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Fra
tional Langevin equation with α-stable noise.A link to fra
tional ARIMA time seriesbyM. Magdziarz and A. Weron (Wro
ªaw)Abstra
t. We introdu
e a fra
tional Langevin equation with α-stable noise and showthat its solution {Yκ(t), t ≥ 0} is the stationary α-stable Ornstein�Uhlenbe
k-type pro
essre
ently studied by Taqqu and Wolpert. We examine the asymptoti
 dependen
e stru
tureof Yκ(t) via the measure of its 
odependen
e r(θ1, θ2, t). We prove that Yκ(t) is not a long-memory pro
ess in the sense of r(θ1, θ2, t). However, we �nd two natural 
ontinuous-timeanalogues of fra
tional ARIMA time series with long memory in the framework of theLangevin equation.1. Introdu
tion. In re
ent years the 
on
ept of fra
tional di�erenti-ation and integration has aroused a wide interest in diverse s
ienti�
 dis-
iplines. Appli
ations of the fra
tional 
al
ulus en
ompass many di�erent�elds, in
luding sto
hasti
 pro
esses, where the fra
tional di�erential equa-tions turned out to be a very useful tool to derive pro
esses with manydesired properties [1, 2, 4℄.In what follows, we employ the te
hniques 
oming from the fra
tional 
al-
ulus to obtain in an elegant way the fra
tional Ornstein�Uhlenbe
k (O-U)
α-stable pro
ess, introdu
ed in the re
ent paper by M. S. Taqqu and R. L.Wolpert [16, Se
. 4.2.2℄. They de�ne the fra
tional O-U α-stable pro
ess inthe following way: For 0 < α ≤ 2 let Lα(t) be the standard α-stable Lévymotion [5, 15℄. For t ≥ 0 and λ > 0 
onstru
t a series of pro
esses indexedby κ via the re
ursive re
ipe: Y1(t) :=

√
2λ
Tt
−∞ e−λ(t−s) Lα(ds), Y2(t) :=Tt

−∞ λe−λ(t−s)Y1(s) ds and, in general, Yκ(t) :=
Tt
−∞ λe−λ(t−s)Yκ−1(s) ds,whi
h by the Fubini theorem for sto
hasti
 integrals (see [16℄ for a detaileddis
ussion) gives

Yκ(t) =

√
2λλκ−1

Γ (κ)

t\
−∞

(t − s)κ−1e−λ(t−s) Lα(ds).(1)
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48 M. Magdziarz and A. WeronFor arbitrary positive κ su
h that κ > 1 − 1/α, equation (1) is taken in [16℄as the de�nition of the fra
tional O-U α-stable pro
ess. Note that for κ = 1we get the standard α-stable O-U pro
ess [5, 15℄.In Se
tion 2 we show that the pro
ess (1) 
an be obtained as the solutionof the so-
alled fra
tional Langevin equation with α-stable noise. Next, inSe
tion 3, we investigate its asymptoti
 behavior by means of the measureof 
odependen
e de�ned for a stationary pro
ess Y (t) as
r(θ1, θ2, t) = E[exp{i(θ1Y (t) + θ2Y (0))}](2)

− E[exp{iθ1Y (t)}]E[exp{iθ2Y (0)}], θ1, θ2 ∈ R.The fun
tion r(θ1, θ2, t) has been shown to be the proper tool for des
ribingthe dependen
e stru
ture of α-stable pro
esses [5�7, 9, 10, 15℄. The asymp-toti
 properties of log-fra
tional stable noise in terms of r(θ1, θ2, t) were alsoinvestigated in the re
ent paper [8℄. We employ the following de�nition [9℄ oflong-range dependen
e for α-stable pro
esses: An α-stable stationary pro
ess
Y (t) is said to have long memory if its 
odependen
e r(θ1, θ2, t) satis�es

∞
∑

n=0

|r(θ1, θ2, n)| = ∞.(3)Sin
e for α-stable moving average pro
esses the fun
tion r(1,−1, t) and the
odi�eren
e
τ(t) = lnE exp{i(Y (t) − Y (0))} − lnE exp{iY (t)} − lnE exp{−iY (0)}are asymptoti
ally equal as t → ∞, one 
an also use τ(t) instead of r(θ1, θ2, t)in (3) to 
hara
terize long memory of Y (t) (see [7℄).The terms �long memory�, �strong dependen
e� and �long-range depen-den
e� are used inter
hangeably in the literature [3, 4℄. They refer to phe-nomena in whi
h the events that are arbitrarily distant still in�uen
e ea
hother ex
eptionally strongly.In Se
tion 3 (Theorem 1) we give a negative answer to the question: doespro
ess (1) have the long-memory property in the sense of (3)? Our results
omplete the re
ent ones presented in [9℄ and [10℄, where the authors examinethe dependen
e stru
ture and the long-memory property of stationary pro-
esses whi
h are generalizations of the 
lassi
al α-stable Ornstein�Uhlenbe
kpro
ess.Two di�erent pro
esses with long memory has long been known: fra
-tional Brownian motion (A. N. Kolmogorov 1940) and fra
tional ARIMA(FARIMA) time series (C. W. J. Granger and R. Joyeux 1980); see [3, 4℄and referen
es therein. In Se
tion 4 we investigate the relationship betweenthese two models. The main �nding is a 
onstru
tion of a 
ontinuous-timeanalogue of FARIMA time series in the framework of Langevin-type equa-tions. We prove in Theorem 2 that the 
onstru
ted pro
ess, similarly toFARIMA, displays long-range dependen
e.



Fra
tional Langevin equation 492. Fra
tional Langevin equation. Let us �rst re
all the de�nitionof the Bessel fra
tional derivative. Samko et al. [14℄ introdu
e the modi�edBessel operator as
Gα

λf(t) =
1

Γ (α)

t\
−∞

(t − s)α−1e−λ(t−s)f(s) ds.(4)Here, f ∈ Lp(R, ds), 1 ≤ p ≤ ∞. The Bessel fra
tional derivative is nowintrodu
ed [14℄ as the operator inverse to Gα
λ on Lp(R, ds), 1 ≤ p ≤ ∞,

(

λI +
d

dt

)α

f := (Gα
λ)−1f,where I is the identity operator.From the de�nition (4) we dedu
e that the fra
tional O-U α-stable pro-
ess (1) is equal (up to a 
onstant) to the modi�ed Bessel operator of the

α-stable noise lα(t). Re
all [2℄ that lα(t) has α-stable marginal distributions,its probability distribution is translation invariant and lα(s) and lα(t) areindependent for s 6= t. Formally, lα(s)ds = dLα(s), where Lα(s) is the stan-dard α-stable Lévy motion. We have
Gκ

λlα(t) =
1

Γ (κ)

t\
−∞

(t − s)κ−1e−λ(t−s)lα(s) ds.Heuristi
ally, putting the Bessel fra
tional derivative on both sides of theabove equation, we get
(

λI +
d

dt

)κ

Y (t) = lα(t),(5)where λ, κ > 0 and
Y (t) =

1

Γ (κ)

t\
−∞

(t − s)κ−1e−λ(t−s) Lα(ds), t ≥ 0.(6)We 
all equation (5) the fra
tional Langevin equation and interpret the abovepro
ess Y (t) as its solution. Note that for κ = 1, equation (5) be
omes thestandard α-stable Langevin equation and its stationary solution is the O-Upro
ess.Con
luding the above 
onsiderations, the solution of the fra
tionalLangevin equation (5) is equal (up to a 
onstant) to the fra
tional O-U
α-stable pro
ess (1). Thus, the standard te
hniques developed in fra
tional
al
ulus allow us to obtain the sto
hasti
 pro
ess Yκ(t) in an elegant and
oherent way. It should be noted that it is possible to 
onsider a more gen-eral situation, when the α-stable noise lα(t) in the Langevin equation (5) isrepla
ed by the Lévy noise (see [2℄). In this 
ase exa
tly the same pro
edureleads to a wide 
lass of fra
tional O-U Lévy pro
esses dis
ussed in [16℄.



50 M. Magdziarz and A. WeronIn the Gaussian 
ase, when α = 2, Y (t) is evidently a stationary 
enteredpro
ess with normal marginal distributions and 
ovarian
e fun
tion given for
t ≥ 0 by

c(t) = E[Y (t)Y (0)]

=
1

(Γ (κ))2

0\
−∞

(|t| − s)κ−1e−λ(|t|−s)(−s)κ−1eλs ds

=
1

Γ (κ)
√

π (2λ)κ−1/2
|t|κ−1/2Kκ−1/2(λ|t|),where Kv(t) is the modi�ed Bessel fun
tion of the se
ond kind (see [14℄).Sin
e Kv(t) de
ays exponentially fast, we dedu
e that in this parti
ular 
asethe pro
ess (6) (and equivalently (1)) does not have long memory. In thenext se
tion we examine the long-memory property for all 0 < α < 2.3. Asymptoti
 dependen
e stru
ture. In the next theorem we givepre
ise formulas for the asymptoti
 behavior of the 
odependen
e r(θ1, θ2, t)of the fra
tional O-U α-stable pro
ess (1). We ex
lude the 
ase θ1θ2 = 0,sin
e then we have r(θ1, θ2, t) = 0.Theorem 1. Let 0 < α < 2, λ > 0, κ > 0 and κ > 1 − 1/α. Then the
odependen
e r(θ1, θ2, t) of Yκ(t) satis�es :(a) if 0 < α < 1, then

r(θ1, θ2, t) ∼ cα(λ, κ)Cα(θ1, θ2)|θ1|α
1

λα
tα(κ−1)e−λαt,(b) if α = 1 and θ1θ2 > 0, then r(θ1, θ2, t) = 0,(
) if α = 1 and θ1θ2 < 0, then

r(θ1, θ2, t) ∼ 2c1(λ, κ)C1(θ1, θ2)|θ1|
1

λ
tκ−1e−λt,(d) if 1 < α < 2, then

r(θ1, θ2, t) ∼ cα(λ, κ)dα(λ, κ)Cα(θ1, θ2)θ1
|θ2|α
θ2

tκ−1e−λtas t → ∞. Here
cα(λ, κ) =

(

√
2λ λκ−1

Γ (κ)

)α

,(7)
Cα(θ1, θ2) = exp

{

−cα(λ, κ)(|θ1|α + |θ2|α)
Γ (1 + α(κ − 1))

(λα)1+α(κ−1)

}

,(8)
dα(λ, κ) = −α

Γ ((κ − 1)(α − 1) + 1)

(λα)(κ−1)(α−1)+1
.



Fra
tional Langevin equation 51Consequently , the fra
tional O-U α-stable pro
ess Yκ(t) does not have thelong-memory property in the sense of (3).Proof. Put
I(θ1, θ2, t) := − lnE[exp{i(θ1Yκ(t) + θ2Yκ(0))}]

+ lnE[exp{iθ1Yκ(t)}] + lnE[exp{iθ2Yκ(0)}].Note that for a symmetri
 α-stable pro
ess the measure −I(1,−1, t) is equalto the 
odi�eren
e τ(t). We have r(θ1, θ2, t) = Cα(θ1, θ2)(e
−I(θ1,θ2,t)−1) with

Cα(θ1, θ2) = E[exp{iθ1Yκ(t)}]E[exp{iθ2Yκ(0)}]

= exp

{

− cα(λ, κ)(|θ1|α + |θ2|α)
Γ (1 + α(κ − 1))

(λα)1+α(κ−1)

}

,where in the last equality we used the following formula [15, p. 122℄:
E

[

exp
{

iθ
\
R

f(x) Lα(dx)
}]

= exp
{

−|θ|α
\
R

|f(x)|α dx
}(9)with f ∈ Lα(R, dx). Thus, if I(θ1, θ2, t) → 0 as t → ∞ then

r(θ1, θ2, t) ∼ −Cα(θ1, θ2)I(θ1, θ2, t),(10)whi
h indi
ates that r(·) and I(·) are asymptoti
ally equal. Re
all that f(t) ∼
g(t) if and only if f(t)/g(t) → 1 as t → ∞.Equation (9) and some standard 
al
ulations yield

I(θ1, θ2, t) = cα(λ, κ)
(

∞\
0

I1(t, s) ds +

∞\
0

I2(t, s) ds
)

,(11)where
I1(t, s) = −|θ1|α(t + s)α(κ−1)e−λα(t+s),

I2(t, s) = |θ1(t + s)κ−1e−λ(t+s) + θ2s
κ−1e−λs|α − |θ2|αsα(κ−1)e−λαsand cα(λ, κ) is given by (7).(a) For every s ∈ (0,∞) we get

eλαtt−α(κ−1)I1(t, s) → −|θ1|αe−λαs as t → ∞(12)and
sup
t>1

|eλαtt−α(κ−1)I1(t, s)|

≤
{

|θ1|αe−λαs if −1 < α(κ − 1) ≤ 0,

|θ1|α(1 + s)α(κ−1)e−λαs if α(κ − 1) > 0,whi
h belongs to L1((0,∞), ds). Thus from the dominated 
onvergen
e



52 M. Magdziarz and A. Werontheorem,
∞\
0

I1(t, s) ds ∼ −|θ1|αe−λαttα(κ−1)
∞\
0

e−λαs ds = −|θ1|αe−λαttα(κ−1) 1

λα
(13)as t → ∞. Further, for every s ∈ (0,∞), eλαtt−α(κ−1)I2(t, s) → 0 as t → ∞,and sin
e | |a|α − |b|α| ≤ |a − b|α for α ∈ (0, 1], a, b ∈ R, we have |I2(t, s)| ≤
|I1(t, s)|, and 
onsequently

eλαtt−α(κ−1)
∞\
0

I2(t, s) ds → 0 as t → ∞.(14)Finally, from (13) and (14) we 
on
lude
I(θ1, θ2, t) ∼ −cα(λ, κ)|θ1|α

1

λα
tα(κ−1)e−λαt as t → ∞(b) Equation (11) for α = 1 and θ1θ2 > 0 gives I1(t, s) + I2(t, s) = 0and therefore r(θ1, θ2, t) = 0.(
) For α = 1 and θ1θ2 < 0 we have, for every s ∈ (0,∞),

eλtt−(κ−1) (I1(t, s) + I2(t, s)) → −2|θ1|e−λs as t → ∞and we show in a similar manner as in part (a) that
I(θ1, θ2, t) ∼ −2c1(λ, κ)|θ1|

1

λ
tκ−1e−λt as t → ∞.(d) Re
all the de
omposition (11). For 1 < α < 2 and every s ∈ (0,∞)we get eλtt−(κ−1)I1(t, s) → 0 as t → ∞ and sin
e

sup
t>1

|eλtt−(κ−1)I1(t, s)| ≤ c1|θ1|αe−λs(c1 is a 
onstant depending only on α, λ and κ), the dominated 
onvergen
etheorem yields
eλtt−(κ−1)

∞\
0

I1(t, s) ds → 0 as t → ∞.Furthermore, for s ∈ (0,∞),
eλtt−(κ−1)I2(t, s) → αθ1

|θ2|α
θ2

e−λαss(κ−1)(α−1) as t → ∞.Taking advantage of the inequalities (see [10℄): | |a− b|α− bα| ≤ aα +αabα−1and | |a+ b|α− bα| ≤ aα +αabα−1, valid for a, b ≥ 0 and α ∈ (1, 2], we obtain
sup
t>1

|eλtt−(κ−1)I2(t, s)|

≤
{

c1|θ1|αe−λs + α|θ1| |θ2|α−1e−λαss(κ−1)(α−1) if κ − 1 ≤ 0,

c2|θ1|αe−λs + α|θ1| |θ2|α−1e−λαss(κ−1)(α−1)(1 + s)κ−1 if κ − 1 > 0,



Fra
tional Langevin equation 53whi
h belongs to L1((0,∞), ds). Thus, the dominated 
onvergen
e theoremyields
eλtt−(κ−1)

∞\
0

I2(t, s) ds → αθ1
|θ2|α
θ2

∞\
0

e−λαss(κ−1)(α−1) ds as t → ∞.Sin
e
∞\
0

e−λαss(κ−1)(α−1) ds =
Γ ((κ − 1)(α − 1) + 1)

(λα)(κ−1)(α−1)+1we obtain
I(θ1, θ2, t) ∼ −cα(λ, κ)dα(λ, κ)θ1

|θ2|α
θ2

tκ−1e−λt as t → ∞,and the proof is 
omplete.The above result shows that the la
k of long memory observed in theGaussian 
ase (α = 2) also o

urs in the more general stable 
ase for all α ∈
(0, 2). A similar relationship 
an be found in other 
ited works [9, 10℄, whi
hsuggests that the long-memory property for the stationary α-stable pro
esseswith integral representation Y (t) =

T
R

f(t, s) Lα(ds) is determined only bythe kernel fun
tion f . The kernel 
an be represented expli
itly by meansof the tools used in ergodi
 theory [12, 13℄. An interesting open problem isto 
hara
terize the long-range dependen
e property of the pro
ess Y (t) interms of its kernel.4. Relationship with FARIMA models. The FARIMA (fra
tionalautoregressive integrated moving average) dis
rete time pro
esses havefound widespread a

eptan
e as mathemati
al models for various empiri-
al time series with long memory ([3, 4℄ and referen
es therein). We beginby re
alling the de�nition.Let B be the shift operator de�ned by BX(t) = X(t − 1) and ∆ bethe di�eren
e operator, i.e. ∆X(t) = X(t) − X(t − 1) = (I − B)X(t). TheFARIMA model is a generalization of the 
lassi
al ARIMA(p, κ, q) pro
ess
Φ(B)∆κX(t) = Θ(B)εt, t ∈ N.Here Φ and Θ are polynomials of degree p and q respe
tively, εn are assumedto be i.i.d. symmetri
 α-stable random variables, and κ is a non-negativeinteger. Now, for FARIMA(p, κ, q) the parameter κ is allowed to take alsofra
tional values, either positive or negative. To avoid unne
essary 
ompli
a-tions, in our further dis
ussion we set p = q = 0. Then the FARIMA(0, κ, 0)model is the solution of

∆κX(t) = εt.(15)



54 M. Magdziarz and A. WeronConsequently, X(t) = ∆−κεt, where the operator ∆−κ = (1 − B)−κ for thefra
tional parameter κ is formally interpreted via the Taylor expansion ofthe fun
tion (1 − z)−κ =
∑∞

j=0 bj(−κ)zj. The 
oe�
ients in the series are
bj(−κ) =

Γ (j + κ)

Γ (κ)Γ (j + 1)
.(16)Thus, the formal de�nition of a FARIMA(0, κ, 0) pro
ess is

X(t) = ∆−κεt = (1 − B)−κεt =
∞
∑

j=0

bj(−κ)εt−j, t ∈ N.(17)
X(t) is a stationary moving average pro
ess and a ne
essary 
ondition forthe series (17) to 
onverge a.s. is −∞ < κ < 1 − 1/α. In the Gaussian
ase, i.e. when α = 2, the rate of de
ay of the 
ovarian
e fun
tion Cov(t) :=
E[X(t)X(0)]−E[X(t)]E[X(0)] for the FARIMA model is t2κ−1, whi
h showsthat for κ ≥ 0 we have ∑∞

n=0 |Cov(n)| = ∞ and X(t) is a pro
ess with long-range dependen
e. For α < 2 the 
ovarian
e does not exist and one has toemploy other measures of dependen
e, appropriate for sto
hasti
 pro
esseswith in�nite se
ond moment. In [6℄ the authors determine the asymptoti
behavior of the 
odi�eren
e τ(t) for FARIMA(p, κ, q). In parti
ular, theyprove that if X(t) is a FARIMA(0, κ, 0) pro
ess with symmetri
 α-stableinnovations, 0 < α ≤ 2 and κ is not an integer, then the following two 
ases
an hold. If either (i) α ≤ 1 or (ii) α > 1 and (α − 1)(κ − 1) > −1, then
lim
t→∞

τ(t)

tα(κ−1)+1
=

1

[Γ (κ)]α

∞\
0

g(x)dx,where
g(x) = x(κ−1)α + (1 + x)(κ−1)α − (xκ−1 − (1 + x)κ−1)α.If α > 1 and (α − 1)(κ − 1) < −1, then

lim
t→∞

τ(t)

tκ−1
=

α

Γ (κ)

∞
∑

j=0

bj(−κ)〈α−1〉,

where 〈z〉 = |z| sign(z). As a 
onsequen
e, for κ > 1−2/α a FARIMA(0, κ, 0)pro
ess has long memory in the sense of (3).The question arises whether one 
an �nd a stationary α-stable pro
esswith 
ontinuous time t, whi
h 
ould be regarded as an appropriate 
oun-terpart of FARIMA(0, κ, 0) in the sense of the dependen
e stru
ture. Wepropose the following 
ontinuous-time pro
ess:
Z1(t) :=

1

Γ (κ)

t\
−∞

(t − s)κ−1 Lα(ds), t ∈ R+,(18)



Fra
tional Langevin equation 55as a 
ounterpart of FARIMA. To justify this 
hoi
e, �rst note that fromStirling's formula for the Gamma fun
tion, Γ (z) ∼ e−zzz−1/2
√

2π as z → ∞,we get the asymptoti
 behavior of the 
oe�
ients (16),
bj(−κ) =

Γ (j + κ)

Γ (κ)Γ (j + 1)
∼ jκ−1

Γ (κ)
as j → ∞.Therefore, the FARIMA pro
ess (17) 
an be 
onsidered as an approximatesum for a sto
hasti
 integral,

X(t) =

∞
∑

j=0

bj(−κ)εt−j =

t
∑

j=−∞

bt−j(−κ)εj

=

t
∑

j=−∞

j\
j−1

bt−j(−κ)1(j−1,j](s) Lα(ds)

≈ 1

Γ (κ)

t\
−∞

(t − s)κ−1 Lα(ds) = Z1(t).

On the other hand, the FARIMA equation (15) 
an be repla
ed by its
ontinuous-time 
ounterpart, namely
dκ

dtκ
Z1(t) = lα(t), t ∈ R+,(19)where the di�eren
e operator ∆ is repla
ed by the fra
tional derivative op-erator dκ/dtκ (see [14℄), and the sequen
e of i.i.d. variables εt is repla
edby the α-stable Lévy noise lα(t). Here, the fra
tional derivative dκ/dtκ isde�ned as the inverse to the integral operator

Iκf(t) =
1

Γ (κ)

t\
−∞

(t − s)κ−1f(s) ds, κ > 0.

Therefore, the pro
essZ1(t) 
an be interpreted as the solution of the FARIMA-type equation (19).The main problem in the 
ase under 
onsideration is that the kernelfun
tion in representation (18) does not belong to Lα(R, ds), and thereforethe integral is divergent. The �rst method of avoiding this di�
ulty is torepla
e (19) by the fra
tional Langevin equation (5) introdu
ed in Se
tion 2and let λ ց 0. However, the solution of (5) is well de�ned only for κ >
1 − 1/α. Let us remind the reader that for FARIMA pro
esses exa
tly theopposite 
ondition for κ is required, whi
h undoubtedly 
auses di�
ultieswhile 
omparing the properties of the solution of (5) and FARIMA. Below,we present two di�erent ways to get rid of the divergen
e of the integralin (18).



56 M. Magdziarz and A. Weron4.1. Linear fra
tional stable noise. The �rst idea is to introdu
e an in-
rement pro
ess of Z1(t). We de�ne formally
Z2(t) := Z1(t + 1) − Z1(t)(20)

=
1

Γ (κ)

\
R

[(t + 1 − s)κ−1
+ − (t − s)κ−1

+ ] Lα(ds),where a+ = max{a, 0}. Now, we see that for κ ∈ (1−1/α, 2−1/α) the kernelfun
tion in (20) is α-integrable, sin
e it behaves like sκ−1 as s → 0 and like
sκ−2 as s → ∞. Let us emphasize that Z2(t) should be 
onsidered as an�approximation� of the in
rements of the FARIMA(0, κ, 0) model, and notas the pro
ess related dire
tly to FARIMA. Putting κ− 1 = H − 1/α we seethat Z2(t) is a version of the well-known linear fra
tional stable noise lα,H(t)(see [5, 15℄). The pro
ess lα,H(t) is a 
lassi
al example of a long-memory
α-stable pro
ess. It is de�ned as the in
rement pro
ess of the H-self-similarlinear fra
tional stable motion Lα,H(t) (i.e. lα,H(t) = Lα,H(t+1)−Lα,H(t)).Therefore, the pro
ess Z2(t), whi
h is regarded as an �approximation� of thein
rements of FARIMA(0, κ, 0), is a version of lα,H(t). Thus, as a by-produ
tof our 
onsiderations, we obtain a link between two signi�
ant long-memorypro
esses, namely the linear fra
tional stable noise 
an be 
onsidered asan �approximation� of the in
rements of FARIMA, whi
h 
on�rms that inboth models the property of long-range dependen
e has the same origin.Additionally, the relationship between the parameters of Z2(t) and lα,H(t)is κ − 1 = H − 1/α. The importan
e of this relationship for H-self-similarmodels driven by α-stable noise in physi
s and related areas has long beenknown [11, 17℄.4.2. Continuous-time FARIMA equation. The se
ond possibility is toperturb the solution Z1(t) of the FARIMA-type equation (19) in order toget rid of the possible divergen
e of the integral at the origin. Note thatin the �rst 
ase 
onsidered, appli
ation of the fra
tional Langevin equationallowed us to avoid divergen
e of the integral at ∞. For ε > 0 and t ≥ 0 wede�ne

Z3(t) :=
1

Γ (κ)

t\
−∞

(t − s + ε)κ−1 Lα(ds).(21)
Z3(t) is a stationary moving average pro
ess. It is well de�ned for κ < 1−1/α,whi
h, in 
ontrast with the �rst two 
ases studied, agrees exa
tly with thepermissible range of the parameter κ for FARIMA. Sin
e the behavior ofthe 
odi�eren
e τ(t) for FARIMA is well known (see [6℄ and the beginningof Se
tion 4), to 
ompare the dependen
e stru
ture of FARIMA and Z3(t),we determine in the next theorem the asymptoti
s of the 
odi�eren
e 
orre-sponding to Z3(t).
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tional Langevin equation 57Theorem 2. Let 0 < α ≤ 2 and −∞ < κ < 1 − 1/α. Then the 
odi�er-en
e τ(t) of Z3(t) satis�es :(a) If either (i) α ≤ 1 or (ii) α > 1 and (α − 1)(κ − 1) > −1, then
lim
t→∞

τ(t)

tα(κ−1)+1
=

1

[Γ (κ)]α

∞\
0

g(x) dx,where
g(x) = x(κ−1)α + (1 + x)(κ−1)α − (xκ−1 − (1 + x)κ−1)α.(b) If α > 1 and (α − 1)(κ − 1) < −1, then

lim
t→∞

τ(t)

tκ−1
=

α

Γ (κ)

∞\
0

h(x) dx,where
h(x) =

(x + ε)(κ−1)(α−1)

[Γ (κ)]α−1
.Consequently , for κ > 1 − 2/α the pro
ess Z3(t) has long memory in thesense of (3).Proof. (a) Sin
e

τ(t) = lnE[exp{i(Z3(t) − Z3(0))}]
− lnE[exp{iZ3(t)}] − lnE[exp{−iZ3(0)},formula (9) and some standard 
al
ulations give

(22) τ(t) =
1

[Γ (κ)]α

∞\
0

[(x + ε)(κ−1)α + (t + x + ε)(κ−1)α

− ((x + ε)κ−1 − (t + x + ε)κ−1)α] dx.After the 
hange of variables x 7→ tx we get
τ(t) =

tα(κ−1)+1

[Γ (κ)]α

∞\
0

[|at(x)|α + |bt(x)|α − |at(x) − bt(x)|α] dx,where at(x) = (x + ε/t)κ−1 and bt(x) = (1 + x + ε/t)κ−1. Thus for �xed
x ∈ (0,∞) we have

at(x) → xκ−1 and bt(x) → (1 + x)κ−1 as t → ∞.To apply the dominated 
onvergen
e theorem, we need the following inequal-ity (see [9℄): for r, s ∈ R,
| |r + s|α − |r|α − |s|α| ≤

{

2|r|α if 0 < α ≤ 1,

(α + 1)|r|α + α|r||s|α−1 if 1 < α ≤ 2.
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sup
t>1

| |at(x)|α + |bt(x)|α − |at(x) − bt(x)|α|

≤
{

2|1 + x|α(κ−1) if 0 < α ≤ 1,

(α + 1)|1 + x|α(κ−1) + α|1 + x|κ−1|x|(α−1)(κ−1) if 1 < α ≤ 2,whi
h in both 
ases belongs to L1((0,∞), ds) (note that in the se
ond 
asewe assumed (α−1)(κ−1) > −1). Thus the dominated 
onvergen
e theoremyields
lim
t→∞

τ(t)

tα(κ−1)+1
=

1

[Γ (κ)]α

∞\
0

g(x) dx,

where g(x) = x(κ−1)α + (1 + x)(κ−1)α − (xκ−1 − (1 + x)κ−1)α.(b) From (22) we get
τ(t) =

1

[Γ (κ)]α

∞\
0

[(p(x))α + (qt(x))α − (p(x) − qt(x))α] dx,

where p(x) = (x + ε)κ−1 and qt(x) = (t + x + ε)κ−1. Note that for �xed
x ∈ (0,∞) we have qt(x) ∼ tκ−1 as t → ∞. From the mean-value theorem,

f(r + s) − f(r) = s

1\
0

f ′(r + us) du,where f is an appropriately smooth fun
tion, we obtain
[p(x)]α − [p(x) − qt(x)]α = αqt(x)

1\
0

[p(x) − uqt(x)]α−1 du,

and 
onsequently [p(x)]α − [p(x) − qt(x)]α ∼ αtκ−1[p(x)]α−1 as t → ∞.Moreover, [qt(x)]α/tκ−1 → 0 as t → 0, sin
e α > 1. Thus for �xed x ∈ (0,∞)we have
[p(x)]α + [qt(x)]α − [p(x) − qt(x)]α

tκ−1
→ α[p(x)]α−1 = α(x + ε)(α−1)(κ−1)as t → ∞. To apply the dominated 
onvergen
e theorem, we need the fol-lowing inequality: for r, s > 0 and α ∈ (1, 2],

rα + sα − |r − s|α ≤ (α + 1)rsα−1.(23)To prove (23), we 
onsider two 
ases. First, let r ≥ s. De�ne fs(r) := rα +
sα − |r − s|α − (α + 1)rsα−1. We have to show that fs(r) ≤ 0. We have
fs(0) = 0 and

f ′
s(r) = αrα−1 − α(r − s)α−1 − (α + 1)sα−1 ≤ αsα−1 − (α + 1)sα−1 ≤ 0.
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tional Langevin equation 59Thus fs(r) ≤ 0. Let now r < s. Using the mean-value theorem we get
rα + sα − (s − r)α ≤ rsα−1 + αr

1\
0

[(s − r) + ru]α−1 du

≤ rsα−1 + αrsα−1 = (α + 1)rsα−1,whi
h proves (23).Now, using the above result we obtain
sup
t>1

|[p(x)]α + [qt(x)]α − [p(x) − qt(x)]|α
tκ−1

≤ sup
t>1

(α + 1)qt(x)[p(x)]α−1

tκ−1

≤ (α + 1)[p(x)]α−1 = (α + 1)(x + ε)(α−1)(κ−1),whi
h for (α − 1)(κ − 1) < −1 belongs to L1((0,∞), ds). Finally, the domi-nated 
onvergen
e theorem yields
lim
t→∞

τ(t)

tκ−1
=

α

Γ (κ)

∞\
0

h(x) dx,

where
h(x) =

(x + ε)(κ−1)(α−1)

[Γ (κ)]α−1
.

To show that for κ > 1 − 2/α the pro
ess Z3(t) has long memory inthe sense of (3), it is enough to observe that the 
ondition κ > 1 − 2/α isequivalent to α(κ − 1) + 1 > −1. Therefore, for α ≤ 1 we have ∑∞
t=0 |τ(t)|

= ∞. For α ∈ (1, 2], κ > 1 − 2/α implies (α − 1)(κ − 1) > −1, thus τ(t)
∼ ctα(κ−1)+1 and ∑∞

t=0 |τ(t)| = ∞.The above results for Z3(t) are a
tually identi
al with the ones for aFARIMA (0, κ, 0) pro
ess [6℄. The rate of 
onvergen
e of τ(t) in both 
ases isexa
tly the same and does not depend on ε, whi
h implies that both pro
esseshave the long-memory property for the same range of κ. The parameter εonly a�e
ts the 
onstant in part (b) of the theorem, whereas the 
onstant in(a) is identi
al for both pro
esses. For these reasons we may 
onsider Z3(t)as a �proper� 
ontinuous-time 
ounterpart of FARIMA(0, κ, 0) in the senseof the dependen
e stru
ture, while, as shown by the 
onsiderations in theprevious subse
tion, the in
rements of the linear fra
tional stable motion arethe 
ounterpart of the in
rements of a FARIMA pro
ess.A
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