The structure of Lindenstrauss–Pełczyński spaces

by

JESÚS M. F. CASTILLO, YOLANDA MORENO and JESÚS SUÁREZ (Badajoz)

Abstract. Lindenstrauss–Pełczyński (for short LP) spaces were introduced by these authors [Studia Math. 174 (2006)] as those Banach spaces X such that every operator from a subspace of c_0 into X can be extended to the whole c_0. Here we obtain the following structure theorem: a separable Banach space X is an LP-space if and only if every subspace of c_0 is placed in X in a unique position, up to automorphisms of X. This, in combination with a result of Kalton [New York J. Math. 13 (2007)], provides a negative answer to a problem posed by Lindenstrauss and Pełczyński [J. Funct. Anal. 8 (1971)]. We show that the class of LP-spaces does not have the 3-space property, which corrects a theorem in an earlier paper of the authors [Studia Math. 174 (2006)]. We then solve a problem in that paper showing that L_∞ spaces not containing l_1 are not necessarily LP-spaces.

1. LP-spaces have all subspaces of c_0 in a unique position. In [6] we introduced the class of Lindenstrauss–Pełczyński spaces (for short LP) as those Banach spaces E such that all operators from subspaces of c_0 into E can be extended to c_0. The spaces are so named because Lindenstrauss and Pełczyński first proved in [9] that $C(K)$-spaces have this property. In [6] it was shown that every LP-space is an L_∞-space, that not all L_∞-spaces are LP-spaces, and that complemented subspaces of Lindenstrauss spaces (see also [9, 7]), separably injective spaces and L_∞-spaces not containing c_0 are LP-spaces.

We now prove a fundamental structure theorem for this class; namely, separable LP-spaces are characterized as those L_∞ Banach spaces having all subspaces of c_0 placed in a unique position. Precisely, let Y, X be Banach spaces. Following [5] we say that X is Y-automorphic if any isomorphism between two subspaces of X isomorphic to Y can be extended to an automorphism of X. We agree that if X contains no copies of Y then it is Y-automorphic. Lindenstrauss and Pełczyński prove in [9] that $C[0,1]$ is H-automorphic for all subspaces H of c_0 and pose the question of whether

2000 Mathematics Subject Classification: 46B03, 46M18, 46B20.

Key words and phrases: extension of operators, subspaces in unique position.
this property characterizes the subspaces of c_0. Kalton shows in [8] that the answer is no since $C[0,1]$ is also l_1-automorphic. In the opposite direction, there is the question of whether the property of being H-automorphic for all subspaces of c_0 characterizes separable $C(K)$-spaces. The answer is no. In fact, amongst separable Banach spaces which contain an isomorphic copy of c_0, it characterizes being $L\mathcal{P}$.

Theorem 1.

(i) A Banach space that contains c_0 and is H-automorphic for all subspaces H of c_0 is an $L\mathcal{P}$-space.

(ii) Every separable $L\mathcal{P}$-space is H-automorphic for all subspaces H of c_0.

Before entering into the proof, recall (see [4, 6]) the identification of exact sequences $0 \to Y \to X \to Z \to 0$ of Banach spaces with z-linear maps $F : Z \to Y$, i.e. homogeneous maps such that for some constant $K > 0$ and every finite set x_1, \ldots, x_n one has $\|F(\sum x_j) - \sum Fx_j\| \leq K \sum \|x_j\|$. The identification will be written as $0 \to Y \to X \to Z \to 0 \equiv F$. Two exact sequences $0 \to Y \to X \to Z \to 0$ and $0 \to Y' \to X' \to Z \to 0$ of Banach spaces are said to be equivalent if there is a continuous linear operator $T : X \to X'$ providing a commutative diagram

$$
\begin{array}{c}
0 \longrightarrow Y \longrightarrow X \longrightarrow Z \longrightarrow 0 \\
\| \downarrow T \| \\
0 \longrightarrow Y' \longrightarrow X' \longrightarrow Z \longrightarrow 0
\end{array}
$$

Two z-linear maps F, G are said to be equivalent, and written $F \equiv G$, when the associated exact sequences are equivalent. Under these identifications, given an exact sequence $0 \to Y \to X \to Z \to 0 \equiv F$ and an operator $k : Z' \to Z$, the upper sequence in the associated pull-back diagram

$$
\begin{array}{c}
0 \longrightarrow Y \longrightarrow PB \longrightarrow Z' \longrightarrow 0 \equiv Fk \\
\| \downarrow k \\
0 \longrightarrow Y \longrightarrow X \longrightarrow Z \longrightarrow 0 \equiv F
\end{array}
$$

corresponds to the z-linear map Fk (standard composition of maps). We will need the following lemma of independent interest.

Lemma 1. Let $F : Z \to Y$ be a z-linear map and let $k : Z \to Z$ be a compact operator. Then $Fk \equiv F$ implies $F \equiv 0$.

Proof. If $Fk \equiv F$ then $F - Fk \equiv F(1 - k) \equiv 0$. If 1 is not an eigenvalue of k then $1 - k$ is an automorphism of Z, so $F(1 - k) \equiv 0$ implies $F \equiv 0$. If 1 is an eigenvalue of k then let $z_1^1, \ldots, z_{n_1}^1$ be a basis for the associated space of eigenvectors. Let $Z_1 = [z_1^1, \ldots, z_{n_1}^1]$ and consider the exact sequence
0 \to Z_1 \to Z \xrightarrow{q_1} Z/Z_1 \to 0.

Let \(s_1 : Z/Z_1 \to Z \) be a continuous linear section for \(q_1 \). The operator \(q_1 k s_1 : Z/Z_1 \to Z/Z_1 \) is compact. If \(1 \) is not an eigenvalue of \(q_1 k s_1 \) then \(1 \) is not an automorphism of \(Z/Z_1 \). Since \(Z_1 \) is finite-dimensional, \(F_1 = 0 \) and there exists a \(z \)-linear map \(F_1 : Z/Z_1 \to Y \) such that \(F_1 q \equiv F \). Now, \(F(1 - k) \equiv 0 \) implies \(F_1 q_1 (1 - k) s_1 = 0 \), and therefore \(F_1 = 0 \). Hence \(F \equiv 0 \). It remains to treat the case where \(1 \) is an eigenvalue of \(q_1 k s_1 \). Take then a basis \(q_1(z_1^2), \ldots, q_1(z_n^2) \) for the associated space of eigenvectors and form the closed linear span

\[
Z_2 = [z_1^1, \ldots, z_n^1, s_1 q_1 z_1^2, \ldots, s_1 q_1 z_n^2].
\]

The exact sequence

\[
0 \to Z_2 \to Z \xrightarrow{q_2} Z/Z_2 \to 0
\]

admits a continuous linear section \(s_2 \). If \(1 \) is not an eigenvalue of the operator \(q_2 k s_2 \) the argument as before yields \(F \equiv 0 \). It remains to treat the case where \(1 \) is an eigenvalue of \(q_2 k s_2 \). We then proceed as follows. Assume that after \(n \) steps, \(1 \) is an eigenvalue of \(q_n k s_n \). Take a basis \(q_n(z_1^{n+1}), \ldots, q_n(z_n^{n+1}) \) for the associated space of eigenvectors and form the closed linear span

\[
Z_{n+1} = [z_1^1, \ldots, z_n^1, s_1 q_1 z_1^2, \ldots, s_1 q_1 z_n^2, \ldots, s_n q_1 z_1^{n+1}, \ldots, s_n q_1 z_n^{n+1}].
\]

The exact sequence

\[
0 \to Z_{n+1} \to Z \xrightarrow{q_{n+1}} Z/Z_{n+1} \to 0
\]

admits a continuous linear section \(s_{n+1} \). If \(1 \) is not an eigenvalue of \(q_{n+1} k s_{n+1} \) the same argument as before yields \(F \equiv 0 \). It remains to treat the case where \(1 \) is an eigenvalue of \(q_{n+1} k s_{n+1} \).

The process must stop because \(Z_n \subset \ker (1 - k)^n \) and \(k \) has finite ascent, i.e. there is a natural \(N \) such that \(\ker (1 - k)^N = \ker (1 - k)^{N+1} \). □

Proof of Theorem 1. To prove (i) we adapt the arguments of [10, Thm. 3.2]. Let \(X \) be \(H \)-automorphic for all subspaces \(H \) of \(c_0 \), and assume that there is an embedding \(j : c_0 \to X \). Assume there is a subspace \(i : H \subset c_0 \) and a norm one operator \(T : H \to X \) that cannot be extended to \(c_0 \) through \(i \). Then for small \(\varepsilon > 0 \) the operator \(j i + \varepsilon T : H \to X \) is an into isomorphism that cannot be extended to an operator \(R : X \to X \) through \(j i \), as otherwise \(R j i = j i + \varepsilon T \) and \(\varepsilon^{-1} (R j - j) \) would be an extension of \(T \) through \(i \).

We show (ii). Let \(X \) be a separable \(L \)-space. If \(X \) does not contain \(c_0 \), then the result is (vacuously) true. So let \(i : H \to X \) be an embedding where \(j : H \to c_0 \) is a subspace of \(c_0 \). The extension \(J : c_0 \to X \), which exists
because \(X \) is \(\mathcal{L}P \), yields the commutative diagram
\[
\begin{array}{ccccccccc}
0 & \longrightarrow & H & \xrightarrow{j} & c_0 & \xrightarrow{p} & c_0/H & \longrightarrow & 0 \\
\| & & \| & & \downarrow J & & \downarrow J' & & \\
0 & \longrightarrow & H & \xrightarrow{i} & X & \xrightarrow{q} & X/H & \longrightarrow & 0
\end{array}
\]

We now show that the operator \(qJ \) is not weakly compact. Otherwise it would be compact, hence \(J'p = qJ \) would be compact and thus \(J' \) would also be compact. Since \(X \) is separable, the embedding \(i \) can be extended to \(c_0 \), which yields a commutative diagram
\[
\begin{array}{ccccccccc}
0 & \longrightarrow & H & \xrightarrow{i} & X & \xrightarrow{q} & X/H & \longrightarrow & 0 \\
\| & & \| & & \downarrow I & & \downarrow I' & & \\
0 & \longrightarrow & H & \xrightarrow{j} & c_0 & \xrightarrow{p} & c_0/H & \longrightarrow & 0
\end{array}
\]

Putting the two diagrams together one gets a commutative pull-back diagram
\[
\begin{array}{ccccccccc}
0 & \longrightarrow & H & \xrightarrow{j} & c_0 & \xrightarrow{p} & c_0/H & \longrightarrow & 0 \\
\| & & \| & & \downarrow IJ & & \downarrow I'J'=k & & \\
0 & \longrightarrow & H & \xrightarrow{j} & c_0 & \xrightarrow{p} & c_0/H & \longrightarrow & 0
\end{array}
\]

in which \(k = I'J' \) is compact. Lemma 1 shows that is impossible.

A Banach space \(C \) is said to have Pełczyński’s property \((V)\) if every operator on \(C \) is either weakly compact or an isomorphism on a copy of \(c_0 \). Since \(C(K) \)-spaces have property \((V)\) \cite{11} and we have shown that the operator \(qJ \) is not weakly compact, it must be an isomorphism on a subspace isomorphic to \(c_0 \). Therefore \(q \) is also an isomorphism on a subspace isomorphic to \(c_0 \), which will necessarily be complemented in both \(X/H \) and \(X \). This means the existence of a commutative diagram
\[
\begin{array}{ccccccccc}
0 & \longrightarrow & H & \xrightarrow{i} & X & \xrightarrow{q} & X/H & \longrightarrow & 0 \\
\| & & \| & & \downarrow \beta & & \downarrow \gamma & & \\
0 & \longrightarrow & H & \xrightarrow{(i,0)} & X \oplus c_0 & \longrightarrow & X/H \oplus c_0 & \longrightarrow & 0
\end{array}
\]

in which both \(\beta \) and \(\gamma \) are isomorphisms. An application of the diagonal principles developed in \cite{5} to the diagrams (1) and (2) yields a commutative diagram
in which both σ, μ are isomorphisms. Now, starting with a different embedding $i' : H \to X$ would lead to a similar diagram with j replaced by some embedding $j' : H \to c_0$. But since c_0 is H-automorphic by the classical Lindenstrauss–Pełczyński theorem, we are done.

The conclusion of Theorem 1(ii) clearly fails for nonseparable spaces since $c_0 \oplus l_\infty$ contains a complemented and an uncomplemented copy of c_0.

TheLP-space X was defined in [10] to be extensible if every operator $Y \to X$ from a subspace Y of X can be extended to X. It is clear that an extensible space that contains c_0 must be an LP-space; hence

Corollary 1. Every L_∞-space which is H-automorphic for every subspace H of c_0 is an \mathcal{LP}-space.

A Banach space X was defined in [10] to be extensible if every operator $Y \to X$ from a subspace Y of X can be extended to X. It is clear that an extensible space that contains c_0 must be an LP-space; hence

Corollary 2. An extensible L_∞-space is an \mathcal{LP}-space.

Thus, even the product of separable automorphic spaces such as $l_2 \oplus c_0$ may fail to be extensible.

2. Counterexamples. Our first counterexample is to show that, unlike $C[0, 1]$, separable LP-spaces may fail to be l_1-automorphic:

A separable \mathcal{LP}-space that is not l_1-automorphic. Consider an embedding $i : l_1 \to C[0, 1]$ and another embedding $j : l_1 \to X$ of l_1 into its corresponding Bourgain–Pisier space L_∞-space X (see [2]). It was proved in [6] that X is a Schur \mathcal{LP}-space. This means that j cannot be extended through i to the whole $C[0, 1]$ since Pełczyński’s property (V) of $C[0, 1]$ would make such an extension a weakly compact operator. The \mathcal{LP}-space $X \oplus C[0, 1]$ is not l_1-automorphic because the embeddings $(0, i) : l_1 \to X \oplus C[0, 1]$ and $(j, 0) : l_1 \to X \oplus C[0, 1]$ cannot be transformed to each other by an automorphism $\sigma : X \oplus C[0, 1] \to X \oplus C[0, 1]$. Otherwise, if $\sigma(0, i) = (j, 0)$, and $\pi : X \oplus C[0, 1] \to X$ is the projection, the operator $\pi \sigma|_{C[0, 1]} : C[0, 1] \to X$ would be an extension of j through i.

Our second counterexample shows that the statement of [6, Thm. 2] that “the class of \mathcal{LP}-spaces has the 3-space property” is wrong.
Proposition 2.1. For every subspace H of c_0 different from c_0, there is a twisted sum

$$0 \to C(\omega^\omega) \to \Omega_H \to c_0 \to 0,$$

and an operator $H \to \Omega_H$ that cannot be extended to c_0. Hence the space Ω_H is not an \mathcal{LP}-space.

Proof. Consider the exact sequence $0 \to C(\omega^\omega) \to \Omega \to c_0 \to 0 \equiv M$ constructed in [3] which has the additional property of having the quotient map $q : \Omega \to c_0$ strictly singular. Since every quotient of c_0 is isomorphic to a subspace of c_0, we can assume that there is an embedding $u_H : c_0/H \to c_0$. The pull-back sequence $0 \to C(\omega^\omega) \to P_H \xrightarrow{p} c_0/H \to 0 \equiv Gu_H$ also has strictly singular quotient map. We form the commutative diagram

$$
\begin{array}{cccccccc}
0 & = & 0 \\
\uparrow & & \uparrow \\
0 & \longrightarrow & C(\omega^\omega) & \longrightarrow & P_H & \xrightarrow{p} & c_0/H & \longrightarrow & 0 \\
\| & & \| & & \| & & \| & & \\
0 & \longrightarrow & C(\omega^\omega) & \longrightarrow & \Omega_H & \xrightarrow{Q} & c_0 & \longrightarrow & 0 \\
\| & & \| & & \| & & \| & & \\
0 & = & 0 \\
\end{array}
$$

To show that Ω_H is not an \mathcal{LP}-space we show that j cannot be extended to c_0 through i. Indeed, suppose J is such an extension, and denote by ν the induced operator between the quotient spaces. There is a commutative diagram

$$
\begin{array}{cccccccc}
0 & \longrightarrow & H & \longrightarrow & c_0 & \longrightarrow & c_0/H & \longrightarrow & 0 \equiv F \\
\| & & \| & & \| & & \| & & \\
0 & \longrightarrow & H & \xrightarrow{j} & \Omega_H & \longrightarrow & P_H & \longrightarrow & 0 \\
\| & & \| & & J & & \| & & \\
0 & \longrightarrow & H & \longrightarrow & c_0 & \longrightarrow & c_0/H & \longrightarrow & 0 \equiv F \\
\end{array}
$$

The diagram means that $Fp\nu \equiv F$. But since p is strictly singular, $p\nu$ is also strictly singular, hence compact. Lemma 1 can be used to conclude the argument.
The previous example also provides a negative answer to a question posed in [6, p. 227]: Is every L_∞-space not containing l_1 an L_P-space? The space Ω_H does not contain l_1 since “not containing l_1” is a 3-space property (see [4, Thm. 3.2.d]).

Our last example provides a partial answer to the question of whether the original space Ω constructed in [3] and which is the starting point in the proof of Proposition 2.1 is an L_P-space.

Proposition 2.2. There exists an L_P-space X admitting two nontrivial exact sequences

$$0 \to X \to A_i \xrightarrow{q_i} c_0 \to 0$$

such that

1. A_1 is an L_P-space and q_1 is strictly singular.
2. A_2 is not an L_P-space.

Proof. Consider the projective presentation of c_0,

$$0 \to K \to \ell_1 \to c_0 \to 0,$$

and embed K into its corresponding Bourgain–Pisier space L_∞-space X (see [2]). It was proved in [6] that X is an L_P-space. To construct A_1 we consider the push-out diagram

$$
\begin{array}{ccc}
0 & \to & X \\
\downarrow & & \downarrow \\
0 & \to & A_1 \\
\downarrow & & \downarrow \\
S & = & S \\
\downarrow & & \downarrow \\
0 & \to & 0
\end{array}
$$

Since the Schur property is a 3-space property and L_∞-spaces with the Schur property are L_P-spaces, A_1 is an L_P-space, and the quotient $A_1 \to c_0$ must be strictly singular.

To obtain A_2, let $0 \to X \to A_1 \to c_0 \to 0$ be the previously constructed sequence having strictly singular quotient, and let $0 \to H \to c_0 \to c_0 \to 0$ be the nontrivial sequence constructed by Bourgain in [1]. We form the pull-back diagram

$$
\begin{array}{ccc}
0 & \to & X \\
\downarrow & & \downarrow \\
0 & \to & A_1 \\
\downarrow & & \downarrow \\
S & = & S \\
\downarrow & & \downarrow \\
0 & \to & 0
\end{array}
$$
and then follow the argument in the proof of Proposition 2.1 to show that A_2 is not an $\mathcal{L}P$-space. ■

3. Positive results. The first positive result exhibits two situations in which a twisted sum of two $\mathcal{L}P$-spaces is an $\mathcal{L}P$-space. The counterexamples in Section 2 show that these results are optimal.

Proposition 3.1. Let $0 \rightarrow Y \xrightarrow{i} X \xrightarrow{q} Z \rightarrow 0$ be an exact sequence in which both Y, Z are $\mathcal{L}P$-spaces. Then X is an $\mathcal{L}P$-space in the following cases:

1. Z does not contain c_0.
2. Y is separably injective.

Proof. Let $j : H \rightarrow c_0$ be a subspace of c_0 and let $t : H \rightarrow X$ be an operator, and consider an extension $(qt)^e$ of qt to c_0. To prove (1) observe that $(qt)^e$ is weakly compact, hence compact. Since Y is an \mathcal{L}_∞-space, $(qt)^e$ can be lifted to an operator $E : c_0 \rightarrow X$ through q, so $qE = (qt)^e$. The operator $Ej - t$ thus takes values in Y, and can therefore be extended to an operator $(Ej - t)^e : c_0 \rightarrow Y$. The operator $E - i(Ej - t)^e : c_0 \rightarrow X$ is the desired extension of t: $(E - i(Ej - t)^e)j = Ej - i(Ej - t) = t$.

The proof for (2) is analogous: in this case $(qt)^e$ can be lifted to an operator $E : c_0 \rightarrow X$ through q since Y is separably injective. ■

The second positive result is a correct statement and proof of the 3-space result presented in [6]. The argument there touches the poorly developed topic of relative homology with respect to an operator ideal. Precisely, classical Banach space homology works with the ideal \mathfrak{I} of continuous linear operators in the sense that, given an exact sequence $0 \rightarrow Y \rightarrow X \rightarrow Z \rightarrow 0$ and a Banach space E, it produces the homology sequence
formed by the derived functors of \mathcal{L}. One could expect that a surjective and injective operator ideal A would also produce a relative homology sequence

$$0 \to A(Z, E) \to A(X, E) \to A(Y, E) \to \cdots$$

formed by derived functors of A. The problem, however, is that derivation is a process that can be done via injective or projective presentations, and the results of the two processes might not coincide. In the classical setting, the injective and projective derivations of \mathcal{L} are equivalent; in the relative setting the equivalence depends on the following extra property of the ideal A.

Definition. An injective and surjective operator ideal A will be called balanced if any commutative diagram

$$
\begin{array}{ccccccccc}
0 & \longrightarrow & K & \longrightarrow & l_1(\Gamma) & \longrightarrow & Z & \longrightarrow & 0 \\
\downarrow{\alpha} & & \downarrow & & \downarrow{\gamma} & & \\
0 & \longrightarrow & Y & \longrightarrow & l_\infty(\mathcal{A}) & \longrightarrow & l_\infty(\mathcal{A})/Y & \longrightarrow & 0
\end{array}
$$

has the property that there is an operator $\alpha' \in A$ such that $\alpha - \alpha'$ can be extended to $l_1(\Gamma)$ if and only if there exists $\gamma' \in A$ such that $\gamma - \gamma'$ can be lifted to $l_\infty(\mathcal{A})$.

The condition is clearly equivalent to the fact that projective and injective derivations coincide. Let us now define a Banach space X to be A-injective (resp. separably A-injective) if $A'(\cdot, X) = 0$ (resp. $A'(S, X) = 0$ for every separable space S). The following proposition contains the right statement of Theorem 2 in [6].

Proposition 3.2. For any surjective and injective balanced operator ideal A, being A-injective (resp. separably A-injective) is a 3-space property.

Proof. We include the proof (an abstract version of results in [6]) for the sake of completeness. Let

$$0 \to A \overset{i}{\longrightarrow} B \overset{p}{\longrightarrow} C \to 0$$

be an exact sequence. By assumption, both $A(\cdot, A)$ and $A(\cdot, C)$ are exact functors and we need to prove that also $A(\cdot, B)$ is exact. We construct the commutative diagram
The rows are exact by the surjectivity of A, while the first three columns are also exact by injectivity of A. The fourth column is exact because A is balanced. By hypothesis,

$$A'(Z, A) = A'(Z, C) = 0,$$

and the exactness of the fourth column implies that

$$A'(Z, B) = 0,$$

hence $A(\cdot, B)$ is exact. ■

In [6] it is established that $\mathcal{L}P$-spaces are precisely the relatively separably injective objects associated with the ideal Γ_0 of operators that factorize through a subspace of c_0. The mistake in the proof there is that the ideal Γ_0 is not balanced.

Acknowledgements. The research has been supported in part by project MTM2007-67994-C02-02.

References

Departamento de Matemáticas
Universidad de Extremadura
Avenida de Elvas
06071 Badajoz, España
E-mail: castillo@unex.es
ymoreno@unex.es
jesus@unex.es

Received June 11, 2008
Revised version April 3, 2009