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Frational Langevin equation with α-stable noise.A link to frational ARIMA time seriesbyM. Magdziarz and A. Weron (Wroªaw)Abstrat. We introdue a frational Langevin equation with α-stable noise and showthat its solution {Yκ(t), t ≥ 0} is the stationary α-stable Ornstein�Uhlenbek-type proessreently studied by Taqqu and Wolpert. We examine the asymptoti dependene strutureof Yκ(t) via the measure of its odependene r(θ1, θ2, t). We prove that Yκ(t) is not a long-memory proess in the sense of r(θ1, θ2, t). However, we �nd two natural ontinuous-timeanalogues of frational ARIMA time series with long memory in the framework of theLangevin equation.1. Introdution. In reent years the onept of frational di�erenti-ation and integration has aroused a wide interest in diverse sienti� dis-iplines. Appliations of the frational alulus enompass many di�erent�elds, inluding stohasti proesses, where the frational di�erential equa-tions turned out to be a very useful tool to derive proesses with manydesired properties [1, 2, 4℄.In what follows, we employ the tehniques oming from the frational al-ulus to obtain in an elegant way the frational Ornstein�Uhlenbek (O-U)
α-stable proess, introdued in the reent paper by M. S. Taqqu and R. L.Wolpert [16, Se. 4.2.2℄. They de�ne the frational O-U α-stable proess inthe following way: For 0 < α ≤ 2 let Lα(t) be the standard α-stable Lévymotion [5, 15℄. For t ≥ 0 and λ > 0 onstrut a series of proesses indexedby κ via the reursive reipe: Y1(t) :=

√
2λ
Tt
−∞ e−λ(t−s) Lα(ds), Y2(t) :=Tt

−∞ λe−λ(t−s)Y1(s) ds and, in general, Yκ(t) :=
Tt
−∞ λe−λ(t−s)Yκ−1(s) ds,whih by the Fubini theorem for stohasti integrals (see [16℄ for a detaileddisussion) gives

Yκ(t) =

√
2λλκ−1

Γ (κ)

t\
−∞

(t − s)κ−1e−λ(t−s) Lα(ds).(1)
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48 M. Magdziarz and A. WeronFor arbitrary positive κ suh that κ > 1 − 1/α, equation (1) is taken in [16℄as the de�nition of the frational O-U α-stable proess. Note that for κ = 1we get the standard α-stable O-U proess [5, 15℄.In Setion 2 we show that the proess (1) an be obtained as the solutionof the so-alled frational Langevin equation with α-stable noise. Next, inSetion 3, we investigate its asymptoti behavior by means of the measureof odependene de�ned for a stationary proess Y (t) as
r(θ1, θ2, t) = E[exp{i(θ1Y (t) + θ2Y (0))}](2)

− E[exp{iθ1Y (t)}]E[exp{iθ2Y (0)}], θ1, θ2 ∈ R.The funtion r(θ1, θ2, t) has been shown to be the proper tool for desribingthe dependene struture of α-stable proesses [5�7, 9, 10, 15℄. The asymp-toti properties of log-frational stable noise in terms of r(θ1, θ2, t) were alsoinvestigated in the reent paper [8℄. We employ the following de�nition [9℄ oflong-range dependene for α-stable proesses: An α-stable stationary proess
Y (t) is said to have long memory if its odependene r(θ1, θ2, t) satis�es

∞
∑

n=0

|r(θ1, θ2, n)| = ∞.(3)Sine for α-stable moving average proesses the funtion r(1,−1, t) and theodi�erene
τ(t) = lnE exp{i(Y (t) − Y (0))} − lnE exp{iY (t)} − lnE exp{−iY (0)}are asymptotially equal as t → ∞, one an also use τ(t) instead of r(θ1, θ2, t)in (3) to haraterize long memory of Y (t) (see [7℄).The terms �long memory�, �strong dependene� and �long-range depen-dene� are used interhangeably in the literature [3, 4℄. They refer to phe-nomena in whih the events that are arbitrarily distant still in�uene eahother exeptionally strongly.In Setion 3 (Theorem 1) we give a negative answer to the question: doesproess (1) have the long-memory property in the sense of (3)? Our resultsomplete the reent ones presented in [9℄ and [10℄, where the authors examinethe dependene struture and the long-memory property of stationary pro-esses whih are generalizations of the lassial α-stable Ornstein�Uhlenbekproess.Two di�erent proesses with long memory has long been known: fra-tional Brownian motion (A. N. Kolmogorov 1940) and frational ARIMA(FARIMA) time series (C. W. J. Granger and R. Joyeux 1980); see [3, 4℄and referenes therein. In Setion 4 we investigate the relationship betweenthese two models. The main �nding is a onstrution of a ontinuous-timeanalogue of FARIMA time series in the framework of Langevin-type equa-tions. We prove in Theorem 2 that the onstruted proess, similarly toFARIMA, displays long-range dependene.



Frational Langevin equation 492. Frational Langevin equation. Let us �rst reall the de�nitionof the Bessel frational derivative. Samko et al. [14℄ introdue the modi�edBessel operator as
Gα

λf(t) =
1

Γ (α)

t\
−∞

(t − s)α−1e−λ(t−s)f(s) ds.(4)Here, f ∈ Lp(R, ds), 1 ≤ p ≤ ∞. The Bessel frational derivative is nowintrodued [14℄ as the operator inverse to Gα
λ on Lp(R, ds), 1 ≤ p ≤ ∞,

(

λI +
d

dt

)α

f := (Gα
λ)−1f,where I is the identity operator.From the de�nition (4) we dedue that the frational O-U α-stable pro-ess (1) is equal (up to a onstant) to the modi�ed Bessel operator of the

α-stable noise lα(t). Reall [2℄ that lα(t) has α-stable marginal distributions,its probability distribution is translation invariant and lα(s) and lα(t) areindependent for s 6= t. Formally, lα(s)ds = dLα(s), where Lα(s) is the stan-dard α-stable Lévy motion. We have
Gκ

λlα(t) =
1

Γ (κ)

t\
−∞

(t − s)κ−1e−λ(t−s)lα(s) ds.Heuristially, putting the Bessel frational derivative on both sides of theabove equation, we get
(

λI +
d

dt

)κ

Y (t) = lα(t),(5)where λ, κ > 0 and
Y (t) =

1

Γ (κ)

t\
−∞

(t − s)κ−1e−λ(t−s) Lα(ds), t ≥ 0.(6)We all equation (5) the frational Langevin equation and interpret the aboveproess Y (t) as its solution. Note that for κ = 1, equation (5) beomes thestandard α-stable Langevin equation and its stationary solution is the O-Uproess.Conluding the above onsiderations, the solution of the frationalLangevin equation (5) is equal (up to a onstant) to the frational O-U
α-stable proess (1). Thus, the standard tehniques developed in frationalalulus allow us to obtain the stohasti proess Yκ(t) in an elegant andoherent way. It should be noted that it is possible to onsider a more gen-eral situation, when the α-stable noise lα(t) in the Langevin equation (5) isreplaed by the Lévy noise (see [2℄). In this ase exatly the same proedureleads to a wide lass of frational O-U Lévy proesses disussed in [16℄.



50 M. Magdziarz and A. WeronIn the Gaussian ase, when α = 2, Y (t) is evidently a stationary enteredproess with normal marginal distributions and ovariane funtion given for
t ≥ 0 by

c(t) = E[Y (t)Y (0)]

=
1

(Γ (κ))2

0\
−∞

(|t| − s)κ−1e−λ(|t|−s)(−s)κ−1eλs ds

=
1

Γ (κ)
√

π (2λ)κ−1/2
|t|κ−1/2Kκ−1/2(λ|t|),where Kv(t) is the modi�ed Bessel funtion of the seond kind (see [14℄).Sine Kv(t) deays exponentially fast, we dedue that in this partiular asethe proess (6) (and equivalently (1)) does not have long memory. In thenext setion we examine the long-memory property for all 0 < α < 2.3. Asymptoti dependene struture. In the next theorem we givepreise formulas for the asymptoti behavior of the odependene r(θ1, θ2, t)of the frational O-U α-stable proess (1). We exlude the ase θ1θ2 = 0,sine then we have r(θ1, θ2, t) = 0.Theorem 1. Let 0 < α < 2, λ > 0, κ > 0 and κ > 1 − 1/α. Then theodependene r(θ1, θ2, t) of Yκ(t) satis�es :(a) if 0 < α < 1, then

r(θ1, θ2, t) ∼ cα(λ, κ)Cα(θ1, θ2)|θ1|α
1

λα
tα(κ−1)e−λαt,(b) if α = 1 and θ1θ2 > 0, then r(θ1, θ2, t) = 0,() if α = 1 and θ1θ2 < 0, then

r(θ1, θ2, t) ∼ 2c1(λ, κ)C1(θ1, θ2)|θ1|
1

λ
tκ−1e−λt,(d) if 1 < α < 2, then

r(θ1, θ2, t) ∼ cα(λ, κ)dα(λ, κ)Cα(θ1, θ2)θ1
|θ2|α
θ2

tκ−1e−λtas t → ∞. Here
cα(λ, κ) =

(

√
2λ λκ−1

Γ (κ)

)α

,(7)
Cα(θ1, θ2) = exp

{

−cα(λ, κ)(|θ1|α + |θ2|α)
Γ (1 + α(κ − 1))

(λα)1+α(κ−1)

}

,(8)
dα(λ, κ) = −α

Γ ((κ − 1)(α − 1) + 1)

(λα)(κ−1)(α−1)+1
.



Frational Langevin equation 51Consequently , the frational O-U α-stable proess Yκ(t) does not have thelong-memory property in the sense of (3).Proof. Put
I(θ1, θ2, t) := − lnE[exp{i(θ1Yκ(t) + θ2Yκ(0))}]

+ lnE[exp{iθ1Yκ(t)}] + lnE[exp{iθ2Yκ(0)}].Note that for a symmetri α-stable proess the measure −I(1,−1, t) is equalto the odi�erene τ(t). We have r(θ1, θ2, t) = Cα(θ1, θ2)(e
−I(θ1,θ2,t)−1) with

Cα(θ1, θ2) = E[exp{iθ1Yκ(t)}]E[exp{iθ2Yκ(0)}]

= exp

{

− cα(λ, κ)(|θ1|α + |θ2|α)
Γ (1 + α(κ − 1))

(λα)1+α(κ−1)

}

,where in the last equality we used the following formula [15, p. 122℄:
E

[

exp
{

iθ
\
R

f(x) Lα(dx)
}]

= exp
{

−|θ|α
\
R

|f(x)|α dx
}(9)with f ∈ Lα(R, dx). Thus, if I(θ1, θ2, t) → 0 as t → ∞ then

r(θ1, θ2, t) ∼ −Cα(θ1, θ2)I(θ1, θ2, t),(10)whih indiates that r(·) and I(·) are asymptotially equal. Reall that f(t) ∼
g(t) if and only if f(t)/g(t) → 1 as t → ∞.Equation (9) and some standard alulations yield

I(θ1, θ2, t) = cα(λ, κ)
(

∞\
0

I1(t, s) ds +

∞\
0

I2(t, s) ds
)

,(11)where
I1(t, s) = −|θ1|α(t + s)α(κ−1)e−λα(t+s),

I2(t, s) = |θ1(t + s)κ−1e−λ(t+s) + θ2s
κ−1e−λs|α − |θ2|αsα(κ−1)e−λαsand cα(λ, κ) is given by (7).(a) For every s ∈ (0,∞) we get

eλαtt−α(κ−1)I1(t, s) → −|θ1|αe−λαs as t → ∞(12)and
sup
t>1

|eλαtt−α(κ−1)I1(t, s)|

≤
{

|θ1|αe−λαs if −1 < α(κ − 1) ≤ 0,

|θ1|α(1 + s)α(κ−1)e−λαs if α(κ − 1) > 0,whih belongs to L1((0,∞), ds). Thus from the dominated onvergene



52 M. Magdziarz and A. Werontheorem,
∞\
0

I1(t, s) ds ∼ −|θ1|αe−λαttα(κ−1)
∞\
0

e−λαs ds = −|θ1|αe−λαttα(κ−1) 1

λα
(13)as t → ∞. Further, for every s ∈ (0,∞), eλαtt−α(κ−1)I2(t, s) → 0 as t → ∞,and sine | |a|α − |b|α| ≤ |a − b|α for α ∈ (0, 1], a, b ∈ R, we have |I2(t, s)| ≤
|I1(t, s)|, and onsequently

eλαtt−α(κ−1)
∞\
0

I2(t, s) ds → 0 as t → ∞.(14)Finally, from (13) and (14) we onlude
I(θ1, θ2, t) ∼ −cα(λ, κ)|θ1|α

1

λα
tα(κ−1)e−λαt as t → ∞(b) Equation (11) for α = 1 and θ1θ2 > 0 gives I1(t, s) + I2(t, s) = 0and therefore r(θ1, θ2, t) = 0.() For α = 1 and θ1θ2 < 0 we have, for every s ∈ (0,∞),

eλtt−(κ−1) (I1(t, s) + I2(t, s)) → −2|θ1|e−λs as t → ∞and we show in a similar manner as in part (a) that
I(θ1, θ2, t) ∼ −2c1(λ, κ)|θ1|

1

λ
tκ−1e−λt as t → ∞.(d) Reall the deomposition (11). For 1 < α < 2 and every s ∈ (0,∞)we get eλtt−(κ−1)I1(t, s) → 0 as t → ∞ and sine

sup
t>1

|eλtt−(κ−1)I1(t, s)| ≤ c1|θ1|αe−λs(c1 is a onstant depending only on α, λ and κ), the dominated onvergenetheorem yields
eλtt−(κ−1)

∞\
0

I1(t, s) ds → 0 as t → ∞.Furthermore, for s ∈ (0,∞),
eλtt−(κ−1)I2(t, s) → αθ1

|θ2|α
θ2

e−λαss(κ−1)(α−1) as t → ∞.Taking advantage of the inequalities (see [10℄): | |a− b|α− bα| ≤ aα +αabα−1and | |a+ b|α− bα| ≤ aα +αabα−1, valid for a, b ≥ 0 and α ∈ (1, 2], we obtain
sup
t>1

|eλtt−(κ−1)I2(t, s)|

≤
{

c1|θ1|αe−λs + α|θ1| |θ2|α−1e−λαss(κ−1)(α−1) if κ − 1 ≤ 0,

c2|θ1|αe−λs + α|θ1| |θ2|α−1e−λαss(κ−1)(α−1)(1 + s)κ−1 if κ − 1 > 0,



Frational Langevin equation 53whih belongs to L1((0,∞), ds). Thus, the dominated onvergene theoremyields
eλtt−(κ−1)

∞\
0

I2(t, s) ds → αθ1
|θ2|α
θ2

∞\
0

e−λαss(κ−1)(α−1) ds as t → ∞.Sine
∞\
0

e−λαss(κ−1)(α−1) ds =
Γ ((κ − 1)(α − 1) + 1)

(λα)(κ−1)(α−1)+1we obtain
I(θ1, θ2, t) ∼ −cα(λ, κ)dα(λ, κ)θ1

|θ2|α
θ2

tκ−1e−λt as t → ∞,and the proof is omplete.The above result shows that the lak of long memory observed in theGaussian ase (α = 2) also ours in the more general stable ase for all α ∈
(0, 2). A similar relationship an be found in other ited works [9, 10℄, whihsuggests that the long-memory property for the stationary α-stable proesseswith integral representation Y (t) =

T
R

f(t, s) Lα(ds) is determined only bythe kernel funtion f . The kernel an be represented expliitly by meansof the tools used in ergodi theory [12, 13℄. An interesting open problem isto haraterize the long-range dependene property of the proess Y (t) interms of its kernel.4. Relationship with FARIMA models. The FARIMA (frationalautoregressive integrated moving average) disrete time proesses havefound widespread aeptane as mathematial models for various empiri-al time series with long memory ([3, 4℄ and referenes therein). We beginby realling the de�nition.Let B be the shift operator de�ned by BX(t) = X(t − 1) and ∆ bethe di�erene operator, i.e. ∆X(t) = X(t) − X(t − 1) = (I − B)X(t). TheFARIMA model is a generalization of the lassial ARIMA(p, κ, q) proess
Φ(B)∆κX(t) = Θ(B)εt, t ∈ N.Here Φ and Θ are polynomials of degree p and q respetively, εn are assumedto be i.i.d. symmetri α-stable random variables, and κ is a non-negativeinteger. Now, for FARIMA(p, κ, q) the parameter κ is allowed to take alsofrational values, either positive or negative. To avoid unneessary omplia-tions, in our further disussion we set p = q = 0. Then the FARIMA(0, κ, 0)model is the solution of

∆κX(t) = εt.(15)



54 M. Magdziarz and A. WeronConsequently, X(t) = ∆−κεt, where the operator ∆−κ = (1 − B)−κ for thefrational parameter κ is formally interpreted via the Taylor expansion ofthe funtion (1 − z)−κ =
∑∞

j=0 bj(−κ)zj. The oe�ients in the series are
bj(−κ) =

Γ (j + κ)

Γ (κ)Γ (j + 1)
.(16)Thus, the formal de�nition of a FARIMA(0, κ, 0) proess is

X(t) = ∆−κεt = (1 − B)−κεt =
∞
∑

j=0

bj(−κ)εt−j, t ∈ N.(17)
X(t) is a stationary moving average proess and a neessary ondition forthe series (17) to onverge a.s. is −∞ < κ < 1 − 1/α. In the Gaussianase, i.e. when α = 2, the rate of deay of the ovariane funtion Cov(t) :=
E[X(t)X(0)]−E[X(t)]E[X(0)] for the FARIMA model is t2κ−1, whih showsthat for κ ≥ 0 we have ∑∞

n=0 |Cov(n)| = ∞ and X(t) is a proess with long-range dependene. For α < 2 the ovariane does not exist and one has toemploy other measures of dependene, appropriate for stohasti proesseswith in�nite seond moment. In [6℄ the authors determine the asymptotibehavior of the odi�erene τ(t) for FARIMA(p, κ, q). In partiular, theyprove that if X(t) is a FARIMA(0, κ, 0) proess with symmetri α-stableinnovations, 0 < α ≤ 2 and κ is not an integer, then the following two asesan hold. If either (i) α ≤ 1 or (ii) α > 1 and (α − 1)(κ − 1) > −1, then
lim
t→∞

τ(t)

tα(κ−1)+1
=

1

[Γ (κ)]α

∞\
0

g(x)dx,where
g(x) = x(κ−1)α + (1 + x)(κ−1)α − (xκ−1 − (1 + x)κ−1)α.If α > 1 and (α − 1)(κ − 1) < −1, then

lim
t→∞

τ(t)

tκ−1
=

α

Γ (κ)

∞
∑

j=0

bj(−κ)〈α−1〉,

where 〈z〉 = |z| sign(z). As a onsequene, for κ > 1−2/α a FARIMA(0, κ, 0)proess has long memory in the sense of (3).The question arises whether one an �nd a stationary α-stable proesswith ontinuous time t, whih ould be regarded as an appropriate oun-terpart of FARIMA(0, κ, 0) in the sense of the dependene struture. Wepropose the following ontinuous-time proess:
Z1(t) :=

1

Γ (κ)

t\
−∞

(t − s)κ−1 Lα(ds), t ∈ R+,(18)



Frational Langevin equation 55as a ounterpart of FARIMA. To justify this hoie, �rst note that fromStirling's formula for the Gamma funtion, Γ (z) ∼ e−zzz−1/2
√

2π as z → ∞,we get the asymptoti behavior of the oe�ients (16),
bj(−κ) =

Γ (j + κ)

Γ (κ)Γ (j + 1)
∼ jκ−1

Γ (κ)
as j → ∞.Therefore, the FARIMA proess (17) an be onsidered as an approximatesum for a stohasti integral,

X(t) =

∞
∑

j=0

bj(−κ)εt−j =

t
∑

j=−∞

bt−j(−κ)εj

=

t
∑

j=−∞

j\
j−1

bt−j(−κ)1(j−1,j](s) Lα(ds)

≈ 1

Γ (κ)

t\
−∞

(t − s)κ−1 Lα(ds) = Z1(t).

On the other hand, the FARIMA equation (15) an be replaed by itsontinuous-time ounterpart, namely
dκ

dtκ
Z1(t) = lα(t), t ∈ R+,(19)where the di�erene operator ∆ is replaed by the frational derivative op-erator dκ/dtκ (see [14℄), and the sequene of i.i.d. variables εt is replaedby the α-stable Lévy noise lα(t). Here, the frational derivative dκ/dtκ isde�ned as the inverse to the integral operator

Iκf(t) =
1

Γ (κ)

t\
−∞

(t − s)κ−1f(s) ds, κ > 0.

Therefore, the proessZ1(t) an be interpreted as the solution of the FARIMA-type equation (19).The main problem in the ase under onsideration is that the kernelfuntion in representation (18) does not belong to Lα(R, ds), and thereforethe integral is divergent. The �rst method of avoiding this di�ulty is toreplae (19) by the frational Langevin equation (5) introdued in Setion 2and let λ ց 0. However, the solution of (5) is well de�ned only for κ >
1 − 1/α. Let us remind the reader that for FARIMA proesses exatly theopposite ondition for κ is required, whih undoubtedly auses di�ultieswhile omparing the properties of the solution of (5) and FARIMA. Below,we present two di�erent ways to get rid of the divergene of the integralin (18).



56 M. Magdziarz and A. Weron4.1. Linear frational stable noise. The �rst idea is to introdue an in-rement proess of Z1(t). We de�ne formally
Z2(t) := Z1(t + 1) − Z1(t)(20)

=
1

Γ (κ)

\
R

[(t + 1 − s)κ−1
+ − (t − s)κ−1

+ ] Lα(ds),where a+ = max{a, 0}. Now, we see that for κ ∈ (1−1/α, 2−1/α) the kernelfuntion in (20) is α-integrable, sine it behaves like sκ−1 as s → 0 and like
sκ−2 as s → ∞. Let us emphasize that Z2(t) should be onsidered as an�approximation� of the inrements of the FARIMA(0, κ, 0) model, and notas the proess related diretly to FARIMA. Putting κ− 1 = H − 1/α we seethat Z2(t) is a version of the well-known linear frational stable noise lα,H(t)(see [5, 15℄). The proess lα,H(t) is a lassial example of a long-memory
α-stable proess. It is de�ned as the inrement proess of the H-self-similarlinear frational stable motion Lα,H(t) (i.e. lα,H(t) = Lα,H(t+1)−Lα,H(t)).Therefore, the proess Z2(t), whih is regarded as an �approximation� of theinrements of FARIMA(0, κ, 0), is a version of lα,H(t). Thus, as a by-produtof our onsiderations, we obtain a link between two signi�ant long-memoryproesses, namely the linear frational stable noise an be onsidered asan �approximation� of the inrements of FARIMA, whih on�rms that inboth models the property of long-range dependene has the same origin.Additionally, the relationship between the parameters of Z2(t) and lα,H(t)is κ − 1 = H − 1/α. The importane of this relationship for H-self-similarmodels driven by α-stable noise in physis and related areas has long beenknown [11, 17℄.4.2. Continuous-time FARIMA equation. The seond possibility is toperturb the solution Z1(t) of the FARIMA-type equation (19) in order toget rid of the possible divergene of the integral at the origin. Note thatin the �rst ase onsidered, appliation of the frational Langevin equationallowed us to avoid divergene of the integral at ∞. For ε > 0 and t ≥ 0 wede�ne

Z3(t) :=
1

Γ (κ)

t\
−∞

(t − s + ε)κ−1 Lα(ds).(21)
Z3(t) is a stationary moving average proess. It is well de�ned for κ < 1−1/α,whih, in ontrast with the �rst two ases studied, agrees exatly with thepermissible range of the parameter κ for FARIMA. Sine the behavior ofthe odi�erene τ(t) for FARIMA is well known (see [6℄ and the beginningof Setion 4), to ompare the dependene struture of FARIMA and Z3(t),we determine in the next theorem the asymptotis of the odi�erene orre-sponding to Z3(t).



Frational Langevin equation 57Theorem 2. Let 0 < α ≤ 2 and −∞ < κ < 1 − 1/α. Then the odi�er-ene τ(t) of Z3(t) satis�es :(a) If either (i) α ≤ 1 or (ii) α > 1 and (α − 1)(κ − 1) > −1, then
lim
t→∞

τ(t)

tα(κ−1)+1
=

1

[Γ (κ)]α

∞\
0

g(x) dx,where
g(x) = x(κ−1)α + (1 + x)(κ−1)α − (xκ−1 − (1 + x)κ−1)α.(b) If α > 1 and (α − 1)(κ − 1) < −1, then

lim
t→∞

τ(t)

tκ−1
=

α

Γ (κ)

∞\
0

h(x) dx,where
h(x) =

(x + ε)(κ−1)(α−1)

[Γ (κ)]α−1
.Consequently , for κ > 1 − 2/α the proess Z3(t) has long memory in thesense of (3).Proof. (a) Sine

τ(t) = lnE[exp{i(Z3(t) − Z3(0))}]
− lnE[exp{iZ3(t)}] − lnE[exp{−iZ3(0)},formula (9) and some standard alulations give

(22) τ(t) =
1

[Γ (κ)]α

∞\
0

[(x + ε)(κ−1)α + (t + x + ε)(κ−1)α

− ((x + ε)κ−1 − (t + x + ε)κ−1)α] dx.After the hange of variables x 7→ tx we get
τ(t) =

tα(κ−1)+1

[Γ (κ)]α

∞\
0

[|at(x)|α + |bt(x)|α − |at(x) − bt(x)|α] dx,where at(x) = (x + ε/t)κ−1 and bt(x) = (1 + x + ε/t)κ−1. Thus for �xed
x ∈ (0,∞) we have

at(x) → xκ−1 and bt(x) → (1 + x)κ−1 as t → ∞.To apply the dominated onvergene theorem, we need the following inequal-ity (see [9℄): for r, s ∈ R,
| |r + s|α − |r|α − |s|α| ≤

{

2|r|α if 0 < α ≤ 1,

(α + 1)|r|α + α|r||s|α−1 if 1 < α ≤ 2.



58 M. Magdziarz and A. WeronUsing this result we obtain
sup
t>1

| |at(x)|α + |bt(x)|α − |at(x) − bt(x)|α|

≤
{

2|1 + x|α(κ−1) if 0 < α ≤ 1,

(α + 1)|1 + x|α(κ−1) + α|1 + x|κ−1|x|(α−1)(κ−1) if 1 < α ≤ 2,whih in both ases belongs to L1((0,∞), ds) (note that in the seond asewe assumed (α−1)(κ−1) > −1). Thus the dominated onvergene theoremyields
lim
t→∞

τ(t)

tα(κ−1)+1
=

1

[Γ (κ)]α

∞\
0

g(x) dx,

where g(x) = x(κ−1)α + (1 + x)(κ−1)α − (xκ−1 − (1 + x)κ−1)α.(b) From (22) we get
τ(t) =

1

[Γ (κ)]α

∞\
0

[(p(x))α + (qt(x))α − (p(x) − qt(x))α] dx,

where p(x) = (x + ε)κ−1 and qt(x) = (t + x + ε)κ−1. Note that for �xed
x ∈ (0,∞) we have qt(x) ∼ tκ−1 as t → ∞. From the mean-value theorem,

f(r + s) − f(r) = s

1\
0

f ′(r + us) du,where f is an appropriately smooth funtion, we obtain
[p(x)]α − [p(x) − qt(x)]α = αqt(x)

1\
0

[p(x) − uqt(x)]α−1 du,

and onsequently [p(x)]α − [p(x) − qt(x)]α ∼ αtκ−1[p(x)]α−1 as t → ∞.Moreover, [qt(x)]α/tκ−1 → 0 as t → 0, sine α > 1. Thus for �xed x ∈ (0,∞)we have
[p(x)]α + [qt(x)]α − [p(x) − qt(x)]α

tκ−1
→ α[p(x)]α−1 = α(x + ε)(α−1)(κ−1)as t → ∞. To apply the dominated onvergene theorem, we need the fol-lowing inequality: for r, s > 0 and α ∈ (1, 2],

rα + sα − |r − s|α ≤ (α + 1)rsα−1.(23)To prove (23), we onsider two ases. First, let r ≥ s. De�ne fs(r) := rα +
sα − |r − s|α − (α + 1)rsα−1. We have to show that fs(r) ≤ 0. We have
fs(0) = 0 and

f ′
s(r) = αrα−1 − α(r − s)α−1 − (α + 1)sα−1 ≤ αsα−1 − (α + 1)sα−1 ≤ 0.



Frational Langevin equation 59Thus fs(r) ≤ 0. Let now r < s. Using the mean-value theorem we get
rα + sα − (s − r)α ≤ rsα−1 + αr

1\
0

[(s − r) + ru]α−1 du

≤ rsα−1 + αrsα−1 = (α + 1)rsα−1,whih proves (23).Now, using the above result we obtain
sup
t>1

|[p(x)]α + [qt(x)]α − [p(x) − qt(x)]|α
tκ−1

≤ sup
t>1

(α + 1)qt(x)[p(x)]α−1

tκ−1

≤ (α + 1)[p(x)]α−1 = (α + 1)(x + ε)(α−1)(κ−1),whih for (α − 1)(κ − 1) < −1 belongs to L1((0,∞), ds). Finally, the domi-nated onvergene theorem yields
lim
t→∞

τ(t)

tκ−1
=

α

Γ (κ)

∞\
0

h(x) dx,

where
h(x) =

(x + ε)(κ−1)(α−1)

[Γ (κ)]α−1
.

To show that for κ > 1 − 2/α the proess Z3(t) has long memory inthe sense of (3), it is enough to observe that the ondition κ > 1 − 2/α isequivalent to α(κ − 1) + 1 > −1. Therefore, for α ≤ 1 we have ∑∞
t=0 |τ(t)|

= ∞. For α ∈ (1, 2], κ > 1 − 2/α implies (α − 1)(κ − 1) > −1, thus τ(t)
∼ ctα(κ−1)+1 and ∑∞

t=0 |τ(t)| = ∞.The above results for Z3(t) are atually idential with the ones for aFARIMA (0, κ, 0) proess [6℄. The rate of onvergene of τ(t) in both ases isexatly the same and does not depend on ε, whih implies that both proesseshave the long-memory property for the same range of κ. The parameter εonly a�ets the onstant in part (b) of the theorem, whereas the onstant in(a) is idential for both proesses. For these reasons we may onsider Z3(t)as a �proper� ontinuous-time ounterpart of FARIMA(0, κ, 0) in the senseof the dependene struture, while, as shown by the onsiderations in theprevious subsetion, the inrements of the linear frational stable motion arethe ounterpart of the inrements of a FARIMA proess.Aknowledgements. We would like to thank the anonymous refereefor his onstrutive omments leading to improvement of the presentation.
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