On nested sequences of convex sets in Banach spaces

by
Jesús M. F. Castillo (Badajoz), Manuel González (Santander) and Pier Luigi Papini (Bologna)

Abstract

We study different aspects of the representation of weak*-compact convex sets of the bidual $X^{* *}$ of a separable Banach space X via a nested sequence of closed convex bounded sets of X.

1. Introduction. In this paper we solve several problems about nested intersections of convex closed bounded sets in Banach spaces.

We begin with a study of different aspects of the representation of weak*compact convex sets of the bidual $X^{* *}$ of a separable Banach space X via a nested sequence of closed convex bounded sets of X. More precisely, let us say that a convex closed bounded subset $C \subset X^{* *}$ is representable if it can be written as the intersection

$$
C=\bigcap_{n \in \mathbb{N}}{\overline{C_{n}}}^{w^{*}}
$$

for a nested sequence $\left(C_{n}\right)$ of bounded convex closed subsets of X. This topic was considered in [6, 7], where the problem of which weak*-closed convex sets of the bidual are representable was posed. In [5], Bernardes shows that when X^{*} is separable, every weak*-compact convex subset of $X^{* *}$ is representable. Here we will show that compact convex sets of $X^{* *}$ are representable if and only if X does not contain ℓ_{1}, and also that there are spaces without copies of ℓ_{1} containing weak*-compact convex metrizable subsets of the bidual that are not representable.

In Section 3, we solve problem (2) in [7] by showing that when the sets are viewed as the distance types (in the sense of [6]) they define, i.e., as elements of \mathbb{R}^{X}, then every weak*-compact convex set $C \subset X^{* *}$ is represented by a nested sequence $\left(C_{n}\right)$ of closed convex sets of X; which means that for all $x \in X$,

$$
\operatorname{dist}(x, C)=\lim \operatorname{dist}\left(x, C_{n}\right)
$$

2010 Mathematics Subject Classification: Primary 46B20.
Key words and phrases: weak*-compact convex sets, nested sequences, Banach spaces not containing ℓ_{1}.

In Section 4 we present two examples: the first one solves Marino's question [13] about the possibility of enlarging nested sequences of convex sets to get better intersections; the second one solves Behrends' question about the validity for $\varepsilon=0$ of the Helly-Bárány theorem [3].

2. Representation of convex sets in biduals

Definition 2.1. A Banach space is said to enjoy the Convex Representation Property, for short CRP (resp. Compact Convex Representation Property, for short CCRP), if every weak*-compact (resp. compact) convex subset C of $X^{* *}$ can be represented as the intersection

$$
C=\bigcap_{n \in \mathbb{N}}{\overline{C_{n}}}^{w^{*}}
$$

for a nested sequence $\left(C_{n}\right)$ of bounded convex closed subsets of X.
Proposition 2.2. prop:2.2 A separable Banach space has CCRP if and only if it does not contain ℓ_{1}.

Proof. The necessity follows from the Odell-Rosenthal characterization [15] of separable Banach spaces containing ℓ_{1}. Indeed, if X contains ℓ_{1} then there is an element $\mu \in X^{* *}$ which is not the weak*-limit of any sequence of elements of X. Hence, $\{\mu\}=\bigcap_{n \in \mathbb{N}}{\overline{C_{n}}}^{w^{*}}$ is impossible: taking elements $c_{n} \in C_{n}$ one would get $\emptyset \neq \bigcap_{n}{\overline{\left\{c_{k}: k \geq n\right\}}}^{w^{*}} \subset \bigcap_{n} \bar{C}_{n} w^{*}=\{\mu\}$, which means that μ is the only weak ${ }^{*}$-cluster point of the sequence $\left(c_{n}\right)$ and thus $\mu=w^{*}-\lim c_{n}$.

As for the sufficiency, let K be a compact convex subset of $X^{* *}$. For every $n \in \mathbb{N}$, let $F_{n}=\left\{z_{n}^{k}: k \in I_{n}\right\}$ be a finite subset of K for which $K \subset$ $F_{n}+n^{-1} B_{X^{* *}}$. There is no loss of generality in assuming that $F_{n} \subset F_{n+1}$. For each $z_{n}^{k} \in F_{n}$, let $\left(x_{n}^{k}(m)\right)_{m} \subset X$ be a sequence in X weak*-convergent to z_{n}^{k}. Set

$$
C_{n}=\overline{\operatorname{conv}}\left\{x_{n}^{k}(m): k \in I_{n}, m \geq n\right\}+n^{-1} B_{X}
$$

It is clear that C_{n} is a nested sequence of closed convex subsets of X. Moreover,

$$
K \subset F_{n}+n^{-1} B_{X^{* *}} \subset \overline{\overline{\operatorname{conv}}\left\{x_{n}^{k}(m): k \in I_{n}, m \geq n\right\}+n^{-1} B_{X}}{ }^{w^{*}}={\overline{C_{n}}}^{w^{*}}
$$

and thus $K \subset \bigcap_{n}{\overline{C_{n}}}^{w^{*}}$.
Fix now $p \in \bigcap_{n}{\overline{C_{n}}}^{w^{*}}$. Since $p \in{\overline{C_{n}}}^{w^{*}}$, there is a finite convex combination $\sum_{i \in I_{n}} \theta_{i} z_{n}^{i}$ for which $\left\|p-\sum_{i \in I_{n}} \theta_{i} z_{n}^{i}\right\| \leq n^{-1}$. This implies that $p \in \bar{K}=K$ and thus $\bigcap_{n}{\overline{C_{n}}}^{w^{*}} \subset K$.

This shows that Problem 1 in [7] has a negative answer. On the other hand, Bernardes obtains in [5] an affirmative answer when X^{*} is separable,
which is somehow the best that can be expected. Let us briefly review and extend Bernardes' result. Recall that a partially ordered set Γ is called filtering when for any points $i, j \in \Gamma$ there is $k \in \Gamma$ such that $i \leq k$ and $j \leq k$. An indexed family of subsets $\left(C_{\alpha}\right)_{\alpha \in \Gamma}$ will be called filtering when it is filtering with respect to the natural (reverse) order $C_{\beta} \subset C_{\alpha}$ whenever $\alpha \leq \beta$. One has:

Proposition 2.3. If C is a convex weak*-compact set in the bidual $X^{* *}$ of a Banach space X then there is a filtering family $\left(C_{\alpha}\right)_{\alpha \in \Gamma}$ of convex bounded and closed subsets of X such that

$$
C=\bigcap_{\alpha \in \Gamma}{\overline{C_{\alpha}}}^{w^{*}}
$$

Proof. There is no loss of generality in assuming that $C \subset B_{X^{* *}}$. Let Γ be the partially ordered set of finite subsets of $B_{X^{*}}$. For each $\alpha \in \Gamma$ we denote by $|\alpha|$ the cardinality of the set α. Set now

$$
C_{\alpha}=\left\{x \in X: \exists z \in C \forall y \in \alpha,|(z-x)(y)| \leq|\alpha|^{-1}\right\}
$$

This family $\left(C_{\alpha}\right)_{\alpha \in \Gamma}$ is filtering, as also is $\left({\overline{C_{\alpha}}}^{w^{*}}\right)_{\alpha \in \Gamma}$, which ensures that $\bigcap_{\alpha \in \Gamma}{\overline{C_{\alpha}}}^{w^{*}}$ is nonempty. Let us show the equality

$$
C=\bigcap_{\alpha \in \Gamma}{\overline{C_{\alpha}}}^{w^{*}} .
$$

- $C \subset \bigcap_{\alpha \in \Gamma} \overline{C_{\alpha}} w^{*}:$ Let $z \in C \subset B_{X^{* *}}$; given $\alpha \in \Gamma$, by the BanachAlaoglu theorem, there is $x \in B_{X}$ such that $|(z-x)(y)|<|\alpha|^{-1}$ for all $y \in \alpha$. Hence $x \in C_{\alpha}$, and thus $z \in{\overline{C_{\alpha}}}^{w^{*}}$.
- $\bigcap_{\alpha \in \Gamma}{\overline{C_{\alpha}}}^{w^{*}} \subset C$ Let $z \in \bigcap_{\alpha \in \Gamma}{\overline{C_{\alpha}}}^{w^{*}}$ and let $V_{\alpha, \varepsilon}$ be the weak*neighborhood of 0 determined by $\alpha \in \Gamma$ and $\varepsilon>0$, i.e., $V_{\alpha, \varepsilon}=\left\{p \in X^{* *}\right.$: $\forall y \in \alpha,|p(y)| \leq \varepsilon\}$. Pick $\beta \in \Gamma$ with $\alpha \leq \beta$ and $|\beta|^{-1} \leq \varepsilon$. Since $z \in \bar{C}_{\beta} w^{*}$, there is $x \in C_{\beta}$ such that $|(z-x)(y)| \leq \varepsilon$ for all $y \in \alpha$; this moreover means that there is some $z^{\prime} \in C$ such that $\left|\left(z^{\prime}-x\right)(y)\right| \leq|\beta|^{-1} \leq \varepsilon$ for all $y \in \beta$. Putting all together one gets, for all $y \in \alpha$,

$$
\left|\left(z-z^{\prime}\right)(y)\right|=\left|(z-x)(y)+\left(x-z^{\prime}\right)(y)\right| \leq 2 \varepsilon
$$

and thus $z-z^{\prime} \in V_{\alpha, 2 \varepsilon}$. Hence $z \in \bar{C}^{w^{*}}=C$.
The size of Γ can be reduced just by taking first a dense subset $Y \subset B_{X^{*}}$ and then fixing as Γ a fundamental family of finite sets of Y, in the sense that every finite subset of Y is contained in some element of Γ. This reduction modifies the proof as follows: starting from the first finite set α-no longer in Γ-determining $V_{\alpha, \varepsilon}$ one must take a set $\beta \in \Gamma$ such that for each $y \in \alpha$ there is $y^{\prime} \in \beta$ such that $\left\|y-y^{\prime}\right\| \leq|\beta|^{-1} \leq \varepsilon$. Get x and z^{\prime} as above. Finally,
for $y \in \alpha$, one gets

$$
\left|\left(z-z^{\prime}\right)(y)\right|=\left|\left(z-z^{\prime}\right)\left(y-y^{\prime}\right)+\left(z-z^{\prime}\right)\left(y^{\prime}\right)\right| \leq \varepsilon+2 \varepsilon=3 \varepsilon
$$

A consequence of this simplification is that when X^{*} is separable then Γ reduces to \mathbb{N} and thus one gets the main result in [5]:

Corollary 2.4 (Bernardes). Every Banach space with separable dual has CRP.

One therefore has:

$$
X^{*} \text { separable } \Rightarrow \mathrm{CRP} \Rightarrow \mathrm{CCRP} \Leftrightarrow \ell_{1} \nsubseteq X
$$

This suggests two questions: 1) whether CCRP implies CRP and 2) whether CRP implies having separable dual. One has

Proposition 2.5. CCRP does not imply $C R P$.
To prove this we are going to show that the James-Tree space-perhaps the simplest space not containing ℓ_{1} but having nonseparable dual-fails CRP. For information about $J T$, we refer to [10, Chapter VIII]. We begin with a preparatory lemma that can be considered as a complement to Kalton's [12, Lemma 5.1].

Lemma 2.6. Let $\left(C_{n}\right)_{n}$ be a nested sequence of bounded closed convex subsets of a Banach space X. If $\bigcap_{n}{\overline{C_{n}}}^{w^{*}}$ is weak*-metrizable then:
(1) Every $g \in \bigcap_{n}{\overline{C_{n}}}^{w^{*}}$ is the weak*-limit of a sequence $\left(c_{n}\right)$ with $c_{n} \in C_{n}$.
(2) Every sequence $\left(c_{n}\right)$ with $c_{n} \in C_{n}$ admits a weak*-convergent subsequence.

Proof. (1) is clear: Let $\left(V_{n}\right)_{n}$ be a sequence of weak*-neighborhoods of g such that $\{g\}=\bigcap_{n} V_{n} \cap \bigcap_{n}{\overline{C_{n}}}^{w^{*}}$. Picking $c_{n} \in C_{n} \cap V_{n}$ one gets $\{g\}=\overline{\left\{c_{n}\right\}}{ }^{w^{*}}$.

To prove (2), let us consider the following equivalence relation on the set $\mathcal{P}_{\infty}(\mathbb{N})$ of infinite subsets of $\mathbb{N}: A \sim B$ if and only if A and B coincide except for a finite set. Moreover, K will denote the set of all compact subsets of $\bigcap_{n}{\overline{C_{n}}}^{w^{*}}$. Given a sequence $\left(c_{n}\right)$ with $c_{n} \in C_{n}$ we define a map w : $\mathcal{P}_{\infty}(\mathbb{N}) / \sim \rightarrow K$ by

$$
w([A])=\bigcap_{k} \overline{\left\{c_{n}: n \in A, n>k\right\}} w^{*}
$$

The set $\mathcal{P}_{\infty}(\mathbb{N}) / \sim$ admits a natural order: $[A] \leq[B]$ if A is eventually contained in B. This order has the property that for every decreasing sequence $\left(\left[A_{n}\right]\right)_{n}$ there is an element $[B]$ with $[B] \leq\left[A_{n}\right]$ for all n. Since $\bigcap_{n} \overline{C_{n}} w^{*}$ is
metrizable, it follows [2, Sect. 2] that there is $M \in \mathcal{P}_{\infty}(\mathbb{N})$ on which w is stationary, i.e., $w([C])=w([M])$ for all infinite subsets $C \subset M$. This immediately implies that $w\left(\left\{c_{n}\right\}_{n \in M}\right)$ has only one point, and thus $\left\{c_{n}\right\}_{n \in M}$ is weak*-convergent.

Let us denote by G the set of all branches of the dyadic tree T. For each $r \in G$, let e_{r} denote the corresponding element of the basis of $\ell_{2}(G)$ considered as a subspace of $J T^{* *}$. Let $\left\{e_{k, l}: k \in \mathbb{N}_{0}, 1 \leq l \leq 2^{k}\right\}$ denote the unit vector basis of $J T$. The action of e_{r} on $x^{*} \in J T^{*}$ is given by

$$
\left\langle x^{*}, e_{r}\right\rangle=\lim _{\text {along } r}\left\langle e_{k, l}, x^{*}\right\rangle
$$

For each $m \in \mathbb{N}$ we denote by P_{m} the norm-one projection in $J T$ defined by $P_{m} e_{k, l}=e_{k, l}$ if $k \geq m$, and $P_{m} e_{k, l}=0$ otherwise. For each $r \in G$ we consider $f_{r} \in J T^{*}$ given by setting $\left\langle e_{k, l}, f_{r}\right\rangle$ equal to 1 if $(k, l) \in r$, and to 0 otherwise. Observe that $\left\langle f_{r}, e_{s}\right\rangle=\delta_{r, s}$. Let $S=\left\{s_{n}: n \in \mathbb{N}\right\}$ denote a countable subset of G such that the branches in S include all the nodes of the tree T.

Proof of Proposition 2.5: The James-Tree space fails CRP. Let us show that the closed unit ball B of $\ell_{2}(S)$ cannot be represented. Assume that we can write $B=\bigcap_{n \in \mathbb{N}}{\overline{C_{n}}}^{w^{*}}$. The set B is weak*-metrizable, because it is the unit ball of a separable reflexive subspace. By Lemma 2.6, each vector in B is the weak*-limit of a sequence $\left(x_{n}\right)$ with $x_{n} \in C_{n}$. For each $s \in S$ we select $x_{n}^{s} \in C_{n}$ so that $w^{*}-\lim x_{n}^{s}=e_{s}$. Note that $\lim _{n}\left\|\left(I-P_{k}\right) x_{n}^{s}\right\|=0$ for every k and s.

We take $t_{1} \in S, t_{1} \neq s_{1}$. Also we take $x_{1}=x_{n_{1}}^{t_{1}}$ with $\left|\left\langle x_{1}, f_{t_{1}}\right\rangle-1\right|<2^{-1}$, and select $\left(k_{1}, l_{1}\right) \in t_{1} \backslash s_{1}$ such that $\left\|P_{k_{1}} x_{1}\right\|<2^{-1}$. Next we take $t_{2} \in S$ with $\left(k_{1}, l_{1}\right) \in t_{2}$ and $t_{2} \neq s_{2}$. Also we take $x_{2}=x_{n_{2}}^{t_{2}}$ with $\left\|\left(I-P_{k_{1}}\right) x_{2}\right\|<2^{-2}$ and $\left|\left\langle x_{2}, f_{t_{2}}\right\rangle-1\right|<2^{-2}$, and select $\left(k_{2}, l_{2}\right) \in t_{2} \backslash s_{2}$ with $k_{2}>k_{1}$ such that $\left\|P_{k_{2}} x_{2}\right\|<2^{-2}$. Proceeding in this way we obtain a sequence $\left(x_{i}\right)$ that is eventually contained in each C_{n}, and an ordered sequence of different nodes $\left(k_{i}, l_{i}\right)$ that determine a branch $r \in G \backslash S$. Since $J T$ is separable and contains no copies of ℓ_{1}, the sequence $\left(x_{i}\right)$ has a subsequence that is weak ${ }^{*}$-convergent to some $x^{* *} \in J T^{* *}$ [9, First Theorem, p. 215]. Thus, $x^{* *} \in \bigcap_{n \in \mathbb{N}} \overline{C_{n}}{ }^{w}$, but $x^{* *} \notin B$ since $\left\langle f_{r}, x^{* *}\right\rangle=1$.

Proposition 2.2 thus characterizes the CCRP, while Proposition 2.5 shows that even when compact convex sets are representable, arbitrary weak*metrizable convex bounded closed sets do not have to be. The question of which convex sets are representable thus arises. Bigger than compact spaces are the so called small sets [4, [8, 1], but it was shown in [4] that a closed bounded convex small set is compact.
3. Representation of convex sets in the hyperspace. The theory of types in Banach spaces represents the elements of a Banach space $g \in X$ as functions $\tau_{g}(x)=\|x-g\|$. These are the elementary types, and the types are the closure of the set of elementary types in \mathbb{R}^{X}. It can be shown that bidual types, i.e., functions having the form $\tau_{g}(x)=\|x-g\|$ for $g \in X^{* *}$, are also types [11]. In close parallelism, the theory of distance types was developed in [6]: in it, the elements to be represented are the closed bounded convex subsets C of X via the function $d_{C}(x)=\operatorname{dist}(x, C)$. These are the elementary distance types. The \emptyset-distance types are the functions of the form $d(x)=\lim d_{C_{n}}(x)$ where $\left(C_{n}\right)$ is a nested sequence of closed bounded convex subsets of X with empty intersection. In [6, Thm. 4.1] it was shown that in every nonreflexive separable Banach space there exist \emptyset-distance types that are not types. It was also shown [6, Thm. 5.1] that bidual types on separable Banach spaces coincide with \emptyset-distance types defined by "flat" (in the sense of Milman and Milman [14]) nested sequences of bounded convex closed sets $\left(C_{n}\right)$. In [7, Thm. 1] it is shown that given a nested sequence $\left(C_{n}\right)$ of bounded convex closed sets in a separable space X, one always has

$$
\operatorname{dist}\left(x, \bigcap \overline{C_{n}} w^{*}\right)=\lim \operatorname{dist}\left(x, C_{n}\right)
$$

Bernardes shows in [5, Thm. 1] that this happens in all Banach spaces.
All this suggests the problem [7, Problem 2] whether the analogue of Farmaki's result (bidual types are types) also holds for distance types; i.e., if given a weak*-compact convex subset C of $X^{* *}$, the bidual distance type it defines, $d_{C}(x)=\operatorname{dist}(x, C)$ on X, is a \emptyset-distance type. Let us give an affirmative answer.

Proposition 3.1. Let C be a weak*-compact convex subset of the bidual $X^{* *}$ of a separable space X such that $C \cap X=\emptyset$. There is a nested sequence $\left(C_{n}\right)$ of closed convex sets in X such that $C \subset \bigcap_{n}{\overline{C_{n}}}^{w^{*}}$ and for all $x \in X$,

$$
\operatorname{dist}(x, C)=\lim \operatorname{dist}\left(x, C_{n}\right)
$$

Proof. Let $\left(x_{n}\right)$ be a dense sequence in X. Since C is bounded, it is contained in the ball $\gamma B_{X^{* *}}$ for some $\gamma>0$. We proceed inductively: Pick x_{1}, let $\alpha_{1}=\operatorname{dist}\left(x_{1}, C\right)$, then choose an increasing sequence $\left(\alpha_{n}^{1}\right)$ convergent to α_{1}. Pick functionals $\varphi_{n}^{1} \in B_{X^{*}}$ that strictly separate C and $x_{1}+\left(\alpha_{n}^{1}\right) B_{X^{* *}}$, say

$$
\inf _{z \in C} z\left(\varphi_{n}^{1}\right)>\left\|x_{1}\right\|+\alpha_{n}^{1}+2 \varepsilon_{n}^{1}
$$

Set $C_{n, 1}=\left\{x \in X: \exists z \in C,\left|(z-x)\left(\varphi_{n}^{1}\right)\right| \leq \varepsilon_{n}^{1}\right\} \cap \gamma B_{X^{* *}}$. The sequence of convex sets $C_{n, 1}$ is nested and every point $z \in C$ belongs to the weak*-closure of some set $\left\{x \in X:\left|(z-x)\left(\varphi_{n}^{1}\right)\right| \leq n^{-1}\right\}$, which is in turn contained in $C_{n, 1}$. Thus, $C \subset \bigcap_{n}{\overline{C_{n, 1}}}^{w^{*}}$. Moreover, $x_{1}+\left(\alpha_{1}\right) B_{X^{* *}} \cap \bigcap_{n}{\overline{C_{n, 1}}}^{w^{*}}=\emptyset$ because
otherwise there whould be $c_{n} \in C_{n, 1}$ with $\left(x_{1}+\alpha_{1} b-c_{n}\right)\left(\varphi_{n}^{1}\right)<\varepsilon_{n}^{1}$; since there must be $z_{n} \in C$ with $\left|\left(z_{n}-c_{n}\right)\left(\varphi_{n}^{1}\right)\right| \leq \varepsilon_{n}^{1}$, pick a weak*-accumulation point $z \in C$ of $\left(z_{n}\right)$ to conclude that $\left(x_{1}+\alpha_{1} b-z\right)\left(\varphi_{n}^{1}\right)=\left(x_{1}+\alpha_{1} b-c_{n}+\right.$ $\left.c_{n}-z\right)\left(\varphi_{n}^{1}\right) \leq 2 \varepsilon_{n}^{1}$, which immediately yields

$$
z\left(\varphi_{n}^{1}\right)=\left(x_{1}+\alpha_{1} b\right)\left(\varphi_{n}^{1}\right)-\left(x_{1}+\alpha_{1} b-z\right)\left(\varphi_{n}^{1}\right) \leq\left\|x_{1}\right\|+\alpha_{n}^{1}+2 \varepsilon_{n}^{1}
$$

in contradiction with the separation above.
Thus, by [7, Thm. 1] we get

$$
\operatorname{dist}\left(x_{1}, C\right)=\operatorname{dist}\left(x_{1}, \bigcap{\overline{C_{n, 1}}}^{w^{*}}\right)=\lim \operatorname{dist}\left(x_{1}, C_{n, 1}\right) .
$$

We pass to x_{2}. Everything goes as before except that all the action is inside $\bigcap \overline{C_{n, 1}} w^{*}$. Precisely, once $\alpha_{2}, \alpha_{n}^{2}, \varphi_{n}^{2}, \varepsilon_{n}^{2}$ have been fixed by the same procedure as above, set

$$
C_{n, 2}=\left\{x \in X: \exists z \in C, \max _{i=1,2}\left|(z-x)\left(\varphi_{n}^{i}\right)\right| \leq \varepsilon_{n}^{i}\right\} \cap \gamma B_{X^{* *}}
$$

to conclude that $C \subset \bigcap_{n}{\overline{C_{n, 2}}}^{w^{*}} \subset \bigcap_{n}{\overline{C_{n, 1}}}^{w^{*}}$ and

$$
\operatorname{dist}\left(x_{i}, C\right)=\operatorname{dist}\left(x_{i}, \bigcap \overline{C_{n, 2}} w^{*}\right)=\lim \operatorname{dist}\left(x_{i}, C_{n, 2}\right)
$$

for $i=1,2$. Proceed inductively. Since $C_{n, k+1} \subset C_{n, k}$, we can diagonalize the final sequence of sequences to get a sequence ($C_{k, k}$) which satisfies $C \subset$ $\bigcap \overline{C_{k, k}} w^{*}$, and moreover, for all n,

$$
\operatorname{dist}\left(x_{n}, C\right)=\operatorname{dist}\left(x_{i}, \bigcap{\overline{C_{k, k}}}^{w^{*}}\right)=\lim \operatorname{dist}\left(x_{n}, C_{k, k}\right) .
$$

By continuity, the equality remains valid for all $x \in X$.
In the clasical case, as Farmaki remarks in [11], it is not obvious that fourth-dual types, i.e., maps of the form $\tau_{g}(x)=\|x+g\|$ for $g \in X^{4}$ on separable spaces X, are necessarily types. One may thus ask: Let X be a separable Banach space and let $C \subset X^{2 k}$ be a bounded weak*-closed convex. Must there be a sequence (C_{n}) of bounded convex closed subsets of X such that for every $x \in X$ one has $\operatorname{dist}(x, C)=\lim \operatorname{dist}\left(x, C_{n}\right)$?

4. Further properties of nested sequences

4.1. Enlarging sets for better intersection: Marino's problem.

Let A be a closed set. For $\varepsilon>0$ we set

$$
A^{\varepsilon}=\{x \in X: \operatorname{dist}(x, A) \leq \varepsilon\} .
$$

An extremely nice result of Marino [13] establishes that given any family $\left(G_{\gamma}\right)$ of convex sets with nonempty intersection, $\bigcap_{\gamma} G_{\gamma}^{\varepsilon}$ is either bounded for every $\varepsilon>0$, or unbounded for every $\varepsilon>0$. A question left open in [7, p. 583] is whether it is possible to have $\bigcap A_{n}=\emptyset$, some intersections $\bigcap A_{n}^{\varepsilon}$
nonempty and bounded, and others unbounded. The next example shows that it can be so:

Example 2. Consider in ℓ_{1} the sequence

$$
A_{2 k}=\left\{x \in \ell_{1}: x_{k+1} \leq-\frac{2^{k+1}-1}{2^{k+1}}\right\} \quad \text { and } \quad A_{2 k-1}=\left\{x \in \ell_{1}: x_{k} \geq 1\right\}
$$

Then $\bigcap A_{n}=\emptyset=\bigcap A_{n}^{\varepsilon}=\emptyset$ for all $\varepsilon<1$, while

$$
\bigcap A_{n}^{1}=\left\{x \in \ell_{1}: \forall k, 0 \leq x_{k} \leq 1 / 2^{k}\right\},
$$

and $\bigcap A_{n}^{1+\varepsilon}$ is unbounded for all $\varepsilon>0$ since all $x \in \ell_{1}$ with $-\varepsilon \leq x_{i} \leq 0$ for every i belong to that set.

The choice of ℓ_{1} for the example is not accidental: during the proof of [7. Prop. 9] it is shown that in reflexive spaces, $\bigcap A_{n}=\emptyset$ implies $\bigcap A_{n}^{\varepsilon}=\emptyset$ for all $\varepsilon>0$. Marino's theorem in combination with [7, Prop. 9] shows that in a nonreflexive space, if $\alpha=\inf \left\{\varepsilon>0: \bigcap A_{n}^{\varepsilon} \neq \emptyset\right\}$ then $\bigcap A_{n}^{\varepsilon}$ is either bounded for all $\varepsilon>\alpha$, or unbounded for all $\varepsilon>\alpha$.

Let us show now that Marino's theorem remains "almost" valid for nested sequences with empty intersection in a finite-dimensional space. In this case, the boundedness of some A_{n} immediately implies, by compactness, that $\bigcap_{n \in \mathbb{N}} A_{n} \neq \emptyset$. Assume thus that one has a nested sequence of unbounded convex sets. Let $T_{k}=\{x \in X: k \leq\|x\| \leq k+1\}$. One has:

Lemma 4.1. Let $\left(A_{n}\right)$ be a sequence of unbounded connected sets in a finite-dimensional space X. Then either $\bigcap_{n \in \mathbb{N}} A_{n}=\emptyset$, or for all but finitely many $k \in \mathbb{N}$ and every $\varepsilon>0$ there is an infinite subset $N_{k} \subset \mathbb{N}$ such that $T_{k} \cap \bigcap_{n \in N_{k}} A_{n}^{\varepsilon} \neq \emptyset$.

Proof. If for every $k \in \mathbb{N}$ the ball $k B$ of radius k does not intersect $\bigcap_{n \in \mathbb{N}} A_{n}$ then $\bigcap_{n \in \mathbb{N}} A_{n}=\emptyset$. Otherwise, let $x_{n, k} \in A_{n} \cap k B$. Since A_{n} is unbounded, there is a point $y_{n, k+1}$ with $\left\|y_{n, k+1}\right\|>k+1$. Since A_{n} is connected, there is some $x_{n, k+1}$ in A_{n} with $k \leq\left\|x_{n, k+1}\right\| \leq k+1$, and thus in $A_{n} \cap T_{k}$. The sequence $\left(x_{n, k+1}\right)_{n}$ lies in the compact set T_{k} and thus for some infinite subset $N_{k} \subset \mathbb{N}$ the subsequence $\left(x_{n, k+1}\right)_{n \in N_{k}}$ is convergent to some point $x_{k+1} \in T_{k}$. Thus, $x_{k+1}+\varepsilon B$ intersects the sets $\left\{A_{n}: n \in N_{k}\right\}$ and hence $\bigcap_{n \in N_{k}} A_{n}^{\varepsilon} \cap T_{k} \neq \emptyset$.

Thus we get:
Proposition 4.2. Let $\left(A_{n}\right)$ be a nested sequence of unbounded connected sets in a finite-dimensional space X. Then either $\bigcap_{n \in \mathbb{N}} A_{n}=\emptyset$, or $\bigcap_{n \in \mathbb{N}} A_{n}^{\varepsilon}$ is unbounded for every $\varepsilon>0$.

The assertion obviously fails for disconnected sets and also fails in infinitedimensional spaces:

Example 1. In ℓ_{2} take $A_{n}=\left\{x \in \ell_{2}: \forall k>n, 0 \leq x_{k} \leq 1\right.$, and $\forall k \leq n$, $\left.x_{k}=0\right\}$. This is a nested sequence of unbounded convex closed sets such that $\bigcap_{n \in \mathbb{N}} A_{n}=\emptyset$, while for all $\varepsilon>0$ the set $\bigcap_{n \in \mathbb{N}} A_{n}^{\varepsilon}$ is bounded: indeed, if $y \in A_{n}^{\varepsilon}$ for all n then there is $x_{n} \in A_{n}$ for which $\left\|y-x_{n}\right\| \leq \varepsilon$; thus $\sum_{i=1}^{n}\left|y_{i}\right|^{2} \leq \varepsilon^{2}$ for all n, so $\|y\| \leq \varepsilon^{2}$.
4.2. On the Helly-Bárány theorem. In one of the main theorems in [3], Behrends establishes a Helly-Bárány theorem for separable Banach spaces [3, Thm. 5.5]: Let X be a separable Banach space and \mathcal{C}_{n} a family of nonvoid, closed and convex subsets of the unit ball B for every n. Suppose that there is a positive $\varepsilon_{0} \leq 1$ such that $\bigcap_{C \in \mathcal{C}_{n}} C+\varepsilon B=\emptyset$ for every n and every $0<\varepsilon<\varepsilon_{0}$. Then there are $C_{n} \in \mathcal{C}_{n}$ such that $\bigcap_{n} C_{n}+\varepsilon B=\emptyset$. Behrends asks [3, Remark 2, p. 248] whether one can put $\varepsilon=\varepsilon_{0}$ in this theorem. The following example shows that the answer is no:

Example. In c_{0}, the family \mathcal{C}_{n} contains two convex sets:

$$
a_{n}^{+}=\left\{x \in c_{0}: \forall i \in \mathbb{N},\left|x_{i}\right| \leq \frac{1}{2}\left(1+\frac{1}{i}\right) \text { and }\left|x_{n}\right|=\frac{1}{2}\left(1+\frac{1}{n}\right)\right\}
$$

and

$$
a_{n}^{-}=\left\{x \in c_{0}: \forall i \in \mathbb{N},\left|x_{i}\right| \leq \frac{1}{2}\left(1+\frac{1}{i}\right) \text { and }\left|x_{n}\right|=-\frac{1}{2}\left(1+\frac{1}{n}\right)\right\}
$$

One has $a_{n}^{+} \cap a_{n}^{-}=\emptyset$ for all $n \in \mathbb{N}$. But for every $z \in\{-,+\}^{\mathbb{N}}$ the choice $a_{n}^{z(n)} \in \mathcal{C}_{n}$ has $x \in \bigcap_{n} a_{n}^{z(n)} \neq \emptyset$ for $x_{i}=z(i) \frac{1}{2 i}$.

Acknowledgements. The research of the first two authors was realized during a visit to the University of Bologna, supported in part by project MTM2010-20190. The research of the first author was supported in part by the program Junta de Extremadura GR10113 IV Plan Regional I + D + i, Ayudas a Grupos de Investigación.

References

[1] J. Arias de Reyna, Hausdorff dimension of Banach spaces, Proc. Edinburgh Math. Soc. 31 (1988), 217-229.
[2] E. Behrends, On Rosenthal's ℓ_{1} theorem, Arch. Math. (Basel) 62 (1994), 345-348.
[3] E. Behrends, On Bárány's theorems of Carathéodory and Helly type, Studia Math. 141 (2000), 235-250.
[4] E. Behrends and V. M. Kadets, Metric spaces with the small ball property, Studia Math. 148 (2001), 275-287.
[5] N. C. Bernardes, Jr., On nested sequences of convex sets in Banach spaces, J. Math. Anal. Appl. 389 (2012), 558-561.
[6] J. M. F. Castillo and P. L. Papini, Distance types in Banach spaces, Set-Valued Anal. 7 (1999), 101-115.
[7] J. M. F. Castillo and P. L. Papini, Approximation of the limit function in Banach spaces, J. Math. Anal. Appl. 328 (2007), 577-589.
[8] J. M. F. Castillo and P. L. Papini, Small sets and the covering of a Banach space, Milan J. Math. 80 (2012), 251-263.
[9] J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984.
[10] D. van Dulst, Characterizations of Banach Spaces not Containing ℓ^{1}, CWI Tracts 59, Amsterdam, 1989.
[11] V. Farmaki, co-subspaces and fourth dual types, Proc. Amer. Math. Soc. 102 (1988), 321-328.
[12] N. J. Kalton, Extension of linear operators and Lipschitz maps into $\mathcal{C}(K)$-spaces, New York J. Math. 13 (2007), 317-381.
[13] G. Marino, A remark on intersection of convex sets, J. Math. Anal. Appl. 284 (2003), 775-778.
[14] D. P. Milman and V. D. Milman, The geometry of nested families with empty intersection. Structure of the unit sphere of a nonreflexive space, Mat. Sb. 66 (1965), 109-118 (in Russian); English transl.: Amer. Math. Soc. Transl. 85 (1969), 233-243.
[15] E. Odell and H. P. Rosenthal, A double-dual characterization of separable Banach spaces not containing ℓ_{1}, Israel J. Math. 20 (1975), 375-384.

Jesús M. F. Castillo
Departamento de Matemáticas
Universidad de Extremadura
Avda de Elvas s/n
06011 Badajoz, Spain
E-mail: castillo@unex.es

Manuel González
Departamento de Matemáticas
Universidad de Cantabria
Avda de los Castros s/n
39071 Santander, Spain
E-mail: manuel.gonzalez@unican.es

Pier Luigi Papini
Via Martucci 19
40136 Bologna, Italia
E-mail: pierluigi.papini@unibo.it

Received May 24, 2013
Revised version January 30, 2014

