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Embedding theorems for Lipschitz and Lorentz spaces on
lower Ahlfors regular sets

by

Bartłomiej Dyda (Wrocław)

Abstract. We prove norm inequalities between Lorentz and Besov–Lipschitz spaces
of fractional smoothness.

1. Main results. In what follows we let (F, ρ) be a metric space with a
positive σ-finite Borel measure µ. By B(x, r) we denote the open ball centred
at x with radius r. We always assume that there exist d > 0 and C1 > 0
such that

(1) µ(B(x, r)) ≥ C1r
d for all 0 < r ≤ 1 and x ∈ F ,

i.e., the lower Ahlfors d-regularity of F . In particular, F may be a d-set in
Rn and µ the d-dimensional Hausdorff measure, or F may be an h-set with
h(r) ≥ rd for 0 < r ≤ 1 and µ an h-measure [10, 11, 5, 6, 18].

We denote Lp = Lp(F, µ). We obtain the following inequality of Sobolev
type.

Theorem 1. If 0 < p < ∞ and 0 < α < d/p, then there exists a
constant c = c(d,C1, p, α) such that

(2) ‖u‖Lpd/(d−αp)

≤ c
(
‖u‖Lp +

( � �

ρ(x,y)<1

|u(x)− u(y)|p

ρ(x, y)d+αp
µ(dy)µ(dx)

)1/p)
for all u ∈ Lp.

Under certain additional assumptions we can get rid of the Lp norm on
the right hand side.
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Corollary 2. Let F ⊂ Rn and F = aF := {ax : x ∈ F} for some
a > 1. Let µ be the d-dimensional Hausdorff measure and assume that it is
σ-finite on F . Let 0 < p < ∞ and 0 < α < d/p. There exists a constant
c = c(d,C1, p, α) such that

(3) ‖u‖Lpd/(d−αp) ≤ c
( �

F

�

F

|u(x)− u(y)|p

|x− y|d+αp
µ(dy)µ(dx)

)1/p

for all u ∈ Lp.

The result applies e.g. if F is a half-space in Rn (or more generally, an
open cone) and d = n.

Inequality (2) for p = 2, α < 1, and a d-set F ⊂ Rn was stated in [7,
(2.3)] and applied in [7] to estimate the heat kernel of jump type processes
(see also [4]). Such applications are our primary motivation to study such
inequalities. They are also of interest in the study of function spaces on d-sets
[17]. Furthermore, inequalities of this type have a close connection to Nash
inequalities and heat kernel estimates (see [15, 8, 23, 1]).

Note that our proofs are different and more elementary than those in
[7, 17]. Interestingly, in our inequalities we allow for all p > 0, rather than
p ≥ 1, α ∈ (0, d/p) may be larger than 1, and we only assume lower Ahlfors
d-regularity. Moreover, our methods yield an extension to Besov–Lipschitz
spaces, given below.

We recall the definition of Lorentz spaces Lp,q [17, 2]. We define the
decreasing rearrangement u∗ of u in the usual way,

u∗(t) = inf{s : µ({x : |u(x)| > s}) ≤ t}.
For 0 < p, q <∞ we define

‖u;Lp,q‖ =
(∞�

0

(t1/pu∗(t))q
dt

t

)1/q

, ‖u;Lp,∞‖ = sup
t>0

(t1/pu∗(t)).

We say that u ∈ Lp,q if ‖u;Lp,q‖ <∞.
For 0 < p < ∞, 0 < q ≤ ∞ and α > 0 we define the Besov–Lipschitz

type space Lip0(α, p, q, F ) = {u ∈ Lp : ‖u; Lip0(α, p, q, F )‖ <∞}, where
(4) ‖u; Lip0(α, p, q, F )‖ = ‖u‖Lp + ‖(bν)∞ν=0‖`q ,
and the sequence (bν)∞ν=0 is defined by

(5) bν = 2να
(

2νd
� �

ρ(x,y)<2−ν

|u(x)− u(y)|p µ(dy)µ(dx)
)1/p

.

If p, q ≥ 1, then (4) is a genuine norm.
The main result of this note is the following embedding theorem, which

extends Proposition 6 in [17, p. 216].
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Theorem 3. Let F , µ, ρ and d be as in Theorem 1. Let 0 < p < ∞,
p ≤ q ≤ ∞ and 0 < α < d/p. Then there exists a constant c = c(d,C1, p, q, α)
such that for all u ∈ Lip0(α, p, q, F ),

(6) ‖u;Lp∗,q‖ ≤ c‖u; Lip0(α, p, q, F )‖,
where p∗ = pd/(d− αp).

We may regard Theorem 3 as a subcritical case of a limiting embedding
(see [22, Remark 11.5] for definitions and a further discussion).

We mention that the Hardy inequality of [12, 9, 3] is similar to (3), except
that it estimates the weighted Lp norm (and not Lp∗) by E .

We note that the definition of Lip0(α, p, q, F ) is very similar to the defi-
nition of the space Λd,αp,q of Grigor’yan [13]. By the definition
(7) ‖u; Lip0(α, p, q, F )‖ ≤ c‖u;Λd,αp,q ‖,
and these two norms are equivalent for bounded d-sets F . Correspondingly,
(6) holds with the norm Lip0(α, p, q, F ) replaced by the norm of Λd,αp,q in
Theorem 3. See [13, 14] for a further discussion.

We now recall the definition of Lip(α, p, q, F ) of Jonsson and Wallin [17].
Assume that F ⊂ Rn and ρ is the Euclidean distance. Let α > 0 and k ∈ Z
satisfy k < α ≤ k + 1. Let {f (j)}|j|≤k be a family of functions defined µ-a.e.
on F , where j = (j1, . . . , jn) is a multiindex and |j| = j1 + · · ·+jn. We define
Pj and Rj by requiring that

Pj(x, y) =
∑
|j+l|≤k

f (j+l)(y)
l!

(x− y)l, x, y ∈ F,

and that f (j)(x) = Pj(x, y) +Rj(x, y). The collection {f (j)}|j|≤k belongs to
the Lipschitz space Lip(α, p, q, F ) if and only if f (j) ∈ Lp for |j| ≤ k, and for
ν = 0, 1, 2, . . . and |j| ≤ k,

(8)
(
2νd

� �

|x−y|<2−ν

|Rj(x, y)|p µ(dx) µ(dy)
)1/p

≤ 2−ν(α−|j|)aν

for some sequence (aν) ∈ `q. The norm of {f (j)}|j|≤k in Lip(α, p, q, F ) is

(9)
∑
|j|≤k

‖f (j)‖Lp + inf ‖(aν)‖`q ,

where the infimum is taken over all possible sequences (aν). We see that the
definition of Lip(α, p, q, F ) uses (a substitute of) Taylor expansion of kth
order, while Lip0(α, p, q, F ) uses only increments of the function (0-order
Taylor expansion). This motivates the notation Lip0.

For a function f we put f̃ (0) = f and f̃ (j) = 0 if |j| > 0. Clearly,

‖f (0); Lip0(α, p, q, F )‖ = ‖{f̃ (j)}; Lip(α, p, q, F )‖.
In particular, we have Lip(α, p, q, F ) = Lip0(α, p, q, F ) for α ≤ 1.
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It seems that Lip0(α, p, q, F ) is more appropriate to study jump processes
on metric spaces (see [16, 20, 21]). For a d-set F the space Lip0(αdw/4, 2, 2, F )
is the domain of the Dirichlet form of a symmetric α-stable process on F
[21], where α ∈ (0, 2) and dw is the so-called walk dimension of F [20]. Also,
Lip0(dw/2, 2,∞, F ) is the domain of the Dirichlet form of the Brownian mo-
tion e.g. on the Sierpiński gasket F ⊂ Rn, (see [16]). Our results shed light
on domains of non-local Dirichlet forms defined on more general sets.

Notation c = c(a, b, . . . , z) means that the constant 0 < c < ∞ depends
only on a, b, . . . , z. All functions are assumed to be Borel measurable and
complex-valued. In fact our results remain valid for Banach-space-valued
functions u (see (13), (14)).

2. Proof of Theorem 3. In the following lemma we adopt the conven-
tion that 0

0 = 0.

Lemma 4. For every ε > 0,

(10)
∞∑
n=1

an ≤ a0 + 3 · 4ε
∞∑
n=1

a1+ε
n

(an−1 + an + an+1)ε

if an ≥ 0, n = 0, 1, . . . and an = 0 for large n.

Proof. Let

A =
{
n ∈ {1, 2, . . .} : an ≥

1
3

(an−1 + an+1)
}
, B = {1, 2, . . .} \A,

and let N be such that B ⊂ {1, . . . , N}. For n ∈ A we have an−1 +an+an+1

≤ 4an, hence

(11)
∑
n∈A

an ≤ 4ε
∑
n∈A

a1+ε
n

(an−1 + an + an+1)ε
.

On the other hand, we have∑
n∈B

an ≤
1
3

∑
n∈B

(an−1 + an+1) ≤
1
3
a0 +

2
3

N∑
n=1

an +
1
3
aN+1,

thus

(12)
1
3

∑
n∈B

an <
1
3
a0 +

2
3

∑
n∈A,n≤N

an +
1
3
aN+1.

Since N + 1 ∈ A, we obtain from (12),∑
n∈B

an < a0 + 2
∑

n∈A,n≤N+1

an,

and this together with (11) completes the proof.
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Remark 1. We note that (10) does not hold for all sequences an ≥ 0.
Indeed, for an = exp(bn), the right hand side of (10) is finite if b is large
enough, while the left hand side is infinite. One can prove that (10) holds,
with some constant c = c(ε) instead of 3 · 4ε in (10), for all sequences an =
o(qn), where q > 0; however, the proof is more complicated and will be
omitted.

Proof of Theorem 3. Let u ∈ Lip0(α, p, q, F ). Our goal is to prove (6)
with c independent of u. Note that

(13) ‖ |u|;Lp∗,q‖ = ‖u;Lp∗,q‖

and

(14) ‖ |u|; Lip0(α, p, q, F )‖ ≤ ‖u; Lip0(α, p, q, F )‖,

hence it suffices to prove (6) for u ≥ 0.
Furthermore, since for any t > 0 we have

‖u ∧ t; Lip0(α, p, q, F )‖ ≤ ‖u; Lip0(α, p, q, F )‖,

by the bounded convergence theorem we may also assume that u is bounded.
Finally, we may and will assume that ‖u‖Lp = 1.

Let

En = {x ∈ F : u(x) ∈ [2n, 2n+1)},
µn = µ(En), n ∈ Z.

The idea of the proof is to estimate the norms in (6) by means of µn only,
and then use special inequalities for sequences, including (10) and the Hardy
inequality. While estimates for the Lp and Lp∗,q norms of u by means of µn
are straightforward, this is not the case for the `q norm of (bν). This is the
place where the somewhat unusual terms µn/(µn−1+µn+µn+1) arise, which
result from considering x and y not in neighbouring sets En (see (5) and
(16)). We estimate the terms by using Lemma 4. The assumption ‖u‖Lp = 1
implies that µn−1 + µn + µn+1 ≤ 2−(n−1)p, thus µn−1 + µn + µn+1 ≤ C1/2
for n ≥ n0 = n0(C1, p).

We claim that for any n ≥ n0 there exists ν ∈ {0, 1, 2, . . .} (depending
on n, u, . . . ) such that

(15) 2nµ1/p
n (µn−1 + µn + µn+1)−α/d

≤ c2να
(
2νd

�

En

�

B(x,2−ν)

|u(x)− u(y)|p µ(dy)µ(dx)
)1/p

with constant c = c(d,C1, p, α) independent of n. Here we adopt the conven-
tion that 0a = 0 for a < 0, hence the claim is obvious if µn−1+µn+µn+1 = 0.
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We now prove the claim in the case when µn−1 + µn + µn+1 > 0. We have

bn,ν :=
�

En

�

B(x,2−ν)

|u(x)− u(y)|p µ(dy)µ(dx)(16)

≥
�

En

�

B(x,2−ν)\(En−1∪En∪En+1)

|u(x)− u(y)|p µ(dy)µ(dx)

≥ 2(n−1)pµn · µ(B(x, 2−ν) \ (En−1 ∪ En ∪ En+1))

≥ 2(n−1)pµn(C12−νd − (µn−1 + µn + µn+1)).

We take ν ∈ {0, 1, 2, . . .} such that

2(µn−1 + µn + µn+1) ≤ C12−νd < 2d+1(µn−1 + µn + µn+1).

Then

bn,ν ≥
C1

2
2(n−1)pµn2−νd,

hence

2να(2νdbn,ν)1/p ≥ c(d,C1, p, α)(µn−1 + µn + µn+1)−α/d2nµ1/p
n ,

and the claim is proven.
We will first prove (6) in the case when q < ∞. Observe that 2n ≤

u∗(t) < 2n+1 if
∑

k>n µk < t <
∑

k≥n µk. Hence

‖u;Lp∗,q‖q =
∞�

0

(t1/p
∗
u∗(t))q

dt

t
(17)

≤ 2q
∑
n∈Z

P
k≥n µk�

P
k>n µk

tq/p
∗−12nq dt

=
2qp∗

q

∑
n∈Z

((∑
k≥n

µk

)q/p∗
−
(∑
k>n

µk

)q/p∗)
2nq

≤ 2qp∗

q

∑
n∈Z

(∑
k≥n

µk

)q/p∗
2nq.

We use the following variant of the Hardy inequality ([17, Lemma 3, p. 121],
[19]), valid for s, q > 0:

∞∑
n=n0

(∑
k≥n

µk

)s
2nq ≤ c(n0, s, q)

∞∑
n=n0

µsn2
nq,

and the estimate
∑

k≥n µk ≤ 2−np, which follows from ‖u‖Lp = 1. We deduce
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from (17) that

‖u;Lp∗,q‖q ≤ c
∑
n<n0

2−npq/p
∗
2nq + c

∞∑
n=n0

µq/p
∗

n 2nq(18)

≤ c‖u‖qLp + c
∞∑

n=n0

µq/p
∗

n 2nq,

where c = c(d,C1, p, q, α).
Since u is bounded, µn = 0 for all large n. We are going to apply Lemma 4

to an = µγn2nq, where γ = q/p∗, and ε = αq/(γd) > 0. Observe that γ(1+ ε)
= q/p. Note that

a1+ε
n

(an−1 + an + an+1)ε
≤ c µ

γ(1+ε)
n

(µn−1 + µn + µn+1)γε
· 2nq

with c = c(d, p, q, α). Thus by Lemma 4 and the inequality (15) raised to the
qth power we obtain

∞∑
n=n0

2nqµγn ≤ c
∞∑

n=n0

µ
q/p
n

(µn−1 + µn + µn+1)αq/d
2nq + 2(n0−1)qµγn0−1

≤ c
∞∑

n=n0

2ν(n)qα(2ν(n)dbn,ν(n))
q/p + 2(n0−1)qµγn0−1(19)

≤ c
∞∑

n=n0

∞∑
ν=0

2νqα(2νdbn,ν)q/p + c‖u‖qLp(20)

with c = c(d,C1, p, q, α). We note that in (19) above ν(n) depends also on
n and u, but the dependence vanishes in (20). The first term in (20) is now
estimated as follows:

(21)
∞∑

n=n0

∞∑
ν=0

2νqα(2νdbn,ν)q/p

=
∞∑
ν=0

2νqα
∞∑

n=n0

(2νdbn,ν)q/p ≤
∞∑
ν=0

2νqα
(
2νd

∞∑
n=n0

bn,ν

)q/p
≤
∞∑
ν=0

2νqα
(
2νd

� �

ρ(x,y)<2−ν

|u(x)− u(y)|p µ(dy)µ(dx)
)q/p

≤ ‖u; Lip0(α, p, q, F )‖q.

Putting (18), (20) and (21) together we obtain (6).



254 B. Dyda

It remains to show (6) in the case when q =∞. We have

‖u;Lp∗,∞‖ ≤ 2 sup
n

(∑
k≥n

µk

)1/p∗

2n.

Observe that for n ≤ n0,(∑
k≥n

µk

)1/p∗

2n ≤ (2−np)1/p
∗
2n ≤ 2n0(1−p/p∗),

hence

(22) sup
n≤n0

(∑
k≥n

µk

)1/p∗

2n ≤ c(d,C1, p, α) ‖u‖Lp .

Now let
S = sup

n≥n0

(∑
k≥n

µk

)1/p∗

2n.

We have S <∞, because u is bounded. Let N ≥ n0 be such that

(23)
(∑
k≥N

µk

)1/p∗

2N ≥ 3
4
S.

If N = n0, then S ≤ c(d,C1, p, α)‖u‖Lp by (22). Henceforth we assume that
N > n0. By (15) we get

(24) sup
n≥n0

2nµ1/p
n (µn−1 + µn + µn+1)−α/d ≤ c‖u; Lip0(α, p,∞, F )‖

(see (5)). From (23) and the inequalities (
∑

k≥n µk)
1/p∗2n ≤ S for n = N−1

and n = N + 1, we obtain, respectively,

µN−1 + µN + µN+1 ≤
∑

k≥N−1

µk ≤
(

8
3

)p∗ ∑
k≥N

µk,

µN ≥
((

3
2

)p∗
− 1
) ∑
k≥N+1

µk.

Thus
∑

k≥N µk ≤ c(p∗)µN , hence by 1/p∗ = −α/d+ 1/p and (24),

3
4
S ≤

(∑
k≥N

µk

)1/p∗

2N ≤ c(µN−1 + µN + µN+1)−α/d2Nµ
1/p
N

≤ c‖u; Lip0(α, p,∞, F )‖.
Proof of Theorem 1. By Theorem 3 applied to p = q <∞ we have

‖u‖Lp∗,p ≤ c‖u; Lip0(α, p, p, F )‖

≤ c
(
‖u‖Lp +

( � �

ρ(x,y)<1

|u(x)− u(y)|p

ρ(x, y)d+αp
µ(dy)µ(dx)

)1/p)
,
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and the theorem follows from the embedding Lp∗,p ⊂ Lp
∗ for p < p∗ [2,

Proposition 4.2, p. 217].

Proof of Corollary 2. Denote u(a)(x) = u(ax) and

E(u) =
�

F

�

F

|u(x)− u(y)|p

|x− y|d+αp
µ(dy)µ(dx).

It is easy to check that ‖u(a)‖Ls = a−d/s‖u‖Ls and E(u(a)) = a−d+αpE(u).
Hence by (2) applied to u(an) we obtain

‖u‖Lpd/(d−αp) ≤ c(a
−nα‖u‖Lp + E(u)1/p)

and the corollary follows by letting n→∞.

Note. One can simplify the proof of Corollary 2 to get a stronger result.
Namely, assume instead of (1) that for some C1, d, r0 > 0,

(25) µ(B(x, r)) ≥ C1r
d for all 0 < r ≤ r0 and x ∈ F .

Then the new measure µ̃(A) := µ(A)r−d0 and the new metric ρ̃(x, y) :=
ρ(x, y)/r0 satisfy (1), hence (2) holds. Coming back to µ and ρ we get the
following corollary.

Corollary 5. Assume that (25) holds. If 0 < p <∞ and 0 < α < d/p,
then there exists a constant c = c(d,C1, p, α) such that

(26) ‖u‖Lpd/(d−αp)

≤ c
(
r−α0 ‖u‖Lp +

( � �

ρ(x,y)<r0

|u(x)− u(y)|p

ρ(x, y)d+αp
µ(dy)µ(dx)

)1/p)
for all u ∈ Lp. In particular, if (25) holds for all r0 > 0, then

(27) ‖u‖Lpd/(d−αp) ≤ c
( �

F

�

F

|u(x)− u(y)|p

ρ(x, y)d+αp
µ(dy)µ(dx)

)1/p
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