
STUDIA MATHEMATICA 197 (3) (2010)

The joint essential numerical range,
compact perturbations, and the Olsen problem

by
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Abstract. Let T1, . . . , Tn be bounded linear operators on a complex Hilbert space H.
Then there are compact operators K1, . . . , Kn ∈ B(H) such that the closure of the joint
numerical range of the n-tuple (T1−K1, . . . , Tn−Kn) equals the joint essential numerical
range of (T1, . . . , Tn). This generalizes the corresponding result for n = 1.

We also show that if S ∈ B(H) and n ∈ N then there exists a compact operator
K ∈ B(H) such that ‖(S −K)n‖ = ‖Sn‖e. This generalizes results of C. L. Olsen.

1. Introduction. Let T be a bounded linear operator acting on a com-
plex Hilbert space H. The properties of T can be frequently improved by
adding to it a compact perturbation. For example:

• [S] there exists a compact operator K1 ∈ B(H) such that

σ(T +K1) = σW (T ),

where σW (T ) =
⋂
{σ(T + L) : L ∈ B(H) compact} denotes the Weyl

spectrum of T ;
• [CSSW] there exists a compact operator K2 such that W (T +K2) =
We(T ), where W denotes the numerical range and We the essential
numerical range;

• [OP] if p is a polynomial and p(T ) is compact, then there exists a
compact operator K3 such that p(T +K3) = 0.

The present paper studies variations of the second and third result men-
tioned above.

In the next section we generalize the second result to n-tuples of opera-
tors.
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In Section 3 we study the following problem of C. L. Olsen which is still
open: if S ∈ B(H) and p a polynomial, does there exist a compact operator
L such that ‖p(S + L)‖ = ‖p(S)‖e?

A positive answer is known only for some special polynomials. In [O] it
was proved for p(z) = z, z2, z3. In [CLSW] a positive answer was given for
all linear polynomials.

We improve the result of [O] and give a positive answer for all powers
p(z) = zn.

2. Joint numerical range and compact perturbations. Let T =
(T1, . . . , Tn) be an n-tuple of operators on a complex Hilbert space H. The
joint numerical range W (T ) is defined by

W (T ) = {(〈T1x, x〉, . . . , 〈Tnx, x〉) : x ∈ H, ‖x‖ = 1}.

It is well known that the numerical range W (T ) is convex for n = 1 but not
convex in general for n ≥ 2.

Apart from the (spatial) numerical range W (T ) it is also possible to
define an algebraic numerical range. Let A be a Banach algebra with unit e,
let a = (a1, . . . , an) ∈ An. The joint algebraic numerical range V (a,A) is
defined by

V (a,A) = {(f(a1), . . . , f(an)) : f ∈ A∗, ‖f‖ = 1 = f(e)}.

It is well known that V (a,A) is always a compact convex subset of Cn; see
[BD1, p. 24].

For n-tuples of Hilbert space operators the spatial and algebraic nu-
merical ranges are closely connected. Denote by B(H) the algebra of all
bounded linear operators on a Hilbert space H. By convM we denote the
closed convex hull of a set M .

Theorem 1. Let T = (T1, . . . , Tn) ∈ B(H)n. Then

V (T,B(H)) = convW (T ).

Proof. The statement is well known for n = 1 (see [BD1, p. 83]). For
n ≥ 2 it is more or less folklore. For the sake of convenience we briefly
indicate the proof.

Clearly, W (T ) ⊂ V (T,B(H)). Since V (T,B(H)) is closed and convex,
we have convW (T ) ⊂ V (T,B(H)).

Let z = (z1, . . . , zn) ∈ Cn \ convW (T ). Then there are α1, . . . , αn ∈ C
such that
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Re
n∑
j=1

αjzj > sup
{

Re
n∑
j=1

αjλj : (λ1, . . . , λn) ∈W (T )
}

= sup
{

Re
〈 n∑
j=1

αjTjx, x
〉

: x ∈ H, ‖x‖ = 1
}

= sup
{

Reµ : µ ∈W
( m∑
j=1

αjTj

)}
= sup

{
Reµ : µ ∈ V

( n∑
j=1

αjTj , B(H)
)}

= sup
{

Re
n∑
j=1

αjf(Tj) : f ∈ B(H)∗, ‖f‖ = 1 = f(I)
}

= sup
{

Re
n∑
j=1

αjλj : (λ1, . . . , λn) ∈ V (T,B(H))
}
.

Hence (z1, . . . , zn) /∈ V (T,B(H)) and V (T,B(H)) = convW (T ).

Let H be an infinite-dimensional Hilbert space. The joint essential nu-
merical range We(T ) of an n-tuple T = (T1, . . . , Tn) ∈ B(H)n is the set of all
(λ1, . . . , λn) ∈ Cn such that there exists an orthonormal sequence (xk) ⊂ H
with

λj = lim
k→∞
〈Tjxk, xk〉 (j = 1, . . . , n).

The essential numerical range for n = 1 was introduced and studied in
[FSW]. The joint essential numerical range was studied e.g. in [TC], [B], [LP].

Although W (T ) is not convex in general for n ≥ 2, it was shown in
[LP] that We(T ) is always convex. In fact, We(T ) is equal to the alge-
braic numerical range of the corresponding classes in the Calkin algebra
B(H)/K(H), where K(H) denotes the ideal of all compact operators on H.
Denote by π : B(H)→ B(H)/K(H) the canonical projection. As usual, we
write π(T ) = (π(T1), . . . , π(Tn)).

We summarize the basic properties of the joint essential numerical range
We(T ) in the following theorem:

Theorem 2. Let H be an infinite-dimensional Hilbert space and let T =
(T1, . . . , Tn) ∈ B(H)n. Then We(T ) is a compact convex subset of Cn and

We(T ) =
⋂

K∈K(H)n

W (T +K) =
⋂

K∈K(H)n

convW (T +K)

= V (π(T ), B(H)/K(H)).

Proof. The first two equalities were proved in [LP]. They also imply the
compactness and convexity of We(T ).
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If f ∈ (B(H)/K(H))∗ and ‖f‖ = 1 = f(I + K(H)) then f ◦ π ∈ B(H)∗

and ‖f ◦π‖ = 1 = (f ◦π)(I). Moreover, f ◦π annihilates compact operators.
So

V (π(T ), B(H)/K(H)) ⊂ V (T +K,B(H))

for all K ∈ K(H)n. Hence

V (π(T ), B(H)/K(H)) ⊂
⋂

K∈K(H)n

V (T +K,B(H))

=
⋂

K∈K(H)n

convW (T +K) = We(T ).

Conversely, let λ = (λ1, . . . , λn) ∈ We(T ), i.e., there exists an orthonor-
mal sequence (xk) ⊂ H such that λj = limk→∞〈Tjxk, xk〉 for all j =
1, . . . , n. Let LIM be any Banach limit. Define f ∈ B(H)∗ by f(S) =
LIMk→∞〈Sxk, xk〉 (S ∈ B(H)). Then f annihilates all compact operators
and so it induces a functional f̃ ∈ (B(H)/K(H))∗. Clearly, ‖f̃‖ = 1 =
f̃(I +K(H)) and f̃(π(T )) = λ. Hence λ ∈ V (π(T ), B(H)/K(H)).

The main result of this section is that for each n-tuple (T1, . . . , Tn)
of Hilbert space operators there exists an n-tuple of compact operators
(K1, . . . ,Kn) such that We(T1, . . . , Tn) = W (T1 −K1, . . . , Tn −Kn)−. This
improves the results of [LP] mentioned in Theorem 2.

For n = 1 the existence of the optimal compact perturbation was proved
in [CSSW]. We use the operator-theoretical method of [CLSW] (however,
this method is only sketched there in a not very clear way, the paper [CLSW]
uses mainly another method based on the notion of M -ideals).

Remark 3. In fact, the joint essential numerical range We(T ) was stud-
ied in [LP] only for n-tuples of selfadjoint operators. However, every operator
S ∈ B(H) can be written as S = ReS + i ImS, where ReS = 1

2(S + S∗)
and ImS = 1

2i(S − S
∗) are selfadjoint operators.

Any n-tuple T = (T1, . . . , Tn) ∈ B(H)n can be identified with the (2n)-
tuple

(ReT1, ImT1, . . . ,ReTn, ImTn)

of selfadjoint operators and the joint essential numerical range We(T ) ⊂ Cn

can be identified with We(ReT1, ImT1, . . . ,ReTn, ImTn) ⊂ R2n. So all the
statements concerning We(T ) can be reduced to the corresponding state-
ments for tuples of selfadjoint operators.

An important property of selfadjoint operators is that their numerical
range is real. The next proposition characterizes the numerical range of
tuples of selfadjoint operators.

Proposition 4. Let S = (S1, . . . , Sn) be an n-tuple of selfadjoint op-
erators on a Hilbert space H. Let z = (z1, . . . , z1) ∈ Rn. Then:
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(i) z ∈ V (S,B(H)) if and only if∣∣∣ n∑
j=1

αjzj + λ
∣∣∣ ≤ ∥∥∥ n∑

j=1

αjSj + λ
∥∥∥

for all α1, . . . , αn, λ ∈ R.
(ii) z ∈We(S) if and only if∣∣∣ n∑

j=1

αjzj + λ
∣∣∣ ≤ ∥∥∥ n∑

j=1

αjSj + λ
∥∥∥
e

for all α1, . . . , αn, λ ∈ R.

Proof. Let z ∈ V (S,B(H)). Then there exists f ∈ B(H)∗ such that
‖f‖ = 1 = f(I) and f(Sj) = zj (j = 1, . . . , n). Let α1, . . . , αn, λ ∈ R. Then∣∣∣ n∑

j=1

αjzj + λ
∣∣∣ =

∣∣∣f( n∑
j=1

αjSj + λI
)∣∣∣ ≤ ∥∥∥ n∑

j=1

αjSj + λ
∥∥∥.

Conversely, let |
∑n

j=1 αjzj + λ| ≤ ‖
∑n

j=1 αjSj + λ‖ for all α1, . . . , αn, λ
∈ R. Let A be the real subspace of B(H) generated by S1, . . . , Sn, I. Let f :
A → R be the real functional defined by f(

∑n
j=1 αjSj+λI) =

∑n
j=1 αjzj+λ.

Then ‖f‖ ≤ 1 and f(I) = 1. So ‖f‖ = 1 and f(Sj) = zj (j = 1, . . . , n).
By the Hahn–Banach theorem there exists a functional f̃ : B(H) → R

extending f such that ‖f̃‖ = ‖f‖ = 1. Let g ∈ B(H)∗ be the complex func-
tional defined by g(V ) = f̃(V ) − if̃(iV ) (V ∈B(H)). Then ‖g‖ = ‖f̃‖ = 1
and f̃ = Re g (see [BD2, p. 3]). We have |g(I)| ≤ 1 and Re g(I) = f̃(I) = 1,
so g(I) = 1. Thus g(S1, . . . , Sn) ∈ V (S,B(H)).

Moreover, V (S,B(H)) ⊂
∏n
j=1 V (Sj , B(H)) ⊂ Rn. So

(z1, . . . , zn) = (f̃(S1), . . . , f̃(Sn)) = (Re g(S1), . . . ,Re g(Sn))

= (g(S1), . . . , g(Sn)) ∈ V (S,B(H)).

Part (ii) can be proved similarly using We(S) = V (π(S), B(H)/K(H)).

Lemma 5. Let H be a Hilbert space and let S ∈ B(H), x ∈ H, ‖x‖ = 1,
t ≥ 5‖S‖. Then ∣∣‖(S + t)x‖ − t− Re 〈Sx, x〉

∣∣ ≤ 2‖S‖2

t
.

Proof. We have

‖(S + t)x‖ = (‖S + t)x‖2)1/2 = (t2 + 2tRe 〈Sx, x〉+ ‖Sx‖2)1/2

= t(1 + s)1/2,
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where s = 2 Re 〈Sx, x〉/t+ ‖Sx‖2/t2. Then

s ≤ 2‖S‖
t

+
‖S‖2

t2
≤ 11‖S‖

5t
≤ 1

2
.

It is easy to verify that for s ≤ 1/2 we have

1 +
s

2
− s2

4
≤ (1 + s)1/2 ≤ 1 +

s

2
.

So∣∣‖(S + t)x‖− t−Re 〈Sx, x〉
∣∣ = |t(1 + s)1/2 − t− Re 〈Sx, x〉|

≤
∣∣∣∣t(1 + s)1/2 − t− ts

2

∣∣∣∣+
∣∣∣∣ ts2 − Re 〈Sx, x〉

∣∣∣∣
≤ t
∣∣∣∣(1 + s)1/2 − 1− s

2

∣∣∣∣+
‖Sx‖2

2t

≤ ts2

4
+
‖S‖2

2t
≤ ‖S‖

2

t

(
112

4 · 52
+

1
2

)
≤ 2‖S‖2

t
.

For S ∈ B(H) denote by ‖S‖e the essential norm of S, ‖S‖e =
inf{‖S + L‖ : L ∈ K(H)}. For a subspace M ⊂ H denote by PM the
orthogonal projection onto M .

Proposition 6. Let H be a separable infinite-dimensional Hilbert space,
and let (e1, e2, . . . ) be an orthonormal basis in H. Let S ∈ B(H). Then

‖S‖e = lim
k→∞

‖PH⊥k SPH⊥k ‖,

where Hk =
∨k
j=1 ej (k ∈ N).

Proof. For each k ∈ N, the operator S − PH⊥k SPH⊥k is of finite rank, so
‖S‖e ≤ ‖PH⊥k SPH⊥k ‖.

Clearly,
‖PH⊥1 PH⊥1 ‖ ≥ ‖PH⊥2 SPH⊥2 ‖ ≥ · · · ,

so the limit limk→∞ ‖PH⊥k SPH⊥k ‖ exists and is greater than or equal to ‖S‖e.
Suppose on the contrary that limk→∞ ‖PH⊥k SPH⊥k ‖ > ‖S‖e. Then there

exists ε > 0 such that ‖PH⊥k SPH⊥k ‖ > ‖S‖e+ ε for all k ∈ N. Find xk ∈ H⊥k ,
‖xk‖ = 1 such that ‖Sxk‖ ≥ ‖PH⊥k Sxk‖ > ‖S‖e+ε. Clearly, xk → 0 weakly.
Let L ∈ B(H) be a compact operator. Then ‖Lxk‖ → 0 and ‖S + L‖ ≥
supk∈N ‖(S + L)xk‖ ≥ ‖S‖e + ε. So ‖S‖e = infL∈K(H) ‖S + L‖ ≥ ‖S‖e + ε,
a contradiction.

Corollary 7. Let H be a separable infinite-dimensional Hilbert space,
S ∈ B(H), t, t′ ≥ 5‖S‖2. Then:

(i)
∣∣‖S + t‖ − ‖S + t′‖ − t+ t′

∣∣ ≤ 4‖S‖2/min{t, t′};
(ii)

∣∣‖S + t‖e − ‖S + t′‖e − t+ t′
∣∣ ≤ 4‖S‖2/min{t, t′}.
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Proof. Let x ∈ H, ‖x‖ = 1. By Lemma 5,∣∣‖(S + t)x‖ − t− Re 〈Sx, x〉
∣∣ ≤ 2‖S‖2

t
,∣∣‖(S + t′)x‖ − t′ − Re 〈Sx, x〉

∣∣ ≤ 2‖S‖2

t′
.

So ∣∣‖(S + t)x‖ − ‖(S + t′)x‖ − t+ t′
∣∣ ≤ 4‖S‖2

min{t, t′}
.

Let (xk) ⊂ H be a sequence of unit vectors such that ‖(S + t)xk‖ →
‖S+ t‖. Without loss of generality we may assume that limk→∞ ‖(S+ t′)xk‖
exists. Then

‖S + t‖ − ‖S + t′‖ − t+ t′ ≤ lim
k→∞

(‖(S + t)xk‖ − ‖(S + t′)xk‖ − t+ t′)

≤ 4‖S‖2

min{t, t′}
.

By symmetry, we get (i).

By Proposition 6, we have ‖S + t‖e = limk→∞ ‖PH⊥k (S + t)PH⊥k ‖, where

Hk =
∨k
j=1 ej and (e1, e2, . . . ) is an orthonormal basis in H. This together

with (i) gives∣∣‖S + t‖e − ‖S + t′‖e − t+ t′
∣∣

= lim
k→∞

∣∣‖PH⊥k (S + t)PH⊥k ‖ − ‖PH⊥k (S + t′)PH⊥k ‖ − t+ t′
∣∣

≤ lim
k→∞

4‖PH⊥k SPH⊥k ‖
2

min{t, t′}
≤ 4‖S‖2

min{t, t′}
.

Lemma 8. Let T = (T1, . . . , Tn) be an n-tuple of operators on a separable
infinite-dimensional Hilbert space H. Then there exist mutually orthogonal
finite-dimensional subspaces Fk ⊂H such that H =

⊕∞
k=1 Fk and PrTjPs = 0

for all r, s ∈ N, |r − s| ≥ 2 and j = 1, . . . , n (i.e., the operators T1, . . . , Tn
are simultaneously block 3-diagonal).

Proof. Let (e1, e2, . . . ) be an orthonormal basis in H. Let F1 =
∨
{e1}.

Let G2 =
∨
{F1, TjF1, T

∗
j F1 (1 ≤ j ≤ n), e2} and F2 = G2 	 F1. Then

dimF2 <∞, TjF1 ⊂ F1 ⊕ F2 and T ∗j F1 ⊂ F1 ⊕ F2 for all j = 1, . . . , n.
We continue this construction for k ∈ N inductively. If k ≥ 3 and the

subspaces F1, . . . , Fk−1 have already been constructed, then set

Gk =
∨
{F1, . . . , Fk−1, TjFk−1, T

∗
j Fk−1 (j = 1, . . . , n), ek}

and Fk = Gk	(F1⊕· · ·⊕Fk−1). Then dimFk <∞, TjFk−1 ⊂ (F1⊕· · ·⊕Fk)
and T ∗j Fk−1 ⊂ (F1 ⊕ · · · ⊕ Fk) for all j = 1, . . . , n.
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If we continue this construction for all k ∈ N we get the required decom-
position (note that

⊕∞
k=1 Fk = H since ek ∈ F1 ⊕ · · · ⊕ Fk for each k).

The following result was proved in [CLSW, Lemma 6]. We formulate it
in a more explicit form.

Lemma 9. Let S ∈ B(H) be block 3-diagonal, i.e., there are finite-
dimensional subspaces Fj such that H =

⊕∞
j=1 Fj and PFrSPFs = 0 when-

ever |r − s| ≥ 2. Denote by Qk the orthogonal projection onto
⊕∞

j=k+1 Fj.
Let l, d ∈ N, k = l + 2d and let V ∈ B(H) satisfy V = QkV Qk. Then
‖S + V ‖ ≤ max

{
‖S‖, ‖Ql(S + V )Ql‖

}
+ ‖S‖/

√
d.

Proof. Let x ∈ H, ‖x‖ = 1. Then

‖PFl+1
x+ PFl+2

x‖2 + ‖PFl+3
x+ PFl+4

x‖2 + · · ·+ ‖PFl+2d−1
x+ PFl+2d

x‖2

≤ ‖x‖2 = 1.

So there exists j0, l + 1 ≤ j0 ≤ l + 2d − 1 ≤ k − 1, such that ‖PFj0x +
PFj0+1x‖2 ≤ d−1.

Write x = u + v + w, where u ∈
⊕j0−1

j=1 Fj , v = PFj0x + PFj0+1x and
w ∈

⊕∞
j=j0+2 Fj . We have (S + V )x = Su+ Sv + (S + V )w, where ‖Sv‖ ≤

‖S‖ · ‖v‖ ≤ ‖S‖/
√
d, Su ∈

⊕j0
j=1 Fj and (S + V )w = Ql(S + V )Qlw ∈⊕∞

j0+1 Fj . Thus Su ⊥ (S + V )w and

‖Su+ (S + V )w‖ ≤ max{‖S‖, ‖Ql(S + V )Ql‖}.

Hence ‖(S + V )x‖ ≤ max{‖S‖, ‖Ql(S + V )Ql‖}+ ‖S‖/
√
d.

Let T1, . . . , Tn ∈ B(H) be selfadjoint operators. We show that there exist
compact selfadjoint operators K1, . . . ,Kn ∈ B(H) such that

(1)
∥∥∥ n∑
j=1

αjTj + λ
∥∥∥
e

=
∥∥∥ n∑
j=1

αj(Tj −Kj) + λ
∥∥∥

for all α1, . . . , αn, λ ∈ R. Consequently, We(T1, . . . , Tn) = W (T1 − K1, . . .
. . . , Tn −Kn)−.

We show (1) first under the technical assumptions that the space H is
separable and IntRWe(T1, . . . , Tn) 6= ∅, where IntR denotes the interior in
the sense of Rn. However, these assumptions are not necessary.

Let T = (T1, . . . , Tn) ∈ B(H)n. For α = (α1, . . . , αn) write ‖α‖1 =∑n
j=1 |αj | and αT =

∑n
j=1 αjTj .

Theorem 10. Let H be a separable infinite-dimensional Hilbert space,
let T = (T1, . . . , Tn) ∈ B(H)n be an n-tuple of selfadjoint operators such that
IntRWe(T ) 6= ∅. Then there exist compact selfadjoint operators K1, . . . ,Kn
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in B(H) such that∥∥∥ n∑
j=1

αjTj + λ
∥∥∥
e

=
∥∥∥ n∑
j=1

αj(Tj −Kj) + λ
∥∥∥

for all α1, . . . , αn, λ ∈ R.

Proof. Without loss of generality we may assume that ‖Tj‖ = 1
(j = 1, . . . , n) and (0, . . . , 0)∈ IntRWe(T ). Let ε> 0 be such that (µ1, . . . , µn)
∈We(T1, . . . , Tn) for all µ1, . . . , µn ∈ R, |µj | ≤ ε (j = 1, . . . , n).

By Lemma 8, there exist finite-dimensional subspaces F1, F2, . . . such
that H =

⊕∞
j=1 Fj and the operators T1, . . . , Tn are simultaneously block

3-diagonal with respect to this decomposition. Denote by Qk the orthogonal
projection onto the space

⊕∞
j=k+1 Fj .

For m= 0, 1, . . .we construct inductively n-tuples S(m) = (S(m)
1 , . . . , S

(m)
n )

∈ B(H)n of selfadjoint operators and an increasing sequence (km) of non-
negative integers such that

QkmS
(m)
j Qkm = 2−mQkmTjQkm (j = 1, . . . , n),(2) ∥∥∥ n∑

j=1

αj(Tj − S(m)
j ) + λ

∥∥∥ ≤ ∥∥∥ n∑
j=1

αjTj + λ
∥∥∥
e
− ε

2m+1
(3)

for all α1, . . . , αn, λ ∈ R,
∑n

j=1 |αj | = 1, and

(4) ‖S(m+1)
j − S(m)

j ‖ ≤ ‖Tj‖
2m+1

(j = 1, . . . , n).

For m = 0 set formally k0 = 0 and S
(0)
j = Tj (j = 1, . . . , n). Clearly,

(2) is satisfied.
Let α1, . . . , αn, λ ∈ R,

∑n
j=1 |αj | = 1. For µ ∈ R write signµ = 1 if µ ≥ 0

and signµ = −1 if µ < 0. We have∥∥∥ n∑
j=1

αj(Tj − S(0)
j ) + λ

∥∥∥ = |λ|

and∥∥∥ n∑
j=1

αjTj + λ
∥∥∥
e
≥ max

{
|µ| : µ ∈We

( n∑
j=1

αjTj + λ
)}

≥ max
{∣∣∣ n∑

j=1

αjνj + λ
∣∣∣ : (ν1, . . . , νn) ∈We(T1, . . . , Tn)

}

≥
∣∣∣∣ n∑
j=1

εαj signλ
signαj

+ λ

∣∣∣∣ = ε+ |λ|.
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Thus

(5) |λ| ≤
∥∥∥ n∑
j=1

αjTj + λ
∥∥∥
e
− ε

for all α1, . . . , αn, λ ∈ R, ‖α‖1 = 1. In particular, (3) is satisfied for m = 0.
Suppose that we have already constructed the n-tuples S(0), . . . , S(m) ∈

B(H)n and numbers k0, . . . , km ∈ N satisfying (2)–(4). Set r = 2m+6/ε and
δ = ε/2m+4. By Proposition 6, for all α ∈ Rn, ‖α‖1 = 1 and λ ∈ R, |λ| ≤ r,
we have

‖Qk(αT + λ)Qk‖ ↘ ‖αT + λ‖e
and the functions (α, λ) 7→ ‖Qk(αT + λ)Qk‖, (α, λ) 7→ ‖αT + λ‖e, are
continuous. By the Dini theorem the convergence is uniform on the set
A := {(α, λ) ∈ Rn × R : ‖α‖1 = 1, |λ| ≤ r}.

Let l > km satisfy

‖Ql(αT + λ)Ql‖ − ‖αT + λ‖e ≤ δ
for all (α, λ) ∈ A. Find d ∈ N such that (r + 1)/

√
d ≤ δ and set km+1 =

l + 2d. For j = 1, . . . , n set

S
(m+1)
j = S

(m)
j − 1

2m+1
Qkm+1TjQkm+1 .

Clearly, S(m+1)
j is selfadjoint, ‖S(m+1)

j − S(m)
j ‖ ≤ ‖Tj‖/2m+1 and

Qkm+1S
(m+1)
j Qkm+1 = 2−mQkm+1TjQkm+1 − 2−(m+1)Qkm+1TjQkm+1

=
1

2m+1
Qkm+1TjQkm+1 .

To show (3), let first (α, λ) ∈ A. We have

‖Ql(α(T − S(m+1)) + λ)Ql‖

=
∥∥∥∥Ql((1− 2−m)αT + λ)Ql +

1
2m+1

Qkm+1αTQkm+1

∥∥∥∥
≤ (1− 2−m)‖Ql(αT + λ)Ql‖+

1
2m+1

‖QlλQl‖

+
∥∥∥∥ 1

2m+1
(Ql −Qkm+1)λ(Ql −Qkm+1) +

1
2m+1

Qkm+1(αT + λ)Qkm+1

∥∥∥∥
≤ (1− 2−m)(‖αT + λ‖e + δ) +

|λ|
2m+1

+
1

2m+1
max{|λ|, ‖αT + λ‖e + δ}

≤
(

1− 1
2m+1

)
(‖αT + λ‖e + δ) +

1
2m+1

(‖αT + λ‖e − ε)

≤ ‖αT + λ‖e + δ − ε

2m+1
= ‖αT + λ‖e −

ε

2m+1
+

ε

2m+4

(where we used (5)).
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To estimate ‖α(T − S(m+1)) + λ‖, we apply Lemma 9. Define S =
α(T − S(m)) + λ and V = 2−(m+1)Qkm+1αTQkm+1 . By (3), we have ‖S‖ ≤
‖αT + λ‖ ≤ r + 1. Then

‖α(T − S(m+1)) + λ‖ = ‖S + V ‖ ≤ max{‖S‖, ‖Ql(S + V )Ql‖}+
r + 1√
d

≤ max
{
‖αT + λ‖e −

ε

2m+1
, ‖αT + λ‖e −

ε

2m+1
+

ε

2m+4

}
+ δ

= ‖αT + λ‖e −
ε

2m+1
+

ε

2m+3
.

For |λ| > r, by Corollary 7, we have

‖αT + λ‖e − ‖α(T − S(m+1)) + λ‖

=
∥∥∥∥ α

signλ
T +

λ

signλ

∥∥∥∥
e

−
∥∥∥∥ α

signλ
(T − S(m+1)) +

λ

signλ

∥∥∥∥
≥
∥∥∥∥ α

signλ
T + r

∥∥∥∥
e

−
∥∥∥∥ α

signλ
(T − S(m+1)) + r

∥∥∥∥+
8
r

≤ ε

2m+1
− ε

2m+3
+

8
r

=
ε

2m+2
.

So S(m+1) satisfies (2)–(4).
Suppose that the n-tuples S(m) ∈ B(H)n have been constructed for all

m ∈ N. For j = 1, . . . , n, the sequence (S(m)
j )m is norm convergent; denote

by Kj its limit. We have

‖Kj‖e = lim
m→∞

‖S(m)
j ‖e ≤ lim

m→∞
‖QkmS

(m)
j Qkm‖ ≤ lim

m→∞
2−m‖Tj‖ = 0.

Hence the operator Kj is compact for all j = 1, . . . , n. Obviously, Kj is
selfadjoint.

For α ∈ Rn, λ ∈ R, ‖α‖1 = 1 we have

‖α(T −K) + λ‖ = lim
m→∞

‖α(T − S(m)) + λ‖ ≤ ‖αT + λ‖e.

The opposite inequality is clear, so ‖α(T − K) + λ‖ = ‖αT + λ‖e for all
α ∈ Rn, λ ∈ R, ‖α‖1 = 1. Consequently, ‖α(T −K) + λ‖ = ‖αT + λ‖e for
all α ∈ Rn, λ ∈ R.

Corollary 11. Let H be a separable Hilbert space, let T = (T1, . . . , Tn)
∈ B(H)n be an n-tuple of selfadjoint operators. Then there exists an n-tuple
K = (K1, . . . ,Kn) ∈ B(H)n of compact selfadjoint operators such that

‖αT + λ‖e = ‖α(T −K) + λ‖
for all α ∈ Rn, λ ∈ R.

Proof. We prove the statement by induction on n. Let T = (T1, . . . , Tn) ∈
B(H)n be an n-tuple of selfadjoint operators.
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If IntRWe(T ) 6= ∅, then the statement follows from Theorem 10. Suppose
on the contrary that IntRWe(T ) = ∅.

SinceWe(T ) is a convex set, there are numbers β1, . . . , βn∈R, (β1, . . . , βn)
6= (0, . . . , 0), such that

∑n
j=1 βjνj = 0 for all (ν1, . . . , νn) ∈ We(T ). So

We(
∑n

j=1 βjTj) = {0}. Thus ‖
∑n

j=1 βjTj‖e = 0 and L :=
∑n

j=1 βjTj is a
compact operator. Without loss of generality we may assume that βn 6= 0.
Thus Tn = β−1

n (L−
∑n−1

j=1 βjTj).
From the induction assumption, there exist selfadjoint operators

K1, . . . ,Kn−1 ∈ K(H) such that∥∥∥n−1∑
j=1

αj(Tj −Kj) + λ
∥∥∥ =

∥∥∥n−1∑
j=1

αjTj + λ
∥∥∥
e

for all α1, . . . , αn−1, λ ∈ R. Set Kn = β−1
n (L −

∑n−1
j=1 βjKj). Then Kn is a

compact selfadjoint operator.
Let α1, . . . , αn, λ ∈ R. Then

n∑
j=1

αj(Tj −Kj) =
n−1∑
j=1

αj(Tj −Kj)− αnβ−1
n

n−1∑
j=1

βj(Tj −Kj).

By the induction assumption,∥∥∥ n∑
j=1

αj(Tj −Kj) + λ
∥∥∥ =

∥∥∥n−1∑
j=1

αjTj − αnβ−1
n

n−1∑
j=1

βjTj + λ
∥∥∥
e

=
∥∥∥ n∑
j=1

αjTj + λ
∥∥∥
e
.

The assumption of separability is not essential and can be omitted.

Theorem 12. Let H be an infinite-dimensional Hilbert space, and let
T = (T1, . . . , Tn) ∈ B(H)n be an n-tuple of selfadjoint operators. Then
there exists an n-tuple K = (K1, . . . ,Kn) ∈ B(H)n of compact selfadjoint
operators such that

‖αT + λ‖e = ‖α(T −K) + λ‖

for all α ∈ Rn, λ ∈ R.

Proof. There exists a decomposition H =
⊕

ν∈J H
(ν) such that all the

subspaces H(ν) are separable and reducing for the operators T1, . . . , Tn.
Write T (ν)

j = PH(ν)TjPH(ν) .
For all α ∈ Rn, λ ∈ R and ε > 0 there are only finitely many ν ∈ J such

that ‖αT (ν) + λ‖ > ‖αT + λ‖e + ε. So there are only countably many ν ∈ J
such that ‖αT (ν) + λ‖ > ‖αT + λ‖e. Hence there exists a countable subset
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J0 ⊂ J such that ‖αT (ν) + λ‖ ≤ ‖αT + λ‖e for all ν /∈ J0 and all ratio-
nal α1, . . . , αn, λ. Let H0 =

⊕
ν∈J0

H(ν). Then H0 is a separable subspace
reducing for T1, . . . , Tn and ‖PH	H0(αT + λ)PH	H0‖ ≤ ‖αT + λ‖e for all
α ∈ Rn, λ ∈ R. So we can use Corollary 11 for the operators PH0TjPH0 .

Corollary 13. Let T = (T1, . . . , Tn) ∈ B(H) be an n-tuple of selfad-
joint operators. Then there exists an n-tuple K = (K1, . . . ,Kn) ∈ B(H) of
compact selfadjoint operators such that We(T ) = W (T −K). In particular,
W (T −K) is convex.

Proof. Let K = (K1, . . . ,Kn) ∈ B(H)n be an n-tuple of compact selfad-
joint operators such that ‖α(T −K)+λ‖ = ‖αT +λ‖e for all α ∈ Rn, λ ∈ R.
By Proposition 4,

We(T ) = V (T −K,B(H)) = convW (T −K) ⊃W (T −K) ⊃We(T ).

So We(T ) = W (T −K) = convW (T −K).

By Remark 3, the same statement is true for an arbitrary n-tuple of
operators.

Corollary 14. Let T = (T1, . . . , Tn) ∈ B(H)n. Then there exists an
n-tuple K = (K1, . . . ,Kn) ∈ B(H) of compact operators such that We(T ) =
W (T −K).

We do not know whether Theorem 12 remains true for nonselfadjoint
operators.

Problem 15. Let T ∈ B(H)n. Does there exist K ∈ K(H)n such that

‖αT + λ‖e = ‖α(T −K) + λ‖
for all α ∈ Cn, λ ∈ C?

Using the method of Theorem 10, it is possible to obtain a positive
answer if IntWe(T ) 6= ∅. However, there are technical problems if We(T ) is
a set of a lower dimension.

3. Olsen’s problem. The method from the previous section can also
be used to improve the results of C. L. Olsen [O].

Theorem 16. Let S ∈ B(H), n ∈ N and ‖Sn‖e 6= 0. Then there exists a
compact operator K ∈ B(H) such that ‖(S−K)j‖ = ‖Sj‖e for j = 1, . . . , n.

Proof. Without loss of generality we may assume that ‖S‖ = 1. Fur-
thermore, we may assume that the space H is separable (cf. proof of Theo-
rem 12).

By Lemma 8, there exist finite-dimensional subspaces F1, F2, . . . such
that H =

⊕∞
j=1 Fj and the operators S, S2, . . . , Sn are block 3-diagonal

with respect to this decomposition. Denote by Qk the orthogonal projection
onto the space

⊕∞
j=k+1 Fj .
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Let 0 < ε < ‖Sn‖e/2. For 1 ≤ j ≤ n we have 2ε ≤ ‖Sn‖e ≤ ‖Sj‖e ·
‖Sn−j‖e ≤ ‖Sj‖e. Let c = 2nε−1. For m = 0, 1, . . . set sm = c/(c+m). So
s0 = 1, sm ↘ 0 and

sm − sm+1 =
c

(c+m)(c+m+ 1)
≤ sm

c
=
smε

2n
.

We construct inductively operators Sm ∈ B(H) and an increasing se-
quence (km) of nonnegative integers such that:

QkmSmQkm = (1− sm)QkmSQkm ,(6)
‖Sm+1 − Sm‖ ≤ sm − sm+1,(7)

‖Sjm‖ ≤ ‖Sj‖e − εsm (j = 1, . . . , n).(8)

For m = 0 set S0 = 0 and k0 = 0. Then clearly (6) and (8) are satisfied.
Let m ≥ 0 and suppose that Sm and km have already been constructed.

Choose a positive number δ < min{(sm − sm+1)ε, smε2−n}.
By Proposition 6, there exists l > km such that

‖QlSjQl‖ ≤ ‖Sj‖e + δ (j = 1, . . . , n).

Let km+1 > l + 2/δ2 + 2. Set

Sm+1 = Sm + (sm − sm+1)Qkm+1SQkm+1 .

Clearly (6) and (7) are satisfied.
To show (8), fix j ∈ {1, . . . , n}. Write W = (sm − sm+1)Qkm+1SQkm+1

and V = Sjm+1−S
j
m = (Sm +W )j −Sjm. So V can be expressed as the sum

of 2j − 1 operators, each being a product of j elements of the pair {Sm,W},
where W appears at least once. Since ‖W‖ ≤ sm − sm+1 and ‖Sm‖ ≤ 1
by (8), we have ‖V ‖ ≤ (2j − 1)(sm − sm+1).

By Lemma 9, ‖Sjm+1‖ ≤ max{‖Sjm‖, ‖QlSjm+1Ql‖} + δ, where ‖Sjm‖ ≤
‖Sj‖e − εsm by the induction assumption. Further,

‖QlSjm+1Ql‖ ≤ ‖QlS
j
mQl‖+ ‖V ‖ = (1− sm)j‖QlSjQl‖+ ‖V ‖

≤ (1− sm)(‖Sj‖e + δ) + (2j − 1)(sm − sm+1)

≤ (1− sm)‖Sj‖e + δ +
(2n − 1)smε

2n

≤ ‖Sj‖e + sm(−‖Sj‖e + ε) ≤ ‖Sj‖e − εsm.

Hence ‖Sjm+1‖ ≤ ‖Sj‖e − εsm + δ ≤ ‖Sj‖e − εsm+1.
Suppose that we have constructed operators Sm and integers km satis-

fying (6)–(8). Then the sequence (Sm) is norm-convergent. Denote its limit
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by U . For j = 1, . . . , n we have ‖U j‖ = limm→∞ ‖Sjm‖ ≤ ‖Sj‖e. Further,

‖S − U‖e = lim
m→∞

‖Qkm(S − U)Qkm‖

≤ lim
m→∞

(‖Qkm(S − Sm)Qkm‖+ ‖Qkm(Sm − U)Qkm‖)

≤ lim
m→∞

(sm + ‖Sm − U‖) = 0.

So the operator K := S −U is compact and we have ‖(S −K)j‖ = ‖U j‖ =
‖Sj‖e for all j = 1, . . . , n.

Corollary 17. Let S ∈ B(H), n ∈ N. Then there exists a compact
operator K ∈ B(H) such that ‖(S −K)n‖ = ‖Sn‖e.

Proof. If ‖Sn‖e 6= 0 then the statement was proved in the previous
theorem. If ‖Sn‖e = 0 then the statement was proved in [OP].
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