Embedding theorems for Lipschitz and Lorentz spaces on lower Ahlfors regular sets

by

BARTŁOMIEJ DYDA (Wrocław)

Abstract. We prove norm inequalities between Lorentz and Besov–Lipschitz spaces of fractional smoothness.

1. Main results. In what follows we let \((F, \rho)\) be a metric space with a positive \(\sigma\)-finite Borel measure \(\mu\). By \(B(x,r)\) we denote the open ball centred at \(x\) with radius \(r\). We always assume that there exist \(d > 0\) and \(C_1 > 0\) such that

\[\mu(B(x,r)) \geq C_1 r^d \quad \text{for all } 0 < r \leq 1 \text{ and } x \in F,\]

i.e., the lower Ahlfors \(d\)-regularity of \(F\). In particular, \(F\) may be a \(d\)-set in \(\mathbb{R}^n\) and \(\mu\) the \(d\)-dimensional Hausdorff measure, or \(F\) may be an \(h\)-set with \(h(r) \geq r^d\) for \(0 < r \leq 1\) and \(\mu\) an \(h\)-measure [10, 11, 5, 6, 18].

We denote \(L^p = L^p(F, \mu)\). We obtain the following inequality of Sobolev type.

Theorem 1. If \(0 < p < \infty\) and \(0 < \alpha < d/p\), then there exists a constant \(c = c(d, C_1, p, \alpha)\) such that

\[\|u\|_{L^p(d/(d-\alpha p))} \leq c \left(\|u\|_{L^p} + \left(\int_{\rho(x,y) < 1} \frac{|u(x) - u(y)|^p}{\rho(x,y)^{d+\alpha p}} \mu(dy) \mu(dx) \right)^{1/p} \right)\]

for all \(u \in L^p\).

Under certain additional assumptions we can get rid of the \(L^p\) norm on the right hand side.

2010 Mathematics Subject Classification: Primary 46E35; Secondary 46E30, 26D15, 60J75.

Key words and phrases: Lipschitz space, Lorentz space, subcritical limiting embedding, domain of the Dirichlet form, stable process, Sobolev inequality, \(d\)-set, \(h\)-set, lower Ahlfors \(d\)-regularity.

DOI: 10.4064/sm197-3-3
Corollary 2. Let $F \subset \mathbb{R}^n$ and $F = aF := \{ax : x \in F\}$ for some $a > 1$. Let μ be the d-dimensional Hausdorff measure and assume that it is σ-finite on F. Let $0 < p < \infty$ and $0 < \alpha < d/p$. There exists a constant $c = c(d,C_1,p,\alpha)$ such that

\[
\|u\|_{L^{pd/(d-\alpha p)}} \leq c \left(\int_J \int_{F \cap F} \frac{|u(x) - u(y)|^p}{|x - y|^{d + \alpha p}} \mu(dy) \mu(dx) \right)^{1/p}
\]

for all $u \in L^p$.

The result applies e.g. if F is a half-space in \mathbb{R}^n (or more generally, an open cone) and $d = n$.

Inequality (2) for $p = 2$, $\alpha < 1$, and a d-set $F \subset \mathbb{R}^n$ was stated in [7, (2.3)] and applied in [7] to estimate the heat kernel of jump type processes (see also [4]). Such applications are our primary motivation to study such inequalities. They are also of interest in the study of function spaces on d-sets [17]. Furthermore, inequalities of this type have a close connection to Nash inequalities and heat kernel estimates (see [15, 8, 23, 1]).

Note that our proofs are different and more elementary than those in [7, 17]. Interestingly, in our inequalities we allow for all $p > 0$, rather than $p \geq 1$, $\alpha \in (0,d/p)$ may be larger than 1, and we only assume lower Ahlfors d-regularity. Moreover, our methods yield an extension to Besov–Lipschitz spaces, given below.

We recall the definition of Lorentz spaces $L_{p,q}$ [17, 2]. We define the decreasing rearrangement u^* of u in the usual way,

\[
u^*(t) = \inf \{s : \mu(\{x : |u(x)| > s\}) \leq t\}.
\]

For $0 < p, q < \infty$ we define

\[
\|u; L_{p,q}\| = \left(\int_0^\infty (t^{1/p}u^*(t))^q \frac{dt}{t} \right)^{1/q}, \quad \|u; L_{p,\infty}\| = \sup_{t > 0} (t^{1/p}u^*(t)).
\]

We say that $u \in L_{p,q}$ if $\|u; L_{p,q}\| < \infty$.

For $0 < p < \infty$, $0 < q \leq \infty$ and $\alpha > 0$ we define the Besov–Lipschitz type space $\text{Lip}_0(\alpha,p,q,F) = \{u \in L^p : \|u; \text{Lip}_0(\alpha,p,q,F)\| < \infty\}$, where

\[
\|u; \text{Lip}_0(\alpha,p,q,F)\| = \|u\|_{L^p} + \|(b_{\nu})_{\nu=0}^\infty\|_{\ell_1},
\]

and the sequence $\{b_{\nu}\}_{\nu=0}^\infty$ is defined by

\[
b_{\nu} = 2^{\nu \alpha} \left(\int_\mathbb{R} 2^{\nu d} \int_{\rho(x,y)<2^{-\nu}} |u(x) - u(y)|^p \mu(dy) \mu(dx) \right)^{1/p}.
\]

If $p, q \geq 1$, then (4) is a genuine norm.

The main result of this note is the following embedding theorem, which extends Proposition 6 in [17, p. 216].
Theorem 3. Let F, μ, ρ and d be as in Theorem [1]. Let $0 < p < \infty$, $p \leq q \leq \infty$ and $0 < \alpha < d/p$. Then there exists a constant $c = c(d, C_1, p, q, \alpha)$ such that for all $u \in \text{Lip}_0(\alpha, p, q, F)$,
\begin{equation}
\|u; L_{p^\ast, q}\| \leq c\|u; \text{Lip}_0(\alpha, p, q, F)\|,
\end{equation}
where $p^\ast = pd/(d - \alpha p)$.

We may regard Theorem 3 as a subcritical case of a limiting embedding (see [22], Remark 11.5 for definitions and a further discussion).

We mention that the Hardy inequality of [12, 9, 3] is similar to (3), except that it estimates the weighted L^p norm (and not L^{p^\ast}) by E.

We note that the definition of $\text{Lip}_0(\alpha, p, q, F)$ is very similar to the definition of the space $A_{p,q}^{d,\alpha}$ of Grigor’yan [13]. By the definition
\begin{equation}
\|u; \text{Lip}_0(\alpha, p, q, F)\| \leq c\|u; A_{p,q}^{d,\alpha}\|,
\end{equation}
and these two norms are equivalent for bounded d-sets F. Correspondingly, (6) holds with the norm $\text{Lip}_0(\alpha, p, q, F)$ replaced by the norm of $A_{p,q}^{d,\alpha}$ in Theorem 3. See [13, 14] for a further discussion.

We now recall the definition of $\text{Lip}(\alpha, p, q, F)$ of Jonsson and Wallin [17]. Assume that $F \subset \mathbb{R}^n$ and ρ is the Euclidean distance. Let $\alpha > 0$ and $k \in \mathbb{Z}$ satisfy $k < \alpha \leq k + 1$. Let $\{f^{(j)}\}_{|j| \leq k}$ be a family of functions defined μ-a.e. on F, where $j = (j_1, \ldots, j_n)$ is a multiindex and $|j| = j_1 + \cdots + j_n$. We define P_j and R_j by requiring that
\begin{equation}
P_j(x, y) = \sum_{|j+l| \leq k} \frac{f^{(j+l)}(y)}{l!} (x - y)^l, \quad x, y \in F,
\end{equation}
and that $f^{(j)}(x) = P_j(x, y) + R_j(x, y)$. The collection $\{f^{(j)}\}_{|j| \leq k}$ belongs to the Lipschitz space $\text{Lip}(\alpha, p, q, F)$ if and only if $f^{(j)} \in L^p$ for $|j| \leq k$, and for $\nu = 0, 1, 2, \ldots$ and $|j| \leq k$,
\begin{equation}
\left(2^{\nu d} \int_{|x-y|<2^{-\nu}} |R_j(x, y)|^p \mu(dx) \mu(dy)\right)^{1/p} \leq 2^{-\nu(\alpha - |j|)} a_\nu
\end{equation}
for some sequence $(a_\nu) \in \ell^q$. The norm of $\{f^{(j)}\}_{|j| \leq k}$ in $\text{Lip}(\alpha, p, q, F)$ is
\begin{equation}
\sum_{|j| \leq k} \|f^{(j)}\|_{L^p} + \inf \|(a_\nu)\|_{\ell^q},
\end{equation}
where the infimum is taken over all possible sequences (a_ν). We see that the definition of $\text{Lip}(\alpha, p, q, F)$ uses (a substitute of) Taylor expansion of kth order, while $\text{Lip}_0(\alpha, p, q, F)$ uses only increments of the function (0-order Taylor expansion). This motivates the notation Lip_0.

For a function f we put $\tilde{f}^{(0)} = f$ and $\tilde{f}^{(j)} = 0$ if $|j| > 0$. Clearly,
\begin{equation}
\|f^{(0)}; \text{Lip}_0(\alpha, p, q, F)\| = \|\{\tilde{f}^{(j)}\}; \text{Lip}(\alpha, p, q, F)\|.
\end{equation}
In particular, we have $\text{Lip}(\alpha, p, q, F) = \text{Lip}_0(\alpha, p, q, F)$ for $\alpha \leq 1$.

Embedding Lipschitz into Lorentz spaces 249
It seems that Lip$_0(\alpha, p, q, F)$ is more appropriate to study jump processes on metric spaces (see [16, 20, 21]). For a d-set F the space Lip$_0(\alpha d_w/4, 2, 2, F)$ is the domain of the Dirichlet form of a symmetric α-stable process on F [21], where $\alpha \in (0, 2)$ and d_w is the so-called walk dimension of F [20]. Also, Lip$_0(d_w/2, 2, \infty, F)$ is the domain of the Dirichlet form of the Brownian motion e.g. on the Sierpiński gasket $F \subset \mathbb{R}^n$, (see [16]). Our results shed light on domains of non-local Dirichlet forms defined on more general sets.

Notation $c = c(a, b, \ldots, z)$ means that the constant $0 < c < \infty$ depends only on a, b, \ldots, z. All functions are assumed to be Borel measurable and complex-valued. In fact our results remain valid for Banach-space-valued functions u (see (13), (14)).

2. Proof of Theorem 3. In the following lemma we adopt the convention that $\frac{0}{0} = 0$.

Lemma 4. For every $\varepsilon > 0$,

$$\sum_{n=1}^{\infty} a_n \leq a_0 + 3 \cdot 4^\varepsilon \sum_{n=1}^{\infty} \frac{a_n^{1+\varepsilon}}{(a_{n-1} + a_n + a_{n+1})^\varepsilon}$$

if $a_n \geq 0$, $n = 0, 1, \ldots$ and $a_n = 0$ for large n.

Proof. Let

$$A = \left\{ n \in \{1, 2, \ldots\} : a_n \geq \frac{1}{3} (a_{n-1} + a_{n+1}) \right\}, \quad B = \{1, 2, \ldots\} \setminus A,$$

and let N be such that $B \subset \{1, \ldots, N\}$. For $n \in A$ we have $a_{n-1} + a_n + a_{n+1} \leq 4a_n$, hence

$$\sum_{n \in A} a_n \leq 4^\varepsilon \sum_{n \in A} \frac{a_n^{1+\varepsilon}}{(a_{n-1} + a_n + a_{n+1})^\varepsilon}.$$

On the other hand, we have

$$\sum_{n \in B} a_n \leq \frac{1}{3} \sum_{n \in B} (a_{n-1} + a_{n+1}) \leq \frac{1}{3} a_0 + \frac{2}{3} \sum_{n=1}^{N} a_n + \frac{1}{3} a_{N+1},$$

thus

$$\frac{1}{3} \sum_{n \in B} a_n < \frac{1}{3} a_0 + \frac{2}{3} \sum_{n \in A, n \leq N} a_n + \frac{1}{3} a_{N+1}.$$

Since $N + 1 \in A$, we obtain from (12),

$$\sum_{n \in B} a_n < a_0 + 2 \sum_{n \in A, n \leq N+1} a_n,$$

and this together with (11) completes the proof. \[\blacksquare\]
Remark 1. We note that (10) does not hold for all sequences \(a_n \geq 0 \). Indeed, for \(a_n = \exp(b^n) \), the right hand side of (10) is finite if \(b \) is large enough, while the left hand side is infinite. One can prove that (10) holds, with some constant \(c = c(\varepsilon) \) instead of \(3 \cdot 4^\varepsilon \) in (10), for all sequences \(a_n = o(q^n) \), where \(q > 0 \); however, the proof is more complicated and will be omitted.

Proof of Theorem 3. Let \(u \in \text{Lip}_0(\alpha, p, q, F) \). Our goal is to prove (6) with \(c \) independent of \(u \). Note that

\[
\| |u|; L_{p^*, q} \| = \| u; L_{p^*, q} \|
\]

and

\[
\| |u|; \text{Lip}_0(\alpha, p, q, F) \| \leq \| u; \text{Lip}_0(\alpha, p, q, F) \|
\]

hence it suffices to prove (6) for \(u \geq 0 \).

Furthermore, since for any \(t > 0 \) we have

\[
\| u \wedge t; \text{Lip}_0(\alpha, p, q, F) \| \leq \| u; \text{Lip}_0(\alpha, p, q, F) \|
\]

by the bounded convergence theorem we may also assume that \(u \) is bounded. Finally, we may and will assume that \(\| u \|_{L^p} = 1 \).

Let

\[
E_n = \{ x \in F : u(x) \in [2^n, 2^{n+1}) \}, \\
\mu_n = \mu(E_n), \quad n \in \mathbb{Z}.
\]

The idea of the proof is to estimate the norms in (6) by means of \(\mu_n \) only, and then use special inequalities for sequences, including (10) and the Hardy inequality. While estimates for the \(L^p \) and \(L_{p^*, q} \) norms of \(u \) by means of \(\mu_n \) are straightforward, this is not the case for the \(\ell^q \) norm of \((b_\nu) \). This is the place where the somewhat unusual terms \(\mu_n/(\mu_{n-1} + \mu_n + \mu_{n+1}) \) arise, which result from considering \(x \) and \(y \) not in neighbouring sets \(E_n \) (see (5) and (16)). We estimate the terms by using Lemma 4. The assumption \(\| u \|_{L^p} = 1 \) implies that \(\mu_{n-1} + \mu_n + \mu_{n+1} \leq 2^{-(n-1)p} \), thus \(\mu_{n-1} + \mu_n + \mu_{n+1} \leq C_1/2 \) for \(n \geq n_0 = n_0(C_1, p) \).

We claim that for any \(n \geq n_0 \) there exists \(\nu \in \{0, 1, 2, \ldots\} \) (depending on \(n, u, \ldots \)) such that

\[
2^n \mu_n^{1/p}(\mu_{n-1} + \mu_n + \mu_{n+1})^{-\alpha/d}
\]

\[
\leq c2^{\nu p} \left(2^{\nu d} \int_{E_n B(x, 2^{-\nu})} \int |u(x) - u(y)|^p \mu(dy) \mu(dx) \right)^{1/p}
\]

with constant \(c = c(d, C_1, p, \alpha) \) independent of \(n \). Here we adopt the convention that \(0^a = 0 \) for \(a < 0 \), hence the claim is obvious if \(\mu_{n-1} + \mu_n + \mu_{n+1} = 0 \).
We now prove the claim in the case when \(\mu_{n-1} + \mu_n + \mu_{n+1} > 0 \). We have

\[
\begin{align*}
 b_{n,\nu} &:= \int_{E_n \setminus (E_{n-1} \cup E_n \cup E_{n+1})} |u(x) - u(y)|^p \mu(dy) \mu(dx) \\
 &\geq \int_{E_n \setminus (E_{n-1} \cup E_n \cup E_{n+1})} |u(x) - u(y)|^p \mu(dy) \mu(dx) \\
 &\geq 2^{(n-1)p} \mu_n \cdot \mu(B(x, 2^{-\nu}) \setminus (E_{n-1} \cup E_n \cup E_{n+1})) \\
 &\geq 2^{(n-1)p} \mu_n (C_1 2^{-\nu d} - (\mu_{n-1} + \mu_n + \mu_{n+1})).
\end{align*}
\]

We take \(\nu \in \{0, 1, 2, \ldots\} \) such that

\[
2(\mu_{n-1} + \mu_n + \mu_{n+1}) \leq C_1 2^{-\nu d} < 2^{d+1}(\mu_{n-1} + \mu_n + \mu_{n+1}).
\]

Then

\[
b_{n,\nu} \geq \frac{C_1}{2} 2^{(n-1)p} \mu_n 2^{-\nu d},
\]

hence

\[
2^{\nu \alpha}(2^{\nu d} b_{n,\nu})^{1/p} \geq c(d, C_1, p, \alpha)(\mu_{n-1} + \mu_n + \mu_{n+1})^{-\alpha/d} 2^n \mu_n^{1/p},
\]

and the claim is proven.

We will first prove (6) in the case when \(q < \infty \). Observe that \(2^n \leq u^*(t) < 2^{n+1} \) if \(\sum_{k>n} \mu_k < t < \sum_{k>n} \mu_k \). Hence

\[
\|u; L_{p^*,q}\|^q = \int_0^\infty (t^{1/p^*} u^*(t))^{q} \frac{dt}{t} \leq 2^q \sum_{n \in \mathbb{Z}} \frac{\sum_{k \geq n} \mu_k}{\sum_{k \geq n} \mu_k} \int \frac{t^{q/p^*}}{2^{nq}} dt \leq \frac{2^q}{q} \sum_{n \in \mathbb{Z}} \left((\sum_{k \geq n} \mu_k)^{q/p^*} - (\sum_{k>n} \mu_k)^{q/p^*}\right) 2^{nq} \leq \frac{2^q}{q} \sum_{n \in \mathbb{Z}} (\sum_{k \geq n} \mu_k)^{q/p^*} 2^{nq}.
\]

We use the following variant of the Hardy inequality (\cite{17}, Lemma 3, p. 121, \cite{19}), valid for \(s, q > 0 \):

\[
\sum_{n=n_0}^{\infty} \left(\sum_{k \geq n} \mu_k\right)^s 2^{nq} \leq c(n_0, s, q) \sum_{n=n_0}^{\infty} \mu_n^s 2^{nq},
\]

and the estimate \(\sum_{k \geq n} \mu_k \leq 2^{-np} \), which follows from \(\|u\|_{L^p} = 1 \). We deduce
from (17) that

\[
\| u; L^p, q \|^q \leq c \sum_{n<n_0} 2^{-npq/p^*} 2^{nq} + c \sum_{n=n_0}^\infty \mu_n^{q/p^*} 2^{nq}
\]

\[
\leq c\| u \|_{L_p}^q + c \sum_{n=n_0}^\infty \mu_n^{q/p^*} 2^{nq},
\]

where \(c = c(d, C_1, p, q, \alpha) \).

Since \(u \) is bounded, \(\mu_n = 0 \) for all large \(n \). We are going to apply Lemma 4 to \(a_n = \mu_n^\gamma 2^{nq} \), where \(\gamma = q/p^* \) and \(\varepsilon = \alpha q / (\gamma d) > 0 \). Observe that \(\gamma (1 + \varepsilon) = q/p \). Note that

\[
a_{n+1} \leq c \left(\frac{\mu_n}{\mu_{n-1} + \mu_n + \mu_{n+1}} \right)^{\gamma (1+\varepsilon)} 2^{nq}
\]

with \(c = c(d, p, q, \alpha) \). Thus by Lemma 4 and the inequality (15) raised to the \(q \)th power we obtain

\[
\sum_{n=n_0}^\infty 2^{nq} \mu_n^\gamma \leq c \sum_{n=n_0}^\infty (2^{nq}) \mu_n^{q/p} \left(\frac{\mu_n}{\mu_{n-1} + \mu_n + \mu_{n+1}} \right)^{\alpha q / d} 2^{nq} + 2^{(n_0-1)q} \mu_{n_0-1}^\gamma
\]

\[
\leq c \sum_{n=n_0}^\infty 2^{(n_0-1)q} \mu_{n_0-1}^\gamma + c \| u \|_{L_p}^q
\]

(19)

(20)

with \(c = c(d, C_1, p, q, \alpha) \). We note that in (19) above \(\nu(n) \) depends also on \(n \) and \(u \), but the dependence vanishes in (20). The first term in (20) is now estimated as follows:

\[
\sum_{n=n_0}^\infty \sum_{\nu=0}^\infty 2^{\nu q} (2^{\nu d} b_{n, \nu})^{q/p}
\]

\[
= \sum_{\nu=0}^\infty 2^{\nu q} \sum_{n=n_0}^\infty (2^{\nu d} b_{n, \nu})^{q/p} \leq \sum_{\nu=0}^\infty 2^{\nu q} (2^{\nu d} \sum_{n=n_0}^\infty b_{n, \nu})^{q/p}
\]

\[
\leq \sum_{\nu=0}^\infty 2^{\nu q} \left(\int_{\rho(x, y) < 2^{-\nu}} |u(x) - u(y)|^p \mu(dy) \mu(dx) \right)^{q/p}
\]

\[
\leq \| u; \text{Lip}_0(\alpha, p, q, F) \|^q.
\]

Putting (18), (20) and (21) together we obtain (6).
It remains to show (6) in the case when \(q = \infty \). We have
\[
\| u; L_{p^*, \infty} \| \leq 2 \sup_n \left(\sum_{k \geq n} \mu_k \right)^{1/p^*} 2^n.
\]
Observe that for \(n \leq n_0 \),
\[
\left(\sum_{k \geq n} \mu_k \right)^{1/p^*} 2^n \leq (2^{-np})^{1/p^*} 2^n \leq 2^{n_0 (1-p/p^*)},
\]
hence
\[
\sup_{n \leq n_0} \left(\sum_{k \geq n} \mu_k \right)^{1/p^*} 2^n \leq c(d, C_1, p, \alpha) \| u \|_{L^p}.
\]
Now let
\[
S = \sup_{n \geq n_0} \left(\sum_{k \geq n} \mu_k \right)^{1/p^*} 2^n.
\]
We have \(S < \infty \), because \(u \) is bounded. Let \(N \geq n_0 \) be such that
\[
\left(\sum_{k \geq N} \mu_k \right)^{1/p^*} 2^N \geq \frac{3}{4} S.
\]
If \(N = n_0 \), then \(S \leq c(d, C_1, p, \alpha) \| u \|_{L^p} \) by (22). Henceforth we assume that \(N > n_0 \). By (15) we get
\[
\sup_{n \geq n_0} 2^n \mu_n^{1/p} (\mu_{n-1} + \mu_n + \mu_{n+1})^{-\alpha/d} \leq c \| u; \text{Lip}_0(\alpha, p, \infty, F) \| (\text{see (5)}).
\]
From (23) and the inequalities \(\left(\sum_{k \geq n} \mu_k \right)^{1/p^*} 2^n \leq S \) for \(n = N - 1 \) and \(n = N + 1 \), we obtain, respectively,
\[
\mu_{N-1} + \mu_N + \mu_{N+1} \leq \sum_{k \geq N-1} \mu_k \leq \left(\frac{8}{3} \right)^{p^*} \sum_{k \geq N} \mu_k,
\]
\[
\mu_N \geq \left(\left(\frac{3}{2} \right)^{p^*} - 1 \right) \sum_{k \geq N+1} \mu_k.
\]
Thus \(\sum_{k \geq N} \mu_k \leq c(p^*) \mu_N \), hence by \(1/p^* = -\alpha/d + 1/p \) and (24),
\[
\frac{3}{4} S \leq \left(\sum_{k \geq N} \mu_k \right)^{1/p^*} 2^N \leq c(\mu_{N-1} + \mu_N + \mu_{N+1})^{-\alpha/d} 2^N \mu_N^{1/p}
\]
\[
\leq c \| u; \text{Lip}_0(\alpha, p, \infty, F) \|.
\]

Proof of Theorem 7. By Theorem 3 applied to \(p = q < \infty \) we have
\[
\| u \|_{L_{p^*, p}} \leq c \| u; \text{Lip}_0(\alpha, p, F) \|
\]
\[
\leq c \left(\| u \|_{L^p} + \left(\int_{\rho(x,y) < 1} \frac{|u(x) - u(y)|^p}{\rho(x,y)^{d+\alpha p}} \mu(dy, \mu(dx)) \right)^{1/p} \right),
\]
and the theorem follows from the embedding $L_{p^*,p} \subset L_p^*$ for $p < p^*$ [2].

Proof of Corollary 2. Denote $u^{(a)}(x) = u(ax)$ and

$$
\mathcal{E}(u) = \int_{\mathbb{F}\mathbb{F}} \frac{|u(x) - u(y)|^p}{|x - y|^{d + \alpha}} \mu(dy) \mu(dx).
$$

It is easy to check that $\|u^{(a)}\|_{L^s} = a^{-d/s} \|u\|_{L^s}$ and $\mathcal{E}(u^{(a)}) = a^{-d + \alpha p} \mathcal{E}(u)$. Hence by (2) applied to $u^{(a^n)}$ we obtain

$$
\|u\|_{L^{pd/(d - \alpha p)}} \leq c \left(r_0^{-\alpha} \|u\|_{L^p} + \mathcal{E}(u)^{1/p} \right)
$$

and the corollary follows by letting $n \to \infty$. ■

Note. One can simplify the proof of Corollary 2 to get a stronger result. Namely, assume instead of (1) that for some $C_1, d, r_0 > 0$,

$$
\mu(B(x, r)) \geq C_1 r^d \quad \text{for all } 0 < r \leq r_0 \text{ and } x \in \mathbb{F}.
$$

Then the new measure $\tilde{\mu}(A) := \mu(A) r_0^{-d}$ and the new metric $\tilde{\rho}(x, y) := \rho(x, y)/r_0$ satisfy [1], hence [2] holds. Coming back to μ and ρ we get the following corollary.

Corollary 5. Assume that [25] holds. If $0 < p < \infty$ and $0 < \alpha < d/p$, then there exists a constant $c = c(d, C_1, p, \alpha)$ such that

$$
\|u\|_{L^{pd/(d - \alpha p)}} \leq c \left(r_0^{-\alpha} \|u\|_{L^p} + \left(\int_{\rho(x,y) < r_0} \frac{|u(x) - u(y)|^p}{\rho(x,y)^{d + \alpha}} \mu(dy) \mu(dx) \right)^{1/p} \right)
$$

for all $u \in L^p$. In particular, if [25] holds for all $r_0 > 0$, then

$$
\|u\|_{L^{pd/(d - \alpha p)}} \leq c \left(\int_{\mathbb{F}\mathbb{F}} \frac{|u(x) - u(y)|^p}{\rho(x,y)^{d + \alpha}} \mu(dy) \mu(dx) \right)^{1/p}
$$

Acknowledgements. The author wishes to thank Krzysztof Bogdan, Andrzej Stós, and Paweł Sztonyk for helpful discussions, and the anonymous referee for the valuable comments.

This research was partially supported by KBN 1 P03A 026 29.

References

Bartłomiej Dyda
Institute of Mathematics and Computer Science
Wrocław University of Technology
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland
E-mail: bdyda@pwr.wroc.pl

Received April 2, 2009
Revised version October 6, 2009 (6587)