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Sobolev-type spaes from generalized Poinaré inequalitiesbyToni Heikkinen, Pekka Koskela and Heli Tuominen (Jyväskylä)Abstrat. We de�ne a Sobolev spae by means of a generalized Poinaré inequalityand relate it to a orresponding spae based on upper gradients.1. Introdution. This paper addresses the properties of a Sobolev-typespae obtained by means of a generalized Poinaré inequality. Unless other-wise stated, X = (X, d, µ) is a metri measure spae with µ doubling.Reall that the lassial Poinaré inequality states that the estimate(1) <
B

|u − uB| dx ≤ CrB

( <
B

gp dx
)1/p

,where 4B v = |B|−1
T
B v, uB =

4
B u, rB is the radius of the ball B and

g = |∇u|, holds for eah ball B and all funtions u ∈ W 1,p(B), 1 ≤ p < ∞.In a sense, this single inequality aptures the essentials of the theory of the�rst order Sobolev spaes W 1,p onsisting of those p-integrable funtions thathave a p-integrable weak gradient ∇u. Indeed, u ∈ W 1,p(Rn) if and only if
u ∈ Lp(Rn) and there is a non-negative funtion g ∈ Lp(Rn) so that (1)holds. A suitable form of this statement extends to many general settings,inluding those of Heisenberg groups, R

n equipped with an Ap-weight andgeneral doubling metri measure spaes that support a Poinaré inequalityfor Lipshitz funtions and their pointwise Lipshitz onstants. For all thissee [14℄, [7℄, [11℄, and [12℄. Moreover, (1) is known to yield versions of theusual Sobolev�Poinaré and Trudinger inequalities and other inequalities ofthis kind [15℄, [14℄.It is then natural to inquire if (1) ould be replaed with some other,more general inequality. Suh an inequality is given by(2) <
B

|u − uB| dµ ≤ a(τB),
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2 T. Heikkinen et al.where τ ≥ 1 is �xed, and a : B → [0,∞) is a funtional that satis�es a ertaindisrete summability ondition. Here B is a olletion of balls and τB(x, r) =
B(x, τr). Inequalities of this type were introdued in [8℄ and further studiedin [21℄, [22℄, and [9℄. In these papers, versions of the Sobolev�Poinaré andTrudinger inequalities were established relying on (2), generalizing the earlierwork in [15℄, [14℄. One of the points here is that (2) ould well hold for, say,all Lipshitz funtions even if there is no usual Poinaré inequality (1) forLipshitz funtions and their pointwise Lipshitz onstants. It seems to usthat our examples in Setion 6 are the �rst of this kind.We are then led to onsider a Banah spae of funtions satisfying (2)and to relate this spae to some natural Sobolev spae. Notie that thenthe Sobolev�Poinaré and Trudinger inequalities should be automatiallysatis�ed for the funtions in our spae. To this end, let Ω ⊂ X be open,
0 ≤ α < ∞, and 0 < p ≤ ∞. Write BΩ for the olletion of all balls in Ω.Denote by Aα,p

τ (Ω) the set of all loally integrable funtions u that satisfy(2) in all balls B for whih τB ⊂ Ω with a funtional a of the form(3) a(B) = rα

(

ν(B)

µ(B)

)1/p

,where ν : B → [0,∞) satis�es
∑

i

ν(Bi) < ∞whenever the balls Bi ∈ BΩ are disjoint. Then u ∈ Aα,p
τ (Ω) if and only if(4) ‖u‖Aα,p

τ (Ω) = sup
B∈Bτ (Ω)

∥

∥

∥

∑

B∈B

(

r−α
B

<
B

|u − uB| dµ
)

χB

∥

∥

∥

Lp(Ω)
,where

Bτ (Ω) = {{Bi} : balls τBi are disjoint and ontained in Ω},is �nite. If p ≥ 1, then the spae Lp(Ω) ∩ Aα,p
τ (Ω) equipped with the norm

‖ · ‖Lp(Ω) + ‖ · ‖Aα,p
τ (Ω) beomes a Banah spae. Notie that (3) is the anon-ial example of a funtional a onsidered in [8℄, [9℄, [21℄, and [22℄. In theborderline ase α = 0, p = ∞, τ = 1 our spae redues to BMO, the spaeof funtions of bounded mean osillation.Our substitute for the usual Sobolev lass W 1,p will be given in terms ofa Sobolev spae based on upper gradients (f. [17℄, [27℄). For the onnetionwith the spaes based on pointwise inequalities (f. [10℄), see Setion 3 be-low. In the metri setting, we annot talk about partial derivatives but theonept of an upper gradient has turned out to be a nie substitute for thelength of the gradient. We all a Borel funtion g : X → [0,∞] an uppergradient of a funtion u : X → R if(5) |u(γ(0)) − u(γ(l))| ≤

\
γ

g ds



Sobolev-type spaes 3for all reti�able urves γ : [0, l] → X. Further, g as above is alled a p-weakupper gradient if (5) holds for all urves γ exept for a family of p-moduluszero. For the de�nition of the p-modulus in metri spaes, see [17℄. Thisweaker de�nition is onvenient for tehnial reasons; eah p-integrable p-weakupper gradient an be approximated from above in Lp by upper gradients(f. [19℄). We use the Sobolev spae N1,p(X) that onsists of all funtions in
Lp(X) having a (p-weak) upper gradient that belongs to Lp(X) (see Setion2.2).Our �rst result shows that if p > 1, then the funtions in Lp(Ω)∩A1,p

τ (Ω)have p-integrable p-weak upper gradients, and that funtions in A1,1
τ (Ω)belong to the spae of funtions of bounded variation as de�ned in Setion2.4 below. De�ne

Bτ,r(Ω) = {{Bi} ∈ Bτ (Ω) : rBi ≤ r for all i}and
‖u‖Aα,p

τ,0 (Ω) = lim
r→0

sup
B∈Bτ,r(Ω)

∥

∥

∥

∑

B∈B

(

r−α
B

<
B

|u − uB| dµ
)

χB

∥

∥

∥

Lp(Ω)
.1.1. Theorem. Let Ω ⊂ X be an open set.(1) If u ∈ A1,1

τ (Ω), then u ∈ BV(Ω) and
‖Du‖(Ω) ≤ C(Cd, τ)‖u‖

A1,1
τ,0(Ω)

.(2) If p > 1 and u ∈ A1,p
τ (Ω) ∩ Lp(Ω), then a representative of u has a

p-weak upper gradient g with
‖g‖Lp(Ω) ≤ C(Cd, τ)‖u‖

A1,p
τ,0(Ω)

.The �rst part of Theorem 1.1 is proven by Miranda in [25, Theorem 3.8℄.We added it for the sake of ompleteness beause our proof applies for all
p ≥ 1. One way to view the seond part is that A1,p

τ (Ω) ∩ Lp(Ω) is thesubspae of N1,p(Ω) onsisting of funtions that satisfy an abstrat formof a Poinaré inequality (and onsequently Sobolev�Poinaré and Trudingerinequalities).If α < β and ‖u‖
Aβ,p

τ,0 (Ω)
< ∞, then learly ‖u‖Aα,p

τ,0 (Ω) = 0. Therefore wehave the following orollary.1.2. Corollary. Let u ∈ Aα,p
τ (Ω) ∩ Lp(Ω).(1) If p ≥ 1 and α > 1, then ‖Du‖(Ω) = 0.(2) If p > 1 and α > 1, then the funtion g ≡ 0 is a p-weak uppergradient of a representative of u.Our next result shows that A1,p
τ (Ω) ∩ Lp(Ω) oinides with the Sobolevlass N1,p(Ω) or with BV(Ω) under a Poinaré inequality assumption. Notie



4 T. Heikkinen et al.that, in general, A1,p
τ (Ω) ∩ Lp(Ω) an be larger than the lass of funtionsthat allow for a Poinaré inequality of the type (1). For this, see Setion 6.1.3. Corollary. Assume that X supports a (1, p)-Poinaré inequalitywith onstants CP and τ .(1) If p = 1, then A1,1

τ (X) = BV(X).(2) If 1 < p < ∞, then A1,p
τ (X) ∩ Lp(X) = N1,p(X).(3) If 1 ≤ p < ∞ and α > 1, then Aα,p

τ (X) = {onstants}.Reall from the beginning of the introdution that, in the Eulideansetting, the Poinaré inequality (1) with p = 1 haraterizes W 1,1(Rn), not
BV(Rn). Questions relating to (1) and (2) in R

n are studied in [4℄ and [3℄.For integral onditions under whih a funtion is onstant in R
n, see [4℄, andin Ahlfors regular spaes [2℄. If p > 1, then in the Eulidean ase (3) followsfrom [4℄.We lose this introdution by brie�y ommenting on the missing valuesof the exponent p above. We have only onsidered the ase p ≥ 1. For theremaining values of p we have the following result.1.4. Corollary. Let u ∈ Aα,p

τ (Ω), 0 < p < 1.(1) If α = 1/p and u is bounded , then u ∈ BV(Ω).(2) If α = 1/p and u is uniformly ontinuous, then ‖Du‖(Ω) = 0.(3) If α > 1/p, then ‖Du‖(Ω) = 0.Note that the funtion χ
[0,∞) belongs to A

1/p,p
τ (R) for all 0 < p < 1 and

‖Du‖(R) = δ0(R) = 1. Corollary 1.4 still leaves open the ase 0 < p < 1and α < 1/p. In this ase, one an onstrut examples of nontrivial Hölderontinuous funtions even when Ω is the interval [0, 1], equipped with theLebesgue measure.The paper is organized as follows. We introdue the neessary notationand terminology in Setion 2. Setion 3 deals with pointwise inequalities.In Setion 4, we give Sobolev�Poinaré and Trudinger type inequalities forfuntions in Aα,p
τ (Ω). Setion 5 is devoted to the proofs of Theorem 1.1,Corollary 1.3, and Corollary 1.4. Finally, in Setion 6, we present examplesthat illustrate the previous results.2. Notation and preliminaries2.1. Metri measure spaes. Throughout this paper X = (X, d, µ) is ametri spae equipped with a doubling measure µ. By a measure we meana Borel regular outer measure satisfying 0 < µ(U) < ∞ whenever U is openand bounded. An open ball of radius r entered at x will be denoted by

B(x, r). Sometimes we denote the radius of a ball B by rB . For λ > 0, wede�ne λB(x, r) := B(x, λr) and λ{Bi} := {λBi}.



Sobolev-type spaes 5A measure µ is doubling if there is a onstant Cd ≥ 1 suh that
µ(2B) ≤ Cdµ(B)for all balls B ⊂ X. An iteration of the above inequality shows that thereare onstants C and s depending only on Cd suh that

µ(B(x, r)) ≥ C

(

r

R

)s

µ(B(y, R))whenever x ∈ B(y, R) and 0 < r ≤ R ≤ 2 diam(X).In general, C will denote a positive onstant whose value is not neessarilythe same at eah ourrene. By writing C = C(K, λ) we indiate that theonstant depends only on K and λ.2.2. Sobolev spaes on metri measure spaes. As usual, if A ⊂ X is µ-measurable, then Lp(A) is the spae of µ-measurable funtions u for whih
‖u‖Lp(A) = (

T
A |u|p dµ)1/p < ∞ for 0 < p < ∞ and ‖u‖L∞(A) = ess supA |u|

< ∞. A measurable funtion u is in the weak Lp-spae if
‖u‖Lp

w(A) = sup
λ>0

λµ({x ∈ A : |u(x)| > λ})1/p

is �nite. If µ(A) < ∞ and 1 ≤ q < p, then Lq
w(A) ⊂ Lp(A) (f. [20, Theorem2.18.8℄).The Sobolev spae N1,p(X), de�ned by Shanmugalingam in [27℄, onsistsof the funtions u ∈ Lp(X) having a p-weak upper gradient g ∈ Lp(X). Thespae N1,p(X) is a Banah spae with the norm

‖u‖N1,p(X) = ‖u‖Lp(X) + inf ‖g‖Lp(X),where the in�mum is taken over p-weak upper gradients g ∈ Lp(X) of u.2.3. Lipshitz funtions and Poinaré inequalities. A funtion u : X → Ris L-Lipshitz if |u(x) − u(y)| ≤ Ld(x, y) for all x, y ∈ X. The lower andupper pointwise Lipshitz onstants of a loally Lipshitz funtion u are
lipu(x) = lim inf

r→0

L(u, x, r)

r
and Lipu(x) = lim sup

r→0

L(u, x, r)

r
,where

L(u, x, r) = sup
d(x,y)≤r

|u(x) − u(y)|.The lower Lipshitz onstant lipu, and hene also Lipu, is an upper gradientof a loally Lipshitz funtion u (f. [5℄).A pair of u ∈ L1lo(X) and a measurable funtion g ≥ 0 satis�es a (1, p)-Poinaré inequality if there are onstants CP > 0 and τ ≥ 1 suh that(6) <
B

|u − uB| dµ ≤ CP rB

( <
τB

gp dµ
)1/p



6 T. Heikkinen et al.for all balls B ⊂ X. If inequality (6) holds for all measurable funtions andtheir upper gradients with �xed onstants, then X supports a (1, p)-Poinaréinequality.2.4. Funtions of bounded variation. Following [1℄, [25℄ we de�ne BV-funtions on a doubling metri measure spae X by a relaxation proedurestarting from Lipshitz funtions. The total variation of a loally integrablefuntion u on an open set Ω is(7) ‖Du‖(Ω) = inf
{

lim inf
i→∞

\
Ω

lipui dµ
}

,

where the in�mum is taken over all sequenes (ui) of loally Lipshitz fun-tions that onverge to u in L1lo(Ω). The set funtion ‖Du‖ extends to ameasure on X ([25, Theorem 3.4℄). A funtion u ∈ L1lo(Ω) is in BV(Ω) if
‖Du‖(Ω) is �nite, and in the loal spae BVlo(Ω) if ‖Du‖(A) is �nite forevery bounded open set A ⊂ Ω. The spae BV(Ω) equipped with (7) is aseminormed spae. If X supports a (1, 1)-Poinaré inequality with onstants
CP and τ , then(8) <

B

|u − uB | dµ ≤ CP r
‖Du‖(τB)

µ(τB)for eah u ∈ BVlo(X) and for all balls B ⊂ X (f. [9℄).
3. Pointwise estimates. Let α > 0 and Ω ⊂ X be an open set. Thenonentered frational sharp maximal funtion of a funtion u ∈ L1lo(Ω) isde�ned by(9) M#

α,Ωu(x) = sup
x∈B⊂Ω

r−α
<
B

|u − uB| dµ.

We begin with the following pointwise estimate; the orresponding resultfor the entered version of (9) is proved in [13℄. For the onveniene of thereader, we inlude a proof.3.1. Proposition. Let B be a ball , u ∈ L1(2B) and α > 0. Then(10) |u(x) − u(y)| ≤ C(Cd, α) d(x, y)α(M#
α,2Bu(x) + M#

α,2Bu(y))for almost all x, y ∈ B.Proof. Sine u is integrable in B and µ is doubling, almost all points of Bare Lebesgue points of u (see [15, Theorem 14.15℄). Let x, y ∈ B be Lebesguepoints of u, and let r = d(x, y)/2. For eah i ∈ N, set Bi = B(x, 2−ir). Then
uBi → u(x) as i → ∞. Sine µ is doubling, we have



Sobolev-type spaes 7
|u(x) − uB(x,r))| ≤

∞
∑

i=0

|uBi − uBi+1
| ≤ C(Cd)

∞
∑

i=0

<
Bi

|u − uBi | dµ

≤ C(Cd)

∞
∑

i=0

rα
Bi

M#
α,2Bu(x) ≤ C(Cd, α) d(x, y)αM#

α,2Bu(x).If d(x, y) ≤ rB/2, then B(z, r) ⊂ B(x, 2 d(x, y)) ⊂ 2B, and
|uB(z,r) − uB(x,2 d(x,y))| ≤ C(Cd, α) d(x, y)αM#

α,2Bu(x)for z = x, y. Otherwise
|uB(z,r) − u2B| ≤ C(Cd, α) d(x, y)αM#

α,2Bu(x).The triangle inequality gives the laim.3.2. Remark. For α > 0, denote by C0,α(Ω) the set of α-Hölder on-tinuous funtions on Ω. Then learly C0,α(Ω) ⊂ Aα,∞
τ (Ω). On the otherhand, sine ‖M#

α,Bu‖L∞(B) ≤ ‖u‖Aα,∞
τ (τB), the inequality (10) implies that

Aα,∞
τ (2τB) ⊂ C0,α(B).We ontinue by showing that M#

α,Bu an be ontrolled in terms of ‖u‖Aα,p
τ

.3.3. Proposition. Let 0 < p < ∞. Then
‖M#

α,Bu‖Lp
w(B) ≤ C(Cd, τ, p)‖u‖Aα,p

τ (τB).Proof. Let x ∈ B be suh that M#
α,Bu(x) > λ. By the de�nition of

M#
α,Bu, there is a ball Bx ⊂ B ontaining x suh that

r−α
x

<
Bx

|u − uBx | dµ > λ.

This implies that(11) µ(Bx) ≤ λ−p
(

r−α
x

<
Bx

|u − uBx | dµ
)p

µ(Bx).

By the standard 5r-overing lemma (f. [16℄), we an over the set {x ∈ B :

M#
α,B(x) > λ} by balls 5τBi suh that the balls τBi are disjoint and thateah Bi is ontained in B and satis�es (11). Sine µ is doubling, and theballs τBi are pairwise disjoint, (11) and de�nition (4) imply that
µ({x ∈ B : M#

α,Bu(x) > λ}) ≤
∑

i

µ(5τBi) ≤ C
∑

i

µ(Bi)

≤ Cλ−p
∑

i

(

r−α
i

<
Bi

|u − uBi | dµ
)p

µ(Bi)



8 T. Heikkinen et al.
= Cλ−p

\
τB

(

∑

i

r−α
i

<
Bi

|u − uBi | dµ χBi

)p

≤ Cλ−p‖u‖p
Aα,p

τ (τB)
,where C = C(Cd, τ). The laim follows by the de�nition of ‖ · ‖Lp

w
.For a measurable funtion u, denote by Dα(u) the set of measurablefuntions g ≥ 0 that satisfy(12) |u(x) − u(y)| ≤ d(x, y)α(g(x) + g(y))for almost every x, y ∈ Ω. For 0 < α, p < ∞, de�ne, following Hajªasz [10℄,

Mα,p(Ω) = {u ∈ L1lo(Ω) : Dα(u) ∩ Lp(Ω) 6= ∅},

Mα,p
w (Ω) = {u ∈ L1lo(Ω) : Dα(u) ∩ Lp

w(Ω) 6= ∅}.From Propositions 3.1 and 3.3 we obtain the following orollary.3.4. Corollary. Let B ⊂ X be a ball. Then Aα,p
τ (2τB) ⊂ Mα,p

w (B).Denote by Pα,p
τ (Ω) the set of funtions u ∈ L1lo(Ω) for whih there existsa funtion 0 ≤ g ∈ Lp(Ω) suh that<

B

|u − uB | dµ ≤ rα
( <

τB

gp dµ
)1/p

for all balls τB ⊂ Ω. Notie that, trivially, Pα,p
τ (Ω) ⊂ Aα,p

τ (Ω). Thus theprevious orollary and the following result almost identify the spaes Aα,p
τ (Ω)and Mα,p(Ω). However, Aα,p

τ (Ω) may be stritly larger than Pα,p
τ (Ω) (seeExample 6.2).3.5. Theorem. Let Ω ⊂ X be an open set with µ(Ω) < ∞, and let

1 ≤ q < p. Then Mα,p
w (Ω) ⊂ Pα,q

1 (Ω). Moreover , Aα,p
τ (2τB) ⊂ Pα,q

1 (B)whenever 2τB ⊂ Ω.Proof. By the previous orollary, it su�es to prove the �rst laim. Let
u ∈ Mα,p

w (Ω) and g ∈ Lp
w(Ω) ∩ Dα(u). Sine µ(Ω) < ∞ and q < p, thefuntion g is in Lq(Ω). For eah ball B ⊂ Ω we see by integrating (12) andusing Jensen's inequality that<

B

|u(x) − uB | dµ(x) ≤
<
B

<
B

|u(x) − u(y)| dµ(y) dµ(y)

≤ C(α)rα
<
B

g dµ ≤ C(α)rα
( <

B

gq dµ
)1/q

.Notie the following onsequene of the previous result. Our abstrat ver-sion of the Poinaré inequality results in a usual inequality provided we relaxthe integrability requirement on the right-hand side. This relaxation is in-deed ruial by an example in Setion 6. In fat, one annot even require that
ν in (3) be an absolute ontinuous measure. We lose this setion by pointing



Sobolev-type spaes 9out that ertain hoies of α and p only allow for onstant funtions. Forintegral onditions with p ≥ 1 implying that the funtion is onstant, see [4℄.3.6. Theorem. If 0<p< 1 and α>1/p, then Mα,p(Rn)={onstants}.Proof. If u ∈ Mα,p(Rn), it follows from Fubini's theorem that u ∈
Mα,p(l) for almost every line l parallel to oordinate axes. Therefore it suf-�es to prove the theorem in the ase n = 1. Let u ∈ Mα,p(R), and let ε > 0.By de�nition there is g ∈ Lp(R) and a set E ⊂ R of measure zero suh that

|u(x) − u(y)| ≤ |x − y|α(g(x) + g(y)) < ∞whenever x, y ∈ R \ E. Fix x, y ∈ R \ E and divide the interval [x, y] intodisjoint intervals I1, . . . , Ik with ε/2 ≤ l(Ii) ≤ ε for all i. For eah i, let
xi ∈ Ii \ E be suh that

g(xi) ≤ 2 ess inf{g(z) : z ∈ Ii}.Set x0 = x and xk+1 = y. Then, by the assumptions on p and α,
|u(x) − u(y)| ≤

k
∑

i=0

|u(xi) − u(xi+1)| ≤ Cεα
k

∑

i=0

(g(xi) + g(xi+1))

= Cεα
k

∑

i=1

g(xi) + εα(g(x) + g(y))

≤ Cεα−1/p
(

k
∑

i=1

εg(xi)
p
)1/p

+ εα(g(x) + g(y))

≤ Cεα−1/p‖g‖Lp(R) + εα(g(x) + g(y)),and the laim follows by letting ε → 0.4. Imbeddings into Lebesgue and Hölder spaes. In [21℄ Ma-Manus and Pérez showed that if the funtional a satis�es a disrete summa-bility ondition(13) ∑

i

a(Bi)
rµ(Bi) ≤ Ca(B)rµ(B)whenever the balls Bi are disjoint and ontained in the ball B, then thePoinaré type inequality (2) improves to(14) sup

λ>0
λ

(

µ({x ∈ B : |u(x) − uB | > λ})

µ(B)

)1/r

≤ C ′a(2τB).In [22℄, they proved that if X is onneted and a satis�es a stronger ondition(15) ∑

a(Bi)
r ≤ Ca(B)r,then eah funtion u whih satis�es inequality (2), is in the Orliz spae

LΦ(B), where Φ(t) = exp(tr
′

) − 1, and 1/r + 1/r′ = 1. Moreover,



10 T. Heikkinen et al.(16) ‖u − uB‖LΦ(B) ≤ Ca(2τB),where ‖ · ‖LΦ(B) is the Luxemburg norm in LΦ(B). For Orliz spaes onmetri spaes, see [26℄. Without the onnetedness assumption, one onlyobtains (16) with Φ(t) = exp(t).The following result ollets the known Sobolev-type imbeddings of Aα,p
τ .4.1. Theorem. Let B ⊂ X be a ball , τ ≥ 1, 0 < p < ∞, and assumethat there is s ≥ 1 suh that µ(B(x, r)) ≥ Cµrs whenever B(x, r) ⊂ 2τB.(a) If αp < s, then Aα,p

τ (2τB) ⊂ Lq
w(B), where q = sp/(s − αp).(b) If αp = s, then Aα,p

τ (2τB) ⊂ LΦ(B), where Φ(t) = exp(t). If X isonneted , the above holds with Φ(t) = exp(tp/(p−1)).() If αp > s, then Aα,p
τ (2τB) ⊂ C0,α−s/p(B).Proof. (a) Reall that A0,τ

τ (2τB) onsists of funtions that satisfy (2)with a(B) = (ν(B)/µ(B))1/p. Suh an a satis�es the ondition (13), andhene, by (14), it su�es to show that
Aα,p

τ (2τB) ⊂ A
0, sp

s−αp
τ (2τB).If u ∈ Aα,p

τ (2τB) and B ∈ Bτ (2τB), the assumption 0 < (s − αp)/s < 1implies
∑

B

( <
B

|u − uB | dµ
)sp/(s−αp)

µ(B)

≤
(

∑

B

( <
B

|u − uB | dµ
)p

µ(B)(s−αp)/s
)s/(s−αp)

≤ C
(

∑

B

(

r−α
B

<
B

|u − uB | dµ
)p

µ(B)
)s/(s−αp)

≤ C‖u‖
sp/(s−αp)

Aα,p
τ (2τB)

,where C = C(Cµ, s, α, p), and the laim follows.(b) If αp = s, then u ∈ Aα,p
τ (2τB) satis�es<

B′

|u − uB′ | dµ ≤ rα
B′µ(B′)−1/p‖u‖Aα,p

τ (τB′) ≤ C(Cµ, p)‖u‖Aα,p
τ (τB′)for τB′ ⊂ 2τB. Sine b(B) = ‖u‖Aα,p

τ (B) satis�es (15), both laims followfrom [22℄.() If αp > s, then Aα,p
τ (2τB) ⊂ A

α−s/p,∞
τ (2τB) and the laim followsfrom Remark 3.2.5. Proof of Theorem 1.1. For the proof of Theorem 1.1, whih is basedon approximation by disrete onvolutions, we need a ouple of lemmas.Lemma 5.1 follows from a Whitney-type overing result for doubling metrimeasure spaes (see [6, Theorem III.1.3℄, [23, Lemma 2.9℄). For the proof ofLemma 5.2, we refer to [23, Lemma 2.16℄.



Sobolev-type spaes 115.1. Lemma. Let Ω ⊂ X be open. Given ε > 0, λ ≥ 1, there is a over
{Bi = B(xi, ri)} of Ω with the following properties :(1) ri ≤ ε for all i,(2) λBi ⊂ Ω for all i,(3) if λBi meets λBj , then ri ≤ 2rj ,(4) eah ball λBi meets at most C = C(Cd, λ) balls λBj.A olletion {Bi} as above is alled an (ε, λ)-over of Ω. Note that an
(ε, λ)-over is an (ε′, λ′)-over provided ε′ ≥ ε and λ′ ≤ λ.5.2. Lemma. Let Ω ⊂ X be open, and let B = {Bi = B(xi, ri)} be an
(∞, 2)-over of Ω. Then there is a olletion {ϕi} of funtions Ω → R suhthat(1) eah ϕi is C(Cd)r

−1
i -Lipshitz ,(2) 0 ≤ ϕi ≤ 1 for all i,(3) ϕi(x) = 0 for x ∈ X \ 2Bi for all i,(4) ∑

i ϕi(x) = 1 for all x ∈ Ω.A olletion {ϕi} as above is alled a partition of unity with respet to B.Let B = {Bi} be as in the lemma above, and let {ϕi} be a partition ofunity with respet to B. For a loally integrable funtion u on Ω, de�ne(17) uB(x) =
∑

i

uBiϕi(x).The following lemma desribes the most important properties of uB.5.3. Lemma.(1) The funtion uB is loally Lipshitz. Moreover , for eah x ∈ Bi,
LipuB(x) ≤ C(Cd)r

−1
Bi

<
5Bi

|u − u5Bi | dµ.(2) Let u ∈ Lp(Ω), p ≥ 1. If Bk is an (εk, 2)-over of Ω and εk → 0 as
k → ∞, then uBk

→ u in Lp(Ω).Proof. (1) Let x, y ∈ Bi, and let J = {j : 2Bj ∩ 2Bi 6= ∅}. Then #J ≤
C(Cd) and Bj ⊂ 5Bi for eah j ∈ J . Using the properties of the funtions
ϕi, we infer that

|uB(x) − uB(y)| =
∣

∣

∣

∑

j∈J

(uBj − uBi)(ϕj(x) − ϕj(y))
∣

∣

∣

≤ C(Cd)r
−1
Bi

d(x, y) max
j∈J

|uBj − uBi |

≤ C(Cd)r
−1
Bi

d(x, y)
<

5Bi

|u − u5Bi | dµ,and the �rst laim follows.



12 T. Heikkinen et al.(2) First we need an estimate for the Lp-norm of uB on Ω. By Jensen'sinequality, |uB|
p ≤ (|u|p)B. Hene, by the properties of the funtions ϕi,\

Ω

|uB|
p dµ ≤

\
Ω

(|u|p)B dµ ≤
∑

i

\
Ω

(|u|p)Biϕi dµ(18)
≤ C(Cd)

∑

i

\
2Bi

|u|p dµ ≤ C(Cd)
\
Ω

|u|p dµ.

Let u ∈ Lp(Ω) and ε > 0. Choose a bounded ontinuous funtion v withbounded support suh that ‖u− v‖Lp(Ω) < ε (f. [15, Theorem 14.2℄). Then,estimating as in (18), we obtain
‖uB − vB‖Lp(Ω) = ‖(u − v)B‖Lp(Ω) ≤ C(Cd, p)‖u − v‖Lp(Ω) < C(Cd, p)ε,and so

‖uB − u‖Lp(Ω) ≤ ‖uB − vB‖Lp(Ω) + ‖vB − v‖Lp(Ω) + ‖v − u‖Lp(Ω)

< ‖vB − v‖Lp(Ω) + C(Cd, p)ε.Therefore it su�es to show that ‖vB−v‖Lp(Ω) → 0 as εk → 0. Now |vB−v| ≤
2 sup |v|, and for all x we have

|vB(x) − v(x)| ≤
∑

2Bi∋x

<
Bi

|v(y) − v(x)| dµ(y)

≤ C(Cd)
<

B(x,5εk)

|v(y) − v(x)| dµ(y),

whih onverges to 0 as εk → 0 by the ontinuity of v. The laim followsfrom the dominated onvergene theorem.Proof of Theorem 1.1. Let u ∈ A1,p
τ (Ω). For j ∈ N, let Bj be a (j−1, 5τ)-over (and hene also a (j−1, 2)-over) of Ω. Then, by Lemma 5.3(2), uj :=

uBj → u in Lp(Ω). Let us show that
lim sup

j→∞

‖Lipuj‖Lp(Ω) ≤ C(Cd, τ)‖u‖
A1,p

τ,0(Ω)
.By Lemma 5.3(1),

Lipuj ≤ C(Cd)
∑

B∈Bj

r−1
B

<
5B

|u − u5B| dµ χB.

We leave it to the reader to show that sine Bj is a (j−1, 5τ)-over and µ isdoubling, the over an be divided into k=C(Cd, τ) subfamilies Bj,1, . . . ,Bj,kso that eah of the families 5τBj,l onsists of disjoint balls. Sine the families
5Bj,1, . . . , 5Bj,k belong to Bτ,5j−1(Ω), we have
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‖Lipuj‖Lp(Ω) ≤ C(Cd)

k
∑

l=1

∥

∥

∥

∑

B∈Bj,l

r−1
B

<
5B

|u − u5B| dµ χB

∥

∥

∥

Lp(Ω)
(19)

≤ C(Cd, τ) sup
∥

∥

∥

∑

B∈B

r−1
B

<
B

|u − uB | dµ χB

∥

∥

∥

Lp(Ω)
,where the supremum is taken over balls B ∈ Bτ,5j−1(Ω). Sine lipu(x) ≤

Lipu(x), the above estimate for p = 1 implies that u ∈ BV(Ω), and that
‖Du‖(Ω) ≤ C(Cd, τ)‖u‖

A1,1
τ,0(Ω)

.If p > 1, then Lp(Ω) is re�exive. Thus the sequene (Lipuj) of uppergradients, whih by (19) is bounded in Lp(Ω), has a subsequene, also de-noted by (Lipuj), that onverges weakly to some g ∈ Lp(Ω). By [18, Lemma3.1℄, g is a p-weak upper gradient of a representative of u. The seond partof the theorem follows beause the weak limit g satis�es
‖g‖Lp(Ω) ≤ lim inf

j→∞
‖Lipuj‖Lp(Ω) ≤ C(Cd, τ)‖u‖

A1,p
τ,0(Ω)

.Proof of Corollary 1.3. Assume that X supports a (1, p)-Poinaré in-equality, 1 ≤ p < ∞. By the validity of a (1, p)-Poinaré inequality, X isonneted.If p = 1, then the laim follows from Theorem 1.1 and the Poinaréinequality (8) for BV-funtions.If 1 < p < ∞, then eah funtion of A1,p
τ (X) ∩ Lp(X) is in N1,p(X) byTheorem 1.1. The assumption that X supports the (1, p)-Poinaré inequalitygives the inlusion N1,p(X) ⊂ A1,p

τ (X) ∩ Lp(X).Let then 1 ≤ p < ∞, α > 1, and u ∈ Aα,p
τ (X). If p = 1, then the Poinaréinequality (8) for BV-funtions together with Corollary 1.2(1) shows that uis onstant in eah ball of X. For p > 1, we notie from Theorem 4.1 that

u ∈ Lp(B) for eah ball B. Then Corollary 1.2(2) and the (1, p)-Poinaréinequality imply that u|B is a onstant for eah ball B. In both ases above,the laim follows by the onnetedness of X. All onstant funtions aretrivially in Aα,p
τ (X).Proof of Corollary 1.4. For the �rst laim, let u ∈ A

1/p,p
τ (Ω), 0 < p < 1,and B ∈ Bτ,r(Ω). If there is a onstant M ≥ 0 suh that |u| ≤ M in Ω, then

∑

B∈B

(

r−1
B

<
B

|u − uB| dµ
)

µ(B) ≤ (2M)1−p
∑

B∈B

(

r
−1/p
B

<
B

|u − uB| dµ
)p

µ(B).If u is uniformly ontinuous, and ω is the modulus of ontinuity of u, then
∑

B∈B

(

r−1
B

<
B

|u − uB | dµ
)

µ(B) ≤ ω(2r)1−p
∑

B∈B

(

r
−1/p
B

<
B

|u − uB| dµ
)p

µ(B).By taking supremum over Bτ,r(Ω) and letting r tend to zero,we onlude
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A1,1

τ,0
(Ω) ≤ (2M)1−p‖u‖p

A
1/p,p
τ,0

(Ω) in the former, and ‖u‖
A1,1

τ,0
(Ω) = 0in the latter ase. In both ases, the laim follows from Theorem 1.1.Let then u ∈ Aα,p

τ (Ω), where α > 1/p. By the remark after Theorem 1.1,we know that ‖u‖
A

1/p,p
τ,0 (Ω)

= 0. For k ∈ N, de�ne uk = min{k, max{u,−k}}.Then eah uk is bounded and, by the �rst part of the proof,
‖uk‖A1,1

τ,0(Ω)
≤ Ck‖uk‖A

1/p,p
τ,0 (Ω)

≤ 2Ck‖u‖A
1/p,p
τ,0 (Ω)

= 0,whih implies that ‖u‖
A1,1

τ,0(Ω)
≤ lim infk→∞ ‖uk‖A1,1

τ,0(Ω)
= 0.

6. Examples. In our �rst example we exhibit a spae X that does notsupport any (1, q)-Poinaré inequality, but in whih every u ∈ N1,p(X) sat-is�es (6) with a ertain g ∈ Lp(X).6.1. Example. Let B1 and B2 be balls in R
n suh that d(B1, B2) > 0.Equip X = B1 ∪ B2 with the Eulidean metri of R

n, and let µ be therestrition of the Lebesgue measure to X. By onsidering the funtion u =
χB1

, whih has g ≡ 0 as a weak upper gradient, we see that X annot supportany (1, q)-Poinaré inequality.Let 1 ≤ p < ∞, and let u ∈ N1,p(X) with an upper gradient g ∈ Lp(X).We will show that the inequality(20) <
B

|u − uB| dµ ≤ CrB

( <
B

(g + |u|)p dµ
)1/p

holds for eah ball B ⊂ X.Fix a ball B ⊂ X. If B intersets only one of the balls B1, B2, then(20) holds by the equivalene N1,p(Ω) = W 1,p(Ω) for domains in R
n ([27,Theorem 4.5℄), and the usual (1, p)-Poinaré inequality. Assume that theintersetion of B with both B1 and B2 is nonempty. Then 2rB ≥ d(B1, B2),and by the Hölder inequality, we have<

B

|u − uB| dµ ≤ 2
<
B

|u| dµ ≤ 2
( <

B

|u|p dµ
)1/p

≤
4rB

d(B1, B2)

( <
B

|u|p dµ
)1/p

,whih is at most a onstant times the right-hand side of (20).In the next example, the spae A1,p
τ (X) is stritly larger than P 1,p

τ (X).6.2. Example. Let X = {x = (x1, x2) ∈ R
2 : |x1| ≤ |x2|} be equippedwith the Eulidean metri of R

2, and let µ be the restrition of the Lebesguemeasure to X. The funtion u = χX+
, where X+ = {x ∈ X : x1 ≥ 0},
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B

|u − uB| dµ ≤ Cr

(

ν(τB)

µ(B)

)1/2

with any measure ν absolutely ontinuous with respet to µ beause we have4
B |u − uB| dµ = 1/2 for eah ball B(0, r). However, the above inequalityholds with

ν(B) = δ0(B) =

{

1 if 0 ∈ B,
0 otherwise.Our �nal example shows that, given 0 < p < 1 and 1 ≤ α < 1/p, thereare Hölder-ontinuous nononstant funtions in Mα,p([0, 1]).6.3. Example. Fix 0 < p < 1 and 1 ≤ α < 1/p. Let 0 < s < 1 and let

C ⊂ [0, 1] be the standard Cantor set with Hs(C) = 1 (see for example [24,p. 60℄). Then the Cantor funtion u(x) = Hs(C∩ [0, x]) is Hölder-ontinuouswith exponent s. A alulation shows that
|u(x) − u(y)| ≤ d(x, y)s ≤ d(x, y)α(d(x, C)s−α + d(y, C)s−α)for all x, y ∈ [0, 1], and that g(x) = d(x, C)s−α is in Lp([0, 1]) provided

0 < s < (1 − αp)/(1 − p).Aknowledgments. We wish to thank the referee for valuable om-ments.
Referenes[1℄ L. Ambrosio, Some �ne properties of sets of �nite perimeter in Ahlfors regular metrimeasure spaes, Adv. Math. 159 (2001), 51�67.[2℄ M. Bourdon et H. Pajot, Cohomologie lp et espaes de Besov, J. Reine Angew. Math.558 (2003), 85�108.[3℄ J. Bourgain, H. Brezis and P. Mironesu, Another look at Sobolev spaes, in: OptimalControl and Partial Di�erential Equations, in honour of Professor A. Bensoussan's60th birthday, J. L. Menaldi et al. (eds.), IOS Press, Amsterdam, 2001, 439�455.[4℄ H. Brezis, How to reognize onstant funtions. A onnetion with Sobolev spaes,Uspekhi Mat. Nauk 57 (2002), no. 4, 59�74 (in Russian); English transl.: RussianMath. Surveys 57 (2002), 693�708.[5℄ J. Cheeger, Di�erentiability of Lipshitz funtions on metri measure spaes, Geom.Funt. Anal. 9 (1999), 428�517.[6℄ R. R. Coifman et G. Weiss, Analyse harmonique non-ommutative sur ertains es-paes homogènes, Leture Notes in Math. 242, Springer, Berlin, 1971.[7℄ B. Franhi, P. Hajªasz and P. Koskela, De�nitions of Sobolev lasses on metrispaes, Ann. Inst. Fourier (Grenoble) 49 (1999), 1903�1924.[8℄ B. Franhi, C. Pérez and R. L. Wheeden, Self-improving properties of John�Niren-berg and Poinaré inequalities on spaes of homogeneous type, J. Funt. Anal. 153(1998), 108�146.[9℄ �, �, �, A sum operator with appliations to self-improving properties of Poinaréinequalities in metri spaes, J. Fourier Anal. Appl. 9 (2003), 511�540.



16 T. Heikkinen et al.[10℄ P. Hajªasz, Sobolev spaes on an arbitrary metri spae, Potential Anal. 5 (1996),403�415.[11℄ �, Sobolev spaes on metri-measure spaes, in: Heat Kernels and Analysis on Man-ifolds, Graphs, and Metri Spaes (Paris, 2002), Contemp. Math. 338, Amer. Math.So. Providene, RI, 2003, 173�218.[12℄ �, A new haraterization of the Sobolev spae, Studia Math. 159 (2003), 263�275.[13℄ P. Hajªasz and J. Kinnunen, Hölder quasiontinuity of Sobolev funtions on metrispaes, Rev. Mat. Iberoameriana 14 (1998), 601�622.[14℄ P. Hajªasz and P. Koskela, Sobolev meets Poinaré, C. R. Aad. Si. Paris Sér. IMath. 320 (1995), 1211�1215.[15℄ �, �, Sobolev met Poinaré, Mem. Amer. Math. So. 145 (2000), no. 688.[16℄ J. Heinonen, Letures on Analysis on Metri Spaes, Universitext, Springer, NewYork, 2001.[17℄ J. Heinonen and P. Koskela, Quasionformal maps on metri spaes with ontrolledgeometry, Ata Math. 181 (1998), 1�61.[18℄ S. Kallunki and N. Shanmugalingam,Modulus and ontinuous apaity, Ann. Aad.Si. Fenn. Math. 26 (2001), 455�464.[19℄ P. Koskela and P. MaManus, Quasionformal mappings and Sobolev spaes, StudiaMath. 131 (1998), 1�17.[20℄ A. Kufner, O. John and S. Fu£ík, Funtion Spaes, Noordho�, Leyden, and Aad-emia, Praha, 1977.[21℄ P. MaManus and C. Pérez, Generalized Poinaré inequalities: sharp self-improvingproperties, Int. Math. Res. Not. 1998, no. 2, 101�116.[22℄ �, �, Trudinger inequalities without derivatives, Trans. Amer. Math. So. 354(2002), 1997�2012.[23℄ R. A. Maías and C. Segovia, A deomposition into atoms of distributions on spaesof homogeneous type, Adv. Math. 33 (1979), 271�309.[24℄ P. Mattila, Geometry of Sets and Measures in Eulidean Spaes. Fratals and Re-ti�ability, Cambridge Stud. Adv. Math. 44, Cambridge Univ. Press, Cambridge,1995.[25℄ M. Miranda, Jr., Funtions of bounded variation on �good� metri spaes, J. Math.Pures Appl. (9) 82 (2003), 975�1004.[26℄ M. M. Rao and Z. D. Ren, Theory of Orliz Spaes, Monogr. Textbooks Pure Appl.Math. 146, Dekker, New York, 1991.[27℄ N. Shanmugalingam, Newtonian spaes: An extension of Sobolev spaes to metrimeasure spaes, Rev. Mat. Iberoameriana 16 (2000), 243�279.Department of Mathematis and StatistisP.O. Box 35FI-40014 University of Jyväskylä, FinlandE-mail: toheikki�maths.jyu.�pkoskela�maths.jyu.�tuheli�maths.jyu.� Reeived September 2, 2005Revised version Marh 22, 2007 (5740)


