2k)/2

‖Dνψ‖L1(Sn−1)

for l = 3, . . . , r. It remains to estimate I1 and I2.
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We start by looking at I1. Making the change of variables u = G−1x and
using (9), we get

I1 = e−2πiλ
�

U

eπiλ|u|
2
Ψ(u)q(u) du,

where Ψ = ψ ◦ F1 ◦G and q(u) = q1(Gu)|JG(u)|. Observe that

|DmΨ(u)| <∼
∑
|ν|≤|m|

|(Dνψ) ◦ Fl ◦G(u)|

for all u ∈ U . Set Φ = qΨ . Then Φ ∈ C∞0 (U), Φ(0) = ψ(en) (|JG(0)| = 1 by
(9)), and

|DmΦ(u)| <∼
∑
|ν|≤|m|

|(Dνψ) ◦ Fl ◦G(u)|

for all u ∈ U . This last inequality implies that

‖DmΦ‖Lp(Rn−1)
<∼

∑
|ν|≤|m|

‖Dνψ‖Lp(Sn−1)

for 1 ≤ p ≤ ∞. In particular,

‖DmΦ‖L2(Rn−1)
<∼

∑
|ν|≤|m|

Cν
A

δ|ν|
≤ Cm

A

δ|m|
.

Applying Lemma 1, we get

I1 = e−2πiλ
�
eπiλ|u|

2
Φ(u) du

= λ−(n−1)/2 e−2πi(λ−(n−1)/8)ψ(en) + λ−(n−1)/2
k−1∑
j=1

Ajλ
−j

+Aδ−(n−1)/2−2kO(λ−(n−1)/2−k)

with

|Aj | ≤
∑
|m|=2j

|DmΦ(0)| <∼
∑
|ν|≤2j

|(Dνψ) ◦ Fl ◦G(0)| =
∑
|ν|≤2j

|Dνψ(en)|.

Since I2 is the same as I1 with ψ ◦ F1 replaced by ψ ◦ F2, it follows that

I1 + I2 = λ−(n−1)/2(e−2πi(λ−(n−1)/8)ψ(en) + e2πi(λ−(n−1)/8)ψ(−en))

+λ−(n−1)/2
k−1∑
j=1

Bjλ
−j +Aδ−(n−1)/2−2kO(λ−(n−1)/2−k)

with
|Bj | <∼

∑
|ν|≤2j

(|Dνψ(en)|+ |Dνψ(−en)|).

This combined with (10) gives the desired result.
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We are now in a position to describe the asymptotic behavior at infinity
of the Fourier transforms of the measures %(rθ)−αdσ(θ), but we first need
the following lemma.

Lemma 2. Let % be a {dt}-homogeneous distance function which is C∞

in Rn−{0}, and let α > b−1 = b2+· · ·+bn. For 0 < δ ≤ 1 and x ∈ Rn−{0},
set

h(x) = %(x)−α and hδ(x) = h(δx).

Then:

(i) ‖hδ‖Lp(Sn−1) ≈ δ(b−n)/p−α for 1 ≤ p ≤ ∞.
(ii) |dj(hδ(θ))/dδj | <∼ hδ(θ)/δ

j for all θ ∈ Sn−1, j = 1, 2, . . . .
(iii)

	
Sn−1 |dj(hδ(θ))/dδj | dσ(θ) <∼ δ

b−n−α−j , j = 1, 2, . . . .
(iv) If ν is a multi-index in Rn, then

|Dνhδ(ω)| <∼ δ
−|ν|(bn−1)hδ(ω) for all ω ∈ Sn−1.

(v) If ν is a multi-index in Rn, then

‖Dνhδ‖Lp(Sn−1)
<∼ δ
−|ν|(bn−1)δ(b−n)/p−α for 1 ≤ p ≤ ∞.

Proof. For the proof of (i)–(iii) we refer the reader to [1].
(iv) Since h(x) = tαh(dtx), it follows that

Dνh(x) = tα+ν·(b1,...,bn)Dνh(dtx).

Putting t = 1/%(x), we get |Dνh(x)| <∼ %(x)−α−ν·(b1,...,bn), and hence

|Dνhδ(x)| <∼ δ
|ν|%(δx)−α−ν·(b1,...,bn) = δ|ν|%(δx)−ν·(b1,...,bn)hδ(x)

for x 6= 0. So for ω ∈ Sn−1, (6) gives

|Dνhδ(ω)| <∼
δ|ν|

δν·(b1,...,bn)
hδ(ω) <∼

δ|ν|

δ|ν|bn
hδ(ω),

where we have used the standing assumption 1 = b1 ≤ · · · ≤ bn.
(v) follows from (i) and (iii).

Proposition 2. Let %, α, h, and hδ be as in Lemma 2. If k is a positive
integer , then, for ξ = |ξ|ξ′, |ξ| ≥ 1,

ĥδdσ(ξ) =
hδ(ξ′)
|ξ|(n−1)/2

e−2πi(|ξ|−(n−1)/8) +
hδ(−ξ′)
|ξ|(n−1)/2

e2πi(|ξ|−(n−1)/8)

+
hδ(ξ′) + hδ(−ξ′)

2|ξ|(n−1)/2

k−1∑
j=1

Cj

δ2j(bn−1)|ξ|j

+
δ(b+4k−1)/2

δα+(n+4k−1)bn/2
O

(
1

|ξ|(n−1)/2+k

)
,

with |Cj | <∼ 1 (j = 1, . . . , k − 1).
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Proof. By Lemma 2(v),

‖Dνhδ‖L2(Sn−1) ≤ Cν
δ(b−n)/2−α

δ|ν|(bn−1)

for every multi-index ν, and∑
|ν|≤(n+2k)/2

‖Dνhδ‖L1(Sn−1)
<∼

∑
|ν|≤(n+2k)/2

δb−n−α

δ|ν|(bn−1)
<∼

δb−n/2+k

δα+(n+2k)bn/2
.

Applying Proposition 1 with ψ = hδ, A = δ(b−n)/2−α, and δ replaced by
δbn−1, we get

ĥδdσ(ξ) =
hδ(ξ′)
|ξ|(n−1)/2

e−2πi(|ξ|−(n−1)/8) +
hδ(−ξ′)
|ξ|(n−1)/2

e2πi(|ξ|−(n−1)/8)

+
1

|ξ|(n−1)/2

k−1∑
j=1

Bj
|ξ|j

+
(

δ(b−n)/2−α

δ(bn−1)((n−1)/2+2k)
+

δb−n/2+k

δα+(n+2k)bn/2

)
O

(
1

|ξ|(n−1)/2+k

)
,

with
|Bj | <∼

∑
|ν|≤2j

(|Dνhδ(ξ′)|+ |Dνhδ(−ξ′)|)

<∼
∑
|ν|≤2j

hδ(ξ′) + hδ(−ξ′)
δ|ν|(bn−1)

<∼
hδ(ξ′) + hδ(−ξ′)

δ2j(bn−1)
,

where we used Lemma 2(iv). To complete the proof, notice that

δb−n/2+k

δα+(n+2k)bn/2
≤ δ(b−n)/2−α

δ(bn−1)((n−1)/2+2k)
=

δ(b+4k−1)/2

δα+(n+4k−1)bn/2

because b− n+ (2k − 1)(bn − 1) ≥ 0.

3. Proof of Theorem 1. Our method of proof follows the general lines
of [9]. In particular, we shall use integration by parts in the following form,
which is Lemma 1 in [9].

Lemma 3. Suppose I is an open interval , g ∈ C∞0 (I), F ∈ C∞(I), F is
real-valued , F ′ 6= 0 on I, and k is a positive integer. Then�

I

g(r)eiF (r) dr =
�

I

Gk(r)eiF (r) dr,

where Gk is a linear combination of functions of the form

(g(s))(F ′)−k−µ
µ∏
q=1

F (jq)

with 0 ≤ s ≤ k, 0 ≤ µ ≤ k, and 2 ≤ jq ≤ k + 1.
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For y ∈ Rn − {0}, define

K̃(y) =

{
h(y)ei/|y|

β
if 0 < |y| ≤ 1,

0 if |y| > 1.

Here, and for the rest of this paper, h and hδ are the functions defined in
Lemma 2. Also, let η ∈ C∞0 (Rn) be radial, non-negative, supported in the
ring 1/2 < |y| < 1, and satisfying

∞∑
l=0

ηl(y) =
{

1 if 0 < |y| ≤ 1,
0 if |y| ≥ 2,

where ηl(y) = η(2ly). Then K̃ =
∑∞

l=0Kl, where Kl = ηlK̃. Clearly, K0 ∈
L1(Rn). On the other hand, if k and l are positive integers and ψ ∈ S(Rn),
then

�
Kl(y)ψ(y) dy = 2−nl

�

Sn−1

2�

1/2

g(r)eiF (r) dr dσ(θ)

with F (r) = 2lβr−β and g(r) = η(r)h2−lr(θ)ψ(2−lrθ)rn−1, and so by Lem-
ma 3,∣∣∣ �Kl(y)ψ(y) dy

∣∣∣ <∼ 2−nl
�

Sn−1

2�

1/2

k∑
s=0

|g(s)(r)|2−klβ dr dσ(θ)

<∼ 2−l(kβ+n)‖ψ‖Ck
�

Sn−1

2�

1/2

k∑
j=0

∣∣∣∣dj(h2−lr(θ))
drj

∣∣∣∣ dr dσ(θ)

<∼ 2−l(kβ−α+b)‖ψ‖Ck ,

where in the last line we have used Lemma 2(iii). Since the implicit constants
are independent of l, we can choose k large enough for

∑∞
l=1 2−l(kβ−α+b) <∼ 1

and conclude that the mapping

ψ 7→
∞∑
l=1

�
Kl(y)ψ(y) dy

defines a tempered distributionK such thatK0+K agrees with K̃ away from
the origin, K0 +K = p.v. K̃ when β > α− b, and K̂ =

∑∞
l=1 K̂l in S ′(Rn).

It is therefore enough to prove the theorem for the operator T̃ = K ∗ f . We
shall start by estimating K̂.

Fix a positive integer l, a point ξ ∈ Rn, a small constant c and a large
constant C. We are going to estimate K̂l(ξ) in three different ways depend-
ing on whether 2−l ≤ c|ξ|−1/(β+1) (this includes the possibility ξ = 0),
c|ξ|−1/(β+1) < 2−l < C|ξ|−1/(β+1), or C|ξ|−1/(β+1) ≤ 2−l.
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Suppose 2−l ≤ c|ξ|−1/(β+1). Then

K̂l(ξ) =
�
e−2πiξ·yKl(y) dy = 2−nl

�

Sn−1

2�

1/2

gl(r)eiFl(r) dr dσ(θ)

with gl(r) = η(r)h2−lr(θ)rn−1 and Fl(r) = 2lβr−β − 2π2−lr(ξ · θ). Since

|F ′l (r)| ≥ β
2lβ

rβ+1
− 2π2−l|ξ| ≥ β 2lβ

2β+1
− 2πcβ+12lβ

for 1/2 < r < 2, c must be small enough for one to have

|F ′l (r)| >∼ 2lβ for 1/2 < r < 2.

By Lemma 3, we then have∣∣∣ 2�

1/2

gl(r)eiFl(r) dr
∣∣∣ <∼ k∑

s=0

k∑
µ=0

2�

1/2

|g(s)
l (r)|2lβ(−k−µ)

µ∏
q=1

2lβ dr

<∼ 2−lβk
k∑
s=0

2�

1/2

|g(s)
l (r)| dr,

and it follows from Lemma 2(iii) that

(11) |K̂l(ξ)| <∼ 2−l(kβ−α+b).

Before we consider the remaining two cases, let us write

K̂l(ξ) = 2−nl
2�

1/2

ei2
lβ/rβη(r)rn−1ĥδdσ(δξ) dr,

where δ = 2−lr. Notice that by (5), hδ(θ) ≈ hδ(−θ) and hδ(θ) ≈ h2−l(θ) for
all 1/2 < r < 2 and θ ∈ Sn−1. By Proposition 2, we now have

K̂l(ξ) = J1 + J2 + E1 + E2,

where

J1 =
2−l(n+1)/2

|ξ|(n−1)/2

�
η(r)r(n−1)/2hδ(ξ′)eiφl(r) dr

with

φl(r) =
2lβ

rβ
− 2π

(
2−lr|ξ| − n− 1

8

)
,

J2 is the same as J1 but with ξ′ replaced by −ξ′ and φl(r) modified by a
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sign,

|E1| <∼
2−l(n+1)/2

|ξ|(n−1)/2

k−1∑
j=1

1
|ξ|j

�
η(r)r(n−1)/2 hδ(ξ′)

δ2j(bn−1)δj
dr

<∼
2−l(n+1)/2

|ξ|(n−1)/2
h2−l(ξ

′)
k−1∑
j=1

2l(2bn−1)j

|ξ|j
,

and

(12) |E2| <∼
2lqk

|ξ|k+(n−1)/2

with

qk = α+
n+ 4k − 1

2
bn −

b+ 4k − 1
2

− n+ 1
2

+ k > 0

(because α ≥ b ≥ n). Recall that by (6), h2−l(ξ′) <∼ 2lα, so

(13) |E1| <∼
2l(α−(n+1)/2)

|ξ|(n−1)/2

k−1∑
j=1

2l(2bn−1)j

|ξ|j
.

Suppose c|ξ|−1/(β+1) < 2−l < C|ξ|−1/(β+1). Using (12) and (13), we see
that

(14) |E1| <∼ 2−l((n−1)β/2−α+n)
k−1∑
j=1

2−l(β−2bn+2)j <∼ 2−l(nβ/2−α+n)

provided β ≥ 4(bn − 1), and

(15) |E2| <∼ 2−l(nβ/2−α+n)

provided k is large enough for

(β + 1)
(
n− 1

2
+ k

)
− qk ≥

n

2
β − α+ n

to hold. We now consider J1. Since |φ′′l (r)| >∼ 2lβ for 1/2 < r < 2, van der
Corput’s lemma (see [10, pp. 332–334]) tells us that

|J1| <∼
2−l(n+1)/2

|ξ|(n−1)/2
2−lβ/2

� ∣∣∣∣ ddr (η(r)r(n−1)/2hδ(ξ′))
∣∣∣∣ dr

<∼
2−l(n+1+β)/2

|ξ|(n−1)/2

�
(hδ(ξ′) + 2−lδ−1hδ(ξ′)) dr,

where we have used Lemma 2(ii). Hence

(16) |J1| <∼
2−l(n+1+β)/2

|ξ|(n−1)/2
h2−l(ξ

′) <∼ 2−l(nβ/2−α+n).
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Similarly,

(17) |J2| <∼ 2−l(nβ/2−α+n).

Combining (14)–(16), and (17), we get

(18) |K̂l(ξ)| <∼ 2−l(nβ/2−α+n)

provided β ≥ 4(bn − 1).
Suppose C|ξ|−1/(β+1) ≤ 2−l. Then (13) implies

|E1| <∼
2l(α−(n+1)/2)

|ξ|(n−1)/2

k−1∑
j=1

|ξ|((2bn−1)/(β+1)−1)j(19)

<∼ 2l(α−(n+1)/2)|ξ|−((n+1)β+n−4bn+3)/(2(β+1))

provided β ≥ 2(bn − 1). This time we use (19) instead of (14), (12) instead
of (15), and we replace (16) and (17) by the better estimates

|J1|, |J2| <∼
2−l(n+1)/2

|ξ|(n−1)/2
|ξ|−β/(β+1)h2−l(ξ

′)(20)

<∼ 2l(α−(n+1)/2)|ξ|−((n+1)β+n−1)/(2(β+1))

(which follows from van der Corput’s lemma after noticing that now |φ′l(r)|
>∼ |ξ|

β/(β+1) for all 1/2 < r < 2, provided C is large enough) to get

|K̂l(ξ)| <∼ 2l(α−(n+1)/2)|ξ|−((n+1)β+n−1)/(2(β+1))(21)

+ 2l(α−(n+1)/2)|ξ|−((n+1)β+n−4bn+3)/(2(β+1)) +
2lqk

|ξ|k+(n−1)/2

provided β ≥ 2(bn − 1).
We now have all we need to estimate K̂(ξ). If |ξ| ≤ cβ+1, (11) tells us

that
∞∑
l=1

|K̂l(ξ)| <∼ 1

with no conditions on β except being positive (of course, k has to be chosen
large enough for kβ−α+ b > 0). If |ξ| > cβ+1, then (11), (18), and (21) tell
us that

∞∑
l=1

|K̂l(ξ)| <∼ |ξ|
−(kβ−α+b)/(β+1) + |ξ|−((n/2)β−α+b)/(β+1)

+ |ξ|−((n+1)β−2α+2n)/(2(β+1))

+ |ξ|−((n+1)β−2α+2n−4bn+4)/(2(β+1))

+ |ξ|−((n−1−2k)β−2α+2n−(n+4k−1)bn−1)/(2(β+1))

<∼ |ξ|
−(nβ−2α+2n)/(2(β+1))
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provided β ≥ 4(bn − 1) and k is large. Thus
∞∑
l=1

|K̂l(ξ)| <∼ (1 + |ξ|)−(nβ−2α+2n)/(2(β+1))

for all ξ ∈ Rn, provided β ≥ 4(bn − 1). Therefore, if β ≥ 4(bn − 1) and
(n/2)β − α+ n ≥ 0, then K̂ is a function and

(22) |K̂(ξ)| <∼ (1 + |ξ|)−(nβ−2α+2n)/(2(β+1))

for all ξ ∈ Rn.
To establish the Lp inequality, we shall use complex interpolation. Choose

a number a such that α− (n/2)β ≤ a < n, and for z = u+ iv ∈ C, set

Mz(y) = %(y)α+(n/2)(z−1)β−aK(y).

We consider the analytic family {Rz}0≤u≤1 of operators defined on the do-
main of Schwartz functions by

Rzf = Mz ∗ f.
Clearly,

R((n/2)β+a−α)/((n/2)β) = T̃ .

If u = 1, then Re(a − (n/2)(z − 1)β) = a < n, so M1+iv ∈ L1(Rn) with
L1-norm independent of v. Thus

(23) ‖R1+ivf‖L1(Rn)
<∼ ‖f‖L1(Rn).

Our next goal is to show that Riv satisfies an L2 inequality with a constant
having polynomial growth in v. Equivalently, we need to show that the
Fourier transform of Miv is a function which is bounded by C(1 + |v|)N for
some constants C and N . Following the same steps that led to (22), we see
that

|M̂iv(ξ)| <∼ (1 + |v|)N (1 + |ξ|)−(nβ−2(a+(n/2)β)+2n)/(2(β+1))

= (1 + |v|)N (1 + |ξ|)(a−n)/(β+1) ≤ (1 + |v|)N

for all ξ ∈ Rn. Thus

(24) ‖Rivf‖L2(Rn)
<∼ (1 + |v|)N‖f‖L2(Rn).

Interpolating between the L1 inequality (23) and the L2 inequality (24), we
conclude that

‖Ruf‖Lp(Rn) <∼ ‖f‖Lp(Rn)

whenever 0 ≤ u ≤ 1 and 1/p = (1− u)/2 + u = u/2. So

(25) ‖T̃ f‖Lp(Rn) <∼ ‖f‖Lp(Rn)

whenever

α− (n/2)β ≤ a < n and
1
p
− 1

2
=

(n/2)β + a− α
nβ

,
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and so (25) holds whenever

0 ≤ 1
p
− 1

2
<

(n/2)β − α+ n

nβ
.

Finally, a duality argument shows that (25) holds whenever∣∣∣∣1p − 1
2

∣∣∣∣ < (n/2)β − α+ n

nβ
,

as desired.
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