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Periodic solutions for second order integro-differential
equations with infinite delay in Banach spaces

by

SHANGQUAN BU and Y1 FANG (Beijing)

Abstract. We study the maximal regularity on different function spaces of the second

order integro-differential equations with infinite delay
t t

(P)  "(t)+au'(t) + %( S b(t — s)u(s) ds) = Au(t) — S a(t — s)Au(s)ds + f(t)
(0 <t < 27) with periodic boundary conditions u(0) = u(27),w (0) = u’(27), where A is a
closed operator in a Banach space X, a € C, and a,b € L*(R;). We use Fourier multipliers
to characterize maximal regularity for (P). Using known results on Fourier multipliers,
we find suitable conditions on the kernels a and b under which necessary and sufficient
conditions are given for the problem (P) to have maximal regularity on L?(T, X), periodic
Besov spaces By (T, X) and periodic Triebel-Lizorkin spaces F ,(T, X).

1. Introduction. In a series of recent publications operator-valued
Fourier multipliers on vector-valued function spaces have been studied (see
e.g. [2, 3, 1, 6, 14, 15]). They are needed to study the existence and unique-
ness of differential equations on Banach spaces. In [2, 3, 1, 6], the authors
study the maximal regularity of the classical second order problem (P;) on
LP spaces, Besov spaces and Triebel-Lizorkin spaces using operator-valued
Fourier multipliers, where

W)+ Auft) = £(1) (0=t < 2m),
u(0) = u(2m), /(0) =d'(27);

here A is a closed linear operator defined in a Banach space X and f is
an X-valued function defined on [0, 27]. If X is a UMD Banach space and
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1 < p < oo, then the problem (P;) has maximal regularity on LP(T, X)
if and only if k? € o(A) for all k € Z and the sequence (k*R(k?, A))rez
is Rademacher bounded [2]. In the setting of Besov spaces B, (T, X) and
Triebel-Lizorkin spaces F (T, X ), the maximal regularity is equivalent to
the condition that k2 € o(A) for all k € Z and (k*R(k?, A))pez is bounded
3, 6].

In this paper, we consider a more general evolution equation, namely the
second order integro-differential equation with infinite delay:

( t

W)+ Bul (1) + %( [ bt — s)u(s) ds)

(P2) — Au(t)— | a(t—s)Au(s)ds + f(t) (0<t<2n),

w(0) = u(2m), «/(0) =d/(27),

where A and B are closed linear operators in a Banach space X and a,b €
L'(Ry). Much literature has been devoted to a similar first order integro-
differential equation (Ps3):

2o (£) + %(5@ b(t — $)u(s) ds) + yacu)
(Ps) = coAu(t) — S a(t — s)Au(s)ds + f(t) (0 <t <2m),
u(0) = u(2n),

where 79, Y00, Co are constants, A is a closed linear operator in X, and
a,b € L*(R,). The class of equations of type (P») and (P3) arises as models
for nonlinear heat conduction in materials of fading memory type, and in
population dynamics. In [11], Keyantuo and Lizama obtained the maximal
regularity of (P3) on LP spaces and Besov spaces. They also studied this
equation in the case 79 = ¢p = 1,b = 7o = 0 in a previous paper [10].
Clément and Da Prato [8] studied (P3) on the real line in the case @ = 0 and
obtained maximal regularity results in Sobolev spaces and Holder spaces as
well as in the space of bounded uniformly continuous functions. Da Prato
and Lunardi [9] investigated periodic solutions of (P3) in the case b = 0.
Holder continuous solutions of (P3) have been studied on the real line by
Lunardi [12] in the case of A being the Laplacian operator in a bounded
domain 2 ¢ RY and X = C(2).

We notice that the problem (F») has been studied by several authors in
a simpler form and for different boundary conditions. For instance, R. Chill
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and S. Srivastava [7] have considered the LP-maximal regularity on a finite
interval [0,7T") for the abstract second order problem

(P u’(t) + Bu/'(t) + Au(t) = f(t) (0<t<T),
Y lw) =0, @/(0)=0.

The semigroup theory and trace spaces played important roles in that dis-

cussion. Under a suitable condition on the operators A and B, they gave a

necessary and sufficient condition for the problem (P;) to have LP-maximal

regularity.

In this paper, we are interested in the second order integro-differential
equation (P») with periodic boundary conditions. Since A and B are not
necessarily generators of semigroups in our situation, semigroup theory is
no longer applicable. So our main tool in the study of maximal regularity of
(P») is operator-valued Fourier multipliers. The presence of two closed linear
operators in the operator-valued multiplier functions makes the verification
of the sufficient condition for Fourier multipliers particularly complicated.
Therefore in this paper, we just consider the simpler case B = al for some
fixed o € C (the general case will be studied elsewhere).

We want to obtain maximal regularity of (P;) with B = «f for some
a € C on three function spaces: LP(T, X) for 1 < p < oo, periodic Besov
spaces By (T, X) for 1 < p,q < oo, s > 0, and periodic Triebel-Lizorkin
spaces F (T, X) for 1 <p < oo, 1< ¢q<00,s>0, where T = [0,27]. The
main tools are the operator-valued Fourier multiplier theorems obtained in
[2, Theorem 1.3], [3, Theorem 4.5] and [6, Theorem 3.2]. The differences be-
tween these multiplier theorems on different function spaces make us impose
different conditions on the kernels a and b to obtain the maximal regularity
on these spaces. These conditions are satisfied by a class of functions which
correspond to the most common kernels encountered in applications. Fur-
thermore, it is easy to see that in the case a = 0, a = b = 0 our results are
in accordance with the well known results for (P;) [2, 3, 6].

The paper is organized as follows. In Section 2, we establish a general
maximal regularity result for a problem (P) in the case B = ol for some
a € C, in terms of operator-valued Fourier multipliers. In Section 3, we apply
the general result to three concrete function spaces: LP(T, X), B, (T, X)
and F; (T, X), still in the case B = al for some o € C.

2. Maximal regularity via Fourier multipliers. Let X be a Banach
space. We will consider the problem (F») in a simpler form
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t

u//(t) + au'(t) + %( S b(t — S)’LL(S) dS)
(F) = Au(t) — S a(t — s)Au(s)ds + f(t) (0 <t <2m),

u(0) = u(27), o/(0) =d/'(27),

where A is a closed linear operator in X, a,b € LY(R,), f is an X-valued
function defined on T := [0, 27] and « € C is a constant. The solution of (Ps)
will be an X-valued function defined on T (extended to R by periodicity).

Fourier multipliers will be very useful in our study of maximal regular-
ity of the problem (P5) on different function spaces. These spaces include
LP(T, X) for 1 < p < o0, By (T, X) for 1 <p,q < o0, s>0and F, (T, X)
for1 <p<oo, 1 <qg<oo, s>0.For detailed information about vector-
valued periodic Besov and Triebel-Lizorkin spaces, we refer to [3, Section 2]
and [6, Section 2].

If Y is another Banach space, we denote by L£(X,Y) the space of all
bounded linear operators from X to Y. If X =Y, we will simply denote it
by L(X). For 1 <p < oo and f € LP(T, X), we denote by
2m
[ e (o) f () de
0
the kth Fourier coefficient of f, where k € Z and e (t) = e** for t € R. For
x € X, we let e ® x be the X-valued function given by ¢ — ey (t)x.

DEFINITION 2.1. Let X and Y be Banach spaces and let I'(T, X) be one
of the following X-valued function spaces: LP(T, X) (1 < p < 00), B, (T, X)
(1<p,g<oo,seR)or Fj (T,X) (1 <p<oo,1<g< oo, s€R). Wesay
that a sequence (My)kez C L(X,Y) is a ['-multiplierif for each f € I'(T, X),
there exists a unique g € I'(T,Y’) such that g(k) = Mkf(k:) for all k € Z
2, 3, 6.

REMARK 2.2. 1. It follows from the closed graph theorem that if
(Mi)kez C L(X,Y) is a [-multiplier, then there exists a constant C' > 0
such that for f € I'(T, X), we have || >,z ex ® My f(k)||lr < C|If|lp. This
implies that each I'-multiplier is a bounded sequence.

2. It is clear from the definition that if (My)kez C L(X,Y) and (Ng)kez

C L(Y, Z) are I'-multipliers, then so is (NpMy)rez C L(X, Z).

Let X be a Banach space and let I'(T, X) be one of the following:
IP(T,X) (1 < p < 00), B5y(T,X) (1 < p,g < o0, s > 0) or F2,(T, X)
(1 <p<oo, 1<qg<o0, s>0). We denote the first order “Sobolev”
space by I''(T, X) and the second order “Sobolev” spaces by I'Z(T, X):

~

Fik) = o
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if I'(T, X) = LP(T, X), then
(T, X) = {u € LP(T, X) : there exists v € LP(T, X)
such that v(k) = iku(k) for all k € Z}
={u € LP(T, X) : u is differentiable a.e., v’ € LP(T, X),
and u(0) = u(2m)}.
I'(T, X) = {u € LP(T, X) : there exists v € LP(T, X)
such that v(k) = —k%t(k) for all k € Z},
={ue LP(T,X) : uis twice differentiable a.e., u’,u” € LP(T, X),
and u(0) = u(27),u/(0) = u/(27)}.
If (T, X) = BS (T, X) (1 <p, ¢<oo, s>0), then
(T, x) =BT, X), I'P(T,X) =BT, X).
If I'(T, X) = F,; (T, X) (1<p<oo, 1<qg< o0, s>0), then
T, X) = FiNT, X),  I'P(T,X) = E5F(T, X).
We refer to [2, Section 2, 6], [3, Section 2] and [6, Section 2] for more infor-
mation about these spaces. For g € L'(R,) and u € L!(T, X) (extended to

R by periodicity), we define
t
(2.1) F(t)=(g#u)(t) == | g(t— s)u(s)ds.
—00
In this notation, (P5) has the following more compact form:
d

u"—i—au'—ka(b%u) =Au—aku+f

with periodic boundary conditions u(0) = u(27), v/(0) = v/ (27).
Let g(A) = §° e Mg(t) dt be the Laplace transform of g. An easy com-

putation shows that

(2.2) F(k) = glik)u(k) (k€ 2).
Now we define the I'-maximal regularity of the problem (Ps).

DEFINITION 2.3. Let X be a Banach space, A be a closed linear operator
in X, a € C and let a,b € L'(R;). Let I'(T, X) be one of the following:
LP(T, X) (1 < p < o0), By ((T,X) (1 < p,qg <00, s>0)or Fy (T, X)
(1<p<oo, 1<g< o0, 5>0),

1. Let f € I'(T,X). A function v € I'®(T, X) is called a strong I'-

solution of (Ps) if u(t) € D(A) and the equation of (Ps) holds for
almost all t € T, and v, v/, Au,a % Au, %(b ku) € I'(T, X).
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2. The problem (Ps) is said to have I'-maximal regularity if for every
f € I'(T, X), there exists a unique strong I'-solution of (Ps).

In what follows, we always set gr = g(ik) for any ¢ € L'(R.) and
R(M\,A) = (A — A)~! for X € g(A), where g(A) is the resolvent set of A. If
a € C, we will simply denote the bounded linear operator al by a, where I
is the identity of X. We consider the following two hypotheses for a scalar
function g defined on R:

(HOa) g € LY(R) and (gx)rez C L£(X) is a I-multiplier.

(HODb) gy # 1forall k € Z and ((1—gx) ')rez C L£(X) is a I-multiplier.
We shall write (HO) when (HOa) and (HOb) are both satisfied. For conve-
nience, for a,b € L'(R,) we adopt the following notations: for k € Z,

ar := a(ik), by := b(ik),
ik(a+bg) — k2

(2.3) dy = —
— k2
My, = T ar R(dy, A).

Now, we are ready to state the main result of this section.

THEOREM 2.4. Let X be a Banach space, A : D(A) C X — X be a
closed linear operator, o € C and let a,b € L'(R). Let I'(T, X) be one of
the following: LP(T, X) (1 <p < 00), B, ,(T,X) (1 <p,q <00, s> 0) or
FJ (T, X) (1 <p<oo, 1<qg< o0, s>0). Assume that a satisfies (HO)
and b satisfies (HOa). Then the following assertions are equivalent:

(i) The problem (Ps) has I'-maximal reqularity.

(i) (di)kez C 0(A) and (My)kez is a I'-multiplier.

Proof. We notice that if s > 0, then B; (T, X) and F; (T, X) embed
continuously into LP(T, X) [3, 6], thus we will freely use results in LP(T, X)
for functions in B, (T, X) or F; (T, X) when s > 0.

(i)=(ii): Let k € Z and y € X be fixed. We define f(t) = e*'y. Then
f(k) = y. By assumption, there exists u € I'2/(T, X) such that u(t) € D(A)
and

W(0) + ol (1) + (b u(t)) = Au(t) —a Au(t) + F(1)

for almost all t € T, v, v/, Au,a % Au, &(b*u) € I'(T,X) and u(0) =
u(2m), v (0) = u'(27). Taking Fourier transforms on both sides, using (2.2)
and the closedness of A, we find that u(k) € D(A) and

[—k? + ika + ikby — (1 — ag) AJu(k) = y.

Thus —k? + ika + ikby — (1 — ax)A is surjective. To show that it is also
injective, let * € D(A) be such that [—k? + ika + ikb, — (1 — ag) Az = 0.
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Then )
A — —k* + zk‘(a + bk) = dk:C,
1—a

where we have used the assumption that the kernel a satisfies (HO) and
therefore ap — 1 # 0 for k € Z. Hence u(t) = e’z defines a solution of
W (t) o/ (t)+ 4 (bku(t)) = Au(t) —ak Au(t), u(0) = u(2r), v/(0) = v/ (27).
Indeed,

¢ t
Au(t) = | a(t = s)Au(s)ds = Az — | a(t — s)Ad*z ds

=eMAr — eMayAr = (1 — ap,)e™ Az = [—k% + ik(a + b))z

=u"(t) + o/ (t) + %(b *u(t)).

By the uniqueness assumption, we have z = 0. We have shown that —k? +
ika + ikbr, — (1 — ay)A is bijective. Since A is closed, we conclude that
—k? + ika + ikby,

di, = € o(A) for each k € Z.
1-— ag

Next, we show that (My)rez is a I'-multiplier where My, is defined by
(2.3).If f € I'(T, X), there exists u € I'?/(T, X) solving (P5) by assumption.
Taking Fourier transforms, we obtain

[—k? + ik + ikb, — (1 — ap)AJu(k) = f(k) (k€ Z).
Since —k? + ika + ikby, — (1 — ay)A is invertible, we have
1 "

k) = 7 ” R(dy, A)f(k) and — k2u(k) = Myf(k).

Since u € I'¥(T, X), it is twice differentiable a.e. on T, u/,u” € I'(T, X)
and - R
u"(k) = —k*u(k) = Myf(k) (k€ 7).
From this and the definition of I'-multiplier, we conclude that (My)xez is a
I-multiplier.
(ii)=(i): Let f € I'(T, X ). We define
1
N;. =
I ag
By Remark 2.2, Ny = (—1/k?)M}, and ikNy = (1/ik) M}, are I'-multipliers
as the sequences (—1/k?)rez and (1/ik)gez are I-multipliers by [2, Theorem
1.3], [3, Theorem 4.5] and [6, Theorem 3.2]. Since (Nj)rez is a [-multiplier,
there exists u € I'(T, X) such that u(k) = N f(k) for all k € Z. This implies
that u(k) € D(A) and

(2.4) [—k% 4+ ik(a + by) — (1 — ag) AJu(k) = f(k)

R(dy, A).
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for all k € Z. Since (ikNy)kez is also a I'-multiplier, there exists v € I'(T, X)
such that

(k) = ikNyf (k) = iku(k).
By [2, Lemma 2.1], u is differentiable a.e. with v = u/ and u(0) = u(27).
Therefore u € I'(T, X). As (M},)xez is a I-multiplier by assumption, there
exists w € I'(T, X) such that

(k) = My f(k) = ikv(k) = —k*u(k).
By [2, Lemma 2.1}, v = «' is differentiable a.e. with w = v/ = «” and
u'(0) = o/ (2). This implies that u € I'?(T, X).
Next, we show that u(t) € D(A) for almost all t € T. We have remarked
that for k € Z, we have u(k) € D(A) and

—k2a(k) | (ot byiku(k) F(k)

At(k) = -
u() 1—ak 1—ak 1—ak
_ k) (o b)) (k)
= + — .
1-— ag 1-— ag 1-— af

In view of assumptions (HO) on a and (HOa) on b and the facts that w, v, f €
(T, X) C LY(T, X), there exists g € I'(T, X) such that Au(k) = g(k). Then
by [2, Lemma 3.1], u(t) € D(A) for almost all t € T and Au € I'(T, X).
Clearly,

~

<%(b & u)) (k) = ikbyia(k) = b (ikNy) f (k)

and
(a % Au)" (k) = ar Au(k) = arg(k).

Since (ax)kez, (br)kez and (ikNg)kez are '-multipliers, we conclude that
d(bku),a*Aue I'(T,X).
Now, from (2.4) and the uniqueness theorem of Fourier coefficients, we
conclude that u(t) satisfies (Ps) for a.e. t € [0, 27|. This shows the existence.
To show the uniqueness, let u € I'? (T, X) be such that

W)+ ond (1) + %(b Fu(t)) — Au(t) + a + Au(t) =0

for almost all t € T and «(0) = u(27),4/(0) = «/(27). Then taking Fourier
transforms we have (k) € D(A) and [—k? +ik(a+bg) — (1 —ax) AJa(k) =0
by [2, Lemma 3.1]. Since dj, = (—k? + ik(a + bg))/(1 — ax) € o(A), we must
have u(k) = 0 for all k € Z. Thus u = 0 and the proof is finished. =

We remark that on a Hilbert space X, each bounded sequence is an L>-
multiplier. By the Riemann-Lebesgue lemma, if a € L' (R, then limy_, o az,
= 0. Thus on a Hilbert space X the above theorem takes a particularly
simple form:
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COROLLARY 2.5. Let X be a Hilbert space, A : D(A) C X — X be a
closed linear operator, a € C and let a,b € L'(R). Assume that aj, # 1 for
all k € Z. Then the following assertions are equivalent:

(i) The problem (Ps) has L?-maximal regularity.
(ii) (dr)kez C 0(A) and supyey || M| < oo.

3. Maximal regularity on three function spaces. In this section,
we apply Theorem 2.4 in three concrete function spaces: LP(T,X) (1 <
p < o), By (T,X) (1 <p,qg<oo, s>0)and Fy (T, X) (1 <p < oo,
1 < ¢ < o0, s > 0 by imposing some conditions on the kernels a,b € L' (R, ).
The three operator-valued multiplier theorems obtained in [2, 3, 6] on these
function spaces are fundamental for our discussion. Versions of the multiplier
theorems on the real line can be found in [14, 15].

For results about R-boundedness, we can refer to Bourgain [4], Weis
[14, 15] and Arendt—Bu [2]. We merely recall the definition and some basic
properties.

We let r; be the jth Rademacher function on [0,1] given by r;(t) =
sgn(sin(2771¢)). For z € X, we denote by 7; ® = the vector-valued function
t—ri(t)z.

DEFINITION 3.1. Let X and Y be Banach spaces. A family T C £(X,Y)
is called R-bounded if there exists C' > 0 such that

60 STy, <o

forall Ty,..., T, €T, z1,...,2, € X and n € N,

L1(0,1;:X)

REMARK 3.2.

(a) Let S,T C £(X) be R-bounded sets. Then it is clear from the defi-
nition that ST := {ST : S € S, T € T} is R-bounded.

(b) Each subset M C £(X) of the form M = {AI : A\ € 2} is R-bounded
whenever (2 C C is bounded. This follows from Kahane’s contraction
principle [13, §3.5.4].

In order to state our main results, we will use the following hypotheses
for a scalar function a € L'(R.) (we recall that the sequence (ax)rez is
defined by (2.3)):

(Hla) (k(agt1 — ag))kez is bounded.

(H1b) ai # 1 for all k € Z.

(H2) (kag)rez and (k*(ary1 — 2ax, + ax_1))rez are bounded.

(H3) (kak)kez, (K*(ap1 —2ax +ap—1))rez and (k*(aps1 — 3ag + 3ap_1
— ak—_2))kez are bounded.
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REMARK 3.3. From [11, Remarks 3.4 and 3.5], we know that these con-
ditions are satisfied by a large class of functions, which correspond to the

most common kernels encountered in applications. When we refer simply
to (H1), we mean (H1a) and (H1b).

LEMMA 3.4.

(1) Let X be a UMD space. Assume that a € L'(R,) satisfies (H1)
and b € LY(R,) satisfies (H1a). Then (ax)rez, (1 — ax) ™ rez and
(br)kez are LP-multipliers whenever 1 < p < co.

(2) Let X be a Banach space. Assume that a,b € L'(Ry) satisfy (H2)
and a satisfies (H1b). Then (ap)rez, (1 — ap) Virez and (by)rez
are B, ,-multipliers whenever 1 < p,q < co and s € R.

(3) Let X be a Banach space. Assume that a,b € L'(Ry) satisfy (H3)
and a satisfies (H1b). Then (ar)rez, (1 — ar) Yrez and (bp)rez
are Fp -multipliers whenever 1 <p < 00,1 < ¢ < o0 and s € R.

These assertions follow from [10, Lemmas 2.9 and 3.8] and [5, Proposition
3.4]. We omit the details. The following is one of the main results of this

paper.
THEOREM 3.5. Let X be a UMD space and let A be a closed linear oper-

ator in X. Assume that a,b € L'(R,) satisfy (H1) and (H1a), respectively.
Then the following statements are equivalent:

(i) The problem (Ps) has LP-mazimal regularity for some (equivalently,
all) 1 < p < oo.
(ii) (di)kez C 0(A) and (My)kez is R-bounded.

Proof. Since a € L'(R ) satisfies (H1) and b € L'(R ) satisfies (H1a),
it follows that a satisfies (HO) and b satisfies (HOa) by Lemma 3.4. Thus
Theorem 2.4 is applicable in the case I'(T, X ) = LP(T, X) when 1 < p < oc.

(i)=(ii): Assume that (P5) has LP-maximal regularity for some 1 < p
< 00. By Theorem 2.4, (di)rez C 0(A) and (My)kez is an LP-multiplier.
The R-boundedness of (My)gez follows from [2, Proposition 1.11].

(ii)=(i): Fix 1 < p < oo, and assume that (di)rez C 0(A) and (My)kez
is R-bounded. In view of Theorem 2.4, it suffices to show that (My)gez is
an LP-multiplier. We define

M = sz(dk, A) = —(1 - ak)Mk.

Then py, is R-bounded by Remark 3.2. We claim that (k(pr+1 — pk))kez 18
also R-bounded. Indeed,

k(1 — m) = k[(k + 1)*R(dyy1, A) — K R(dy, A))
= k[(k+1)*(R(dks1, A) — R(dy, A)) + (2k + 1) R(dy, A)]
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= k(k + 1)*(di — dis1) R(dr1, A)R(dy, A) + (2k + 1)kR(dy, A)

dip —d 2k + 1
:%Nkﬂlﬁl‘i‘ o M

We have
dk —dk+1 o i(Oé-Fbk) k+1 z’(a+bk+1)
k - 1-— ag B k 1-— Af+1
2k +1 1 k(akﬂ - ak)

ko l—apyr (1—ap)(1—agsr)’
which is clearly bounded. From the assumption on a,b € L'(Ry) and
Lemma 3.4, we know that ((dx — di+1)/k)kez is R-bounded. It follows that
(k(pk+1 — 1k))kez is R-bounded. From [2, Theorem 1.3, we deduce that
(1x)kez is an LP-multiplier. Then My = %Mk is also an LP-multiplier by
Lemma 3.4 and Remark 2.2. The proof is complete. m

Now, we consider the maximal regularity for the problem (Ps) on periodic
Besov spaces B, (T, X), where 1 < p,q < oo, s > 0. By [3], if X is an
arbitrary Banach space, then the Marcinkiewicz condition of order 2, that
is,

2UIZ>(||M1¢|| + [|b(Myt1 — My)|| + [|E*(Myq1 — 2Mg + My—1)||) < o0,
c

is sufficient for the sequence (Mg )kez to be a By ,-multiplier whenever 1 <
p,q < oo and s € R. So for the maximal regularity of the problem (Ps) in
Bs (T, X), we must impose the stronger assumption (H2) on a,b € L'(Ry).

THEOREM 3.6. Let X be a Banach space and let A be a closed linear op-
erator in X . Assume that a,b € L'(Ry) satisfy (H2) and a satisfies (H1b).
Then the following statements are equivalent:

i) The problem (Ps) has BS -mazimal reqularity for some (equivalently,
Psa
all) 1 <p,g < o0 and s > 0.
(ii) (di)rez C 0(A) and (My)rez is bounded.

Proof. Since a,b € L'(Ry) satisfy (H2) and a satisfies (H1b), we see
that a satisfies (HO) and b satisfies (HOa) by Lemma 3.4. Thus Theorem
2.4 is applicable in the case I'(T, X) = B, (T, X) when 1 < p,q < oo and
s> 0.

(i)=(ii): Assume that (P5) has B, -maximal regularity for some 1 <
p,q < oo and s > 0. Then in view of Theorem 2.4, (dg)kez C 0(A) and
(My)kez is a B, -multiplier. Hence (M},)rez must be bounded [3, Theo-
rem 5.1].

(ii)=(i): Let 1 < p,q < oo and s > 0 be fixed. To show that (Ps) has
B, ,-maximal regularity, it suffices to prove that (My)rez is a B, ,-multiplier
by Theorem 2.4. We let yy, = k?R(dy, A) for k € Z and we first show that
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(1k)kez is a By -multiplier. It is clear that (H2) implies (H1a). From the

proof of Theorem 3.5, we know that (ux)rez and (k(ug+1 — pk))kez are

bounded. To show that (uy)rez is a B, ,-multiplier, we need only show that

(k2 (ps1 — 2pk + pih—1))kez is bounded, by the Fourier multiplier theorem

on periodic Besov spaces [3, Theorem 4.5]. For k € Z, we have

K2 (ks = 2un + pe—1) = k' [R(dgy1, A) = 2R(dy, A) + R(dj—1, A)]

+2k3[R(dpy1, A) — R(dp_1, A)]
+ kz[R(korl, A) + R(dk,h A)] =L+ 1+ Is.

For I, we have

I = k*R(dk, A)[(dy, — dig1) R(dis1, A) — (di—1 — di) R(dg—1, A)]
= pk®[(di — diy1) (R(diy1, A) — R(dg-1, A))
— (g1 — 2dy, + dp—1) R(d),—1, A)]

dy — dgy1 dp_1—d
=* kkH : 1k S k(B2 R(dgsr, A)) (B R(di—1, A))

— pie (g1 — 2di + di—1) (K> R(djg—1, A)).
Since (dy — di+1)/k is bounded, so is
A1 —diy1r _ dp1 —dp | dp —dipa
k k k )
The sequences k>R(dj_q,A) = %uk_l and k2R(djy1,A) = %/Lk.}rl
are bounded. To show that I; is bounded, it remains to consider dp;; —
2dy + di_1. We have

dgy1 — 2dg + di 1

} ( 1 2 1 > ) < 1 1 >
=tka - + + i —
1-— Af+1 1-— Qg 1-— A1 1-— Al+1 1-— Ap—1

k+1)b 2kb k —1)bg_
+Z-(+)k+l_ k+( )bk—1
I —ags1 1 —ag 1—ak—

1 2 1
l—ag1 l—ap 1—ag

2+ 2k(ap+1 — ag—1) — g1 — ap-1
(1= ap1) (1 — ag-1)
Each term in the above expression is bounded by the assumption on a,b €
L'(Ry). We have shown that I; is bounded.
To estimate I and I3, we have

L= M (K*R(dy41, A)) (K R(dy,_1, A)),

I3 = K*R(dj11, A) + E*R(d},_1, A).
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Thus the boundedness of Is and I3 follows easily from the boundedness
of (dy_1 — diy1)/k, k*?R(dj41,A) and k?>R(dy_1, A). We have shown that
(1 )kez satisfies the Marcinkiewicz condition of order 2. Therefore it is a
B, ,-multiplier [3, Theorem 4.5]. By the assumption on a and Lemma 3.4,
((1 = ax) ez is also a Bj -multiplier. Therefore (Mj)rez is a By -multi-
plier by Remark 2.2. The proof is complete. =

If the underlying Banach space X has a non-trivial Fourier type and
1 <p,q<o0,s €R, then the Marcinkiewicz condition of order 1, that is,

SgP(HMkH + [k (My 1 = My)|[) < oo,

is already sufficient for (Mj)rez to be a B, -multiplier [3, Theorem 4.5].
From this fact and the proof of Theorem 3.5, we easily deduce the following
result on the B -maximal regularity of (P5) under a weaker condition on
a,b when X has a non-trivial Fourier type.

THEOREM 3.7. Let X be a Banach space with non-trivial Fourier type.
Assume that a,b € L'(Ry) satisfy (H1) and (H1a), respectively. Then for
1<p,q <00 ands >0, the following statements are equivalent:

(i) The problem (Ps) has B, ,-mazimal reqularity for some (equivalently,
all) 1 <p,qg < o0, s> 0.
(i1) (dg)kez C 0(A) and (My)kez is bounded.

Periodic Hoélder continuous function spaces are a particular case of
B, (T, X). From [3, Theorem 3.1], we have

BT, X) = Cy,

(T,
per
where CF (T, X) is the space of all X-valued functions f defined on T
and such that f(0) = f(27) and sup,, [|f(z) — f(y)[l/|z —y|* is finite.

Moreover, the norm

X) whenever 0 < a <1,

1/ (=) = fW)ll

|z =yl
on Cp, (T, X) is an equivalent norm of BS (T, X). Thus Theorems 3.6
and 3.7 have the following corollary, where for 0 < a < 1 we say that
(Ps) has Cf,-maximal regularity if for every f € Cp, (T, X), there exists

a unique u E ngr?(']r X) such that u(t) € D(A) and the equation of (Ps)

holds for all ¢ € [0,27], and u”, v/, Au,a * Au, % (b u) € Cper (T, X).

lullcs

% 1= TAX ||u(t)|| + sup

COROLLARY 3.8. Let X be a Banach space and let a,b € L*(Ry). Then:

1. Ifa,b € LY(Ry) satisfy (H2) and a satisfies (H1b), then the problem
(P5) has CJ,-mazimal regularity for some (equivalently, all) 0<a <1

if and only if (di)kez C 0(A) and (My)kez is bounded.
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2. If X has a non-trivial Fourier type and if a satisfies (H1) and b
satisfies (H1a), then the problem (Ps) has Cp.-mazimal regularity
for some (equivalently, all) 0 < a < 1 if and only if (di)kez C 0(A)
and (My)kez is bounded.

Let M = (Mg)kez C L(X,Y). We say that M satisfies the Marcinkiewicz
condition of order 8 if M satisfies the Marcinkiewicz condition of order 2
and

Sl;p k3 (Myy1 — 3My, + 3Mj_y — Mj_3)|| < 00

(see [6]). Next, we prove maximal regularity of (Ps) on periodic Triebel
spaces I (T, X) when 1 < p < oo, 1 < g <00, s> 0. Weneed the stronger
condition (H3) on a,b € L'(R,) because the Marcinkiewicz condition of
order 3 is needed in the F;J -multiplier case [6, Theorem 3.2].

THEOREM 3.9. Let X be a Banach space. Assume that a,b € L'(R})
satisfy (H3) and a satisfies (H1b). Then the following assertions are equiv-
alent:

(i) The problem (Ps) has F,, ,-mazimal regularity for some (equivalently,
all) 1<p<oo,1<g<ooands>0.
(i1) (di)kez C 0(A) and (My)kez is bounded.

Proof. Since a,b € L'(R,) satisfy (H3) and a satisfies (H1b), we infer
that a satisfies (HO) and b satisfies (HOa) by Lemma 3.4. Thus Theorem 2.4
is applicable in the case I'(T, X) = F}; ,(T, X) when 1 <p < 00, 1 < g <00
and s > 0.

(1)=(ii): Assume that (P5) has FJ -maximal regularity for some 1 <
p <o00,1<qg<ooands > 0. Then (dp)rez C 0(A) and (My)iez is
an Fj -multiplier by Theorem 2.4. Hence (M},)rez must be bounded [6,
Theorem 4.1].

(ii)=(i): Let 1 < p < o0, 1 < ¢g < oo and s > 0 be fixed. To show that
(P5) has F; -maximal regularity, it suffices to prove that (Mj,)rez is an F), -
multiplier by Theorem 2.4. We let g = k2R(dy, A) for k € Z and we first
show that (ux)kez is an F), -multiplier. It is clear that (H3) implies (H2).
Thus the boundedness of ug, k(g1 — pr) and k2 (ppy1 — 24k + ptx—1) follows
from the proofs of Theorems 3.5 and 3.6. It remains to show that &3 (pg41 —
3ug + 3uk—1 — k—2) is bounded. We have

K3 (pks1 — 3k + 3puk—1 — pk—2)
= K°[R(dy11, A) — 3R(dy, A) + 3R(dy_1, A) — R(dp_2, A)]

+ 2k*[R(djs1, A) — 3R(dg—_1, A) + 2R(dj_o, A)]
+ E*[R(djs1, A) + 3R(dp_1, A) — 4R(dj_o, A)] =: J1 + Jo + Js.
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Now,

k2 g g
Ji = —k(dpp1 — 3dy + 3dj_y — dp_o) L

(k—1)2
dg1 — dg—2 K fugs—1 kbt
— = —2d dp1) ————+—
’ (dit1 K+ di-1) - 12
dgy1 — dg—2 K pur—o ket
— = (dy, — 2dj,_ dyp_9) —————
+ L (k k-1 T k2) <k2—k—2)2
dir1 — d—2 d — dg—1 d—2 — dg—1 kS pg—opur—1 1k tk41
+2 ,
k k k(B —2k2_k+2)2
k2 pe—1 ok
= -2(d —2d dp_1) —————
J2 (dkt1 — 2dy; + di—1) Gi—1)
4o di — di1 di—1 — dir K 1 et
2 k‘ k2 —1)?
44 di—1 — di di—o — di k* pe—opie—1 1
k k(K2 — 3k +2)?
kg —opur—1

— 4(dk - 2dk71 + dk,Q) m,

Je — di—o — dpp1 K pp—opips1
5 k (k2 =k —2)2

3(dp—2 — dip—1)  K*pp—opip—1
k (k%2 — 3k +2)%

The boundedness of iy, (dx —di+1)/k and dj41 —2dg, +dg—1 follows from the
proof of Theorem 3.6. To show that Ji, Jo and J3 are bounded, it suffices
to show that k(dgi1 — 3dg + 3dip_1 — di_2) is bounded. We have

k(dgt1 — 3di, + 3di—1 — di—2)

= ik’a ! _ 3 + 2 - !
B l—ap1 l1—ap l1—ag1 1—ag2

+.k< 1 3 N 2 >
(2,704 —
l—ap1 l—ap—1 1—ag2

+ik< S . 2by—2 )
l—agyr l1—ag1 1—ago

b 2b br—
4k bt 2ok b
l—ap1r l—ap 1—ap

+
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B b, 2bg n br—2
1-— ag 1-— ap_—1 1-— QAp_—92

N 3 3 1
—k _ + _
l—agyr l1—ax 1—ap—1 1—ak2

[ 2k +1 3(—2k+1) —4k‘+4]

—k + —_

1 —agsr 1 —ag 1 —ag—o

The boundedness of the first and fifth brackets follows from the proof of

[5, Proposition 3.4]. The fourth bracket is bounded by the proof of [11,
Theorem 3.12]. We also have

. ( 1 3 2 >
tka — +
l—ap1 l—ag—1  1—ag2

i k(ary1 + 2ar_2 — 3ap_1) + kap_1ax_2 — 3kapq1ap_2 + 2kag1ap_1
(I = ap1) (1 — ap—1)(1 — ag—2)

and
[ ok +1  3(—2k+1) —4k+4]
k + -
1 —ag I —ak— 1—ag2
B J
(1= akt1)(1 —ag—1)(1 — ag—2)
where

J = 2k2(ak+1 — 2ap + ak_l) + 4k2(ak —2ap_1+ ak_g)
+ (3kag—1 — 4kag_o + kaxy1) + (2k + 1)kag_1ax—o
+ (=6k + 3)kari1ax—2 + (4k — ) kag1a,_1.
We have shown that k(dgy+1 — 3dx + 3dx—1 — dg—2) is bounded by the as-
sumption on a € L'(R;). We deduce that (u4)rez is an Fj -multiplier by
[6, Theorem 3.2]. From the assumptions on a € L'(R,) and Lemma 3.4,

(1 —ag) Hrez is also an F; ,-multiplier. From Remark 2.2, we deduce that
My, = %pk is an F}) -multiplier. The proof is finished. m

REMARK 3.10. When 1 < p <00, 1 < ¢ < oo and s € R, the Marcin-
kiewicz condition of order 2 is already sufficient for a sequence (Mjy)rez C
L(X) to be an Fj -multiplier [6, Theorem 3.2]. This fact together with
the proof of Theorem 3.6 implies that if a,b € L'(R.) satisfy (H2), and
a satisfies (H1b), then the problem (Ps) has FJ -maximal regularity for
some (equivalently, all) 1 < p < 00,1 < ¢ < 00 and s > 0 if and only if
(di)kez C 0(A) and (My)kez is bounded.
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