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On nested sequences of convex sets in Banach spaces

by
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Abstract. We study different aspects of the representation of weak∗-compact convex
sets of the bidual X∗∗ of a separable Banach space X via a nested sequence of closed convex
bounded sets of X.

1. Introduction. In this paper we solve several problems about nested
intersections of convex closed bounded sets in Banach spaces.

We begin with a study of different aspects of the representation of weak∗-
compact convex sets of the bidual X∗∗ of a separable Banach space X via a
nested sequence of closed convex bounded sets of X. More precisely, let us
say that a convex closed bounded subset C ⊂ X∗∗ is representable if it can
be written as the intersection

C =
⋂
n∈N

Cn
w∗

for a nested sequence (Cn) of bounded convex closed subsets of X. This topic
was considered in [6, 7], where the problem of which weak∗-closed convex sets
of the bidual are representable was posed. In [5], Bernardes shows that when
X∗ is separable, every weak∗-compact convex subset of X∗∗ is representable.
Here we will show that compact convex sets of X∗∗ are representable if and
only if X does not contain `1, and also that there are spaces without copies
of `1 containing weak∗-compact convex metrizable subsets of the bidual that
are not representable.

In Section 3, we solve problem (2) in [7] by showing that when the sets are
viewed as the distance types (in the sense of [6]) they define, i.e., as elements
of RX , then every weak∗-compact convex set C ⊂ X∗∗ is represented by a
nested sequence (Cn) of closed convex sets of X; which means that for all
x ∈ X,

dist(x,C) = lim dist(x,Cn).
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In Section 4 we present two examples: the first one solves Marino’s ques-
tion [13] about the possibility of enlarging nested sequences of convex sets
to get better intersections; the second one solves Behrends’ question about
the validity for ε = 0 of the Helly–Bárány theorem [3].

2. Representation of convex sets in biduals

Definition 2.1. A Banach space is said to enjoy the Convex Repre-
sentation Property, for short CRP (resp. Compact Convex Representation
Property, for short CCRP), if every weak∗-compact (resp. compact) convex
subset C of X∗∗ can be represented as the intersection

C =
⋂
n∈N

Cn
w∗

for a nested sequence (Cn) of bounded convex closed subsets of X.

Proposition 2.2. prop:2.2 A separable Banach space has CCRP if and
only if it does not contain `1.

Proof. The necessity follows from the Odell–Rosenthal characterization
[15] of separable Banach spaces containing `1. Indeed, if X contains `1 then
there is an element µ ∈ X∗∗ which is not the weak∗-limit of any sequence

of elements of X. Hence, {µ} =
⋂
n∈NCn

w∗
is impossible: taking elements

cn ∈ Cn one would get ∅ 6=
⋂
n {ck : k ≥ n}w

∗
⊂
⋂
nCn

w∗
= {µ}, which

means that µ is the only weak∗-cluster point of the sequence (cn) and thus
µ = w∗-lim cn.

As for the sufficiency, let K be a compact convex subset of X∗∗. For
every n ∈ N, let Fn = {zkn : k ∈ In} be a finite subset of K for which K ⊂
Fn + n−1BX∗∗ . There is no loss of generality in assuming that Fn ⊂ Fn+1.
For each zkn ∈ Fn, let (xkn(m))m ⊂ X be a sequence in X weak∗-convergent
to zkn. Set

Cn = conv{xkn(m) : k ∈ In, m ≥ n}+ n−1BX .

It is clear that Cn is a nested sequence of closed convex subsets of X.
Moreover,

K ⊂ Fn + n−1BX∗∗ ⊂ conv{xkn(m) : k ∈ In, m ≥ n}+ n−1BX
w∗

= Cn
w∗
,

and thus K ⊂
⋂
nCn

w∗
.

Fix now p ∈
⋂
nCn

w∗
. Since p ∈ Cn

w∗
, there is a finite convex com-

bination
∑

i∈In θiz
i
n for which ‖p −

∑
i∈In θiz

i
n‖ ≤ n−1. This implies that

p ∈ K = K and thus
⋂
nCn

w∗
⊂ K.

This shows that Problem 1 in [7] has a negative answer. On the other
hand, Bernardes obtains in [5] an affirmative answer when X∗ is separable,
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which is somehow the best that can be expected. Let us briefly review and
extend Bernardes’ result. Recall that a partially ordered set Γ is called
filtering when for any points i, j ∈ Γ there is k ∈ Γ such that i ≤ k and
j ≤ k. An indexed family of subsets (Cα)α∈Γ will be called filtering when
it is filtering with respect to the natural (reverse) order Cβ ⊂ Cα whenever
α ≤ β. One has:

Proposition 2.3. If C is a convex weak∗-compact set in the bidual
X∗∗ of a Banach space X then there is a filtering family (Cα)α∈Γ of convex
bounded and closed subsets of X such that

C =
⋂
α∈Γ

Cα
w∗
.

Proof. There is no loss of generality in assuming that C ⊂ BX∗∗ . Let
Γ be the partially ordered set of finite subsets of BX∗ . For each α ∈ Γ we
denote by |α| the cardinality of the set α. Set now

Cα = {x ∈ X : ∃z ∈ C ∀y ∈ α, |(z − x)(y)| ≤ |α|−1}.

This family (Cα)α∈Γ is filtering, as also is (Cα
w∗

)α∈Γ , which ensures that⋂
α∈Γ Cα

w∗
is nonempty. Let us show the equality

C =
⋂
α∈Γ

Cα
w∗
.

• C ⊂
⋂
α∈Γ Cα

w∗
: Let z ∈ C ⊂ BX∗∗ ; given α ∈ Γ , by the Banach–

Alaoglu theorem, there is x ∈ BX such that |(z − x)(y)| < |α|−1 for all

y ∈ α. Hence x ∈ Cα, and thus z ∈ Cα
w∗

.

•
⋂
α∈Γ Cα

w∗
⊂ C: Let z ∈

⋂
α∈Γ Cα

w∗
and let Vα,ε be the weak∗-

neighborhood of 0 determined by α ∈ Γ and ε > 0, i.e., Vα,ε = {p ∈ X∗∗ :

∀y ∈ α, |p(y)| ≤ ε}. Pick β ∈ Γ with α ≤ β and |β|−1 ≤ ε. Since z ∈ Cβ
w∗

,
there is x ∈ Cβ such that |(z−x)(y)| ≤ ε for all y ∈ α; this moreover means
that there is some z′ ∈ C such that |(z′ − x)(y)| ≤ |β|−1 ≤ ε for all y ∈ β.
Putting all together one gets, for all y ∈ α,

|(z − z′)(y)| = |(z − x)(y) + (x− z′)(y)| ≤ 2ε,

and thus z − z′ ∈ Vα,2ε. Hence z ∈ Cw
∗

= C.

The size of Γ can be reduced just by taking first a dense subset Y ⊂ BX∗

and then fixing as Γ a fundamental family of finite sets of Y , in the sense that
every finite subset of Y is contained in some element of Γ . This reduction
modifies the proof as follows: starting from the first finite set α—no longer
in Γ—determining Vα,ε one must take a set β ∈ Γ such that for each y ∈ α
there is y′ ∈ β such that ‖y−y′‖ ≤ |β|−1 ≤ ε. Get x and z′ as above. Finally,
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for y ∈ α, one gets

|(z − z′)(y)| = |(z − z′)(y − y′) + (z − z′)(y′)| ≤ ε+ 2ε = 3ε.

A consequence of this simplification is that when X∗ is separable then
Γ reduces to N and thus one gets the main result in [5]:

Corollary 2.4 (Bernardes). Every Banach space with separable dual
has CRP.

One therefore has:

X∗ separable ⇒ CRP ⇒ CCRP ⇔ `1 * X.

This suggests two questions: 1) whether CCRP implies CRP and 2) whether
CRP implies having separable dual. One has

Proposition 2.5. CCRP does not imply CRP.

To prove this we are going to show that the James-Tree space—perhaps
the simplest space not containing `1 but having nonseparable dual—fails
CRP. For information about JT , we refer to [10, Chapter VIII]. We be-
gin with a preparatory lemma that can be considered as a complement to
Kalton’s [12, Lemma 5.1].

Lemma 2.6. Let (Cn)n be a nested sequence of bounded closed convex

subsets of a Banach space X. If
⋂
nCn

w∗
is weak∗-metrizable then:

(1) Every g ∈
⋂
nCn

w∗
is the weak∗-limit of a sequence (cn) with cn ∈Cn.

(2) Every sequence (cn) with cn ∈ Cn admits a weak∗-convergent subse-
quence.

Proof. (1) is clear: Let (Vn)n be a sequence of weak∗-neighborhoods of g

such that {g}=
⋂
n Vn∩

⋂
nCn

w∗
. Picking cn∈Cn∩Vn one gets {g}= {cn}

w∗
.

To prove (2), let us consider the following equivalence relation on the
set P∞(N) of infinite subsets of N: A ∼ B if and only if A and B coincide
except for a finite set. Moreover, K will denote the set of all compact subsets

of
⋂
nCn

w∗
. Given a sequence (cn) with cn ∈ Cn we define a map w :

P∞(N)/∼ → K by

w([A]) =
⋂
k

{cn : n ∈ A, n > k}w
∗
.

The set P∞(N)/∼ admits a natural order: [A] ≤ [B] if A is eventually con-
tained in B. This order has the property that for every decreasing sequence

([An])n there is an element [B] with [B] ≤ [An] for all n. Since
⋂
nCn

w∗
is
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metrizable, it follows [2, Sect. 2] that there is M ∈ P∞(N) on which w is
stationary, i.e., w([C]) = w([M ]) for all infinite subsets C ⊂M . This imme-
diately implies that w({cn}n∈M ) has only one point, and thus {cn}n∈M is
weak∗-convergent.

Let us denote by G the set of all branches of the dyadic tree T . For
each r ∈ G, let er denote the corresponding element of the basis of `2(G)
considered as a subspace of JT ∗∗. Let {ek,l : k ∈ N0, 1 ≤ l ≤ 2k} denote the
unit vector basis of JT . The action of er on x∗ ∈ JT ∗ is given by

〈x∗, er〉 = lim
along r

〈ek,l, x∗〉.

For each m ∈ N we denote by Pm the norm-one projection in JT defined
by Pmek,l = ek,l if k ≥ m, and Pmek,l = 0 otherwise. For each r ∈ G we
consider fr ∈ JT ∗ given by setting 〈ek,l, fr〉 equal to 1 if (k, l) ∈ r, and
to 0 otherwise. Observe that 〈fr, es〉 = δr,s. Let S = {sn : n ∈ N} denote a
countable subset of G such that the branches in S include all the nodes of
the tree T .

Proof of Proposition 2.5: The James-Tree space fails CRP. Let us show
that the closed unit ball B of `2(S) cannot be represented. Assume that we

can write B =
⋂
n∈NCn

w∗
. The set B is weak∗-metrizable, because it is the

unit ball of a separable reflexive subspace. By Lemma 2.6, each vector in B
is the weak∗-limit of a sequence (xn) with xn ∈ Cn. For each s ∈ S we select
xsn ∈ Cn so that w∗-limxsn = es. Note that limn ‖(I−Pk)xsn‖ = 0 for every k
and s.

We take t1 ∈ S, t1 6= s1. Also we take x1 = xt1n1
with |〈x1, ft1〉−1| < 2−1,

and select (k1, l1) ∈ t1\s1 such that ‖Pk1x1‖ < 2−1. Next we take t2 ∈ S with
(k1, l1) ∈ t2 and t2 6= s2. Also we take x2 = xt2n2

with ‖(I − Pk1)x2‖ < 2−2

and |〈x2, ft2〉 − 1| < 2−2, and select (k2, l2) ∈ t2 \ s2 with k2 > k1 such that
‖Pk2x2‖ < 2−2. Proceeding in this way we obtain a sequence (xi) that is
eventually contained in each Cn, and an ordered sequence of different nodes
(ki, li) that determine a branch r ∈ G\S. Since JT is separable and contains
no copies of `1, the sequence (xi) has a subsequence that is weak∗-convergent

to some x∗∗ ∈ JT ∗∗ [9, First Theorem, p. 215]. Thus, x∗∗ ∈
⋂
n∈NCn

w∗
, but

x∗∗ /∈ B since 〈fr, x∗∗〉 = 1.

Proposition 2.2 thus characterizes the CCRP, while Proposition 2.5 shows
that even when compact convex sets are representable, arbitrary weak∗-
metrizable convex bounded closed sets do not have to be. The question of
which convex sets are representable thus arises. Bigger than compact spaces
are the so called small sets [4, 8, 1], but it was shown in [4] that a closed
bounded convex small set is compact.
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3. Representation of convex sets in the hyperspace. The theory
of types in Banach spaces represents the elements of a Banach space g ∈ X
as functions τg(x) = ‖x− g‖. These are the elementary types, and the types
are the closure of the set of elementary types in RX . It can be shown that
bidual types, i.e., functions having the form τg(x) = ‖x − g‖ for g ∈ X∗∗,
are also types [11]. In close parallelism, the theory of distance types was
developed in [6]: in it, the elements to be represented are the closed bounded
convex subsets C of X via the function dC(x) = dist(x,C). These are the
elementary distance types. The ∅-distance types are the functions of the form
d(x) = lim dCn(x) where (Cn) is a nested sequence of closed bounded convex
subsets of X with empty intersection. In [6, Thm. 4.1] it was shown that
in every nonreflexive separable Banach space there exist ∅-distance types
that are not types. It was also shown [6, Thm. 5.1] that bidual types on
separable Banach spaces coincide with ∅-distance types defined by “flat” (in
the sense of Milman and Milman [14]) nested sequences of bounded convex
closed sets (Cn). In [7, Thm. 1] it is shown that given a nested sequence
(Cn) of bounded convex closed sets in a separable space X, one always has

dist
(
x,
⋂
Cn

w∗)
= lim dist(x,Cn).

Bernardes shows in [5, Thm. 1] that this happens in all Banach spaces.

All this suggests the problem [7, Problem 2] whether the analogue of
Farmaki’s result (bidual types are types) also holds for distance types; i.e.,
if given a weak∗-compact convex subset C of X∗∗, the bidual distance type
it defines, dC(x) = dist(x,C) on X, is a ∅-distance type. Let us give an
affirmative answer.

Proposition 3.1. Let C be a weak∗-compact convex subset of the bidual
X∗∗ of a separable space X such that C ∩X = ∅. There is a nested sequence

(Cn) of closed convex sets in X such that C ⊂
⋂
nCn

w∗
and for all x ∈ X,

dist(x,C) = lim dist(x,Cn).

Proof. Let (xn) be a dense sequence in X. Since C is bounded, it is
contained in the ball γBX∗∗ for some γ > 0. We proceed inductively: Pick x1,
let α1 = dist(x1, C), then choose an increasing sequence (α1

n) convergent
to α1. Pick functionals ϕ1

n ∈ BX∗ that strictly separate C and x1+(α1
n)BX∗∗ ,

say

inf
z∈C

z(ϕ1
n) > ‖x1‖+ α1

n + 2ε1n.

Set Cn,1 = {x ∈ X : ∃z ∈ C, |(z − x)(ϕ1
n)| ≤ ε1n} ∩ γBX∗∗ . The sequence of

convex sets Cn,1 is nested and every point z ∈ C belongs to the weak∗-closure
of some set {x ∈ X : |(z−x)(ϕ1

n)| ≤ n−1}, which is in turn contained in Cn,1.

Thus, C ⊂
⋂
nCn,1

w∗
. Moreover, x1 + (α1)BX∗∗ ∩

⋂
nCn,1

w∗
= ∅ because
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otherwise there whould be cn ∈ Cn,1 with (x1 + α1b − cn)(ϕ1
n) < ε1n; since

there must be zn ∈ C with |(zn− cn)(ϕ1
n)| ≤ ε1n, pick a weak∗-accumulation

point z ∈ C of (zn) to conclude that (x1 + α1b− z)(ϕ1
n) = (x1 + α1b− cn +

cn − z)(ϕ1
n) ≤ 2ε1n, which immediately yields

z(ϕ1
n) = (x1 + α1b)(ϕ

1
n)− (x1 + α1b− z)(ϕ1

n) ≤ ‖x1‖+ α1
n + 2ε1n

in contradiction with the separation above.
Thus, by [7, Thm. 1] we get

dist(x1, C) = dist
(
x1,
⋂
Cn,1

w∗)
= lim dist(x1, Cn,1).

We pass to x2. Everything goes as before except that all the action is

inside
⋂
Cn,1

w∗
. Precisely, once α2, α

2
n, ϕ

2
n, ε

2
n have been fixed by the same

procedure as above, set

Cn,2 =
{
x ∈ X : ∃z ∈ C, max

i=1,2
|(z − x)(ϕin)| ≤ εin

}
∩ γBX∗∗

to conclude that C ⊂
⋂
nCn,2

w∗
⊂
⋂
nCn,1

w∗
and

dist(xi, C) = dist
(
xi,
⋂
Cn,2

w∗)
= lim dist(xi, Cn,2)

for i = 1, 2. Proceed inductively. Since Cn,k+1 ⊂ Cn,k, we can diagonalize
the final sequence of sequences to get a sequence (Ck,k) which satisfies C ⊂⋂
Ck,k

w∗
, and moreover, for all n,

dist(xn, C) = dist
(
xi,
⋂
Ck,k

w∗)
= lim dist(xn, Ck,k).

By continuity, the equality remains valid for all x ∈ X.

In the clasical case, as Farmaki remarks in [11], it is not obvious that
fourth-dual types, i.e., maps of the form τg(x) = ‖x + g‖ for g ∈ X4 on
separable spaces X, are necessarily types. One may thus ask: Let X be a
separable Banach space and let C ⊂ X2k be a bounded weak∗-closed convex.
Must there be a sequence (Cn) of bounded convex closed subsets of X such
that for every x ∈ X one has dist(x,C) = lim dist(x,Cn)?

4. Further properties of nested sequences

4.1. Enlarging sets for better intersection: Marino’s problem.
Let A be a closed set. For ε > 0 we set

Aε = {x ∈ X : dist(x,A) ≤ ε}.
An extremely nice result of Marino [13] establishes that given any family

(Gγ) of convex sets with nonempty intersection,
⋂
γ G

ε
γ is either bounded

for every ε > 0, or unbounded for every ε > 0. A question left open in [7,
p. 583] is whether it is possible to have

⋂
An = ∅, some intersections

⋂
Aεn
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nonempty and bounded, and others unbounded. The next example shows
that it can be so:

Example 2. Consider in `1 the sequence

A2k =

{
x ∈ `1 : xk+1 ≤ −

2k+1 − 1

2k+1

}
and A2k−1 = {x ∈ `1 : xk ≥ 1}.

Then
⋂
An = ∅ =

⋂
Aεn = ∅ for all ε < 1, while⋂
A1
n = {x ∈ `1 : ∀k, 0 ≤ xk ≤ 1/2k},

and
⋂
A1+ε
n is unbounded for all ε > 0 since all x ∈ `1 with −ε ≤ xi ≤ 0 for

every i belong to that set.

The choice of `1 for the example is not accidental: during the proof of
[7, Prop. 9] it is shown that in reflexive spaces,

⋂
An = ∅ implies

⋂
Aεn = ∅

for all ε > 0. Marino’s theorem in combination with [7, Prop. 9] shows that
in a nonreflexive space, if α = inf{ε > 0 :

⋂
Aεn 6= ∅} then

⋂
Aεn is either

bounded for all ε > α, or unbounded for all ε > α.

Let us show now that Marino’s theorem remains “almost” valid for nested
sequences with empty intersection in a finite-dimensional space. In this case,
the boundedness of some An immediately implies, by compactness, that⋂
n∈NAn 6= ∅. Assume thus that one has a nested sequence of unbounded

convex sets. Let Tk = {x ∈ X : k ≤ ‖x‖ ≤ k + 1}. One has:

Lemma 4.1. Let (An) be a sequence of unbounded connected sets in a
finite-dimensional space X. Then either

⋂
n∈NAn = ∅, or for all but finitely

many k ∈ N and every ε > 0 there is an infinite subset Nk ⊂ N such that
Tk ∩

⋂
n∈Nk

Aεn 6= ∅.

Proof. If for every k ∈ N the ball kB of radius k does not intersect⋂
n∈NAn then

⋂
n∈NAn = ∅. Otherwise, let xn,k ∈ An ∩ kB. Since An is

unbounded, there is a point yn,k+1 with ‖yn,k+1‖ > k + 1. Since An is
connected, there is some xn,k+1 in An with k ≤ ‖xn,k+1‖ ≤ k + 1, and thus
in An ∩ Tk. The sequence (xn,k+1)n lies in the compact set Tk and thus for
some infinite subset Nk ⊂ N the subsequence (xn,k+1)n∈Nk

is convergent to
some point xk+1 ∈ Tk. Thus, xk+1 + εB intersects the sets {An : n ∈ Nk}
and hence

⋂
n∈Nk

Aεn ∩ Tk 6= ∅.

Thus we get:

Proposition 4.2. Let (An) be a nested sequence of unbounded connected
sets in a finite-dimensional space X. Then either

⋂
n∈NAn = ∅, or

⋂
n∈NA

ε
n

is unbounded for every ε > 0.

The assertion obviously fails for disconnected sets and also fails in infinite-
dimensional spaces:
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Example 1. In `2 take An = {x ∈ `2 : ∀k > n, 0 ≤ xk ≤ 1, and ∀k ≤ n,
xk = 0}. This is a nested sequence of unbounded convex closed sets such
that

⋂
n∈NAn = ∅, while for all ε > 0 the set

⋂
n∈NA

ε
n is bounded: indeed,

if y ∈ Aεn for all n then there is xn ∈ An for which ‖y − xn‖ ≤ ε; thus∑n
i=1 |yi|2 ≤ ε2 for all n, so ‖y‖ ≤ ε2.

4.2. On the Helly–Bárány theorem. In one of the main theorems
in [3], Behrends establishes a Helly–Bárány theorem for separable Banach
spaces [3, Thm. 5.5]: Let X be a separable Banach space and Cn a family of
nonvoid, closed and convex subsets of the unit ball B for every n. Suppose
that there is a positive ε0 ≤ 1 such that

⋂
C∈Cn C + εB = ∅ for every n

and every 0 < ε < ε0. Then there are Cn ∈ Cn such that
⋂
nCn + εB = ∅.

Behrends asks [3, Remark 2, p. 248] whether one can put ε = ε0 in this
theorem. The following example shows that the answer is no:

Example. In c0, the family Cn contains two convex sets:

a+n =

{
x ∈ c0 : ∀i ∈ N, |xi| ≤

1

2

(
1 +

1

i

)
and |xn| =

1

2

(
1 +

1

n

)}
and

a−n =

{
x ∈ c0 : ∀i ∈ N, |xi| ≤

1

2

(
1 +

1

i

)
and |xn| = −

1

2

(
1 +

1

n

)}
.

One has a+n ∩ a−n = ∅ for all n ∈ N. But for every z ∈ {−,+}N the choice

a
z(n)
n ∈ Cn has x ∈

⋂
n a

z(n)
n 6= ∅ for xi = z(i) 1

2i .
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