
STUDIA MATHEMATICA 222 (1) (2014)

Simultaneous solutions of operator Sylvester equations

by

Sang-Gu Lee (Suwon) and Quoc-Phong Vu (Athens, OH, and Hanoi)

Abstract. We consider simultaneous solutions of operator Sylvester equations AiX−
XBi = Ci (1 ≤ i ≤ k), where (A1, . . . , Ak) and (B1, . . . , Bk) are commuting k-tuples of
bounded linear operators on Banach spaces E and F , respectively, and (C1, . . . , Ck) is
a (compatible) k-tuple of bounded linear operators from F to E , and prove that if the
joint Taylor spectra of (A1, . . . , Ak) and (B1, . . . , Bk) do not intersect, then this system
of Sylvester equations has a unique simultaneous solution.

1. Introduction. It is well known that if A and B are bounded linear
operators on Banach spaces E and F , respectively, such that σ(A) ∩ σ(B)
= ∅, then for each bounded linear operator C : F → E , there exists a unique
bounded linear operator X : F → E which is the solution of the operator
equation

AX −XB = C.(1.1)

In the case of finite-dimensional spaces E and F , equation (1.1) is known as
the Sylvester equation, and the above result is the Sylvester theorem, a well
known fact which can be found in many textbooks in matrix theory (see,
e.g., [5]). For bounded linear operators, the above result was first obtained
by M. G. Krein (see, e.g., [3]) and then, independently, by Rosenblum [7],
who showed that the solution operator X has the form

X =
1

2πi

�

Γ

(λI −A)−1C(λI −B)−1 dλ,(1.2)

where Γ is a union of closed contours in the plane, with total winding
numbers 1 around σ(A) and 0 around σ(B).

In [6], the present authors considered the question of simultaneous solu-
tions of a system of Sylvester equations
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AiX −XBi = Ci (1 ≤ i ≤ k),(1.3)

where A = (A1, . . . , Ak) and B = (B1, . . . , Bk) are commuting k-tuples of
matrices of dimensions n× n and m×m, respectively, and proved that the
system (1.3) has a unique simultaneous solution X for every k-tuple of m×n
matrices C = (C1, . . . , Ck) which satisfy the compatibility condition

AiCj − CjBi = AjCi − CiBj (for all i, j, 1 ≤ i, j ≤ k),(1.4)

if and only if the joint spectra of A and B do not intersect.
Recall that the joint spectrum for commuting matrices A = (A1, . . . , Ak)

is defined as the joint point spectrum, that is, it consists of elements λ =
(λ1, . . . , λk) in Ck such that there exists a common eigenvector x 6= 0, Aix =
λix for all i = 1, . . . , k.

The main idea in the proof in [6] is the observation that if the joint
spectrum of a k-tuple of commuting matrices T = (T1, . . . , Tk) consists of
two disjoint components K1 and K2, then there exists an idempotent ma-
trix F which commutes with T1, . . . , Tk such that the joint spectrum of
the restrictions of the k-tuple (T1, . . . , Tk) to the range of F is K1, and
the joint spectrum of the restrictions of (T1, . . . , Tk) to the range of I − F
is K2.

In this paper, we consider systems of operator Sylvester equations (1.3),
where A = (A1, . . . , Ak) and B = (B1, . . . , Bk) are commuting k-tuples of
bounded linear operators on Banach spaces E and F , respectively, and we
extend the main result of [6] to this case.

There are several notions of joint spectrum of commuting k-tuples of
operators, which all coincide with the joint point spectrum in the case of
operators on finite-dimensional spaces, but are different in the general case of
infinite-dimensional Banach spaces. Note that any definition of spectrum de-
pends on a definition of singularity of a commuting k-tuple T = (T1, . . . , Tk):
if the notion of singularity is defined, then the spectrum of T consists of all
λ = (λ1, . . . , λk) ∈ Ck such that the k-tuple T −λ = (T1−λ1I, . . . , Tk−λkI)
is singular.

The classical notion of spectrum of T , SpB(T ), is defined relative to
a commutative Banach algebra B containing T . Namely, T is called non-
singular (in B) if there exist S1, . . . , Sk ∈ B such that

∑k
i=1 TiSi = I. As

B one can take, for example, the algebra Alg(T ) generated by T , or the
bicommutant T ′′ of T .

J .L. Taylor introduced the notion of joint spectrum, Sp(T ), which does
not depend on any commutative algebra containing T . Namely, to each com-
muting k-tuple T is associated a complex, called the Koszul complex, and
T is called non-singular if its Koszul complex is exact (see precise definition
below). It turns out that Sp(T ) ⊂ SpB(T ) for any B and the inclusion is,
in general, strict. Thus, the functional calculus introduced in [10] for func-
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tions analytic on Sp(T ) is richer than the functional calculus based on other
notions of joint spectrum, developed in the classical papers by Shilov [8],
Arens [1], Calderón [2], and Waelbröck [11].

In this paper we prove the following theorem, which is an extension of
the above mentioned result of [6].

Theorem 1.1. Let A = (A1, . . . , Ak) and B = (B1, . . . , Bk) be commut-
ing k-tuples of bounded linear operators on Banach spaces E and F , respec-
tively, such that Sp(A) ∩ Sp(B) = ∅. Then for every k-tuple (C1, . . . , Ck) of
bounded linear operators from F to E which satisfy the condition (1.4), there
exists a unique bounded linear operator X : F → E which is a simultaneous
solution of the Sylvester operator equations (1.3).

Note that, since the Taylor spectrum Sp(T ) is contained in SpB(T ), the
condition Sp(A)∩Sp(B) = ∅ in Theorem 1.1 is less restrictive than analogous
conditions when the Taylor spectrum is replaced by other notions of joint
spectrum of A and B relative to commutative Banach algebras containing
A and B, respectively.

The proof of Theorem 1.1 uses the functional calculus developed by
Taylor for analytic functions on Sp(T ) and, in particular, the Idempo-
tent Theorem, which states that if Sp(T ) is a disjoint union of two com-
pact sets K1 and K2, then there exists an idempotent operator F such
that Sp(T |range(F )) = K1 and Sp(T |ker(F )) = K2 (see [10, Theorem
4.9]). This is an analog of the celebrated Shilov Idempotent Theorem in
the theory of commutative Banach algebras [8]. The solution X of the op-
erator equations (1.3) can be obtained from the idempotent operator F
as in the case of simultaneous Sylvester equations for matrices considered
in [6].

Below, X , E and F are Banach spaces, and “operator” always means
“bounded linear operator”. We denote by L(E) the set of all operators on E ,
and by L(F , E) the set of all operators from F to E . If T is a family of
operators on X , then T ′ denotes its commutant, T ′ = {S ∈ L(X ) : ST =
TS ∀T ∈ T }, and T ′′ denotes its bicommutant (the commutant of the
commutant). For a domain U in Ck, we denote by A(U) the algebra of
analytic functions on U , and if K is a compact set in Ck, then A(K) is the
algebra of functions analytic on a domain containing K.

2. Preliminaries: the Taylor joint spectrum. Let Ek be the com-
plex exterior algebra with identity 1 generated by k generators. In other
words, if we denote by e1, . . . , ek the natural basis in Ck, and Ek0 = C, Ekm =
Ck ∧ · · · ∧ Ck︸ ︷︷ ︸

m times

for m = 1, . . . , k, where ∧ is a multiplication such that ei∧ej =

−ej ∧ ei, then Ek =
⊕k

m=0E
k
m. Note that the elements ei1 ∧ · · · ∧ eim ,
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1 ≤ i1 < · · · < im ≤ k, form a basis in Ekm, so that dimEkm =
(
k
m

)
and

dimEk = 2k.
Let X be a complex Banach space, T = (T1, . . . , Tk) a k-tuple of pairwise

commuting operators on X , and

Xm = X ⊗ Ekm.(2.1)

Then Xm is spanned by the elements x ⊗ ei1 ∧ · · · ∧ eim , where (i1, . . . , im)
is a multi-index with 1 ≤ i1 < · · · < im ≤ k, x ∈ X . In other words, Xm is a
direct sum of

(
k
m

)
copies of X , multi-indexed by 1 ≤ i1 < · · · < im ≤ k.

For m = 1, . . . , k, let dm : Xm → Xm−1 be defined by

dm(x⊗ ei1 ∧ · · · ∧ eim) =

m∑
l=1

(−1)l+1Tilx⊗ ei1 ∧ · · · ∧ êil ∧ · · · ∧ eim ,

where ̂ means deletion. Then one can directly verify that dm satisfies
the condition dmdm+1 = 0 for all m = 0, 1, . . . , k (where, of course, d0 :
X0 → {0} and dk+1 : {0} → Xk are naturally added), which means that the
sequence

0
d0←− X0

d1←− X1 ← · · ·
dk←− Xk

dk+1←−−− 0(2.2)

is a chain complex. This complex is called the Koszul complex of the k-tuple
T on X and is denoted by K(X , T ).

Definition 2.1. The k-tuple T is called non-singular if its Koszul com-
plex K(X , T ) is exact, i.e., if in the sequence (2.2) we have ker(dm) =
ran(dm+1) for all m = 0, 1, . . . , k.

For λ = (λ1, . . . , λk) ∈ Ck, we let T − λ := (T1 − λ1I, . . . , Tk − λkI).

Definition 2.2. A point λ ∈ Ck is called a non-singular point for T
if T − λ is non-singular. The set of all singular points of T is called the
(Taylor) joint spectrum of T and denoted by Sp(T ).

Taylor [9] has shown that for each commutative k-tuple T in L(X )
(X 6= {0}), Sp(T ) is a non-empty compact subset in Ck. Moreover, Sp(T ) ⊂
SpT ′(T ) and the inclusion is, in general, proper. Since T ′ contains any com-
mutative Banach algebra B which contains T , this implies that Sp(T ) is, in
general, smaller than SpB(T ) for any such B.

Taylor [10] also developed a functional calculus of several commuting
operators. Namely, if U is an open set containing Sp(T ) and f is a function
analytic in U , then f(T ) is defined as a bounded linear operator on X . The
mapping f 7→ f(T ) defines a homomorphism from the algebra A(Sp(T ))
of functions analytic in a domain containing Sp(T ) into the algebra T ′′.
Moreover, under this homomorphism we have 1(T ) = I and zi(T ) = Ti
for i = 1, . . . , k [10, Theorem 4.3]. If Sp(T ) = K1 ∪K2, where K1 and K2

are disjoint compact sets, and F = χK1(T ), where χK1 is the characteristic
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function of K1, then F is an idempotent operator (that is, a projection)
which belongs to T ′′. If we set X1 = range(F ), X2 = ker(F ), then X1

and X2 satisfy: (i) X = X1 ⊕ X2; (ii) X1 and X2 are invariant under any
operator which commutes with each Ti, i = 1, . . . , k; (iii) Sp(T |X1) = K1,
Sp(T |X2) = K2 [10, Theorem 4.9].

3. A relation between simultaneous solutions of Sylvester equa-
tions, commutant and bicommutant. First we observe the following
simple but useful fact which has a straightforward proof.

Proposition 3.1. Let A = (A1, . . . , Ak) be a k-tuple in L(E), B =
(B1, . . . , Bk) a k-tuple in L(F) and C = (C1, . . . , Ck) a k-tuple in L(F , E),
and let T = (T1, . . . , Tk) be defined by (3.6) below. Then a bounded linear
operator X : F → E is a simultaneous solution of the system (1.3) if and
only if FX ∈ T ′, where

FX =

(
I X

O O

)
.(3.1)

In the next theorem, we show that FX ∈ T ′′ if and only if the corre-
sponding homogeneous Sylvester equations have only the trivial simultane-
ous solutions. We would like to emphasize that in Proposition 3.1, as well
as in Theorem 3.2 below, neither the commutativity of A and B, nor the
compatibility of C is assumed.

Theorem 3.2. Let A = (A1, . . . , Ak) and B = (B1, . . . , Bk) be k-tuples
in L(E) and L(F), respectively, and C = (C1, . . . , Ck) be a k-tuple in L(F , E).
Suppose that the system (1.3) has a simultaneous solution X. Then FX ∈ T ′′
if and only if the homogeneous systems of Sylvester equations AiY − Y Bi
= O, ZAi −BiZ = O have only the trivial simultaneous solutions.

Proof. First, we prove the theorem for the case Ci = O for all i = 1, . . . , k
and X = O.

Suppose the homogeneous systems AiY − Y Bi = O, ZAi − BiZ = O

have only the trivial simultaneous solutions. Let T
(0)
i = Ai ⊕Bi and T (0) =

(T
(0)
1 , . . . , T

(0)
k ) and F = I ⊕O. We must show that F ∈ (T (0))′′.

Suppose S ∈ (T (0))′ and let S have the following block form:

S =

(
S1 S2

S3 S4

)
.

From ST
(0)
i = T

(0)
i S we have
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AiS1 = S1Ai,(3.2)

AiS2 = S2Bi,(3.3)

BiS3 = S3Ai,(3.4)

BiS4 = S4Bi,(3.5)

for all i = 1, . . . , k. From (3.3) and the fact that the equations AiY − Y Bi
= O have only the trivial simultaneous solution it follows that S2 = 0.
Analogously, from (3.4) and the fact that the equations ZAi − BiZ = O
have only the trivial simultaneous solution it follows that S3 = 0. Therefore,
S = S1 ⊕ S4, so that SF = FS, that is, F ∈ (T (0))′′.

Conversely, suppose that F ∈ (T (0))′′. Let Y : F → E and Z : E → F be
such that AiY − Y Bi = O and ZAi−BiZ = O for all i = 1, . . . , k. To show
that Y = O we consider the operator GY defined by

GY =

(
O Y

O O

)
.

It is easy to see that GY ∈ (T (0))′. Hence GY F = FGY , which implies
Y = O. Analogously, consider the operator

HZ =

(
O O

Z O

)
and observe that HZ ∈ (T (0))′. Hence HZF = FHZ , which implies Z = O.

Now to derive the general case observe that if X is a simultaneous solu-
tion of (1.3), then the operators Ti defined by

Ti =

(
Ai Ci

O Bi

)
(1 ≤ i ≤ k)(3.6)

are simultaneously similar to T
(0)
i . Namely, if

V =

(
I X

O I

)
,

then it can be directly verified that V TiV
−1 = T

(0)
i for all i = 1, . . . , k.

Since (T (0))′ = {V SV −1 : S ∈ T ′}, (T (0))′′ = {V SV −1 : S ∈ T ′′} and
F = V FXV

−1, we obtain the statement for the general case.

4. Proof of the main result. Let A = (A1, . . . , Ak) and B =
(B1, . . . , Bk) be commuting k-tuples in L(E) and L(F), respectively, and
C = (C1, . . . , Ck) be a k-tuple in L(F , E). Define Si ∈ L(L(F , E)) by

SiX := AiX −XBi (X ∈ L(F , E), 1 ≤ i ≤ k).(4.1)
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Then the Sylvester equations (1.3) can be rewritten in the form

SiX = Ci (1 ≤ i ≤ k).(4.2)

Since the Si are pairwise commuting, we have SjSiX = SiSjX (1 ≤ i, j ≤ k).
Hence from (4.2) we have the following necessary condition for the existence
of a simultaneous solution of (1.3):

SiCj = SjCi (1 ≤ i, j ≤ k),(4.3)

which is another form of the compatibility condition (1.4). Furthermore, if
we define operators Ti on X = E ⊕F by (3.6), then either of the conditions
(1.4), (4.3) is equivalent to TiTj = TjTi (1 ≤ i, j ≤ k), i.e. the k-tuple
T = (T1, . . . , Tk) is commuting.

From the definition of the joint Taylor spectrum we have the following
fact, which can be seen by looking at the Koszul complex of T and the
canonical short exact sequence 0→ E → X → F → 0 (see [9, Lemma 1.2]).

Lemma 4.1. Sp(T ) ⊂ Sp(A) ∪ Sp(B).

Proposition 4.2. If T = (T1, . . . , Tk) is a commuting k-tuple which
has the block upper triangular form (3.6), and f is analytic on a domain
containing Sp(A) ∪ Sp(B), then f(T ) has the block upper triangular form

f(T ) =

(
f(A) Y

O f(B)

)
(4.4)

for some Y ∈ L(F , E) .

Proof. Note that since E is invariant under Ti, one can define operators
T̂i on the quotient space X̂ := X/E by T̂ix̂ = T̂ix. From the decomposition
X = E ⊕ F and the block upper triangular form (3.6) of Ti, it follows that

if we define a mapping π : X̂ → F by π(x̂) = y0, where x = x0 + y0 is the
decomposition of x according to the direct sum X = F ⊕ E , then π is a
(natural) isomorphism between X̂ and F and

(πT̂i)(x̂) = (Biπ)(x̂) for all x ∈ X (1 ≤ i ≤ k).(4.5)

If f is analytic on a domain containing Sp(A) ∪ Sp(B), then, in view of
the inclusion Sp(T ) ⊂ Sp(A) ∪ Sp(B), f(T ), as well as f(A) and f(B), are
well defined. It can be seen from the definition of the functional calculus
in [10] that if x ∈ E , then f(T )x ∈ E and f(T )x = f(A)x and if x̂ ∈ X̂ ,

then f(T̂ )x̂ = f̂(T )x. From (4.5) it follows that πf(T̂ ) = f(B)π (see [10,
Proposition 4.5]). This implies that f(T ) has the form (4.4).

Proposition 4.3. If T = (T1, . . . , Tk) is a commuting k-tuple which
has the block upper triangular form
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Ti =

(
Ai AiX −XBi
O Bi

)
(1 ≤ i ≤ k),(4.6)

and f is analytic on a domain containing Sp(A)∪Sp(B), then f(T ) has the
block upper triangular form

f(T ) =

(
f(A) f(A)X −Xf(B)

O f(B)

)
.(4.7)

Proof. By Proposition 4.2, f(T ) has the form (4.4). Let Ci = AiX−XBi
and FX be defined by (3.1). By Proposition 3.1, FX ∈ T ′, hence FXf(T ) =
f(T )FX , which implies Y = f(A)X −Xf(B).

Proposition 4.3 for k = 1 is contained in [4].

Proof of Theorem 1.1. To prove the existence of a simultaneous solution
X of (1.3), we apply Taylor’s functional calculus described in Section 2.
Namely, by Lemma 4.1 we have Sp(T ) ⊂ K1∪K2, where K1 = Sp(A), K2 =
Sp(B) are disjoint compact sets. Therefore, if χ is the characteristic function
of K1, then χ ∈ A(Sp(T )) and, by Proposition 4.2,

χ(T ) =

(
χ(A) X

O χ(B)

)
=

(
I X

O O

)
.(4.8)

Since χ(T ) commutes with T , it follows, by Proposition 3.1, that X is a
simultaneous solution of (1.3). The uniqueness follows from Theorem 3.2,
since FX = χ(T ) ∈ T ′′.

From Theorem 1.1 we obtain the following results, which are extensions
of well known results from the case of single operators to the multivariate
case.

Corollary 4.4. Suppose T = (T1, . . . , Tk) is a commuting k-tuple in
L(E ⊕F) which has the form (3.6) such that Sp(A)∩Sp(B) = ∅. Then there
exists an invertible operator V ∈ L(E ⊕ F) such that

V TiV
−1 =

(
Ai O

O Bi

)
(1 ≤ i ≤ k).(4.9)

Indeed, the operator V can be chosen in the form

V =

(
I X

O I

)
,(4.10)

where X is the simultaneous solution of equations (1.3).

Corollary 4.5. Suppose T = (T1, . . . , Tk) is a commuting k-tuple in
L(E ⊕ F) which has the form (3.6) such that Sp(A) ∩ Sp(B) = ∅. Then T ′
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consists of operators S of the form

S =

(
Q X

O R

)
,(4.11)

where Q ∈ A′, R ∈ B′ and X is uniquely determined by Q and R as the
simultaneous solution of AiX −XBi = QCi − CiR (1 ≤ i ≤ k).

Proof. First assume that Ci = O for i = 1, . . . , k. We show that in this
case T ′ = {S = Q⊕R : Q ∈ A′, R ∈ B′}. In fact, if S =

(
Q M
N R

)
∈ T ′, then

from STi = TiS we have AiM = MBi and NAi = BiN for i = 1, . . . , k,
so, by Theorem 1.1, we have M = O, N = O. The general case is obtained
from this particular case and Corollary 4.4.

Corollary 4.6. Let A = (A1, . . . , Ak) be a commuting k-tuple in L(E),
(B1, . . . , Bk) a commuting k-tuple in L(F), C = (C1, . . . , Ck) a k-tuple in
L(F , E) which satisfies the compatibility condition (1.3), and X the simulta-
neous solution of (1.3). Furthermore, let T = (T1, . . . , Tk) and FX be defined
by (3.6) and (3.1). Then Sp(A)∩Sp(B) = ∅ if and only if there is an analytic
function f on Sp(A) ∪ Sp(B) such that FX = f(T ).

Proof. The “only if” part is already contained in the proof of Theorem
1.1. To show the “if” part, we note that if f is analytic on Sp(A) ∪ Sp(B)
and f(T ) = FX , then, by Proposition 4.2, f(A) = I, f(B) = O. Applying
[10, Theorem 4.8], we have f(λ) = 1 for all λ ∈ Sp(A) and f(λ) = 0 for all
λ ∈ Sp(B), hence Sp(A) ∩ Sp(B) = ∅.

Corollary 4.6 for the case of a single operator (k = 1) is contained in [4].
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