STUDIA MATHEMATICA 197 (3) (2010)

Embedding theorems for Lipschitz and Lorentz spaces on lower Ahlfors regular sets

by

BARTŁOMIEJ DYDA (Wrocław)

Abstract. We prove norm inequalities between Lorentz and Besov–Lipschitz spaces of fractional smoothness.

1. Main results. In what follows we let (F, ρ) be a metric space with a positive σ -finite Borel measure μ . By B(x, r) we denote the open ball centred at x with radius r. We always assume that there exist d > 0 and $C_1 > 0$ such that

(1)
$$\mu(B(x,r)) \ge C_1 r^d$$
 for all $0 < r \le 1$ and $x \in F$,

i.e., the lower Ahlfors *d*-regularity of *F*. In particular, *F* may be a *d*-set in \mathbb{R}^n and μ the *d*-dimensional Hausdorff measure, or *F* may be an *h*-set with $h(r) \geq r^d$ for $0 < r \leq 1$ and μ an *h*-measure [10, 11, 5, 6, 18].

We denote $L^p = L^p(F, \mu)$. We obtain the following inequality of Sobolev type.

THEOREM 1. If $0 and <math>0 < \alpha < d/p$, then there exists a constant $c = c(d, C_1, p, \alpha)$ such that

(2)
$$\|u\|_{L^{pd/(d-\alpha_p)}} \leq c \left(\|u\|_{L^p} + \left(\iint_{\rho(x,y)<1} \frac{|u(x) - u(y)|^p}{\rho(x,y)^{d+\alpha_p}} \, \mu(dy) \, \mu(dx) \right)^{1/p} \right)$$

for all $u \in L^p$.

Under certain additional assumptions we can get rid of the L^p norm on the right hand side.

²⁰¹⁰ Mathematics Subject Classification: Primary 46E35; Secondary 46E30, 26D15, 60J75. Key words and phrases: Lipschitz space, Lorentz space, subcritical limiting embedding, domain of the Dirichlet form, stable process, Sobolev inequality, d-set, h-set, lower Ahlfors d-regularity.

COROLLARY 2. Let $F \subset \mathbb{R}^n$ and $F = aF := \{ax : x \in F\}$ for some a > 1. Let μ be the d-dimensional Hausdorff measure and assume that it is σ -finite on F. Let $0 and <math>0 < \alpha < d/p$. There exists a constant $c = c(d, C_1, p, \alpha)$ such that

(3)
$$||u||_{L^{pd/(d-\alpha p)}} \le c \left(\int_{FF} \frac{|u(x) - u(y)|^p}{|x - y|^{d+\alpha p}} \, \mu(dy) \, \mu(dx) \right)^{1/p}$$

for all $u \in L^p$.

The result applies e.g. if F is a half-space in \mathbb{R}^n (or more generally, an open cone) and d = n.

Inequality (2) for p = 2, $\alpha < 1$, and a *d*-set $F \subset \mathbb{R}^n$ was stated in [7, (2.3)] and applied in [7] to estimate the heat kernel of jump type processes (see also [4]). Such applications are our primary motivation to study such inequalities. They are also of interest in the study of function spaces on *d*-sets [17]. Furthermore, inequalities of this type have a close connection to Nash inequalities and heat kernel estimates (see [15, 8, 23, 1]).

Note that our proofs are different and more elementary than those in [7, 17]. Interestingly, in our inequalities we allow for all p > 0, rather than $p \ge 1$, $\alpha \in (0, d/p)$ may be larger than 1, and we only assume *lower* Ahlfors *d*-regularity. Moreover, our methods yield an extension to Besov–Lipschitz spaces, given below.

We recall the definition of *Lorentz spaces* $L_{p,q}$ [17, 2]. We define the decreasing rearrangement u^* of u in the usual way,

$$u^*(t) = \inf\{s : \mu(\{x : |u(x)| > s\}) \le t\}.$$

For $0 < p, q < \infty$ we define

$$||u; L_{p,q}|| = \left(\int_{0}^{\infty} (t^{1/p} u^{*}(t))^{q} \frac{dt}{t}\right)^{1/q}, \quad ||u; L_{p,\infty}|| = \sup_{t>0} (t^{1/p} u^{*}(t)).$$

We say that $u \in L_{p,q}$ if $||u; L_{p,q}|| < \infty$.

For $0 , <math>0 < q \le \infty$ and $\alpha > 0$ we define the Besov–Lipschitz type space $\operatorname{Lip}_0(\alpha, p, q, F) = \{u \in L^p : ||u; \operatorname{Lip}_0(\alpha, p, q, F)|| < \infty\}$, where

(4)
$$||u; \operatorname{Lip}_0(\alpha, p, q, F)|| = ||u||_{L^p} + ||(b_\nu)_{\nu=0}^\infty||_{\ell^q},$$

and the sequence $(b_{\nu})_{\nu=0}^{\infty}$ is defined by

(5)
$$b_{\nu} = 2^{\nu \alpha} \left(2^{\nu d} \iint_{\rho(x,y) < 2^{-\nu}} |u(x) - u(y)|^p \, \mu(dy) \, \mu(dx) \right)^{1/p}$$

If $p, q \ge 1$, then (4) is a genuine norm.

The main result of this note is the following embedding theorem, which extends Proposition 6 in [17, p. 216].

THEOREM 3. Let F, μ , ρ and d be as in Theorem 1. Let 0 , $<math>p \leq q \leq \infty$ and $0 < \alpha < d/p$. Then there exists a constant $c = c(d, C_1, p, q, \alpha)$ such that for all $u \in \text{Lip}_0(\alpha, p, q, F)$,

(6)
$$||u; L_{p^*,q}|| \le c ||u; \operatorname{Lip}_0(\alpha, p, q, F)||_{2}$$

where $p^* = pd/(d - \alpha p)$.

We may regard Theorem 3 as a *subcritical* case of a *limiting embedding* (see [22, Remark 11.5] for definitions and a further discussion).

We mention that the Hardy inequality of [12, 9, 3] is similar to (3), except that it estimates the *weighted* L^p norm (and not L^{p^*}) by \mathcal{E} .

We note that the definition of $\operatorname{Lip}_0(\alpha, p, q, F)$ is very similar to the definition of the space $\Lambda_{p,q}^{d,\alpha}$ of Grigor'yan [13]. By the definition

(7)
$$||u; \operatorname{Lip}_0(\alpha, p, q, F)|| \le c ||u; \Lambda_{p,q}^{d,\alpha}||,$$

and these two norms are equivalent for bounded *d*-sets *F*. Correspondingly, (6) holds with the norm $\operatorname{Lip}_0(\alpha, p, q, F)$ replaced by the norm of $\Lambda_{p,q}^{d,\alpha}$ in Theorem 3. See [13, 14] for a further discussion.

We now recall the definition of $\operatorname{Lip}(\alpha, p, q, F)$ of Jonsson and Wallin [17]. Assume that $F \subset \mathbb{R}^n$ and ρ is the Euclidean distance. Let $\alpha > 0$ and $k \in \mathbb{Z}$ satisfy $k < \alpha \leq k + 1$. Let $\{f^{(j)}\}_{|j| \leq k}$ be a family of functions defined μ -a.e. on F, where $j = (j_1, \ldots, j_n)$ is a multiindex and $|j| = j_1 + \cdots + j_n$. We define P_j and R_j by requiring that

$$P_j(x,y) = \sum_{|j+l| \le k} \frac{f^{(j+l)}(y)}{l!} (x-y)^l, \quad x,y \in F,$$

and that $f^{(j)}(x) = P_j(x, y) + R_j(x, y)$. The collection $\{f^{(j)}\}_{|j| \le k}$ belongs to the Lipschitz space $\operatorname{Lip}(\alpha, p, q, F)$ if and only if $f^{(j)} \in L^p$ for $|j| \le k$, and for $\nu = 0, 1, 2, \ldots$ and $|j| \le k$,

(8)
$$\left(2^{\nu d} \iint_{|x-y|<2^{-\nu}} |R_j(x,y)|^p \ \mu(dx) \ \mu(dy)\right)^{1/p} \le 2^{-\nu(\alpha-|j|)} a_{\nu}$$

for some sequence $(a_{\nu}) \in \ell^q$. The norm of $\{f^{(j)}\}_{|j| \leq k}$ in $\operatorname{Lip}(\alpha, p, q, F)$ is (9) $\sum_{|j| \leq k} \|f^{(j)}\|_{L^p} + \inf \|(a_{\nu})\|_{\ell^q},$

where the infimum is taken over all possible sequences (a_{ν}) . We see that the definition of $\operatorname{Lip}(\alpha, p, q, F)$ uses (a substitute of) Taylor expansion of kth order, while $\operatorname{Lip}_0(\alpha, p, q, F)$ uses only increments of the function (0-order Taylor expansion). This motivates the notation Lip_0 .

For a function f we put $\tilde{f}^{(0)} = f$ and $\tilde{f}^{(j)} = 0$ if |j| > 0. Clearly,

$$||f^{(0)}; \operatorname{Lip}_0(\alpha, p, q, F)|| = ||\{\tilde{f}^{(j)}\}; \operatorname{Lip}(\alpha, p, q, F)||.$$

In particular, we have $\operatorname{Lip}(\alpha, p, q, F) = \operatorname{Lip}_0(\alpha, p, q, F)$ for $\alpha \leq 1$.

It seems that $\operatorname{Lip}_0(\alpha, p, q, F)$ is more appropriate to study jump processes on metric spaces (see [16, 20, 21]). For a *d*-set *F* the space $\operatorname{Lip}_0(\alpha d_w/4, 2, 2, F)$ is the domain of the Dirichlet form of a symmetric α -stable process on *F* [21], where $\alpha \in (0, 2)$ and d_w is the so-called walk dimension of *F* [20]. Also, $\operatorname{Lip}_0(d_w/2, 2, \infty, F)$ is the domain of the Dirichlet form of the Brownian motion e.g. on the Sierpiński gasket $F \subset \mathbb{R}^n$, (see [16]). Our results shed light on domains of non-local Dirichlet forms defined on more general sets.

Notation c = c(a, b, ..., z) means that the constant $0 < c < \infty$ depends only on a, b, ..., z. All functions are assumed to be Borel measurable and complex-valued. In fact our results remain valid for Banach-space-valued functions u (see (13), (14)).

2. Proof of Theorem 3. In the following lemma we adopt the convention that $\frac{0}{0} = 0$.

LEMMA 4. For every $\varepsilon > 0$,

(10)
$$\sum_{n=1}^{\infty} a_n \le a_0 + 3 \cdot 4^{\varepsilon} \sum_{n=1}^{\infty} \frac{a_n^{1+\varepsilon}}{(a_{n-1} + a_n + a_{n+1})^{\varepsilon}}$$

if $a_n \ge 0$, $n = 0, 1, \ldots$ and $a_n = 0$ for large n.

Proof. Let

$$A = \left\{ n \in \{1, 2, \ldots\} : a_n \ge \frac{1}{3} \left(a_{n-1} + a_{n+1} \right) \right\}, \quad B = \{1, 2, \ldots\} \setminus A,$$

and let N be such that $B \subset \{1, \ldots, N\}$. For $n \in A$ we have $a_{n-1} + a_n + a_{n+1} \leq 4a_n$, hence

(11)
$$\sum_{n \in A} a_n \le 4^{\varepsilon} \sum_{n \in A} \frac{a_n^{1+\varepsilon}}{(a_{n-1} + a_n + a_{n+1})^{\varepsilon}}$$

On the other hand, we have

$$\sum_{n \in B} a_n \le \frac{1}{3} \sum_{n \in B} (a_{n-1} + a_{n+1}) \le \frac{1}{3} a_0 + \frac{2}{3} \sum_{n=1}^N a_n + \frac{1}{3} a_{N+1},$$

thus

(12)
$$\frac{1}{3}\sum_{n\in B}a_n < \frac{1}{3}a_0 + \frac{2}{3}\sum_{n\in A, n\leq N}a_n + \frac{1}{3}a_{N+1}.$$

Since $N + 1 \in A$, we obtain from (12),

$$\sum_{n \in B} a_n < a_0 + 2 \sum_{n \in A, n \le N+1} a_n,$$

and this together with (11) completes the proof. \blacksquare

REMARK 1. We note that (10) does not hold for all sequences $a_n \ge 0$. Indeed, for $a_n = \exp(b^n)$, the right hand side of (10) is finite if b is large enough, while the left hand side is infinite. One can prove that (10) holds, with some constant $c = c(\varepsilon)$ instead of $3 \cdot 4^{\varepsilon}$ in (10), for all sequences $a_n = o(q^n)$, where q > 0; however, the proof is more complicated and will be omitted.

Proof of Theorem 3. Let $u \in \text{Lip}_0(\alpha, p, q, F)$. Our goal is to prove (6) with c independent of u. Note that

(13)
$$|| |u|; L_{p^*,q} || = ||u; L_{p^*,q} ||$$

and

(14)
$$|| |u|; \operatorname{Lip}_0(\alpha, p, q, F) || \le ||u; \operatorname{Lip}_0(\alpha, p, q, F) ||_{\mathcal{H}}$$

hence it suffices to prove (6) for $u \ge 0$.

Furthermore, since for any t > 0 we have

$$||u \wedge t; \operatorname{Lip}_0(\alpha, p, q, F)|| \le ||u; \operatorname{Lip}_0(\alpha, p, q, F)||,$$

by the bounded convergence theorem we may also assume that u is bounded. Finally, we may and will assume that $||u||_{L^p} = 1$.

Let

$$E_n = \{ x \in F : u(x) \in [2^n, 2^{n+1}) \},\$$

$$\mu_n = \mu(E_n), \quad n \in \mathbb{Z}.$$

The idea of the proof is to estimate the norms in (6) by means of μ_n only, and then use special inequalities for sequences, including (10) and the Hardy inequality. While estimates for the L^p and $L_{p^*,q}$ norms of u by means of μ_n are straightforward, this is not the case for the ℓ^q norm of (b_{ν}) . This is the place where the somewhat unusual terms $\mu_n/(\mu_{n-1} + \mu_n + \mu_{n+1})$ arise, which result from considering x and y not in neighbouring sets E_n (see (5) and (16)). We estimate the terms by using Lemma 4. The assumption $||u||_{L^p} = 1$ implies that $\mu_{n-1} + \mu_n + \mu_{n+1} \leq 2^{-(n-1)p}$, thus $\mu_{n-1} + \mu_n + \mu_{n+1} \leq C_1/2$ for $n \geq n_0 = n_0(C_1, p)$.

We claim that for any $n \ge n_0$ there exists $\nu \in \{0, 1, 2, ...\}$ (depending on n, u, ...) such that

(15)
$$2^{n} \mu_{n}^{1/p} (\mu_{n-1} + \mu_{n} + \mu_{n+1})^{-\alpha/d} \leq c 2^{\nu \alpha} \left(2^{\nu d} \int_{E_{n} B(x, 2^{-\nu})} |u(x) - u(y)|^{p} \mu(dy) \, \mu(dx) \right)^{1/p}$$

with constant $c = c(d, C_1, p, \alpha)$ independent of n. Here we adopt the convention that $0^a = 0$ for a < 0, hence the claim is obvious if $\mu_{n-1} + \mu_n + \mu_{n+1} = 0$.

B. Dyda

We now prove the claim in the case when $\mu_{n-1} + \mu_n + \mu_{n+1} > 0$. We have

(16)
$$b_{n,\nu} := \int_{E_n} \int_{B(x,2^{-\nu})} |u(x) - u(y)|^p \, \mu(dy) \, \mu(dx)$$
$$\geq \int_{E_n} \int_{B(x,2^{-\nu}) \setminus (E_{n-1} \cup E_n \cup E_{n+1})} |u(x) - u(y)|^p \, \mu(dy) \, \mu(dx)$$
$$\geq 2^{(n-1)p} \mu_n \cdot \mu(B(x,2^{-\nu}) \setminus (E_{n-1} \cup E_n \cup E_{n+1}))$$
$$\geq 2^{(n-1)p} \mu_n(C_1 2^{-\nu d} - (\mu_{n-1} + \mu_n + \mu_{n+1})).$$

We take $\nu \in \{0, 1, 2, \ldots\}$ such that

$$2(\mu_{n-1} + \mu_n + \mu_{n+1}) \le C_1 2^{-\nu d} < 2^{d+1}(\mu_{n-1} + \mu_n + \mu_{n+1}).$$

Then

$$b_{n,\nu} \ge \frac{C_1}{2} 2^{(n-1)p} \mu_n 2^{-\nu d},$$

hence

$$2^{\nu\alpha}(2^{\nu d}b_{n,\nu})^{1/p} \ge c(d, C_1, p, \alpha)(\mu_{n-1} + \mu_n + \mu_{n+1})^{-\alpha/d}2^n \mu_n^{1/p},$$

and the claim is proven.

We will first prove (6) in the case when $q < \infty$. Observe that $2^n \leq u^*(t) < 2^{n+1}$ if $\sum_{k>n} \mu_k < t < \sum_{k\geq n} \mu_k$. Hence

(17)
$$\|u; L_{p^*,q}\|^q = \int_0^\infty (t^{1/p^*} u^*(t))^q \frac{dt}{t}$$

$$\leq 2^q \sum_{n \in \mathbb{Z}} \int_{\sum_{k > n} \mu_k}^{\sum_{k \ge n} \mu_k} t^{q/p^* - 1} 2^{nq} dt$$

$$= \frac{2^q p^*}{q} \sum_{n \in \mathbb{Z}} \left(\left(\sum_{k \ge n} \mu_k \right)^{q/p^*} - \left(\sum_{k > n} \mu_k \right)^{q/p^*} \right) 2^{nq}$$

$$\leq \frac{2^q p^*}{q} \sum_{n \in \mathbb{Z}} \left(\sum_{k \ge n} \mu_k \right)^{q/p^*} 2^{nq}.$$

We use the following variant of the Hardy inequality ([17, Lemma 3, p. 121], [19]), valid for s, q > 0:

$$\sum_{n=n_0}^{\infty} \left(\sum_{k \ge n} \mu_k\right)^s 2^{nq} \le c(n_0, s, q) \sum_{n=n_0}^{\infty} \mu_n^s 2^{nq},$$

and the estimate $\sum_{k\geq n} \mu_k \leq 2^{-np}$, which follows from $\|u\|_{L^p} = 1$. We deduce

from (17) that

(18)
$$\|u; L_{p^*,q}\|^q \le c \sum_{n < n_0} 2^{-npq/p^*} 2^{nq} + c \sum_{n=n_0}^{\infty} \mu_n^{q/p^*} 2^{nq}$$
$$\le c \|u\|_{L_p}^q + c \sum_{n=n_0}^{\infty} \mu_n^{q/p^*} 2^{nq},$$

where $c = c(d, C_1, p, q, \alpha)$.

Since u is bounded, $\mu_n = 0$ for all large n. We are going to apply Lemma 4 to $a_n = \mu_n^{\gamma} 2^{nq}$, where $\gamma = q/p^*$, and $\varepsilon = \alpha q/(\gamma d) > 0$. Observe that $\gamma(1 + \varepsilon) = q/p$. Note that

$$\frac{a_n^{1+\varepsilon}}{(a_{n-1}+a_n+a_{n+1})^{\varepsilon}} \le c \ \frac{\mu_n^{\gamma(1+\varepsilon)}}{(\mu_{n-1}+\mu_n+\mu_{n+1})^{\gamma\varepsilon}} \cdot 2^{nq}$$

with $c = c(d, p, q, \alpha)$. Thus by Lemma 4 and the inequality (15) raised to the qth power we obtain

(19)
$$\sum_{n=n_0}^{\infty} 2^{nq} \mu_n^{\gamma} \le c \sum_{n=n_0}^{\infty} \frac{\mu_n^{q/p}}{(\mu_{n-1} + \mu_n + \mu_{n+1})^{\alpha q/d}} 2^{nq} + 2^{(n_0-1)q} \mu_{n_0-1}^{\gamma}$$
$$\le c \sum_{n=n_0}^{\infty} 2^{\nu(n)q\alpha} (2^{\nu(n)d} b_{n,\nu(n)})^{q/p} + 2^{(n_0-1)q} \mu_{n_0-1}^{\gamma}$$

(20)
$$\leq c \sum_{n=n_0}^{\infty} \sum_{\nu=0}^{\infty} 2^{\nu q \alpha} (2^{\nu d} b_{n,\nu})^{q/p} + c \|u\|_{L^p}^q$$

with $c = c(d, C_1, p, q, \alpha)$. We note that in (19) above $\nu(n)$ depends also on n and u, but the dependence vanishes in (20). The first term in (20) is now estimated as follows:

(21)
$$\sum_{n=n_{0}}^{\infty} \sum_{\nu=0}^{\infty} 2^{\nu q \alpha} (2^{\nu d} b_{n,\nu})^{q/p} \\ = \sum_{\nu=0}^{\infty} 2^{\nu q \alpha} \sum_{n=n_{0}}^{\infty} (2^{\nu d} b_{n,\nu})^{q/p} \le \sum_{\nu=0}^{\infty} 2^{\nu q \alpha} \left(2^{\nu d} \sum_{n=n_{0}}^{\infty} b_{n,\nu} \right)^{q/p} \\ \le \sum_{\nu=0}^{\infty} 2^{\nu q \alpha} \left(2^{\nu d} \iint_{\rho(x,y) < 2^{-\nu}} |u(x) - u(y)|^{p} \mu(dy) \, \mu(dx) \right)^{q/p} \\ \le ||u|; \operatorname{Lip}_{0}(\alpha, p, q, F)||^{q}.$$

Putting (18), (20) and (21) together we obtain (6).

B. Dyda

It remains to show (6) in the case when $q = \infty$. We have

$$||u; L_{p^*,\infty}|| \le 2 \sup_n \left(\sum_{k\ge n} \mu_k\right)^{1/p^*} 2^n.$$

Observe that for $n \leq n_0$,

$$\left(\sum_{k\geq n}\mu_k\right)^{1/p^*}2^n \le (2^{-np})^{1/p^*}2^n \le 2^{n_0(1-p/p^*)},$$

hence

(22)
$$\sup_{n \le n_0} \left(\sum_{k \ge n} \mu_k \right)^{1/p^*} 2^n \le c(d, C_1, p, \alpha) \, \|u\|_{L^p}$$

Now let

$$S = \sup_{n \ge n_0} \left(\sum_{k \ge n} \mu_k\right)^{1/p^*} 2^n.$$

We have $S < \infty$, because u is bounded. Let $N \ge n_0$ be such that

(23)
$$\left(\sum_{k\geq N}\mu_k\right)^{1/p^*}2^N\geq \frac{3}{4}S.$$

If $N = n_0$, then $S \leq c(d, C_1, p, \alpha) ||u||_{L^p}$ by (22). Henceforth we assume that $N > n_0$. By (15) we get

(24)
$$\sup_{n \ge n_0} 2^n \mu_n^{1/p} (\mu_{n-1} + \mu_n + \mu_{n+1})^{-\alpha/d} \le c \|u; \operatorname{Lip}_0(\alpha, p, \infty, F)\|$$

(see (5)). From (23) and the inequalities $(\sum_{k\geq n} \mu_k)^{1/p^*} 2^n \leq S$ for n = N-1 and n = N+1, we obtain, respectively,

$$\mu_{N-1} + \mu_N + \mu_{N+1} \le \sum_{k \ge N-1} \mu_k \le \left(\frac{8}{3}\right)^{p^*} \sum_{k \ge N} \mu_k,$$
$$\mu_N \ge \left(\left(\frac{3}{2}\right)^{p^*} - 1\right) \sum_{k \ge N+1} \mu_k.$$

Thus $\sum_{k\geq N} \mu_k \leq c(p^*)\mu_N$, hence by $1/p^* = -\alpha/d + 1/p$ and (24),

$$\frac{3}{4}S \le \left(\sum_{k\ge N} \mu_k\right)^{1/p^*} 2^N \le c(\mu_{N-1} + \mu_N + \mu_{N+1})^{-\alpha/d} 2^N \mu_N^{1/p} \le c\|u; \operatorname{Lip}_0(\alpha, p, \infty, F)\|. \bullet$$

Proof of Theorem 1. By Theorem 3 applied to $p = q < \infty$ we have $\|u\|_{L_{p^*,p}} \leq c \|u; \operatorname{Lip}_0(\alpha, p, p, F)\|$

$$\leq c \bigg(\|u\|_{L^p} + \bigg(\iint_{\rho(x,y)<1} \frac{|u(x) - u(y)|^p}{\rho(x,y)^{d+\alpha p}} \, \mu(dy) \, \mu(dx) \bigg)^{1/p} \bigg),$$

254

and the theorem follows from the embedding $L_{p^*,p} \subset L^{p^*}$ for $p < p^*$ [2, Proposition 4.2, p. 217].

Proof of Corollary 2. Denote $u^{(a)}(x) = u(ax)$ and

$$\mathcal{E}(u) = \iint_{FF} \frac{|u(x) - u(y)|^p}{|x - y|^{d + \alpha p}} \, \mu(dy) \, \mu(dx).$$

It is easy to check that $||u^{(a)}||_{L^s} = a^{-d/s} ||u||_{L^s}$ and $\mathcal{E}(u^{(a)}) = a^{-d+\alpha p} \mathcal{E}(u)$. Hence by (2) applied to $u^{(a^n)}$ we obtain

$$||u||_{L^{pd/(d-\alpha p)}} \le c(a^{-n\alpha}||u||_{L^p} + \mathcal{E}(u)^{1/p})$$

and the corollary follows by letting $n \to \infty$.

Note. One can simplify the proof of Corollary 2 to get a stronger result. Namely, assume instead of (1) that for some $C_1, d, r_0 > 0$,

(25)
$$\mu(B(x,r)) \ge C_1 r^d \quad \text{for all } 0 < r \le r_0 \text{ and } x \in F.$$

Then the new measure $\tilde{\mu}(A) := \mu(A)r_0^{-d}$ and the new metric $\tilde{\rho}(x, y) := \rho(x, y)/r_0$ satisfy (1), hence (2) holds. Coming back to μ and ρ we get the following corollary.

COROLLARY 5. Assume that (25) holds. If $0 and <math>0 < \alpha < d/p$, then there exists a constant $c = c(d, C_1, p, \alpha)$ such that

(26)
$$\|u\|_{L^{pd/(d-\alpha p)}} \leq c \left(r_0^{-\alpha} \|u\|_{L^p} + \left(\iint_{\rho(x,y) < r_0} \frac{|u(x) - u(y)|^p}{\rho(x,y)^{d+\alpha p}} \, \mu(dy) \, \mu(dx) \right)^{1/p} \right)$$

for all $u \in L^p$. In particular, if (25) holds for all $r_0 > 0$, then

(27)
$$\|u\|_{L^{pd/(d-\alpha p)}} \le c \left(\iint_{FF} \frac{|u(x) - u(y)|^p}{\rho(x, y)^{d+\alpha p}} \, \mu(dy) \, \mu(dx) \right)^{1/p}$$

Acknowledgements. The author wishes to thank Krzysztof Bogdan, Andrzej Stós, and Paweł Sztonyk for helpful discussions, and the anonymous referee for the valuable comments.

This research was partially supported by KBN 1 P03A 026 29.

References

- D. Bakry, T. Coulhon, M. Ledoux, and L. Saloff-Coste, Sobolev inequalities in disguise, Indiana Univ. Math. J. 44 (1995), 1033–1074.
- [2] C. Bennett and R. Sharpley, *Interpolation of Operators*, Pure Appl. Math. 129, Academic Press, Boston, MA, 1988.
- [3] K. Bogdan and B. Dyda, *The best constant in a fractional Hardy inequality*, Math. Nachr., to appear.

255

B. Dyda

- [4] K. Bogdan, A. Stós, and P. Sztonyk, Harnack inequality for stable processes on d-sets, Studia Math. 158 (2003), 163–198.
- [5] M. Bricchi, Complements and results on h-sets, in: Function Spaces, Differential Operators and Nonlinear Analysis (Teistungen, 2001), Birkhäuser, Basel, 2003, 219– 229.
- [6] —, Tailored Besov spaces and h-sets, Math. Nachr. 263/264 (2004), 36–52.
- Z.-Q. Chen and T. Kumagai, *Heat kernel estimates for stable-like processes on d-sets*, Stochastic Process. Appl. 108 (2003), 27–62.
- [8] —, Heat kernel estimates for jump processes of mixed types on metric measure spaces, Probab. Theory Related Fields 140 (2008), 277–317.
- [9] B. Dyda, A fractional order Hardy inequality, Illinois J. Math. 48 (2004), 575–588.
- [10] D. Edmunds and H. Triebel, Spectral theory for isotropic fractal drums, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 1269–1274.
- [11] —, Eigenfrequencies of isotropic fractal drums, in: The Maz'ya Anniversary Collection, Vol. 2 (Rostock, 1998), Oper. Theory Adv. Appl. 110, Birkhäuser, Basel, 1999, 81–102.
- [12] R. Frank, E. Lieb, and R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc. 21 (2008), 925–950.
- [13] A. Grigor'yan, Heat kernels and function theory on metric measure spaces, in: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), Contemp. Math. 338, Amer. Math. Soc., Providence, RI, 2003, 143–172.
- [14] A. Grigor'yan, J. Hu, and K.-S. Lau, Heat kernels on metric measure spaces and an application to semilinear elliptic equations, Trans. Amer. Math. Soc. 355 (2003), 2065–2095.
- [15] J. Hu and T. Kumagai, Nash-type inequalities and heat kernels for non-local Dirichlet forms, Kyushu J. Math. 60 (2006), 245–265.
- [16] A. Jonsson, Brownian motion on fractals and function spaces, Math. Z. 222 (1996), 495–504.
- [17] A. Jonsson and H. Wallin, Function Spaces on Subsets of Rⁿ, Math. Rep. 2 (1984), xiv+221 pp.
- [18] V. Knopova and M. Zähle, Spaces of generalized smoothness on h-sets and related Dirichlet forms, Studia Math. 174 (2006), 277–308.
- [19] L. Leindler, Generalization of inequalities of Hardy and Littlewood, Acta Sci. Math. (Szeged) 31 (1970), 279–285.
- [20] K. Pietruska-Pałuba, On function spaces related to fractional diffusions on d-sets, Stoch. Stoch. Rep. 70 (2000), 153–164.
- [21] A. Stós, Symmetric α-stable processes on d-sets, Bull. Polish Acad. Sci. Math. 48 (2000), 237–245.
- [22] H. Triebel, The Structure of Functions, Monogr. Math. 97, Birkhäuser, Basel, 2001.
- [23] N. T. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal. 63 (1985), 240–260.

Bartłomiej Dyda Institute of Mathematics and Computer Science Wrocław University of Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland E-mail: bdyda@pwr.wroc.pl

> Received April 2, 2009 Revised version October 6, 2009

(6587)