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Maximal singular integrals on product homogeneous groups

by

Yong Ding (Beijing) and Shuichi Sato (Kanazawa)

Abstract. We prove Lp boundedness for p ∈ (1,∞) of maximal singular integral
operators with rough kernels on product homogeneous groups under a sharp integrability
condition of the kernels.

1. Introduction. Let Rd, d ≥ 2, be the d-dimensional Euclidean space.
We assume that Rd is also equipped with a homogeneous group structure,
where multiplication is given by a polynomial mapping; the underlying man-
ifold is Rd itself. We also write Rd = H. Thus, H is associated with a dilation
group {At}t>0 of automorphisms of the group structure such that

Atx = (ta1x1, . . . , t
adxd), x = (x1, . . . , xd) ∈ H,

where real numbers a1, . . . , ad satisfy 0 < a1 ≤ · · · ≤ ad (see [10], [21], [18], [6]
and [11, Section 2 of Chapter 1]). So, we have, for each t > 0,

At(xy) = (Atx)(Aty), x, y ∈ H.

Consequently, H is endowed with both the Euclidean structure and a
homogeneous nilpotent Lie group structure. The group law of H is given by
a polynomial mapping which conforms to the Campbell–Hausdorff formula
in a corresponding Lie algebra via an exponential map and the action of the
automorphism family {At}. We note that the identity is the origin 0 and
x−1 = −x; furthermore, Lebesgue measure is bi-invariant Haar measure.

Let us recall a norm function r(x) associated with {At}. The function
r(x), which is non-negative and vanishes only at the origin, satisfies the
condition r(Atx) = tr(x) for t > 0 and x ∈ Rd. We assume that r(x) is
even, continuous on Rd and smooth in Rd \ {0}, and also that the unit
sphere Σd = {x ∈ Rd : r(x) = 1} defined by the norm function coincides
with the unit sphere Sd−1 = {x ∈ Rd : |x| = 1}, where |x| denotes the
Euclidean norm. Let γ = a1 + · · ·+ ad (the homogeneous dimension of H).
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We shall use the formula
�

Rd

f(x) dx =

∞�

0

�

Σd

f(Atθ)t
γ−1 dSd(θ) dt, dSd = ω dσd,

where ω is a strictly positive C∞ function on Σd and dσd is the Lebesgue
surface measure on Σd (see [18, 6] and also [3, 10, 11, 14, 19, 20, 21] for
more details and related results).

We consider a function Ω which is locally integrable in Rd \ {0} and
homogeneous of degree 0 with respect to the dilation group {At}, that is,
Ω(Atx) = Ω(x) for x 6= 0, t > 0. We assume the cancellation property

(1.1)
�

Σd

Ω(θ) dSd(θ) = 0.

Convolution on H is defined by

f ∗ g(x) =
�

H

f(y)g(y−1x) dy.

Let

(1.2) Tf(x) = p.v. f ∗K(x) = p.v.
�

H

f(y)K(y−1x) dy

for appropriate functions f , where K(x) = Ω(x′)r(x)−γ , x′ = Ar(x)−1x for
x 6= 0. We also define the maximal singular integral operator

(1.3) T∗f(x) = sup
ε>0

∣∣∣ �

r(y)>ε

f(xy−1)K(y) dy
∣∣∣.

Then the following results are known.

Theorem A ([21]). If Ω ∈ L logL(Σd) with (1.1) and Tf is as in (1.2),
then T is bounded on Lp(H) for all p ∈ (1,∞).

Theorem B ([18]). Let T∗f be defined as in (1.3) with Ω ∈ L logL(Σd)
satisfying (1.1). Let p ∈ (1,∞). Then the operator T∗ is bounded on Lp(H).

We refer to [4, 12, 13, 14, 15, 16] for relevant results.
Part of a theory of Duoandikoetxea and Rubio de Francia [8] for sin-

gular integrals on the Euclidean spaces has been generalized to the case of
homogeneous groups in [18]. The arguments of [18] replace Fourier trans-
form estimates by a variant of Tao’s L2 estimates via convolution (see [21]).
As a result, [18] contains Theorem B and some weighted estimates, and also
another proof of Theorem A.

Also, it has been shown in [6] that the theory of [18] extends to the
case of product homogeneous groups to treat multiple singular integrals.
Let Rn = Rn1 × Rn2 be a product homogeneous group with Rn1 = H1,
Rn2 = H2, where n = n1 + n2 and H1, H2 are homogeneous groups with
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dilations A
(1)
t , A

(2)
t and norm functions r1, r2, respectively. We consider a

function Ω in L1(Σn1 ×Σn2) which satisfies�

Σn1

Ω(u, v) dSn1(u) = 0 for all v ∈ Σn2 ,(1.4)

�

Σn2

Ω(u, v) dSn2(v) = 0 for all u ∈ Σn1 .(1.5)

Define

K(u, v) = r1(u)−γ1r2(v)−γ2Ω(u′, v′), u′ = A
(1)
r1(u)−1u, v

′ = A
(2)
r2(v)−1v,

where γ1 and γ2 are the homogeneous dimensions of H1 and H2, respectively.
We consider the multiple singular integral

(1.6) Tf(x, y) = p.v. f ∗K(x, y) = p.v.
�

H1×H2

f(xu−1, yv−1)K(u, v) du dv.

The following result is proved in [6].

Theorem C. Let T be defined as in (1.6) with Ω in L(logL)2(Σn1×Σn2)
satisfying (1.4) and (1.5). Let 1 < p < ∞. The operator T is then bounded
on Lp(H1 ×H2).

We can find in [2] the optimality of the L(logL)2 integrability condition
for multiple singular integrals with Euclidean convolution.

Let us recall that the maximal singular integral is defined by

(1.7) T∗f(x, y) = sup
ε1>0
ε2>0

∣∣∣ �

r1(u)>ε1
r2(v)>ε2

f(xu−1, yv−1)K(u, v) du dv
∣∣∣.

In this note we shall prove the following.

Theorem 1. Let T∗ be defined as in (1.7). Suppose that Ω is in
L(logL)2(Σn1 × Σn2) and satisfies (1.4), (1.5). Then T∗ is bounded on
Lp(H1 ×H2) for all p ∈ (1,∞).

Previous work concerning singular integrals on product of Euclidean
spaces can be found in [1, 2, 7, 9]. Theorem 1 is an analogue of a result
of [2] for multiple singular integrals on product homogeneous groups.

Similarly to the proof of Theorem C in [6], we use extrapolation argu-
ments in proving Theorem 1 by applying the following result.

Theorem 2. Let 1 < s ≤ 2. Suppose that Ω is in Ls(Σn1 × Σn2) and
satisfies (1.4), (1.5). Then for 1 < p <∞ we have

‖T∗f‖p ≤ Cp(s− 1)−2‖Ω‖s‖f‖p
with a constant Cp independent of s and Ω.
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Let Ω be as in Theorem 1. Then there exist a sequence {Ωk} of functions
in L1(Σn1×Σn2) and a sequence {ck} of non-negative real numbers such that
each Ωk satisfies (1.4) and (1.5), supk≥1 ‖Ωk‖1+1/k ≤ 1,

∑∞
k=1 k

2ck <∞ and

Ω =

∞∑
k=1

ckΩk.

Theorem 1 easily follows from this decomposition of Ω and Theorem 2 (see
[17, 15, 16]).

In Section 2 we recall some preliminary results from [6]. We shall prove
Theorem 2 in Section 3 by using results of [6, 5, 18]; similar arguments, via
Fourier transform estimates, for singular integrals with Euclidean convolu-
tion can be found in [1, 2].

2. Preliminaries. Let ρ ≥ 2 and let ψj ∈ C∞0 (R), j ∈ Z, be such that

supp(ψj) ⊂ {t ∈ R : ρj ≤ t ≤ ρj+2}, ψj ≥ 0,

(log 2)
∑
j∈Z

ψj(t) = 1 for t > 0;

furthermore,

|(d/dt)mψj(t)| ≤ cm|t|−m for m = 0, 1, 2, . . . ,

where cm is a constant independent of ρ; we note that this is possible since
ρ ≥ 2.

Suppose that F belongs to L1(H1 × H2) with support in D0, where

D0 = D
(1)
0 ×D

(2)
0 ,

D
(1)
0 = {x ∈ H1 : 1 ≤ r1(x) ≤ 2}, D

(2)
0 = {y ∈ H2 : 1 ≤ r2(y) ≤ 2}.

Let δ
(1)
s f(x) = s−γ1f((A

(1)
s )−1x), δ

(2)
t g(y) = t−γ2g((A

(2)
t )−1y). Define δs,t =

δ
(1)
s ⊗ δ(2)t and let

(2.1) Sj,kF (x, y) =

∞�

0

∞�

0

ψj(s)ψk(t)δs,tF (x, y)
ds

s

dt

t
.

Then
∑

j,k∈Z Sj,kK0 = K, where

(2.2) K0(x, y) =

{
K(x, y), (x, y) ∈ D0,

0, otherwise.

For s ≥ 1, let Ls(D0) denote the subspace of Ls(H1 ×H2) consisting of
functions F with support in D0. Define

MF f(x, y) = sup
j,k∈Z

|f ∗ Sj,k(|F |)(x, y)|

for F ∈ Ls(D0). The following result is Lemma 8 of [6].
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Lemma 1. Let p > 1. Suppose that s ∈ (1, 2], ρ = 2s
′
, s′ = s/(s − 1),

and F ∈ Ls(D0). Then

‖MF f‖p ≤ Cp(s− 1)−2‖F‖s‖f‖p
with a positive constant Cp independent of s and F .

Also, we need another result of [6].

Lemma 2 ([6, Proposition 2]). Let 1 < s ≤ 2. Suppose that Ω belongs to
Ls(Σn1 ×Σn2) and satisfies (1.4) and (1.5). Let

Rf(x, y) = sup
`,m∈Z

∣∣∣ ∞∑
j=`

∞∑
k=m

f ∗ Sj,kK0(x, y)
∣∣∣,

where K0 is defined by (2.2) and Sj,kK0 is as in (2.1) with K0 in place

of F . Let ρ = 2s
′
. Then for p ∈ (1,∞) there exists a positive constant Cp

independent of s ∈ (1, 2] and Ω ∈ Ls such that

‖Rf‖p ≤ CpA(s,Ω)‖f‖p,

where A(s,Ω) = (s− 1)−2‖Ω‖s.

3. Proof of Theorem 2. We first note that

Sj,kK0(x, y)

= r1(x)−γ1r2(y)−γ2Ω(x′, y′)

1�

1/2

ψj(sr1(x))
ds

s

1�

1/2

ψk(tr2(y))
dt

t
,

where x′ = A
(1)
r1(x)−1x, y′ = A

(2)
r2(y)−1y. From this we easily see that

supp(Sj,kK0) ⊂ {ρj ≤ r1(x) ≤ 2ρj+2} × {ρk ≤ r2(y) ≤ 2ρk+2}.

Thus, if `,m ∈ Z are determined by the conditions

ρ`+2 ≤ ε < ρ`+3, ρm+2 ≤ δ < ρm+3

and if f is a compactly supported smooth function, then

(3.1)
�

r1(u)>ε
r2(v)>δ

f(xu−1, yv−1)K(u, v) du dv

=
∑
j≥`
k≥m

�

r1(u)>ε
r2(v)>δ

f(xu−1, yv−1)Sj,kK0(u, v) du dv

= Aε,δf(x, y) +Bε,δf(x, y) + Cε,δf(x, y) +Dε,δf(x, y),
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where

Aε,δf(x, y) =
∑
j>`+3
k>m+3

�

H1×H2

f(xu−1, yv−1)Sj,kK0(u, v) du dv

=
∑
j>`+3
k>m+3

f ∗ Sj,kK0(x, y),

Bε,δf(x, y) =
∑

`+3≥j≥`
k>m+3

�

{r1(u)>ε}×H2

f(xu−1, yv−1)Sj,kK0(u, v) du dv,

Cε,δf(x, y) =
∑
j>`+3

m+3≥k≥m

�

H1×{r2(v)>δ}

f(xu−1, yv−1)Sj,kK0(u, v) du dv,

Dε,δf(x, y) =
∑

`+3≥j≥`
m+3≥k≥m

�

r1(u)>ε
r2(v)>δ

f(xu−1, yv−1)Sj,kK0(u, v) du dv.

Let

A∗f(x, y) = sup
ε,δ>0
|Aε,δf(x, y)|, B∗f(x, y) = sup

ε,δ>0
|Bε,δf(x, y)|,

C∗f(x, y) = sup
ε,δ>0
|Cε,δf(x, y)|, D∗f(x, y) = sup

ε,δ>0
|Dε,δf(x, y)|.

Then, (3.1) implies

(3.2) T∗f(x, y) ≤ A∗f(x, y) +B∗f(x, y) + C∗f(x, y) +D∗f(x, y).

Let ρ = 2s
′
. Since A∗f ≤ Rf , by Lemma 2 we have

(3.3) ‖A∗f‖p ≤ CpA(s,Ω)‖f‖p.

Also, since D∗f ≤ CMK0(|f |), Lemma 1 implies

(3.4) ‖D∗f‖p ≤ C‖MK0(|f |)‖p ≤ CpA(s,Ω)‖f‖p.

To estimate B∗f , we note that

|Bε,δf(x, y)|

≤
∑

`+3≥j≥`

�

ρ`≤r1(u)≤2ρ`+5

∣∣∣ ∑
k>m+3

�

H2

f(xu−1, yv−1)Sj,kK0(u, v) dv
∣∣∣ du.

By changing variables with respect to u, we see that the right hand side is
equal to ∑

`+3≥j≥`

2ρ`+5�

ρ`

�

Σn1

∣∣∣ ∑
k>m+3

Fk(x, y, s, θ)
∣∣∣Ψj(s) ds

s
dSn1(θ),
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where

Fk(x, y, s, θ) =
�

H2

f(x(A(1)
s θ)−1, yv−1)Ω(θ, v′)r2(v)−γ2Ψk(r2(v)) dv,

Ψk(t) =
	1
1/2 ψk(rt) dr/r. Thus, since 0 ≤ Ψj(s) ≤ 1, we have

|Bε,δf(x, y)| ≤ C
2ρ`+5�

ρ`

�

Σn1

∣∣∣ ∑
k>m+3

Fk(x, y, s, θ)
∣∣∣ds
s
dSn1(θ).

We write

K
(2)
θ (v) = K0(θ, v), S

(2)
k K

(2)
θ (v) =

∞�

0

ψk(t)δ
(2)
t K

(2)
θ (v)

dt

t
.

Then

Fk(x, y, s, θ) = f(x(A(1)
s θ)−1, ·) ∗(2) S

(2)
k K

(2)
θ (y),

where ∗(2) denotes convolution on H2. Consequently,

(3.5) |Bε,δf(x, y)|

≤ C
2ρ`+5�

ρ`

�

Σn1

∣∣∣ ∑
k>m+3

f(x(A(1)
s θ)−1, ·) ∗(2) S

(2)
k K

(2)
θ (y)

∣∣∣ ds
s
dSn1(θ).

Let

R
(2)
θ g(y) = sup

m∈Z

∣∣∣∑
k>m

g ∗(2) S
(2)
k K

(2)
θ (y)

∣∣∣
for g on H2. We write fx(y) = f(x, y) when considering f(x, y) as a function
on H2 for fixed x; similarly, we write fy(x) = f(x, y). Define

F θ(x, y) = R
(2)
θ fx(y).

Then, using (3.5), we have

|B∗f(x, y)| ≤ C sup
`∈Z

2ρ`+5�

ρ`

�

Σn1

F θ(x(A(1)
s θ)−1, y)

ds

s
dSn1(θ)(3.6)

≤ C(log ρ)
�

Σn1

M
(1)
θ F θy (x) dSn1(θ),

where

M
(1)
θ h(x) = sup

t>0

1

t

t�

0

|h(x(A(1)
s θ)−1)| ds

for h on H1. The last inequality of (3.6) can be seen as follows. Take a
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positive integer d such that 2d ≤ 2ρ5 < 2d+1. Then

2ρ`+5�

ρ`

|h(x(A(1)
s θ)−1)| ds

s
≤

d∑
i=0

2i+1ρ`�

2iρ`

|h(x(A(1)
s θ)−1)| ds

s

≤
d∑
i=0

2M
(1)
θ h(x) = 2(d+ 1)M

(1)
θ h(x) ≤ C(log ρ)M

(1)
θ h(x),

since d ∼ log ρ. This implies what we need.

By M. Christ [5], M
(1)
θ is bounded on Lp, p > 1, with a bound indepen-

dent of θ. Thus, using (3.6) and the Minkowski inequality, we have

(3.7) ‖B∗f‖p ≤ C(log ρ)
�

Σn1

‖F θ‖p dSn1(θ).

By Lemma 9 of [18] with ρ = 2s
′
, we have

‖R(2)
θ g‖p ≤ Cp(log ρ)

( �

Σn2

|Ω(θ, ω)|s dSn2(ω)
)1/s
‖g‖p.

Thus

‖F θx‖p ≤ Cp(log ρ)
( �

Σn2

|Ω(θ, ω)|s dSn2(ω)
)1/s
‖fx‖p.

Using this in (3.7) and noting that ‖F θ‖p = (
	
‖F θx‖

p
p dx)1/p, we have

‖B∗f‖p ≤ Cp(log ρ)2
�

Σn1

( �

Σn2

|Ω(θ, ω)|s dSn2(ω)
)1/s

dSn1(θ) ‖f‖p(3.8)

≤ Cp(log ρ)2‖Ω‖s‖f‖p,
where the last inequality follows from Hölder’s inequality.

Similarly, we have

(3.9) ‖C∗f‖p ≤ Cp(log ρ)2‖Ω‖s‖f‖p.
Combining (3.2), (3.3), (3.4), (3.8) and (3.9), we get the conclusion of The-
orem 2.
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