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Fractional Langevin equation with a-stable noise.
A link to fractional ARIMA time series

by

M. MAGDZIARZ and A. WERON (Wroctaw)

Abstract. We introduce a fractional Langevin equation with a-stable noise and show
that its solution {Yi(¢), t > 0} is the stationary a-stable Ornstein—Uhlenbeck-type process
recently studied by Taqqu and Wolpert. We examine the asymptotic dependence structure
of Y. (t) via the measure of its codependence 7 (01, 02,t). We prove that Y, (¢) is not a long-
memory process in the sense of r(61,02,t). However, we find two natural continuous-time
analogues of fractional ARIMA time series with long memory in the framework of the
Langevin equation.

1. Introduction. In recent years the concept of fractional differenti-
ation and integration has aroused a wide interest in diverse scientific dis-
ciplines. Applications of the fractional calculus encompass many different
fields, including stochastic processes, where the fractional differential equa-
tions turned out to be a very useful tool to derive processes with many
desired properties [1, 2, 4].

In what follows, we employ the techniques coming from the fractional cal-
culus to obtain in an elegant way the fractional Ornstein-Uhlenbeck (O-U)
a-stable process, introduced in the recent paper by M. S. Taqqu and R. L.
Wolpert [16, Sec. 4.2.2]. They define the fractional O-U a-stable process in
the following way: For 0 < « < 2 let L,(t) be the standard a-stable Lévy
motion [5, 15]. For ¢ > 0 and A > 0 construct a series of processes indexed
by x via the recursive recipe: Yi(t) := \/ﬁgt_oo e M=) L (ds), Ya(t) =
St_oo Ae M=9)Y|(s)ds and, in general, Yi(t) := St_oo Ae A9y, (s)ds,

hich by the Fubini theorem for stochastic integrals (see [16] for a detailed
discussion) gives
k=1 t
(1) Y (t) = % S (t — S)nflef/\(th) Lo(ds).

—00
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For arbitrary positive x such that k > 1 — 1/«, equation (1) is taken in [16]
as the definition of the fractional O-U a-stable process. Note that for k = 1
we get the standard a-stable O-U process [5, 15].

In Section 2 we show that the process (1) can be obtained as the solution
of the so-called fractional Langevin equation with a-stable noise. Next, in
Section 3, we investigate its asymptotic behavior by means of the measure
of codependence defined for a stationary process Y (t) as

(2) 7’(91, 92, t) = E[exp{i(@lY(t) + QQY(O))}]
— E[exp{z’@lY(t)}]E[exp{iHQY(O)}], 0.,02 € R.

The function 7(61, 62,t) has been shown to be the proper tool for describing
the dependence structure of a-stable processes [5-7, 9, 10, 15]. The asymp-
totic properties of log-fractional stable noise in terms of (61,02, t) were also
investigated in the recent paper [8]. We employ the following definition [9] of
long-range dependence for a-stable processes: An a-stable stationary process
Y'(t) is said to have long memory if its codependence r(6;,0,1) satisfies

(3) > " [r(61,62,n)| = 0.
n=0

Since for a-stable moving average processes the function (1, —1,¢) and the
codifference

7(t) =In Eexp{i(Y(t) = Y(0))} —In Eexp{iY (t)} —In Eexp{—iY (0)}
are asymptotically equal as t — 0o, one can also use 7(t) instead of (01, 02, t)
in (3) to characterize long memory of Y (¢) (see [7]).

The terms “long memory”, “strong dependence” and “long-range depen-
dence” are used interchangeably in the literature [3, 4]. They refer to phe-
nomena in which the events that are arbitrarily distant still influence each
other exceptionally strongly.

In Section 3 (Theorem 1) we give a negative answer to the question: does
process (1) have the long-memory property in the sense of (3)? Our results
complete the recent ones presented in [9] and [10], where the authors examine
the dependence structure and the long-memory property of stationary pro-
cesses which are generalizations of the classical a-stable Ornstein—Uhlenbeck
process.

Two different processes with long memory has long been known: frac-
tional Brownian motion (A. N. Kolmogorov 1940) and fractional ARIMA
(FARIMA) time series (C. W. J. Granger and R. Joyeux 1980); see |3, 4|
and references therein. In Section 4 we investigate the relationship between
these two models. The main finding is a construction of a continuous-time
analogue of FARIMA time series in the framework of Langevin-type equa-
tions. We prove in Theorem 2 that the constructed process, similarly to
FARIMA, displays long-range dependence.
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2. Fractional Langevin equation. Let us first recall the definition
of the Bessel fractional derivative. Samko et al. [14] introduce the modified
Bessel operator as

t

1
o _ o a—1_—A(t—s)
(4) N(t) = o) _L(t )" e f(s)ds.
Here, f € LP(R,ds), 1 < p < oo. The Bessel fractional derivative is now
introduced [14] as the operator inverse to G§ on LP(R,ds), 1 < p < oo,

d “ R a\—1

where [ is the identity operator.

From the definition (4) we deduce that the fractional O-U a-stable pro-
cess (1) is equal (up to a constant) to the modified Bessel operator of the
a-stable noise [, (t). Recall [2] that [,(¢) has a-stable marginal distributions,
its probability distribution is translation invariant and [,(s) and [, (t) are
independent for s # ¢. Formally, [, (s)ds = dL,(s), where L,(s) is the stan-
dard a-stable Lévy motion. We have

¢
ORlalt) = g § (0= s
Heuristically, putting the Bessel fractional derivative on both sides of the
above equation, we get

(5) <M + %) V) = 1),

where A\, k > 0 and
t
(6) Y(t) = 0] | =)y le M9 Lo(ds), t>0.

We call equation (5) the fractional Langevin equation and interpret the above
process Y (t) as its solution. Note that for k = 1, equation (5) becomes the
standard a-stable Langevin equation and its stationary solution is the O-U
process.

Concluding the above considerations, the solution of the fractional
Langevin equation (5) is equal (up to a constant) to the fractional O-U
a-stable process (1). Thus, the standard techniques developed in fractional
calculus allow us to obtain the stochastic process Y, (t) in an elegant and
coherent way. It should be noted that it is possible to consider a more gen-
eral situation, when the a-stable noise /,(¢) in the Langevin equation (5) is
replaced by the Lévy noise (see [2]). In this case exactly the same procedure
leads to a wide class of fractional O-U Lévy processes discussed in [16].
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In the Gaussian case, when o = 2, Y (¢) is evidently a stationary centered
process with normal marginal distributions and covariance function given for
t >0 by

1 0
= oy ) (= sy e Myt as
1

= Ty 1T KA,

where K, (t) is the modified Bessel function of the second kind (see [14]).
Since K, (t) decays exponentially fast, we deduce that in this particular case
the process (6) (and equivalently (1)) does not have long memory. In the
next section we examine the long-memory property for all 0 < o < 2.

3. Asymptotic dependence structure. In the next theorem we give
precise formulas for the asymptotic behavior of the codependence (61, 02,1)
of the fractional O-U a-stable process (1). We exclude the case 0105 = 0,
since then we have (61, 609,t) = 0.

THEOREM 1. Let 0 < a <2, A >0,k >0 and k > 1 — 1/a. Then the
codependence r(01,02,t) of Yi(t) satisfies:

(a) if 0 <a <1, then
1
r(01,02,1) ~ ca(X, 5)Ca(01,02)[01]* 1 o=l g=rat
(6

(b) if a=1 and 6,02 > 0, then 7’(91,92,t) =0,
(c) if a=1 and 6162 <0, then
1 k—1_—At
r(91,92,t) ~ 261()\, ﬁ)Cl(91,92)|01\ Xt (& s

(d) of 1 <a <2, then
(01, 02,1) ~ ca(\, K)da(X, £)Ca(01,02)01 % i le A
2
ast — o0o. Here
VAN
(7) Ca(N K) = (W) )

(8)  Calb,02) = exp{—ca()v R) (101 + 162]%)

I'(k—1)(a—1)+1)
()\a)(/@fl)(afl)+1 ’

1+ a(k—1)) }

(Aay)1Hals—1)

do(M\, k) = —«
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Consequently, the fractional O-U a-stable process Yi(t) does not have the
long-memory property in the sense of (3).

Proof. Put
I(61,05,t) :== —In Elexp{i(01Y,:(t) + 62Y,(0))}]
+ In Elexp{if1Y,(t)}] + In Elexp{if2Y,(0)}].

Note that for a symmetric a-stable process the measure —I(1,—1,t) is equal
to the codifference 7(t). We have r(01,02,t) = Cy (01, 92)(6*1(91’92”5) —1) with

Co(61,02) = Elexp{i61Y,(t)}| Elexp{if2Y.(0)}]

= exp { — i +6af) TEEE= .

where in the last equality we used the following formula [15, p. 122]:
9 E|exo{i§ f(2) La(dn) }] = exp{ 101" [ I (@) dz'}
R R

with f € L*(R,dz). Thus, if 1(01,02,t) — 0 as t — oo then
(10) r(01,02,t) ~ —Cq(61,02)1(01,02,1),

which indicates that () and I(-) are asymptotically equal. Recall that f(t) ~
g(t) if and only if f(t)/g(t) — 1 as t — oo.
Equation (9) and some standard calculations yield

oo [e.o]

(11) 1(61,05,t) = Ca()\,/{)< S L(t,s)ds + S I(t, s) ds),
0 0
where
Li(t,s) = —]61]“(t + s alk=1)g=Aa(t+s)
Ix(t, ) = |01t +5)" " te —At+s) 4 g, oo —>\5|a _ |92|O¢SO¢(H—1)6—)\0¢5

and ¢ (A, k) is given by (7).
(a) For every s € (0,00) we get

(12) Aot (1 s) — —]01|%e A ast — oo
and
sup XD (¢, 5)]
t>1
< |01 @A if -1 <a(k—1) <0,
101]%(1 + s)2(5=De=Aes if o(k — 1) > 0,

which belongs to L!((0,00),ds). Thus from the dominated convergence
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theorem,
00 00 .
(13) S Il(t, S) ds ~ _|91’a67)\atta(l€fl) S ef)\as ds = _|01’a67)\atta(nfl) )\_
«
0 0

as t — oo. Further, for every s € (0, 00), e’\o‘tt_a(“_l)fg(t, s) — 0ast— oo,
and since ||a|® — |b|%| < |a — b|* for « € (0,1], a,b € R, we have |I5(t,s)| <
|I1(t, s)|, and consequently

(14) eroty—aln=l) S I(t,s)ds — 0 ast— oc.
0
Finally, from (13) and (14) we conclude

1
1(01,02,t) ~ —co (A, K)|01]* o e De=Aat a5t — 00
a
(b) Equation (11) for &« = 1 and 6162 > 0 gives Ii(t,s) + I2(t,s) = 0
and therefore r(0;,62,t) = 0.
(c) For « =1 and 61602 < 0 we have, for every s € (0, 00),

MO (1 (¢ s) + Io(t,s)) — —2|01|e™  ast — oo

and we show in a similar manner as in part (a) that
1
1(01,02,t) ~ —2c1(\, K)|01] Xt”_le_kt as t — 00.

(d) Recall the decomposition (11). For 1 < o < 2 and every s € (0,00)
we get Mt~ ("D (t,5) — 0 as t — oo and since
sup |Mt™ TV (¢, 5)] < 1]61]%e ™
t>1

(c1 is a constant depending only on «, A and k), the dominated convergence
theorem yields

oo

M=) S Li(t,s)ds — 0 ast— oc.

0

Furthermore, for s € (0, c0),
[e%
MU (8 s) — ab, 1621 e asgr=@O=) a5 ¢ 0.
2

Taking advantage of the inequalities (see [10]): | |a — b|* —b%| < a® + aab®~!
and | |a+b* —b*| < a®+aab®!, valid for a,b > 0 and « € (1, 2], we obtain

sup [Nt~ (" Io(t, 5)|
t>1

< 61’91‘0‘67/\8 + 04‘01’ ’92’047167)‘0488('{71)(0471) ifk—1<0,
a|01]%e™ 4 affy] |fo| @ teAess(smDle=1) (1 4 5)"=1 if k —1 > 0,



Fractional Langevin equation 53

which belongs to L'((0,00), ds). Thus, the dominated convergence theorem
yields

o0 0 o o
M= (1) S Ir(t,s)ds — ab % S e Psgti=@=1) gs a5 ¢ — oo.
0 2 0
Since
T _ e I((k=1)(a—1)+1)
Aas o (k—1)(a—1) ds =
S ¢ s o r—1)(a—1)+1
0 (Aa)(F=D(a=1)+
we obtain

9 [0}
1(01,02,t) ~ —co(A, K)da(A, k)61 % t" e ast — oo,
2

and the proof is complete. =

The above result shows that the lack of long memory observed in the
Gaussian case (o = 2) also occurs in the more general stable case for all o €
(0,2). A similar relationship can be found in other cited works [9, 10], which
suggests that the long-memory property for the stationary a-stable processes
with integral representation Y (t) = {3 f(t,s) La(ds) is determined only by
the kernel function f. The kernel can be represented explicitly by means
of the tools used in ergodic theory [12, 13]. An interesting open problem is
to characterize the long-range dependence property of the process Y () in
terms of its kernel.

4. Relationship with FARIMA models. The FARIMA (fractional
autoregressive integrated moving average) discrete time processes have
found widespread acceptance as mathematical models for various empiri-
cal time series with long memory ([3, 4] and references therein). We begin
by recalling the definition.

Let B be the shift operator defined by BX(¢t) = X(t — 1) and A be
the difference operator, i.e. AX(t) = X(t) — X(t—1) = (I — B)X(t). The
FARIMA model is a generalization of the classical ARIMA(p, k, q) process

O(B)A"X(t) = O(B)s, teN.

Here @ and © are polynomials of degree p and ¢ respectively, ¢, are assumed
to be i.i.d. symmetric a-stable random variables, and k is a non-negative
integer. Now, for FARIMA (p, k, q) the parameter k is allowed to take also
fractional values, either positive or negative. To avoid unnecessary complica-
tions, in our further discussion we set p = ¢ = 0. Then the FARIMA(0, %, 0)
model is the solution of

(15) ARX (1) = e
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Consequently, X (t) = A~ ", where the operator A= = (1 — B)™" for the
fractional parameter r is formally interpreted via the Taylor expansion of
the function (1 —z)™" = >"22,bj(—k)z?. The coefficients in the series are

_ I'G+r)
(16) bj(—k) = TG +1)

Thus, the formal definition of a FARIMA(0, x, 0) process is

(17) X(t)=A""e,=(1—-B) "er = i bj(—r)e—j, teN.
j=0

X(t) is a stationary moving average process and a necessary condition for
the series (17) to converge a.s. is —oo < K < 1 — 1/a. In the Gaussian
case, i.e. when o = 2, the rate of decay of the covariance function Cov(t) :=
E[X(t)X(0)]—-E[X(t)]E[X (0)] for the FARIMA model is t>#~!, which shows
that for K > 0 we have Y7 ;|Cov(n)| = oo and X (t) is a process with long-
range dependence. For a < 2 the covariance does not exist and one has to
employ other measures of dependence, appropriate for stochastic processes
with infinite second moment. In [6] the authors determine the asymptotic
behavior of the codifference 7(t) for FARIMA(p, k, ¢). In particular, they
prove that if X(¢) is a FARIMA(O, x,0) process with symmetric a-stable
innovations, 0 < o < 2 and & is not an integer, then the following two cases
can hold. If either (i) « <1 or (ii) @« > 1 and (a« —1)(k — 1) > —1, then

im 7(*) = L T z)dz
: T ) 4

t—oo ta(r—1)+1
where
g(a) = 207 (14 2) (7D (@5 (L
Ifa>1and (¢« —1)(k —1) < —1, then

. Tt) _ _«a ibj(—ﬁ)<a_1>,

1
_ —1
t—oo R F(’{) =0

where (z) = |z|sign(z). As a consequence, for Kk > 1—2/a a FARIMA(0, », 0)
process has long memory in the sense of (3).

The question arises whether one can find a stationary a-stable process
with continuous time ¢, which could be regarded as an appropriate coun-
terpart of FARIMA(0, x,0) in the sense of the dependence structure. We
propose the following continuous-time process:

t

(18) Zy(t) := e | (t—9)"""La(ds), teRy,

—00
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as a counterpart of FARIMA. To justify this choice, first note that from
Stirling’s formula for the Gamma function, I'(z) ~ e=?2*~1/2y/21 as z — oo,
we get the asymptotic behavior of the coefficients (16),

‘ _ TG +nr) j5
bi(=r) = I(x)IG+1)  I(r)

Therefore, the FARIMA process (17) can be considered as an approximate
sum for a stochastic integral,

as j — oo.

X(t) = bj(-R)ej= > bij(—r)e;
3=0 J=—
= > | bj(=R)L)(5) Lalds)
j=—00j—1
~ ﬁ | (t = 9 La(ds) = Z1(8).

On the other hand, the FARIMA equation (15) can be replaced by its

continuous-time counterpart, namely
dK/

(19) e at) =l(t), teRy,
where the difference operator A is replaced by the fractional derivative op-
erator d”/dt" (see [14]), and the sequence of i.i.d. variables &, is replaced
by the a-stable Lévy noise [, (t). Here, the fractional derivative d"/dt" is
defined as the inverse to the integral operator

I"f(t) = ) | (t=9)"""f(s)ds, k>0

—00

Therefore, the process Z (t) can be interpreted as the solution of the FARIMA-
type equation (19).

The main problem in the case under consideration is that the kernel
function in representation (18) does not belong to L*(R, ds), and therefore
the integral is divergent. The first method of avoiding this difficulty is to
replace (19) by the fractional Langevin equation (5) introduced in Section 2
and let A N\, 0. However, the solution of (5) is well defined only for x >
1 —1/c. Let us remind the reader that for FARIMA processes exactly the
opposite condition for  is required, which undoubtedly causes difficulties
while comparing the properties of the solution of (5) and FARIMA. Below,
we present two different ways to get rid of the divergence of the integral
in (18).
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4.1. Linear fractional stable noise. The first idea is to introduce an in-
crement process of Z;(t). We define formally

(20) Zo(t) == Z1(t + 1) — Z1(¢)
= g e+ 1= 9057 = (= 95 La(as),
R

where a4 = max{a,0}. Now, we see that for k € (1—1/a,2—1/a) the kernel
function in (20) is a-integrable, since it behaves like s*~! as s — 0 and like
572 as s — o0. Let us emphasize that Z5(t) should be considered as an
“approximation” of the increments of the FARIMA(0, x,0) model, and not
as the process related directly to FARIMA. Putting k —1 = H — 1/« we see
that Z»(t) is a version of the well-known linear fractional stable noise I, (%)
(see [5, 15]). The process Iy m(t) is a classical example of a long-memory
a-stable process. It is defined as the increment process of the H-self-similar
linear fractional stable motion Lo g (t) (i€. lo,m(t) = Lo, m(t+1) — Lo q(t)).
Therefore, the process Za(t), which is regarded as an “approximation” of the
increments of FARIMA (0, , 0), is a version of [, g (t). Thus, as a by-product
of our considerations, we obtain a link between two significant long-memory
processes, namely the linear fractional stable noise can be considered as
an “approximation” of the increments of FARIMA, which confirms that in
both models the property of long-range dependence has the same origin.
Additionally, the relationship between the parameters of Z»(t) and lo g (t)
is k — 1 = H — 1/a. The importance of this relationship for H-self-similar
models driven by a-stable noise in physics and related areas has long been
known [11, 17].

4.2. Continuous-time FARIMA equation. The second possibility is to
perturb the solution Zj(t) of the FARIMA-type equation (19) in order to
get rid of the possible divergence of the integral at the origin. Note that
in the first case considered, application of the fractional Langevin equation
allowed us to avoid divergence of the integral at co. For ¢ > 0 and t > 0 we
define

t

(21) Z3(t) := e | (t—s+2)" La(ds).

—00

Z3(t) is a stationary moving average process. It is well defined for k < 1-1/c,
which, in contrast with the first two cases studied, agrees exactly with the
permissible range of the parameter x for FARIMA. Since the behavior of
the codifference 7(t) for FARIMA is well known (see [6] and the beginning
of Section 4), to compare the dependence structure of FARIMA and Z3(t),
we determine in the next theorem the asymptotics of the codifference corre-
sponding to Z3(t).
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THEOREM 2. Let 0 < a <2 and —o0o < k < 1 —1/a. Then the codiffer-
ence T(t) of Z3(t) satisfies:
(a) If either (i) « <1 or (ii) @ > 1 and (o — 1)(k — 1) > —1, then
T(t) 1T

R e A T PIC §9($) a2,

where
() = 2% (14 2)0 D% (25— (14 )y,
(b) Ifa>1 and (a« —1)(k — 1) < —1, then

m (t) —— oxoh(x)dx,
0

too0 t5 1 T(k)

where
. (Q: + E)('{_l)(a_l)
"= T

Consequently, for k > 1 — 2/« the process Z3(t) has long memory in the
sense of (3).

Proof. (a) Since
7(t) = In Elexp{i(Z3(t) — Z3(0))}]
—In Elexp{iZ3(t)}] — In Elexp{—iZ3(0)},

formula (9) and some standard calculations give

o0

(22) T(t) = S [(1‘ + g)(ﬁ—l)a + (t 4o+ 6)(/@—1)&
0

—((z4+e) P = (t+x+e)" 1 dax.
After the change of variables z — tx we get

po(r=1)+1 N ; N ; @ g
T(t) = T (S)[Iat(m)! + [be(2)|* = |ar(z) — b (2)|*] do,

where a;(r) = (z +¢/t)* ! and by(x) = (1 + x + ¢/t)* 1. Thus for fixed
x € (0,00) we have

ar(z) — 2" 1 and b(x) — (1+2)"1 ast— oo

To apply the dominated convergence theorem, we need the following inequal-
ity (see [9]): for r, s € R,

2|r|« ifo<a<l,

[+ sl = |r[* = [s|*] <
(a+D|r|*+alr||s|*t fl<a<?2.
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Using this result we obtain

sup| lae(@)| + [ba(2)|” = |ag(z) = be(@)]"]

_ 2|1 4 |1 if0<a<l,
(4 D)1+ 225D 4 o1 4 25z DED 1 < o < 2,

which in both cases belongs to L'((0,00),ds) (note that in the second case
we assumed (o —1)(k—1) > —1). Thus the dominated convergence theorem
yields

7(t) 1

}EEO to(r—1)+1 - (k)] (SJQ(SU) dz,

where g(z) = 2"~ 4 (1 4 z)(=De — (gr=1 — (1 4 g)s 1),
(b) From (22) we get

[(p(2))* + (q:(2)* = (p(x) = qe(2))*] da,

N
—~
~
S~—
I
™~
~~
X
=
R
= O

where p(z) = (z +¢)* ! and ¢(x) = (t + x + €)""!. Note that for fixed
x € (0,00) we have g;(x) ~ t"! as t — co. From the mean-value theorem,
f(r+s)— f(r) = s§f/(7" + us) du,
where f is an appropriately smooth fun:tion, we obtain
[p(2)]” = [p(z) — qu(2)]” = agq(z) § [p(x) — ugy(2)]* " du,
0

a—1

and consequently [p(z)]® — [p(z) — q:(2)]* ~ at®[p(z)] as t — oo.
Moreover, [q(z)]%/t*"1 — 0 ast — 0, since a > 1. Thus for fixed = € (0, 0)
we have

[p(2)]* + [g:(2)]* = [p(x) — qe()]*
tr—1

— alp(@)]*™! = a(z + )

as t — o0o. To apply the dominated convergence theorem, we need the fol-
lowing inequality: for r,s > 0 and « € (1, 2],
(23) 4 s —|r —s|* < (a+ 1Drs* L

To prove (23), we consider two cases. First, let > s. Define fq(r) := r* +
s — |r — s]* — (o + 1)rs® 1. We have to show that fs(r) < 0. We have
fs(0) =0 and

firy=ar*—a(r—s)*"" = (a+1)s*" <as® " = (a+1)s*7" <0.
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Thus fs(r) < 0. Let now r < s. Using the mean-value theorem we get
1
5% — (s —1)* <rsTh 4 arx (s — )+ ru]* tdu
0

<rs® 14 ars® ! = (a + 1)7“50‘_17

which proves (23).
Now, using the above result we obtain

|[p(2)]* + [g0(2)]* — [p(2) — ()]
1

< (a+ Dlp@)]* " = (a+ 1) (@ +e) D,

which for (o — 1)(k — 1) < —1 belongs to L'((0, 00),ds). Finally, the domi-
nated convergence theorem yields

(o + () [p(x)]*
te—1

sup
t>1

< sup
t>1

- 7(t) o«
t—oo th—1 I'(k)

S h(z) dzx,
0

where

To show that for K > 1 — 2/« the process Z3(t) has long memory in
the sense of (3), it is enough to observe that the condition x > 1 — 2/« is
equivalent to a(k — 1) +1 > —1. Therefore, for a < 1 we have ) ° |7(t)]
= o0. For @ € (1,2], Kk > 1 — 2/ implies (o — 1)(k — 1) > —1, thus 7(¢)
~ ct®F=DH and S |7(t)| = oc. =

The above results for Z3(t) are actually identical with the ones for a
FARIMA (0, ,0) process [6]. The rate of convergence of 7(¢) in both cases is
exactly the same and does not depend on &, which implies that both processes
have the long-memory property for the same range of x. The parameter ¢
only affects the constant in part (b) of the theorem, whereas the constant in
(a) is identical for both processes. For these reasons we may consider Zs(t)
as a “proper” continuous-time counterpart of FARIMA(0, ,0) in the sense
of the dependence structure, while, as shown by the considerations in the
previous subsection, the increments of the linear fractional stable motion are
the counterpart of the increments of a FARIMA process.
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