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Periodic solutions for second order integro-differential

equations with infinite delay in Banach spaces

by

Shangquan Bu and Yi Fang (Beijing)

Abstract. We study the maximal regularity on different function spaces of the second
order integro-differential equations with infinite delay

(P ) u
′′(t) + αu

′(t) +
d

dt

( t\
−∞

b(t − s)u(s) ds
)

= Au(t) −

t\
−∞

a(t − s)Au(s) ds + f(t)

(0 ≤ t ≤ 2π) with periodic boundary conditions u(0) = u(2π), u′(0) = u′(2π), where A is a
closed operator in a Banach space X, α ∈ C, and a, b ∈ L1(R+). We use Fourier multipliers
to characterize maximal regularity for (P ). Using known results on Fourier multipliers,
we find suitable conditions on the kernels a and b under which necessary and sufficient
conditions are given for the problem (P ) to have maximal regularity on Lp(T,X), periodic
Besov spaces Bs

p,q(T, X) and periodic Triebel–Lizorkin spaces F s
p,q(T,X).

1. Introduction. In a series of recent publications operator-valued
Fourier multipliers on vector-valued function spaces have been studied (see
e.g. [2, 3, 1, 6, 14, 15]). They are needed to study the existence and unique-
ness of differential equations on Banach spaces. In [2, 3, 1, 6], the authors
study the maximal regularity of the classical second order problem (P1) on
Lp spaces, Besov spaces and Triebel–Lizorkin spaces using operator-valued
Fourier multipliers, where

(P1)

{
u′′(t) + Au(t) = f(t) (0 ≤ t ≤ 2π),

u(0) = u(2π), u′(0) = u′(2π);

here A is a closed linear operator defined in a Banach space X and f is
an X-valued function defined on [0, 2π]. If X is a UMD Banach space and
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1 < p < ∞, then the problem (P1) has maximal regularity on Lp(T, X)
if and only if k2 ∈ ̺(A) for all k ∈ Z and the sequence (k2R(k2, A))k∈Z

is Rademacher bounded [2]. In the setting of Besov spaces Bs
p,q(T, X) and

Triebel–Lizorkin spaces F s
p,q(T, X), the maximal regularity is equivalent to

the condition that k2 ∈ ̺(A) for all k ∈ Z and (k2R(k2, A))k∈Z is bounded
[3, 6].

In this paper, we consider a more general evolution equation, namely the
second order integro-differential equation with infinite delay:

(P2)





u′′(t) + Bu′(t) +
d

dt

( t\
−∞

b(t − s)u(s) ds
)

= Au(t) −

t\
−∞

a(t − s)Au(s) ds + f(t) (0 ≤ t ≤ 2π),

u(0) = u(2π), u′(0) = u′(2π),

where A and B are closed linear operators in a Banach space X and a, b ∈
L1(R+). Much literature has been devoted to a similar first order integro-
differential equation (P3):

(P3)





γ0u
′(t) +

d

dt

( t\
−∞

b(t − s)u(s) ds
)

+ γ∞u(t)

= c0Au(t) −

t\
−∞

a(t − s)Au(s) ds + f(t) (0 ≤ t ≤ 2π),

u(0) = u(2π),

where γ0, γ∞, c0 are constants, A is a closed linear operator in X, and
a, b ∈ L1(R+). The class of equations of type (P2) and (P3) arises as models
for nonlinear heat conduction in materials of fading memory type, and in
population dynamics. In [11], Keyantuo and Lizama obtained the maximal
regularity of (P3) on Lp spaces and Besov spaces. They also studied this
equation in the case γ0 = c0 = 1, b = γ∞ = 0 in a previous paper [10].
Clément and Da Prato [8] studied (P3) on the real line in the case a = 0 and
obtained maximal regularity results in Sobolev spaces and Hölder spaces as
well as in the space of bounded uniformly continuous functions. Da Prato
and Lunardi [9] investigated periodic solutions of (P3) in the case b = 0.
Hölder continuous solutions of (P3) have been studied on the real line by
Lunardi [12] in the case of A being the Laplacian operator in a bounded
domain Ω ⊂ R

N and X = C(Ω).

We notice that the problem (P2) has been studied by several authors in
a simpler form and for different boundary conditions. For instance, R. Chill
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and S. Srivastava [7] have considered the Lp-maximal regularity on a finite
interval [0, T ) for the abstract second order problem

(P4)

{
u′′(t) + Bu′(t) + Au(t) = f(t) (0 ≤ t < T ),

u(0) = 0, u′(0) = 0.

The semigroup theory and trace spaces played important roles in that dis-
cussion. Under a suitable condition on the operators A and B, they gave a
necessary and sufficient condition for the problem (P4) to have Lp-maximal
regularity.

In this paper, we are interested in the second order integro-differential
equation (P2) with periodic boundary conditions. Since A and B are not
necessarily generators of semigroups in our situation, semigroup theory is
no longer applicable. So our main tool in the study of maximal regularity of
(P2) is operator-valued Fourier multipliers. The presence of two closed linear
operators in the operator-valued multiplier functions makes the verification
of the sufficient condition for Fourier multipliers particularly complicated.
Therefore in this paper, we just consider the simpler case B = αI for some
fixed α ∈ C (the general case will be studied elsewhere).

We want to obtain maximal regularity of (P2) with B = αI for some
α ∈ C on three function spaces: Lp(T, X) for 1 < p < ∞, periodic Besov
spaces Bs

p,q(T, X) for 1 ≤ p, q ≤ ∞, s > 0, and periodic Triebel–Lizorkin
spaces F s

p,q(T, X) for 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0, where T = [0, 2π]. The
main tools are the operator-valued Fourier multiplier theorems obtained in
[2, Theorem 1.3], [3, Theorem 4.5] and [6, Theorem 3.2]. The differences be-
tween these multiplier theorems on different function spaces make us impose
different conditions on the kernels a and b to obtain the maximal regularity
on these spaces. These conditions are satisfied by a class of functions which
correspond to the most common kernels encountered in applications. Fur-
thermore, it is easy to see that in the case α = 0, a = b = 0 our results are
in accordance with the well known results for (P1) [2, 3, 6].

The paper is organized as follows. In Section 2, we establish a general
maximal regularity result for a problem (P2) in the case B = αI for some
α ∈ C, in terms of operator-valued Fourier multipliers. In Section 3, we apply
the general result to three concrete function spaces: Lp(T, X), Bs

p,q(T, X)
and F s

p,q(T, X), still in the case B = αI for some α ∈ C.

2. Maximal regularity via Fourier multipliers. Let X be a Banach
space. We will consider the problem (P2) in a simpler form
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(P5)





u′′(t) + αu′(t) +
d

dt

( t\
−∞

b(t − s)u(s) ds
)

= Au(t) −

t\
−∞

a(t − s)Au(s) ds + f(t) (0 ≤ t ≤ 2π),

u(0) = u(2π), u′(0) = u′(2π),

where A is a closed linear operator in X, a, b ∈ L1(R+), f is an X-valued
function defined on T := [0, 2π] and α ∈ C is a constant. The solution of (P5)
will be an X-valued function defined on T (extended to R by periodicity).

Fourier multipliers will be very useful in our study of maximal regular-
ity of the problem (P5) on different function spaces. These spaces include
Lp(T, X) for 1 < p < ∞, Bs

p,q(T, X) for 1 ≤ p, q ≤ ∞, s > 0 and F s
p,q(T, X)

for 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0. For detailed information about vector-
valued periodic Besov and Triebel–Lizorkin spaces, we refer to [3, Section 2]
and [6, Section 2].

If Y is another Banach space, we denote by L(X, Y ) the space of all
bounded linear operators from X to Y . If X = Y , we will simply denote it
by L(X). For 1 ≤ p ≤ ∞ and f ∈ Lp(T, X), we denote by

f̂(k) =
1

2π

2π\
0

e−k(t)f(t) dt

the kth Fourier coefficient of f , where k ∈ Z and ek(t) = eikt for t ∈ R. For
x ∈ X, we let ek ⊗ x be the X-valued function given by t 7→ ek(t)x.

Definition 2.1. Let X and Y be Banach spaces and let Γ (T, X) be one
of the following X-valued function spaces: Lp(T, X) (1 ≤ p < ∞), Bs

p,q(T, X)
(1 ≤ p, q ≤ ∞, s ∈ R) or F s

p,q(T, X) (1 ≤ p < ∞, 1 ≤ q ≤ ∞, s ∈ R). We say
that a sequence (Mk)k∈Z ⊂ L(X, Y ) is a Γ -multiplier if for each f ∈ Γ (T, X),

there exists a unique g ∈ Γ (T, Y ) such that ĝ(k) = Mkf̂(k) for all k ∈ Z

[2, 3, 6].

Remark 2.2. 1. It follows from the closed graph theorem that if
(Mk)k∈Z ⊂ L(X, Y ) is a Γ -multiplier, then there exists a constant C > 0

such that for f ∈ Γ (T, X), we have ‖
∑

k∈Z
ek ⊗ Mkf̂(k)‖Γ ≤ C‖f‖Γ . This

implies that each Γ -multiplier is a bounded sequence.

2. It is clear from the definition that if (Mk)k∈Z ⊂ L(X, Y ) and (Nk)k∈Z

⊂ L(Y, Z) are Γ -multipliers, then so is (NkMk)k∈Z ⊂ L(X, Z).

Let X be a Banach space and let Γ (T, X) be one of the following:
Lp(T, X) (1 < p < ∞), Bs

p,q(T, X) (1 ≤ p, q ≤ ∞, s > 0) or F s
p,q(T, X)

(1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0). We denote the first order “Sobolev”
space by Γ [1](T, X) and the second order “Sobolev” spaces by Γ [2](T, X):
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if Γ (T, X) = Lp(T, X), then

Γ [1](T, X) = {u ∈ Lp(T, X) : there exists v ∈ Lp(T, X)

such that v̂(k) = ikû(k) for all k ∈ Z}

= {u ∈ Lp(T, X) : u is differentiable a.e., u′ ∈ Lp(T, X),

and u(0) = u(2π)}.

Γ [2](T, X) = {u ∈ Lp(T, X) : there exists v ∈ Lp(T, X)

such that v̂(k) = −k2û(k) for all k ∈ Z},

={u∈Lp(T, X) : u is twice differentiable a.e., u′, u′′∈Lp(T, X),

and u(0) = u(2π), u′(0) = u′(2π)}.

If Γ (T, X) = Bs
p,q(T, X) (1 ≤ p, q ≤ ∞, s > 0), then

Γ [1](T, X) = Bs+1
p,q (T, X), Γ [2](T, X) = Bs+2

p,q (T, X).

If Γ (T, X) = F s
p,q(T, X) (1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0), then

Γ [1](T, X) = F s+1
p,q (T, X), Γ [2](T, X) = F s+2

p,q (T, X).

We refer to [2, Section 2, 6], [3, Section 2] and [6, Section 2] for more infor-
mation about these spaces. For g ∈ L1(R+) and u ∈ L1(T, X) (extended to
R by periodicity), we define

(2.1) F (t) = (g ∗̇ u)(t) :=

t\
−∞

g(t − s)u(s) ds.

In this notation, (P5) has the following more compact form:

u′′ + αu′ +
d

dt
(b ∗̇ u) = Au − a ∗̇ u + f

with periodic boundary conditions u(0) = u(2π), u′(0) = u′(2π).
Let g̃(λ) =

T∞
0 e−λtg(t) dt be the Laplace transform of g. An easy com-

putation shows that

(2.2) F̂ (k) = g̃(ik)û(k) (k ∈ Z).

Now we define the Γ -maximal regularity of the problem (P5).

Definition 2.3. Let X be a Banach space, A be a closed linear operator
in X, α ∈ C and let a, b ∈ L1(R+). Let Γ (T, X) be one of the following:
Lp(T, X) (1 < p < ∞), Bs

p,q(T, X) (1 ≤ p, q ≤ ∞, s > 0) or F s
p,q(T, X)

(1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0),

1. Let f ∈ Γ (T, X). A function u ∈ Γ [2](T, X) is called a strong Γ -

solution of (P5) if u(t) ∈ D(A) and the equation of (P5) holds for
almost all t ∈ T, and u′′, u′, Au, a ∗̇ Au, d

dt
(b ∗̇ u) ∈ Γ (T, X).
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2. The problem (P5) is said to have Γ -maximal regularity if for every
f ∈ Γ (T, X), there exists a unique strong Γ -solution of (P5).

In what follows, we always set gk = g̃(ik) for any g ∈ L1(R+) and
R(λ, A) = (λ − A)−1 for λ ∈ ̺(A), where ̺(A) is the resolvent set of A. If
a ∈ C, we will simply denote the bounded linear operator aI by a, where I
is the identity of X. We consider the following two hypotheses for a scalar
function g defined on R+:

(H0a) g ∈ L1(R+) and (gk)k∈Z ⊂ L(X) is a Γ -multiplier.
(H0b) gk 6= 1 for all k ∈ Z and ((1−gk)

−1)k∈Z ⊂ L(X) is a Γ -multiplier.

We shall write (H0) when (H0a) and (H0b) are both satisfied. For conve-
nience, for a, b ∈ L1(R+) we adopt the following notations: for k ∈ Z,

ak := ã(ik), bk := b̃(ik),

dk :=
ik(α + bk) − k2

1 − ak

,(2.3)

Mk :=
−k2

1 − ak

R(dk, A).

Now, we are ready to state the main result of this section.

Theorem 2.4. Let X be a Banach space, A : D(A) ⊂ X → X be a

closed linear operator , α ∈ C and let a, b ∈ L1(R+). Let Γ (T, X) be one of

the following : Lp(T, X) (1 < p < ∞), Bs
p,q(T, X) (1 ≤ p, q ≤ ∞, s > 0) or

F s
p,q(T, X) (1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0). Assume that a satisfies (H0)

and b satisfies (H0a). Then the following assertions are equivalent :

(i) The problem (P5) has Γ -maximal regularity.

(ii) (dk)k∈Z ⊂ ̺(A) and (Mk)k∈Z is a Γ -multiplier.

Proof. We notice that if s > 0, then Bs
p,q(T, X) and F s

p,q(T, X) embed
continuously into Lp(T, X) [3, 6], thus we will freely use results in Lp(T, X)
for functions in Bs

p,q(T, X) or F s
p,q(T, X) when s > 0.

(i)⇒(ii): Let k ∈ Z and y ∈ X be fixed. We define f(t) = eikty. Then

f̂(k) = y. By assumption, there exists u ∈ Γ [2](T, X) such that u(t) ∈ D(A)
and

u′′(t) + αu′(t) +
d

dt
(b ∗̇ u(t)) = Au(t) − a ∗̇ Au(t) + f(t)

for almost all t ∈ T, u′′, u′, Au, a ∗̇ Au, d
dt

(b ∗̇ u) ∈ Γ (T, X) and u(0) =
u(2π), u′(0) = u′(2π). Taking Fourier transforms on both sides, using (2.2)
and the closedness of A, we find that û(k) ∈ D(A) and

[−k2 + ikα + ikbk − (1 − ak)A]û(k) = y.

Thus −k2 + ikα + ikbk − (1 − ak)A is surjective. To show that it is also
injective, let x ∈ D(A) be such that [−k2 + ikα + ikbk − (1 − ak)A]x = 0.
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Then

Ax =
−k2 + ik(α + bk)

1 − ak

x = dkx,

where we have used the assumption that the kernel a satisfies (H0) and
therefore ak − 1 6= 0 for k ∈ Z. Hence u(t) = eiktx defines a solution of
u′′(t)+αu′(t)+ d

dt
(b ∗̇u(t)) = Au(t)−a ∗̇Au(t), u(0) = u(2π), u′(0) = u′(2π).

Indeed,

Au(t) −

t\
−∞

a(t − s)Au(s) ds = Aeiktx −

t\
−∞

a(t − s)Aeiksx ds

= eiktAx − eiktakAx = (1 − ak)e
iktAx = [−k2 + ik(α + bk)]e

iktx

= u′′(t) + αu′(t) +
d

dt
(b ∗̇ u(t)).

By the uniqueness assumption, we have x = 0. We have shown that −k2 +
ikα + ikbk − (1 − ak)A is bijective. Since A is closed, we conclude that

dk =
−k2 + ikα + ikbk

1 − ak

∈ ̺(A) for each k ∈ Z.

Next, we show that (Mk)k∈Z is a Γ -multiplier where Mk is defined by
(2.3). If f ∈ Γ (T, X), there exists u ∈ Γ [2](T, X) solving (P5) by assumption.
Taking Fourier transforms, we obtain

[−k2 + ikα + ikbk − (1 − ak)A]û(k) = f̂(k) (k ∈ Z).

Since −k2 + ikα + ikbk − (1 − ak)A is invertible, we have

û(k) =
1

1 − ak

R(dk, A)f̂(k) and − k2û(k) = Mkf̂(k).

Since u ∈ Γ [2](T, X), it is twice differentiable a.e. on T, u′, u′′ ∈ Γ (T, X)
and

û′′(k) = −k2û(k) = Mkf̂(k) (k ∈ Z).

From this and the definition of Γ -multiplier, we conclude that (Mk)k∈Z is a
Γ -multiplier.

(ii)⇒(i): Let f ∈ Γ (T, X). We define

Nk =
1

1 − ak

R(dk, A).

By Remark 2.2, Nk = (−1/k2)Mk and ikNk = (1/ik)Mk are Γ -multipliers
as the sequences (−1/k2)k∈Z and (1/ik)k∈Z are Γ -multipliers by [2, Theorem
1.3], [3, Theorem 4.5] and [6, Theorem 3.2]. Since (Nk)k∈Z is a Γ -multiplier,

there exists u ∈ Γ (T, X) such that û(k) = Nkf̂(k) for all k ∈ Z. This implies
that û(k) ∈ D(A) and

(2.4) [−k2 + ik(α + bk) − (1 − ak)A]û(k) = f̂(k)
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for all k ∈ Z. Since (ikNk)k∈Z is also a Γ -multiplier, there exists v ∈ Γ (T, X)
such that

v̂(k) = ikNkf̂(k) = ikû(k).

By [2, Lemma 2.1], u is differentiable a.e. with v = u′ and u(0) = u(2π).
Therefore u ∈ Γ [1](T, X). As (Mk)k∈Z is a Γ -multiplier by assumption, there
exists w ∈ Γ (T, X) such that

ŵ(k) = Mkf̂(k) = ikv̂(k) = −k2û(k).

By [2, Lemma 2.1], v = u′ is differentiable a.e. with w = v′ = u′′ and
u′(0) = u′(2π). This implies that u ∈ Γ [2](T, X).

Next, we show that u(t) ∈ D(A) for almost all t ∈ T. We have remarked
that for k ∈ Z, we have û(k) ∈ D(A) and

Aû(k) =
−k2û(k)

1 − ak

+
(α + bk)ikû(k)

1 − ak

−
f̂(k)

1 − ak

=
ŵ(k)

1 − ak

+
(α + bk)v̂(k)

1 − ak

−
f̂(k)

1 − ak

.

In view of assumptions (H0) on a and (H0a) on b and the facts that w, v, f ∈
Γ (T, X) ⊂ L1(T, X), there exists g ∈ Γ (T, X) such that Aû(k) = ĝ(k). Then
by [2, Lemma 3.1], u(t) ∈ D(A) for almost all t ∈ T and Au ∈ Γ (T, X).
Clearly, (

d

dt
(b ∗̇ u)

)∧

(k) = ikbkû(k) = bk(ikNk)f̂(k)

and

(a ∗̇ Au)∧(k) = akAû(k) = akĝ(k).

Since (ak)k∈Z, (bk)k∈Z and (ikNk)k∈Z are Γ -multipliers, we conclude that
d
dt

(b ∗̇ u), a ∗̇ Au ∈ Γ (T, X).
Now, from (2.4) and the uniqueness theorem of Fourier coefficients, we

conclude that u(t) satisfies (P5) for a.e. t ∈ [0, 2π]. This shows the existence.
To show the uniqueness, let u ∈ Γ [2](T, X) be such that

u′′(t) + αu′(t) +
d

dt
(b ∗̇ u(t)) − Au(t) + a ∗̇ Au(t) = 0

for almost all t ∈ T and u(0) = u(2π), u′(0) = u′(2π). Then taking Fourier
transforms we have û(k) ∈ D(A) and [−k2 + ik(α+ bk)− (1−ak)A]û(k) = 0
by [2, Lemma 3.1]. Since dk = (−k2 + ik(α + bk))/(1 − ak) ∈ ̺(A), we must
have û(k) = 0 for all k ∈ Z. Thus u = 0 and the proof is finished.

We remark that on a Hilbert space X, each bounded sequence is an L2-
multiplier. By the Riemann–Lebesgue lemma, if a∈L1(R+), then limk→∞ ak

= 0. Thus on a Hilbert space X the above theorem takes a particularly
simple form:
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Corollary 2.5. Let X be a Hilbert space, A : D(A) ⊂ X → X be a

closed linear operator , α ∈ C and let a, b ∈ L1(R+). Assume that ak 6= 1 for

all k ∈ Z. Then the following assertions are equivalent :

(i) The problem (P5) has L2-maximal regularity.

(ii) (dk)k∈Z ⊂ ̺(A) and supk∈Z ‖Mk‖ < ∞.

3. Maximal regularity on three function spaces. In this section,
we apply Theorem 2.4 in three concrete function spaces: Lp(T, X) (1 <
p < ∞), Bs

p,q(T, X) (1 ≤ p, q ≤ ∞, s > 0) and F s
p,q(T, X) (1 ≤ p < ∞,

1 ≤ q ≤ ∞, s > 0 by imposing some conditions on the kernels a, b ∈ L1(R+).
The three operator-valued multiplier theorems obtained in [2, 3, 6] on these
function spaces are fundamental for our discussion. Versions of the multiplier
theorems on the real line can be found in [14, 15].

For results about R-boundedness, we can refer to Bourgain [4], Weis
[14, 15] and Arendt–Bu [2]. We merely recall the definition and some basic
properties.

We let rj be the jth Rademacher function on [0, 1] given by rj(t) =
sgn(sin(2j−1t)). For x ∈ X, we denote by rj ⊗ x the vector-valued function
t 7→ rj(t)x.

Definition 3.1. Let X and Y be Banach spaces. A family T ⊂ L(X, Y )
is called R-bounded if there exists C ≥ 0 such that

(3.1)
∥∥∥

n∑

j=1

rj ⊗ Tjxj

∥∥∥
L1(0,1;Y )

≤ C
∥∥∥

n∑

j=1

rj ⊗ xj

∥∥∥
L1(0,1;X)

for all T1, . . . , Tn ∈ T, x1, . . . , xn ∈ X and n ∈ N.

Remark 3.2.

(a) Let S,T ⊂ L(X) be R-bounded sets. Then it is clear from the defi-
nition that ST := {ST : S ∈ S, T ∈ T} is R-bounded.

(b) Each subset M ⊂ L(X) of the form M = {λI : λ ∈ Ω} is R-bounded
whenever Ω ⊂ C is bounded. This follows from Kahane’s contraction
principle [13, §3.5.4].

In order to state our main results, we will use the following hypotheses
for a scalar function a ∈ L1(R+) (we recall that the sequence (ak)k∈Z is
defined by (2.3)):

(H1a) (k(ak+1 − ak))k∈Z is bounded.
(H1b) ak 6= 1 for all k ∈ Z.
(H2) (kak)k∈Z and (k2(ak+1 − 2ak + ak−1))k∈Z are bounded.
(H3) (kak)k∈Z, (k2(ak+1 − 2ak +ak−1))k∈Z and (k3(ak+1 − 3ak +3ak−1

− ak−2))k∈Z are bounded.
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Remark 3.3. From [11, Remarks 3.4 and 3.5], we know that these con-
ditions are satisfied by a large class of functions, which correspond to the
most common kernels encountered in applications. When we refer simply
to (H1), we mean (H1a) and (H1b).

Lemma 3.4.

(1) Let X be a UMD space. Assume that a ∈ L1(R+) satisfies (H1)
and b ∈ L1(R+) satisfies (H1a). Then (ak)k∈Z, ((1 − ak)

−1)k∈Z and

(bk)k∈Z are Lp-multipliers whenever 1 < p < ∞.

(2) Let X be a Banach space. Assume that a, b ∈ L1(R+) satisfy (H2)
and a satisfies (H1b). Then (ak)k∈Z, ((1 − ak)

−1)k∈Z and (bk)k∈Z

are Bs
p,q-multipliers whenever 1 ≤ p, q ≤ ∞ and s ∈ R.

(3) Let X be a Banach space. Assume that a, b ∈ L1(R+) satisfy (H3)
and a satisfies (H1b). Then (ak)k∈Z, ((1 − ak)

−1)k∈Z and (bk)k∈Z

are F s
p,q-multipliers whenever 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and s ∈ R.

These assertions follow from [10, Lemmas 2.9 and 3.8] and [5, Proposition
3.4]. We omit the details. The following is one of the main results of this
paper.

Theorem 3.5. Let X be a UMD space and let A be a closed linear oper-

ator in X. Assume that a, b ∈ L1(R+) satisfy (H1) and (H1a), respectively.

Then the following statements are equivalent :

(i) The problem (P5) has Lp-maximal regularity for some (equivalently ,
all) 1 < p < ∞.

(ii) (dk)k∈Z ⊂ ̺(A) and (Mk)k∈Z is R-bounded.

Proof. Since a ∈ L1(R+) satisfies (H1) and b ∈ L1(R+) satisfies (H1a),
it follows that a satisfies (H0) and b satisfies (H0a) by Lemma 3.4. Thus
Theorem 2.4 is applicable in the case Γ (T, X) = Lp(T, X) when 1 < p < ∞.

(i)⇒(ii): Assume that (P5) has Lp-maximal regularity for some 1 < p
< ∞. By Theorem 2.4, (dk)k∈Z ⊂ ̺(A) and (Mk)k∈Z is an Lp-multiplier.
The R-boundedness of (Mk)k∈Z follows from [2, Proposition 1.11].

(ii)⇒(i): Fix 1 < p < ∞, and assume that (dk)k∈Z ⊂ ̺(A) and (Mk)k∈Z

is R-bounded. In view of Theorem 2.4, it suffices to show that (Mk)k∈Z is
an Lp-multiplier. We define

µk = k2R(dk, A) = −(1 − ak)Mk.

Then µk is R-bounded by Remark 3.2. We claim that (k(µk+1 − µk))k∈Z is
also R-bounded. Indeed,

k(µk+1 − µk) = k[(k + 1)2R(dk+1, A) − k2R(dk, A)]

= k[(k + 1)2(R(dk+1, A) − R(dk, A)) + (2k + 1)R(dk, A)]
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= k(k + 1)2(dk − dk+1)R(dk+1, A)R(dk, A) + (2k + 1)kR(dk, A)

=
dk − dk+1

k
µkµk+1 +

2k + 1

k
µk.

We have

dk − dk+1

k
=

i(α + bk)

1 − ak

−
k + 1

k

i(α + bk+1)

1 − ak+1

+
2k + 1

k

1

1 − ak+1
+

k(ak+1 − ak)

(1 − ak)(1 − ak+1)
,

which is clearly bounded. From the assumption on a, b ∈ L1(R+) and
Lemma 3.4, we know that ((dk − dk+1)/k)k∈Z is R-bounded. It follows that
(k(µk+1 − µk))k∈Z is R-bounded. From [2, Theorem 1.3], we deduce that
(µk)k∈Z is an Lp-multiplier. Then Mk = −1

1−ak
µk is also an Lp-multiplier by

Lemma 3.4 and Remark 2.2. The proof is complete.

Now, we consider the maximal regularity for the problem (P5) on periodic
Besov spaces Bs

p,q(T, X), where 1 ≤ p, q ≤ ∞, s > 0. By [3], if X is an
arbitrary Banach space, then the Marcinkiewicz condition of order 2, that
is,

sup
k∈Z

(‖Mk‖ + ‖k(Mk+1 − Mk)‖ + ‖k2(Mk+1 − 2Mk + Mk−1)‖) < ∞,

is sufficient for the sequence (Mk)k∈Z to be a Bs
p,q-multiplier whenever 1 ≤

p, q ≤ ∞ and s ∈ R. So for the maximal regularity of the problem (P5) in
Bs

p,q(T, X), we must impose the stronger assumption (H2) on a, b ∈ L1(R+).

Theorem 3.6. Let X be a Banach space and let A be a closed linear op-

erator in X. Assume that a, b ∈ L1(R+) satisfy (H2) and a satisfies (H1b).
Then the following statements are equivalent :

(i) The problem (P5) has Bs
p,q-maximal regularity for some (equivalently ,

all) 1 ≤ p, q ≤ ∞ and s > 0.
(ii) (dk)k∈Z ⊂ ̺(A) and (Mk)k∈Z is bounded.

Proof. Since a, b ∈ L1(R+) satisfy (H2) and a satisfies (H1b), we see
that a satisfies (H0) and b satisfies (H0a) by Lemma 3.4. Thus Theorem
2.4 is applicable in the case Γ (T, X) = Bs

p,q(T, X) when 1 ≤ p, q ≤ ∞ and
s > 0.

(i)⇒(ii): Assume that (P5) has Bs
p,q-maximal regularity for some 1 ≤

p, q ≤ ∞ and s > 0. Then in view of Theorem 2.4, (dk)k∈Z ⊂ ̺(A) and
(Mk)k∈Z is a Bs

p,q-multiplier. Hence (Mk)k∈Z must be bounded [3, Theo-
rem 5.1].

(ii)⇒(i): Let 1 ≤ p, q ≤ ∞ and s > 0 be fixed. To show that (P5) has
Bs

p,q-maximal regularity, it suffices to prove that (Mk)k∈Z is a Bs
p,q-multiplier

by Theorem 2.4. We let µk = k2R(dk, A) for k ∈ Z and we first show that
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(µk)k∈Z is a Bs
p,q-multiplier. It is clear that (H2) implies (H1a). From the

proof of Theorem 3.5, we know that (µk)k∈Z and (k(µk+1 − µk))k∈Z are
bounded. To show that (µk)k∈Z is a Bs

p,q-multiplier, we need only show that

(k2(µk+1 − 2µk + µk−1))k∈Z is bounded, by the Fourier multiplier theorem
on periodic Besov spaces [3, Theorem 4.5]. For k ∈ Z, we have

k2(µk+1 − 2µk + µk−1) = k4[R(dk+1, A) − 2R(dk, A) + R(dk−1, A)]

+ 2k3[R(dk+1, A) − R(dk−1, A)]

+ k2[R(dk+1, A) + R(dk−1, A)] =: I1 + I2 + I3.

For I1, we have

I1 = k4R(dk, A)[(dk − dk+1)R(dk+1, A) − (dk−1 − dk)R(dk−1, A)]

= µkk
2[(dk − dk+1)(R(dk+1, A) − R(dk−1, A))

− (dk+1 − 2dk + dk−1)R(dk−1, A)]

=
dk − dk+1

k

dk−1 − dk+1

k
µk(k

2R(dk+1, A))(k2R(dk−1, A))

−µk(dk+1 − 2dk + dk−1)(k
2R(dk−1, A)).

Since (dk − dk+1)/k is bounded, so is

dk−1 − dk+1

k
=

dk−1 − dk

k
+

dk − dk+1

k
.

The sequences k2R(dk−1, A) = k2

(k−1)2
µk−1 and k2R(dk+1, A) = k2

(k+1)2
µk+1

are bounded. To show that I1 is bounded, it remains to consider dk+1 −
2dk + dk−1. We have

dk+1 − 2dk + dk−1

= ikα

(
1

1 − ak+1
−

2

1 − ak

+
1

1 − ak−1

)
+ iα

(
1

1 − ak+1
−

1

1 − ak−1

)

+ i

(
(k + 1)bk+1

1 − ak+1
−

2kbk

1 − ak

+
(k − 1)bk−1

1 − ak−1

)

− k2

(
1

1 − ak+1
−

2

1 − ak

+
1

1 − ak−1

)

−
2 + 2k(ak+1 − ak−1) − ak+1 − ak−1

(1 − ak+1)(1 − ak−1)
.

Each term in the above expression is bounded by the assumption on a, b ∈
L1(R+). We have shown that I1 is bounded.

To estimate I2 and I3, we have

I2 =
2(dk−1 − dk+1)

k
(k2R(dk+1, A))(k2R(dk−1, A)),

I3 = k2R(dk+1, A) + k2R(dk−1, A).
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Thus the boundedness of I2 and I3 follows easily from the boundedness
of (dk−1 − dk+1)/k, k2R(dk+1, A) and k2R(dk−1, A). We have shown that
(µk)k∈Z satisfies the Marcinkiewicz condition of order 2. Therefore it is a
Bs

p,q-multiplier [3, Theorem 4.5]. By the assumption on a and Lemma 3.4,

((1− ak)
−1)k∈Z is also a Bs

p,q-multiplier. Therefore (Mk)k∈Z is a Bs
p,q-multi-

plier by Remark 2.2. The proof is complete.

If the underlying Banach space X has a non-trivial Fourier type and
1 ≤ p, q ≤ ∞, s ∈ R, then the Marcinkiewicz condition of order 1, that is,

sup
k

(‖Mk‖ + ‖k(Mk+1 − Mk)‖) < ∞,

is already sufficient for (Mk)k∈Z to be a Bs
p,q-multiplier [3, Theorem 4.5].

From this fact and the proof of Theorem 3.5, we easily deduce the following
result on the Bs

p,q-maximal regularity of (P5) under a weaker condition on
a, b when X has a non-trivial Fourier type.

Theorem 3.7. Let X be a Banach space with non-trivial Fourier type.

Assume that a, b ∈ L1(R+) satisfy (H1) and (H1a), respectively. Then for

1 ≤ p, q ≤ ∞ and s > 0, the following statements are equivalent :

(i) The problem (P5) has Bs
p,q-maximal regularity for some (equivalently ,

all) 1 ≤ p, q ≤ ∞, s > 0.
(ii) (dk)k∈Z ⊂ ̺(A) and (Mk)k∈Z is bounded.

Periodic Hölder continuous function spaces are a particular case of
Bs

p,q(T, X). From [3, Theorem 3.1], we have

Bα
∞,∞(T, X) = Cα

per(T, X) whenever 0 < α < 1,

where Cα
per(T, X) is the space of all X-valued functions f defined on T

and such that f(0) = f(2π) and supx6=y ‖f(x) − f(y)‖/|x − y|α is finite.
Moreover, the norm

‖u‖Cα
per

:= max
t∈T

‖u(t)‖ + sup
x6=y

‖f(x) − f(y)‖

|x − y|α

on Cα
per(T, X) is an equivalent norm of Bα

∞,∞(T, X). Thus Theorems 3.6
and 3.7 have the following corollary, where for 0 < α < 1 we say that
(P5) has Cα

per-maximal regularity if for every f ∈ Cα
per(T, X), there exists

a unique u ∈ Cα+2
per (T, X) such that u(t) ∈ D(A) and the equation of (P5)

holds for all t ∈ [0, 2π], and u′′, u′, Au, a ∗̇ Au, d
dt

(b ∗̇ u) ∈ Cα
per(T, X).

Corollary 3.8. Let X be a Banach space and let a, b ∈ L1(R+). Then:

1. If a, b ∈ L1(R+) satisfy (H2) and a satisfies (H1b), then the problem

(P5) has Cα
per-maximal regularity for some (equivalently , all) 0<α<1

if and only if (dk)k∈Z ⊂ ̺(A) and (Mk)k∈Z is bounded.
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2. If X has a non-trivial Fourier type and if a satisfies (H1) and b
satisfies (H1a), then the problem (P5) has Cα

per-maximal regularity

for some (equivalently , all) 0 < α < 1 if and only if (dk)k∈Z ⊂ ̺(A)
and (Mk)k∈Z is bounded.

Let M = (Mk)k∈Z ⊂ L(X, Y ). We say that M satisfies the Marcinkiewicz

condition of order 3 if M satisfies the Marcinkiewicz condition of order 2
and

sup
k

‖k3(Mk+1 − 3Mk + 3Mk−1 − Mk−2)‖ < ∞

(see [6]). Next, we prove maximal regularity of (P5) on periodic Triebel
spaces F s

p,q(T, X) when 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0. We need the stronger

condition (H3) on a, b ∈ L1(R+) because the Marcinkiewicz condition of
order 3 is needed in the F s

p,q-multiplier case [6, Theorem 3.2].

Theorem 3.9. Let X be a Banach space. Assume that a, b ∈ L1(R+)
satisfy (H3) and a satisfies (H1b). Then the following assertions are equiv-

alent :

(i) The problem (P5) has F s
p,q-maximal regularity for some (equivalently ,

all) 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and s > 0.
(ii) (dk)k∈Z ⊂ ̺(A) and (Mk)k∈Z is bounded.

Proof. Since a, b ∈ L1(R+) satisfy (H3) and a satisfies (H1b), we infer
that a satisfies (H0) and b satisfies (H0a) by Lemma 3.4. Thus Theorem 2.4
is applicable in the case Γ (T, X) = F s

p,q(T, X) when 1 ≤ p < ∞, 1 ≤ q ≤ ∞
and s > 0.

(i)⇒(ii): Assume that (P5) has F s
p,q-maximal regularity for some 1 ≤

p < ∞, 1 ≤ q ≤ ∞ and s > 0. Then (dk)k∈Z ⊂ ̺(A) and (Mk)k∈Z is
an F s

p,q-multiplier by Theorem 2.4. Hence (Mk)k∈Z must be bounded [6,
Theorem 4.1].

(ii)⇒(i): Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and s > 0 be fixed. To show that
(P5) has F s

p,q-maximal regularity, it suffices to prove that (Mk)k∈Z is an F s
p,q-

multiplier by Theorem 2.4. We let µk = k2R(dk, A) for k ∈ Z and we first
show that (µk)k∈Z is an F s

p,q-multiplier. It is clear that (H3) implies (H2).

Thus the boundedness of µk, k(µk+1−µk) and k2(µk+1−2µk +µk−1) follows
from the proofs of Theorems 3.5 and 3.6. It remains to show that k3(µk+1−
3µk + 3µk−1 − µk−2) is bounded. We have

k3(µk+1 − 3µk + 3µk−1 − µk−2)

= k5[R(dk+1, A) − 3R(dk, A) + 3R(dk−1, A) − R(dk−2, A)]

+ 2k4[R(dk+1, A) − 3R(dk−1, A) + 2R(dk−2, A)]

+ k3[R(dk+1, A) + 3R(dk−1, A) − 4R(dk−2, A)] =: J1 + J2 + J3.
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Now,

J1 = −k(dk+1 − 3dk + 3dk−1 − dk−2)
k2µkµk−1

(k − 1)2

+
dk+1 − dk−2

k
(dk+1 − 2dk + dk−1)

k4µk−1µkµk+1

(k2 − 1)2

+
dk+1 − dk−2

k
(dk − 2dk−1 + dk−2)

k4µk−2µkµk+1

(k2 − k − 2)2

+2
dk+1 − dk−2

k

dk − dk−1

k

dk−2 − dk−1

k

k6µk−2µk−1µkµk+1

(k3 − 2k2 − k + 2)2
,

J2 = −2(dk+1 − 2dk + dk−1)
k2µk−1µk

(k − 1)2

+2
dk − dk+1

k

dk−1 − dk+1

k

k4µk−1µkµk+1

(k2 − 1)2

+4
dk−1 − dk

k

dk−2 − dk

k

k4µk−2µk−1µk

(k2 − 3k + 2)2

− 4(dk − 2dk−1 + dk−2)
k4µk−2µk−1

(k2 − 3k + 2)2
,

J3 =
dk−2 − dk+1

k

k4µk−2µk+1

(k2 − k − 2)2

+
3(dk−2 − dk−1)

k

k4µk−2µk−1

(k2 − 3k + 2)2
.

The boundedness of µk, (dk−dk+1)/k and dk+1−2dk +dk−1 follows from the
proof of Theorem 3.6. To show that J1, J2 and J3 are bounded, it suffices
to show that k(dk+1 − 3dk + 3dk−1 − dk−2) is bounded. We have

k(dk+1 − 3dk + 3dk−1 − dk−2)

= ik2α

(
1

1 − ak+1
−

3

1 − ak

+
3

1 − ak−1
−

1

1 − ak−2

)

+ ikα

(
1

1 − ak+1
−

3

1 − ak−1
+

2

1 − ak−2

)

+ ik

(
bk+1

1 − ak+1
−

3bk−1

1 − ak−1
+

2bk−2

1 − ak−2

)

+ ik2

[(
bk+1

1 − ak+1
−

2bk

1 − ak

+
bk−1

1 − ak−1

)
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−

(
bk

1 − ak

−
2bk−1

1 − ak−1
+

bk−2

1 − ak−2

)]

− k3

[
1

1 − ak+1
−

3

1 − ak

+
3

1 − ak−1
−

1

1 − ak−2

]

− k

[
2k + 1

1 − ak+1
+

3(−2k + 1)

1 − ak−1
−

−4k + 4

1 − ak−2

]

The boundedness of the first and fifth brackets follows from the proof of
[5, Proposition 3.4]. The fourth bracket is bounded by the proof of [11,
Theorem 3.12]. We also have

ikα

(
1

1 − ak+1
−

3

1 − ak−1
+

2

1 − ak−2

)

= iα
k(ak+1 + 2ak−2 − 3ak−1) + kak−1ak−2 − 3kak+1ak−2 + 2kak+1ak−1

(1 − ak+1)(1 − ak−1)(1 − ak−2)

and

k

[
2k + 1

1 − ak+1
+

3(−2k + 1)

1 − ak−1
−

−4k + 4

1 − ak−2

]

=
J

(1 − ak+1)(1 − ak−1)(1 − ak−2)

where

J = 2k2(ak+1 − 2ak + ak−1) + 4k2(ak − 2ak−1 + ak−2)

+ (3kak−1 − 4kak−2 + kak+1) + (2k + 1)kak−1ak−2

+(−6k + 3)kak+1ak−2 + (4k − 4)kak+1ak−1.

We have shown that k(dk+1 − 3dk + 3dk−1 − dk−2) is bounded by the as-
sumption on a ∈ L1(R+). We deduce that (µk)k∈Z is an F s

p,q-multiplier by

[6, Theorem 3.2]. From the assumptions on a ∈ L1(R+) and Lemma 3.4,
((1−ak)

−1)k∈Z is also an F s
p,q-multiplier. From Remark 2.2, we deduce that

Mk = −1
1−ak

µk is an F s
p,q-multiplier. The proof is finished.

Remark 3.10. When 1 < p < ∞, 1 < q ≤ ∞ and s ∈ R, the Marcin-
kiewicz condition of order 2 is already sufficient for a sequence (Mk)k∈Z ⊂
L(X) to be an F s

p,q-multiplier [6, Theorem 3.2]. This fact together with

the proof of Theorem 3.6 implies that if a, b ∈ L1(R+) satisfy (H2), and
a satisfies (H1b), then the problem (P5) has F s

p,q-maximal regularity for
some (equivalently, all) 1 < p < ∞, 1 < q ≤ ∞ and s > 0 if and only if
(dk)k∈Z ⊂ ̺(A) and (Mk)k∈Z is bounded.
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