STUDIA MATHEMATICA 184 (2) (2008)

Representations of modules over a *-algebra and related seminorms

by

CAMILLO TRAPANI and SALVATORE TRIOLO (Palermo)

Abstract. Representations of a module \mathfrak{X} over a *-algebra $\mathfrak{A}_{\#}$ are considered and some related seminorms are constructed and studied, with the aim of finding bounded *-representations of $\mathfrak{A}_{\#}$.

1. Introduction. As is known, if $\mathfrak{A}_{\#}$ is an involutive algebra and π is a *-representation of $\mathfrak{A}_{\#}$ with domain $\mathcal{D}(\pi)$ in a Hilbert space \mathcal{H} , then $\mathcal{D}(\pi)$ may be viewed as a left $\mathfrak{A}_{\#}$ -module with module operation defined by

$$a \cdot \xi = \pi(a)\xi, \quad a \in \mathfrak{A}_{\#}, \xi \in \mathcal{D}(\pi).$$

From the reverse point of view, one can ask if every $\mathfrak{A}_{\#}$ -module \mathfrak{X} admits a *representation* that reproduces the situation of the above example. Such a representation, to be called *modular*, consists of a couple (Φ, π) where Φ is a linear map of \mathfrak{X} into some Hilbert space, π is a *-representation defined on $\mathcal{D}(\pi) = \Phi(\mathfrak{X})$, and Φ and π are coupled by the relation

$$\pi(a)\Phi(x) = \Phi(ax), \quad a \in \mathfrak{A}_{\#}, x \in \mathfrak{X}.$$

The existence of a modular representation and its possible continuity were examined in [8] in the case where \mathfrak{X} is a Banach module over the C^* -algebra $\mathfrak{A}_{\#}$ and it was proved that the existence of a modular representation is equivalent to the possibility of performing a sort of Gelfand–Naimark–Segal (GNS) representation starting from certain (in general, not everywhere defined) positive sesquilinear forms, called *modular biweights* for the close analogy they exhibit with *biweights* on a partial *-algebra [1, 2]. These existence results will be restated (mostly without proofs) in Section 2 for the general case where \mathfrak{X} is a left $\mathfrak{A}_{\#}$ -module. In the case considered in [8], $\mathfrak{A}_{\#}$ was taken as a C^* -algebra, hence there was no room for a possibly *unbounded* representation of $\mathfrak{A}_{\#}$. In more general situations (for instance, if $\mathfrak{A}_{\#}$ is simply a *-algebra), *-representations of $\mathfrak{A}_{\#}$ take values in the *-algebra $\mathcal{L}^{\dagger}(\mathcal{D}(\pi))$

²⁰⁰⁰ Mathematics Subject Classification: Primary 46L08; Secondary 46L51, 47L60. Key words and phrases: representations, Banach C^* -modules.

of all weakly continuous endomorphisms of a pre-Hilbert space $\mathcal{D}(\pi)$, and these are often unbounded operators.

The problem we want to investigate here originates from the very wellknown fact that a *-algebra $\mathfrak{A}_{\#}$ admits a bounded representation if, and only if, there is a C^* -seminorm defined on $\mathfrak{A}_{\#}$ [5]. A similar approach is suggested here by the following simple example.

Let (Φ, π) be a modular representation of $\mathfrak{A}_{\#}$, with π a bounded *-representation of $\mathfrak{A}_{\#}$ in Hilbert space \mathcal{H} . If we put

$$p^{\Phi}(x) = \|\Phi(x)\|, \quad x \in \mathfrak{X},$$

then p^{Φ} is a seminorm on \mathfrak{X} enjoying the following properties:

(i) $p^{\Phi}(ax) \leq ||\pi(a)|| p^{\Phi}(x), \ \forall a \in \mathfrak{A}_{\#}, \ x \in \mathfrak{X},$

(ii)
$$p_0^{\Phi}(a) := \sup_{p^{\Phi}(x)=1} p^{\Phi}(ax) = \|\pi(a)\|, \ \forall a \in \mathfrak{A}_{\#}.$$

Thus the *reduced* seminorm p_0^{Φ} of p^{Φ} is a C^* -seminorm on $\mathfrak{A}_{\#}$. This example suggests considering seminorms p on \mathfrak{X} for which the map $x \mapsto ax$ is *p*-continuous for every $a \in \mathfrak{A}_{\#}$ (we name them *M*-seminorms) and the corresponding reduced seminorm p_0 is a C^* -seminorm (in this case p is called an MC^* -seminorm)

On the other hand, if \mathfrak{X} admits a nontrivial MC^* -seminorm, then $\mathfrak{A}_{\#}$ certainly possesses bounded *-representations, but in general we cannot say that a modular representation (Φ, π) of \mathfrak{X} with π bounded does really exist.

The aim of this paper is to characterize the existence of a modular representation (Φ, π) such that π is bounded and (Φ, π) satisfies prescribed conditions of continuity. More precisely, assuming that an *M*-seminorm *p* is defined on \mathfrak{X} , we look for a modular representation (Φ, π) with π bounded and such that

$$\begin{cases} \|\varPhi(x)\| \le p(x), \quad \forall x \in \mathfrak{X}, \\ \|\pi(a)\| \le p_0(a), \quad \forall a \in \mathfrak{A}_{\#}. \end{cases}$$

We prove that a necessary and sufficient condition for this to hold is that the family $S_p(\mathfrak{X})$ of all *p*-bounded modular invariant forms (i.e. everywhere defined modular biweights) is nontrivial. This characterization relies on the fact that if \mathfrak{X} carries an *M*-seminorm *p*, then starting from $S_p(\mathfrak{X})$, it is possible to construct a nontrivial MC^* -seminorm \mathfrak{s}^p on \mathfrak{X} .

As a second step, coming back to the example discussed above, we consider the following stronger question: given an M-seminorm p on \mathfrak{X} , does there exist a modular representation (Φ, π) such that $p(x) = \|\Phi(x)\|$ for every $x \in \mathfrak{X}$ and $p_0(a) = \|\pi(a)\|$ for every $a \in \mathfrak{A}_{\#}$? The answer is that a necessary and sufficient condition for a representation (Φ, π) of this type to exist is that p is an MC^* -seminorm satisfying the parallelogram law. The latter condition is, of course, quite strong, because it forces \mathfrak{X} to be contained (up to a quotient) in a Hilbert space. Thus, going one step further,

134

we refer the same question to the MC^* -seminorm \mathfrak{s}^p , which is, in general, weaker than p. The outcome is that a necessary and sufficient condition for the existence of a modular representation (Φ, π) with π bounded and having the properties

$$\begin{cases} \|\varPhi(x)\| = \mathfrak{s}^p(x), \quad \forall x \in \mathfrak{X}, \\ \|\pi(a)\| = \mathfrak{s}^p_0(a), \quad \forall a \in \mathfrak{A}_{\#}, \end{cases}$$

is that $\mathcal{S}_p(\mathfrak{X})$ is rich enough and has a maximum.

2. Modules and representations. In this section we collect some definitions and preliminary results that are needed in what follows. We also give some examples that, as we shall see, play a crucial role for representations.

Let $\mathfrak{A}_{\#}$ be a *-algebra, with involution #, and \mathfrak{X} a vector space. We say that \mathfrak{X} is a *left* $\mathfrak{A}_{\#}$ -module if there is a bilinear map

$$(a, x) \mapsto ax$$

from $\mathfrak{A}_{\#} \times \mathfrak{X}$ into \mathfrak{X} such that

$$(a_1a_2)x = a_1(a_2x), \quad \forall a_1, a_2 \in \mathfrak{A}_{\#}, x \in \mathfrak{X}.$$

If $\mathfrak{A}_{\#}$ has no unit, we can consider its unitization $\mathfrak{A}_{\#}^{e} := \mathfrak{A}_{\#} \oplus \mathbb{C}$; then \mathfrak{X} is also an $\mathfrak{A}_{\#}^{e}$ -module with module multiplication defined by

 $(a,\lambda)x := ax + \lambda x, \quad x \in \mathfrak{X}, a \in \mathfrak{A}_{\#}, \lambda \in \mathbb{C}.$

Thus there is no loss of generality in assuming that $\mathfrak{A}_{\#}$ has a unit.

We shall always suppose that the module action of $\mathfrak{A}_{\#}$ on \mathfrak{X} is *nontrivial*, i.e., if $a \in \mathfrak{A}_{\#}$ and ax = 0 for every $x \in \mathfrak{X}$, then a = 0.

DEFINITION 2.1. Let \mathfrak{X} be a left $\mathfrak{A}_{\#}$ -module. A modular representation of \mathfrak{X} in a Hilbert space \mathcal{H} consists of a linear map $\Phi : \mathfrak{X} \to \mathcal{H}$, with $\Phi(\mathfrak{X})$ dense in \mathcal{H} , and a [#]-representation of $\mathfrak{A}_{\#}, \pi : \mathfrak{A}_{\#} \to \mathcal{L}^{\dagger}(\mathcal{D}(\pi))$, with $\mathcal{D}(\pi) = \Phi(\mathfrak{X})$, such that

$$\Phi(ax) = \pi(a)\Phi(x), \quad \forall a \in \mathfrak{A}_{\#}, x \in \mathfrak{X}.$$

A modular representation as above will be denoted (Φ, π) .

Let \mathfrak{X} be a left $\mathfrak{A}_{\#}$ -module and φ a positive sesquilinear form on $\mathfrak{X} \times \mathfrak{X}$. Positivity implies that the Cauchy–Schwarz inequality holds and that φ is hermitian; i.e.,

•
$$|\varphi(x,y)| \le \varphi(x,x)^{1/2} \varphi(y,y)^{1/2}, \ \forall x,y \in \mathfrak{X},$$

•
$$\varphi(x,y) = \overline{\varphi(y,x)}, \ \forall x,y \in \mathfrak{X}.$$

DEFINITION 2.2. Let \mathfrak{X} be a left $\mathfrak{A}_{\#}$ -module. A positive sesquilinear form φ on $\mathfrak{X} \times \mathfrak{X}$ is said to be *modular invariant* if

$$\varphi(ax,y) = \varphi(x, a^{\#}y), \quad \forall a \in \mathfrak{A}_{\#}, \, x, y \in \mathfrak{X}.$$

The set of all modular invariant forms of \mathfrak{X} is denoted by $\mathcal{MI}(\mathfrak{X})$.

REMARK 2.3. A modular invariant sesquilinear form is an everywhere defined modular biweight. Modular biweights were introduced in [8] for studying modular representations of Banach C^* -modules. They are, in general, defined only on a submodule of \mathfrak{X} .

We will show that every $\varphi \in \mathcal{MI}(\mathfrak{X})$ can be used to construct a modular representation of \mathfrak{X} .

Let \mathfrak{X} be a left $\mathfrak{A}_{\#}$ -module. Assume that there exists a linear map Φ : $\mathcal{D}(\Phi) \to \mathcal{H}$, where \mathcal{H} is a Hilbert space, such that $\Phi(\mathfrak{X})$ is dense in \mathcal{H} and

$$\langle \varPhi(ax) | \varPhi(y) \rangle = \langle \varPhi(x) | \varPhi(a^{\#}y) \rangle, \quad \forall a \in \mathfrak{A}_{\#}, \, x, y \in \mathfrak{X}.$$

Then a [#]-representation of $\mathfrak{A}_{\#}$ can be easily defined by putting

$$\begin{cases} \mathcal{D}(\pi) := \varPhi(\mathfrak{X}), \\ \pi(a)\varPhi(x) = \varPhi(ax), \quad a \in \mathfrak{A}_{\#}, \, x \in \mathfrak{X}. \end{cases}$$

It is easily seen that (Φ, π) is a modular representation of \mathfrak{X} .

Moreover, if we define

$$\varphi_{\Phi}(x,y) := \langle \Phi(x) | \Phi(y) \rangle, \quad x, y \in \mathfrak{X},$$

then φ is a modular invariant form in the sense of Definition 2.2. Conversely, we will show that any modular invariant form defines a modular representation.

THEOREM 2.4. For each $\varphi \in \mathcal{MI}(\mathfrak{X})$, there exist a Hilbert space \mathcal{H}_{φ} , a linear map $\Phi_{\varphi} : \mathfrak{X} \to \mathcal{H}_{\varphi}$ and a closed *-representation π_{φ} of $\mathfrak{A}_{\#}$ into \mathcal{H}_{φ} such that:

- $\varphi(x,y) = \langle \Phi_{\varphi}(x) | \Phi_{\varphi}(y) \rangle, \ \forall x, y \in \mathfrak{X},$
- $\varphi(ax,y) = \langle \pi_{\varphi}(a) \Phi_{\varphi}(x) | \Phi_{\varphi}(y) \rangle, \ \forall a \in \mathfrak{A}_{\#}, \, x, y \in \mathfrak{X}.$

Proof. We put

$$\mathfrak{N}_{\varphi}=\{x\in\mathfrak{X}:\varphi(x,x)=0\}=\{x\in\mathfrak{X}:\varphi(x,y)=0,\;\forall y\in\mathfrak{X}\}.$$

Let $\mathfrak{X}_{\varphi} := \mathfrak{X}/\mathfrak{N}_{\varphi}$ and put $\lambda_{\varphi}(x) := x + \mathfrak{N}_{\varphi}, x \in \mathfrak{X}$. Then \mathfrak{X}_{φ} is a pre-Hilbert space with respect to the inner product

$$\langle \lambda_{\varphi}(x) | \lambda_{\varphi}(y) \rangle = \varphi(x, y), \quad x, y \in \mathfrak{X}.$$

Let \mathcal{H}_{φ} be the Hilbert space completion of \mathfrak{X}_{φ} . The map

$$\varPhi_{\varphi}: x \in \mathfrak{X} \mapsto \lambda_{\varphi}(x) \in \mathfrak{X}_{\varphi} \subset \mathcal{H}_{\varphi}$$

is, clearly, linear. Moreover, $\Phi_{\varphi}(\mathfrak{X})$ is, by the definition itself, dense in \mathcal{H}_{φ} .

Since if $x \in \mathfrak{N}_{\varphi}$ then $ax \in \mathfrak{N}_{\varphi}$ for every $a \in \mathfrak{A}_{\#}$, the map

$$\pi^0_{\varphi}(a)\lambda_{\varphi}(x) = \lambda_{\varphi}(ax), \quad x \in \mathfrak{X},$$

is a well-defined operator in \mathfrak{X}_{φ} . It is easy to prove that π_{φ}^{0} is a *-representation of $\mathfrak{A}_{\#}$. The closure π_{φ} of π_{φ}^{0} is the desired *-representation of $\mathfrak{A}_{\#}$. DEFINITION 2.5. The triple $(\Phi_{\varphi}, \pi_{\varphi}, \mathcal{H}_{\varphi})$ is called the *GNS construction* for the modular invariant form φ of \mathfrak{X} .

The previous discussion can be summarized in the following

PROPOSITION 2.6. Let \mathfrak{X} be a left $\mathfrak{A}_{\#}$ -module. The following statements are equivalent.

- (i) There exists a nontrivial modular representation (Φ, π) of \mathfrak{X} .
- (ii) There exists a linear map Φ : X → H, with H a Hilbert space and Φ(X) dense in H, with the property

 $\langle \varPhi(ax) | \varPhi(y) \rangle = \langle \varPhi(x) | \varPhi(a^{\#}y) \rangle, \quad \forall a \in \mathfrak{A}_{\#}, \, x, y \in \mathfrak{X}.$

(iii) There exists a nonzero modular invariant sesquilinear form φ on \mathfrak{X} .

PROPOSITION 2.7. Let \mathfrak{X} be a left $\mathfrak{A}_{\#}$ -module. The following statements are equivalent.

- (i) There exists a modular representation (Φ, π) of \mathfrak{X} with π bounded.
- (ii) There exists $\varphi \in \mathcal{MI}(\mathfrak{X})$ such that

 $\forall a \in \mathfrak{A}_{\#}, \ \exists \gamma_a > 0: \quad \varphi(ax, ax) \leq \gamma_a \varphi(x, x), \quad \forall x \in \mathfrak{X}.$

Proof. If $\varphi \in \mathcal{MI}(\mathfrak{X})$, then the *-representation π_{φ} is bounded if, and only if, the condition stated in (ii) is fulfilled, as is readily checked. On the other hand, if (Φ, π) is a modular representation of \mathfrak{X} with π bounded, it is easy to see that the modular invariant form φ defined by $\varphi(x, y) = \langle \Phi(x) | \Phi(y) \rangle$, $x, y \in \mathfrak{X}$, satisfies the condition given in (ii).

3. Bounded *-representations and MC^* -seminorms. We now introduce some classes of seminorms on \mathfrak{X} which will help us analyse the existence of bounded *-representations of $\mathfrak{A}_{\#}$.

Let \mathfrak{X} be a left $\mathfrak{A}_{\#}$ -module and p a seminorm on \mathfrak{X} . We say that p is an M-seminorm if, for each $a \in \mathfrak{A}_{\#}$, there exists $\gamma_a > 0$ such that

$$p(ax) \leq \gamma_a p(x), \quad \forall x \in \mathfrak{X}.$$

In this case, we can define the *reduced* seminorm p_0 by

$$p_0(a) = \sup_{p(x)=1} p(ax), \quad a \in \mathfrak{A}_{\#}.$$

With this definition one has

(3.1)
$$p(ax) \le p_0(a)p(x), \quad \forall a \in \mathfrak{A}_{\#}, x \in \mathfrak{X}.$$

Moreover,

(3.2)
$$p_0(ab) \le p_0(a)p_0(b), \quad \forall a, b \in \mathfrak{A}_{\#}.$$

If p_0 is a C^* -seminorm on $\mathfrak{A}_{\#}$, i.e. if it satisfies the C^* -condition $p_0(a^{\#}a) = p_0(a)^2$ for every $a \in \mathfrak{A}_{\#}$, then we say that p is an MC^* -seminorm. We notice that the C^* -condition implies that p_0 is submultiplicative [7].

Let (Φ, π) be a modular representation of \mathfrak{X} . We put

$$p^{\Phi}(x) = \|\Phi(x)\|, \quad x \in \mathfrak{X}.$$

Then p^{Φ} is a *Hilbert seminorm*, i.e. it satisfies the parallelogram law

$$p^{\Phi}(x+y)^2 + p^{\Phi}(x-y)^2 = 2p^{\Phi}(x)^2 + 2p^{\Phi}(y)^2, \quad \forall x, y \in \mathfrak{X}.$$

Moreover,

PROPOSITION 3.1. The following statements are equivalent.

- (i) p^{Φ} is an *M*-seminorm.
- (ii) π is bounded on $\mathcal{D}(\pi) = \Phi(\mathfrak{X})$.
- (iii) p^{Φ} is an MC^* -seminorm.

Proof. (i) \Rightarrow (ii): If p^{Φ} is an *M*-seminorm, then, for every $a \in \mathfrak{A}_{\#}$, there exists $\gamma_a > 0$ such that

$$p^{\Phi}(ax) \leq \gamma_a p^{\Phi}(x), \quad \forall x \in \mathfrak{X}.$$

Then we have

$$\|\pi(a)\Phi(x)\| = \|\Phi(ax)\| = p^{\Phi}(ax) \le \gamma_a p^{\Phi}(x) = \gamma_a \|\Phi(x)\|.$$

Therefore the restriction of π to $\mathcal{D}(\pi)$ is bounded.

 $(ii) \Rightarrow (iii)$: We have

$$p_0^{\Phi}(a) = \sup_{p^{\Phi}(x)=1} p^{\Phi}(ax) = \sup_{\|\Phi(x)\|=1} \|\Phi(ax)\| = \sup_{\|\Phi(x)\|=1} \|\pi(a)\Phi(x)\| = \|\overline{\pi(a)}\|.$$

Therefore p_0^{Φ} is a C^* -seminorm on $\mathfrak{A}_{\#}$.

 $(iii) \Rightarrow (i)$: This is trivial.

Let \mathfrak{X} be a left $\mathfrak{A}_{\#}$ -module and p an M-seminorm on \mathfrak{X} . We denote by $\mathcal{C}_p(\mathfrak{X})$ the family of modular invariant sesquilinear forms φ that are pbounded, i.e.

 $|\varphi(x,y)| \le \gamma p(x)p(y)$ for some $\gamma > 0$ and all $x, y \in \mathfrak{X}$.

We denote by $\|\varphi\|_p$ the infimum of all γ 's for which the above inequality holds. Finally, let

$$\mathcal{S}_p(\mathfrak{X}) = \{ \varphi \in \mathcal{C}_p(\mathfrak{X}) : \|\varphi\|_p \le 1 \}.$$

We put

$$\mathfrak{s}^p(x) = \sup_{\varphi \in \mathcal{S}_p(\mathfrak{X})} \varphi(x, x)^{1/2}, \quad x \in \mathfrak{X},$$

and

$$N(\mathfrak{s}^p) = \{ x \in \mathfrak{X} : \mathfrak{s}^p(x) = 0 \}.$$

Then, as is easily seen, \mathfrak{s}^p is a seminorm on \mathfrak{X} satisfying $\mathfrak{s}^p(x) \leq p(x)$ for every $x \in \mathfrak{X}$, and $N(\mathfrak{s}^p)$ is an $\mathfrak{A}_{\#}$ -submodule of \mathfrak{X} .

PROPOSITION 3.2. For every *M*-seminorm p, \mathfrak{s}^p is an MC^* -seminorm on \mathfrak{X} .

138

Proof. For every $\varphi \in \mathcal{MI}(\mathfrak{X})$, we put

$$\omega_{\varphi}^{x}(a) = \varphi(ax, x), \quad a \in \mathfrak{A}_{\#}.$$

Then ω_{φ}^{x} is a positive linear functional on $\mathfrak{A}_{\#}$, and if $\varphi \in \mathcal{C}_{p}(\mathfrak{X})$, it is p_{0} continuous, since

$$|\omega_{\varphi}^{x}(a)| \leq \|\varphi\|_{p} p_{0}(a) p(x)^{2}, \quad \forall a \in \mathfrak{A}_{\#}.$$

The family

$$\mathcal{F} = \{\omega_{\varphi}^{x} : \varphi \in \mathcal{C}_{p}(\mathfrak{X}), \, x \in \mathfrak{X}\}$$

is balanced in the sense of Yood [9]. Therefore, if we put

$$|a|_{\mathcal{F}} = \sup\{\omega_{\varphi}^{x}(a^{\#}a)^{1/2} : \varphi \in \mathcal{C}_{p}(\mathfrak{X}), \, x \in \mathfrak{X}, \, \varphi(x,x) = 1\},\$$

then

$$\mathcal{D}(\mathcal{F}) = \{ a \in \mathfrak{A}_{\#} : |a|_{\mathcal{F}} < \infty \} = \mathfrak{A}_{\#}$$

and $|\cdot|_{\mathcal{F}}$ is a C^* -seminorm on $\mathfrak{A}_{\#}$.

Since, for every $\varphi \in \mathcal{F}$ and $x \in \mathfrak{X}$, the form ω_{φ}^{x} is $|\cdot|_{\mathcal{F}}$ -continuous, we get, for every $n \in \mathbb{N}$,

$$\varphi(ax,ax) \le \varphi(x,x)^{1-2^{-n}} (\|\omega_{\varphi}^x\|_{\mathcal{F}} |(a^{\#}a)^{2^n}|_{\mathcal{F}})^{2^{-n}}, \quad \forall a \in \mathfrak{A}_{\#},$$

where $\|\omega_{\varphi}^{x}\|_{\mathcal{F}} = \sup\{|\omega_{\varphi}^{x}(a)| : |a|_{\mathcal{F}} = 1\}$. Letting $n \to \infty$, we have

(3.3) $\varphi(ax, ax) \le |a^{\#}a|_{\mathcal{F}} \varphi(x, x).$

This in turn implies that

 $\mathfrak{s}^p(ax) \le |a|^2_{\mathcal{F}}\mathfrak{s}^p(x), \quad \forall x \in \mathfrak{X}, \, a \in \mathfrak{A}_{\#}.$

Thus \mathfrak{s}^p is an *M*-seminorm on \mathfrak{X} . From this estimate it also follows that

(3.4)
$$\mathfrak{s}_0^p(a) \le |a|_{\mathcal{F}}, \quad a \in \mathfrak{A}_{\#}.$$

To complete the proof we only need to prove the converse inequality. For this, making use of the definition of \mathfrak{s}^p and of (3.1), for every $\varphi \in \mathcal{C}_p(\mathfrak{X})$, one has

$$|\varphi(ax,x)| \le \|\varphi\|_p \mathfrak{s}^p(ax) \mathfrak{s}^p(x) \le \|\varphi\|_p \mathfrak{s}^p_0(a) \mathfrak{s}^p(x)^2, \quad \forall a \in \mathfrak{A}_\#, \, x \in \mathfrak{X}.$$

Therefore, every ω_{φ}^{x} is \mathfrak{s}_{0}^{p} -continuous. Then, proceeding as we did for getting the inequality (3.3), we can prove

$$\omega_{\varphi}^{x}(a^{\#}a) = \varphi(ax, ax) \le \mathfrak{s}_{0}^{p}(a^{\#}a)\varphi(x, x).$$

This implies that

(3.5)
$$|a^{\#}a|_{\mathcal{F}} = |a|_{\mathcal{F}}^2 \le \mathfrak{s}_0^p(a^{\#}a), \quad \forall a \in \mathfrak{A}_{\#}.$$

Hence, by (3.4),

$$\mathfrak{s}_0^p(a)^2 \le |a|_{\mathcal{F}}^2 = |a^{\#}a|_{\mathcal{F}} \le \mathfrak{s}_0^p(a^{\#}a) \le \mathfrak{s}_0^p(a^{\#})\mathfrak{s}_0^p(a), \quad \forall a \in \mathfrak{A}_{\#}.$$

Thus, $\mathfrak{s}_0^p(a) \leq \mathfrak{s}_0^p(a^{\#})$, which in turn implies $\mathfrak{s}_0^p(a) = \mathfrak{s}_0^p(a^{\#})$ for every $a \in \mathfrak{A}_{\#}$. Coming back to (3.5), one finally obtains

$$|a|_{\mathcal{F}} \le \mathfrak{s}_0^p(a), \quad \forall a \in \mathfrak{A}_\#.$$

Then $|a|_{\mathcal{F}} = \mathfrak{s}_0^p(a)$ for all $a \in \mathfrak{A}_{\#}$, and thus \mathfrak{s}_0^p is a C^* -seminorm on $\mathfrak{A}_{\#}$.

REMARK 3.3. Since $|\omega_{\varphi}^{x}(a)| \leq p_{0}(a)p(x)^{2}$ for every $a \in \mathfrak{A}_{\#}$ and $x \in \mathfrak{X}$, we have

$$|\omega_{\varphi}^{x}(a^{\#}a)| \leq p_{0}(a)^{2}\varphi(x,x), \quad \forall a \in \mathfrak{A}_{\#}, x \in \mathfrak{X}.$$

This implies that, in general, $\mathfrak{s}_0^p(a) \leq p_0(a)$ for every $a \in \mathfrak{A}_{\#}$.

REMARK 3.4. Given a left $\mathfrak{A}_{\#}$ -module \mathfrak{X} , it may well happen that $\mathcal{S}_p(\mathfrak{X}) = \{0\}$. If this occurs, one clearly has $\mathfrak{s}^p(x) = 0$ for every $x \in \mathfrak{X}$. This is quite a singular case, since it implies that there are no nontrivial modular representations of \mathfrak{X} . For this reason, we will suppose that $\mathcal{S}_p(\mathfrak{X})$ is nontrivial.

DEFINITION 3.5. An MC^* -seminorm p on \mathfrak{X} is called *regular* if $p(x) = \mathfrak{s}^p(x)$ for every $x \in \mathfrak{X}$.

As we have seen before, to every $\varphi \in S_p(\mathfrak{X})$ there corresponds a GNS construction $(\Phi_{\varphi}, \pi_{\varphi}, \mathcal{H}_{\varphi})$. The *p*-boundedness of φ implies the *p*-continuity of Φ_{φ} and $\|\Phi_{\varphi}(x)\| \leq p(x)$ for every $x \in \mathfrak{X}$. Conversely, to every linear map Φ from \mathfrak{X} into some Hilbert space \mathcal{H} with the property

$$\langle \Phi(ax) | \Phi(y) \rangle = \langle \Phi(x) | \Phi(a^{\#}y) \rangle, \quad \forall a \in \mathfrak{A}_{\#}, \, x, y \in \mathfrak{X},$$

and such that

 $\|\Phi(x)\| \le p(x), \quad \forall x \in \mathfrak{X},$

there corresponds a sesquilinear form $\varphi_{\Phi} \in \mathcal{S}_p(\mathfrak{X})$ with

 $\varphi_{\Phi}(x,y) = \langle \Phi(x) | \Phi(y) \rangle, \quad \forall x, y \in \mathfrak{X}.$

Thus we have

PROPOSITION 3.6. $N(\mathfrak{s}^p)$ coincides with the intersection of the kernels of all the maps Φ , where (Φ, π) is a modular representation of \mathfrak{X} with $\|\Phi(x)\| \leq p(x)$ for every $x \in \mathfrak{X}$. $N(\mathfrak{s}^p)$ is a p-closed $\mathfrak{A}_{\#}$ -submodule of \mathfrak{X} (i.e. if $\{x_n\} \subset N(\mathfrak{s}^p)$ and $p(x_n - x) \to 0$, then $x \in N(\mathfrak{s}^p)$).

As a consequence, the existence of an *M*-seminorm on \mathfrak{X} such that $S_p(\mathfrak{X})$ is nontrivial implies that \mathfrak{s}_0^p is a nonzero C^* -seminorm on $\mathfrak{A}_{\#}$. Therefore, $\mathfrak{A}_{\#}$ admits a bounded *-representation π such that $\|\pi(a)\| = \mathfrak{s}_0^p(a)$ for every $a \in \mathfrak{A}_{\#}$. But we can say more.

PROPOSITION 3.7. Let \mathfrak{X} be a left $\mathfrak{A}_{\#}$ -module and p an M-seminorm on \mathfrak{X} . The following conditions are equivalent.

140

(i) There exists a modular representation (Φ, π) with the properties

$$\begin{cases} \|\varPhi(x)\| \le p(x), \quad \forall x \in \mathfrak{X}, \\ \|\pi(a)\| \le p_0(a), \quad \forall a \in \mathfrak{A}_{\#} \end{cases}$$

(ii) $\mathcal{S}_p(\mathfrak{X}) \neq \{0\}.$

Proof. (i) \Rightarrow (ii): Define

$$\varphi(x,y) = \langle \Phi(x) | \Phi(y) \rangle, \quad x,y \in \mathfrak{X}.$$

Then it is easy to see that $\varphi \in \mathcal{S}_p(\mathfrak{X})$.

(ii) \Rightarrow (i): Assume that $\varphi \in S_p(\mathfrak{X})$ and let $(\lambda_{\varphi}, \pi_{\varphi}, \mathcal{H}_{\varphi})$ be the corresponding GNS construction. Then, putting as before $\Phi_{\varphi}(x) = \lambda_{\varphi}(x), x \in \mathfrak{X}$, we have

$$\|\varPhi_{\varphi}(x)\|^{2} = \|\lambda_{\varphi}(x)\|^{2} = \varphi(x, x) \le p(x)^{2}, \quad \forall x \in \mathfrak{X},$$

and

 $\|\pi_{\varphi}(a)\lambda_{\varphi}(x)\|^{2} = \varphi(ax, ax) \leq \mathfrak{s}_{0}^{p}(a)^{2}\varphi(x, x) = \mathfrak{s}_{0}^{p}(a)^{2}\|\lambda_{\varphi}(x)^{2}\|, \quad \forall a \in \mathfrak{A}_{\#}.$ Hence π_{φ} is bounded and

$$\|\pi_{\varphi}(a)\| \leq \mathfrak{s}_0^p(a) \leq p_0(a), \quad \forall a \in \mathfrak{A}_{\#}. \blacksquare$$

As we have seen, if an *M*-seminorm p on \mathfrak{X} is defined, then, if $\mathcal{S}_p(\mathfrak{X}) \neq \{0\}$ there exists a nontrivial MC^* -seminorm on \mathfrak{X} , namely \mathfrak{s}^p . Since \mathfrak{s}_0^p is a C^* seminorm, it is then natural to pose the following

QUESTION 1. Given an *M*-seminorm *p* on \mathfrak{X} , does there exist a modular representation (Φ, π) such that Φ is *p*-bounded and $\mathfrak{s}_0^p(a) = \|\overline{\pi(a)}\|$ for every $a \in \mathfrak{A}_{\#}$?

In order to answer this question, we first state the following stronger one:

QUESTION 2. Given an *M*-seminorm p on \mathfrak{X} , does there exist a representation (Φ, π) of \mathfrak{X} such that $p(x) = ||\Phi(x)||$ for every $x \in \mathfrak{X}$ and $p_0(a) = ||\overline{\pi(a)}||$ for every $a \in \mathfrak{A}_{\#}$?

If the answer to Question 2 is affirmative, then, by Proposition 3.1, p is automatically an MC^* -seminorm. Some additional properties of p and \mathfrak{s}^p are given in the following

PROPOSITION 3.8. Let \mathfrak{X} be a left $\mathfrak{A}_{\#}$ -module and p an M-seminorm on \mathfrak{X} . Assume that there exists a modular representation (Φ, π) such that $p(x) = \|\Phi(x)\|$ for every $x \in \mathfrak{X}$. Then the following statements hold.

- (i) p is a Hilbert seminorm.
- (ii) p is a regular MC^* -seminorm.
- (iii) $p_0(a) = \mathfrak{s}_0^p(a) = ||\pi(a)||$ for every $a \in \mathfrak{A}_{\#}$.
- (iv) The set $S_p(\mathfrak{X})$ has a maximum, i.e. there exists $\overline{\varphi} \in S_p(\mathfrak{X})$ such that

$$\overline{\varphi}(x,x) = \sup_{\varphi \in \mathcal{S}_p(\mathfrak{X})} \varphi(x,x) = \mathfrak{s}^p(x)^2 = p(x)^2, \quad \forall x \in \mathfrak{X}.$$

Proof. (i) Since $p(\cdot) = ||\Phi(\cdot)||$ and $||\Phi(\cdot)||$ is a Hilbert seminorm, p must obey the parallelogram law.

(ii) We put, as before, $\varphi_{\Phi}(x, y) = \langle \Phi(x) | \Phi(y) \rangle, x, y \in \mathfrak{X}$. Then

$$|\varphi_{\varPhi}(x,y)| = |\langle \varPhi(x)|\varPhi(y)\rangle| \le ||\varPhi(x)|| \, ||\varPhi(y)|| = p(x)p(y), \quad \forall x, y \in \mathfrak{X}.$$

Thus, $\varphi_{\Phi} \in \mathcal{S}_p(\mathfrak{X})$. Then we have

$$p(x)^{2} = \|\Phi(x)\|^{2} \le \sup_{\varphi \in \mathcal{S}_{p}(\mathfrak{X})} \varphi(x, x) = \mathfrak{s}^{p}(x)^{2}.$$

Hence $p(x) = \mathfrak{s}^p(x)$ for every $x \in \mathfrak{X}$.

(iii) The equality $p(\cdot) = \mathfrak{s}^p(\cdot)$ also implies that $\mathfrak{s}_0^p(a) = p_0(a)$ for every $a \in \mathfrak{A}_{\#}$. Moreover,

$$p_{0}(a) = \sup_{p(x)=1} p(ax) = \sup_{\|\Phi(x)\|=1} \|\Phi(ax)\|$$
$$= \sup_{\|\Phi(x)\|=1} \|\pi(a)\Phi(x)\| = \|\overline{\pi(a)}\|, \quad \forall a \in \mathfrak{A}_{\#}$$

(iv) The form φ_{Φ} is indeed a maximum for $\mathcal{S}_p(\mathfrak{X})$. We have, in fact, for any $\varphi \in \mathcal{S}_p(\mathfrak{X})$,

$$\varphi(x,x) \le p(x)^2 = \|\Phi(x)\|^2 = \langle \Phi(x)|\Phi(x)\rangle = \varphi_{\Phi}(x,x), \quad \forall x \in \mathfrak{X}. \blacksquare$$

In order to prove the converse of the previous proposition, we need the following

LEMMA 3.9. Let \mathfrak{A} be a C^* -algebra with unit e, with norm $\|\cdot\|$ and involution *. Let \mathfrak{B} be a closed subalgebra of \mathfrak{A} which is a C^* -algebra, with respect to the same norm $\|\cdot\|$ and the involution #, and such that $e \in \mathfrak{B}$ and $e^{\#} = e$. Then $x^{\#} = x^*$ for every $x \in \mathfrak{B}$.

Proof. Let F be a positive linear functional on \mathfrak{A} . Then F is bounded and ||F|| = F(e). Let F_0 denote the restriction of F to \mathfrak{B} . Then

$$F(e) \le ||F_0|| \le ||F|| = F(e).$$

Hence, F_0 is positive on \mathfrak{B} , i.e., $F(x^{\#}x) \ge 0$ for every $x \in \mathfrak{B}$. Let now $y \in \mathfrak{B}$ with $y^{\#} = y$. Then $F_0(y)$ is real and, since F is hermitian, we get

$$F(y^*) = \overline{F(y)} = F(y).$$

Hence $F(y^* - y) = 0$ and, from the arbitrariness of $F, y = y^*$.

Let now $x \in \mathfrak{B}$. Then x = z + iw where $z = (x + x^{\#})/2$ and $w = (x - x^{\#})/2i$. Then, since $z = z^{\#}$ and $w = w^{\#}$, one has $z = z^{*}$ and $w = w^{*}$. These imply that

 $x + x^{\#} = x^* + x^{\#*}$ and $x - x^{\#} = x^{\#*} - x^*$,

whence it follows that $x = x^{\#*}$. We conclude that $x^* = x^{\#}$.

PROPOSITION 3.10. Let \mathfrak{X} be a left $\mathfrak{A}_{\#}$ -module and p an M-seminorm on \mathfrak{X} . The following statements are equivalent.

Representations of modules over a *-algebra

- (i) p is an MC^* -seminorm and a Hilbert seminorm.
- (ii) There exists a modular representation (Φ, π) such that $\|\Phi(x)\| = p(x)$ for every $x \in \mathfrak{X}$ and $\|\pi(a)\| = p_0(a)$ for every $a \in \mathfrak{A}_{\#}$.

Proof. We need only prove that (i) \Rightarrow (ii). Since p satisfies the parallelogram law, if we put

$$\varphi_p(x,y) = \frac{1}{4} \sum_{k=0}^3 i^k p(x+i^k y)^2, \quad x,y \in \mathfrak{X},$$

then φ_p is a positive sesquilinear form on \mathfrak{X} and

$$\{x\in\mathfrak{X}:\varphi_p(x,x)=0\}=\{x\in\mathfrak{X}:p(x)=0\}=:N(p).$$

Then $\mathfrak{X}/N(p)$ is a pre-Hilbert space with inner product

$$\langle \lambda_p(x) | \lambda_p(y) \rangle_p = \varphi_p(x, y), \quad x, y \in \mathfrak{X},$$

where $\lambda_p(x) := x + N(p)$. Let \mathcal{H}_p denote the Hilbert space completion of $\mathfrak{X}/N(p)$. We put $\Phi(x) = \lambda_p(x), x \in \mathfrak{X}$. Then Φ is a linear map of \mathfrak{X} into \mathcal{H}_p . By the definition itself, $\Phi(\mathfrak{X})$ is dense in \mathfrak{X} and $\|\Phi(x)\| = p(x)$ for every $x \in \mathfrak{X}$.

For every $a \in \mathfrak{A}_{\#}$, we define a linear map $\pi(a)$ on $\mathfrak{X}/N(p)$ by

$$\pi(a)\lambda_p(x) = \lambda_p(ax), \quad x \in \mathfrak{X}.$$

This map is well-defined, since if $a \in \mathfrak{A}_{\#}$ and $x \in N(p)$, then $ax \in N(p)$. Moreover, $\pi(a)$ is bounded. Indeed,

$$\|\pi(a)\lambda_p(x)\|_p^2 = \|\lambda_p(ax)\|_p^2 = \varphi_p(ax, ax) = p(ax)^2$$

$$\leq p_0(a)^2 p(x)^2 = p_0(a)^2 \|\lambda_p(x)\|_p^2.$$

Therefore $\pi(a)$ extends to a bounded operator on \mathcal{H}_p , denoted by the same symbol. It is easily seen that π preserves the algebraic operations of $\mathfrak{A}_{\#}$. For $a \in \mathfrak{A}_{\#}$, let $\pi(a)^*$ denote the Hilbert adjoint of $\pi(a)$. It remains to prove that $\pi(a^{\#}) = \pi(a)^*$ for every $a \in \mathfrak{A}_{\#}$.

For every $a \in \mathfrak{A}_{\#}$, we have

$$p_0(a) = \sup_{p(x)=1} p(ax) = \sup_{\varphi_p(x,x)=1} \varphi_p(ax, ax)^{1/2}$$
$$= \sup_{\|\lambda_p(x)\|_p=1} \|\lambda_p(ax)\|_p = \|\pi(a)\|.$$

Since p_0 is a C^* -seminorm, we have

(3.6)
$$\|\pi(a)\|^2 = p_0(a)^2 = p_0(a^{\#}a) = \|\pi(a^{\#}a)\|.$$

Let \mathfrak{N}_0 be the norm closure of the algebra $\{\pi(a) : a \in \mathfrak{A}_{\#}\}$. By (3.6), \mathfrak{N}_0 is a C^* -algebra with respect to the norm $\|\cdot\|$ of bounded operators in \mathcal{H}_p and the involution $\pi(a) \mapsto \pi(a^{\#})$, which is well-defined since (3.6) implies that $\|\pi(a^{\#})\| = \|\pi(a)\|$ for every $a \in \mathfrak{A}_{\#}$. Let \mathfrak{N} be the C^* -subalgebra of $\mathcal{B}(\mathcal{H}_p)$ generated by \mathfrak{N}_0 . Since $\pi(e)^* = \pi(e^{\#}) = \mathbb{I}$, the identity of \mathcal{H}_p , Lemma 3.9 implies that $\pi(a^{\#}) = \pi(a)^*$ for every $a \in \mathfrak{A}_{\#}$. Therefore π is a *-representation of $\mathfrak{A}_{\#}$.

As is apparent from Proposition 3.8, the condition $\|\Phi(x)\| = p(x)$ for every $x \in \mathfrak{X}$ seems to be a really strong one, essentially because it forces pto be a Hilbert seminorm. The analysis of this situation, however, is of some help for answering Question 1.

If the set $S_p(\mathfrak{X})$ has a maximum $\overline{\varphi}$, in the sense of (iv) of Proposition 3.8, then

$$\overline{\varphi}(x,x) = \sup_{\varphi \in \mathcal{S}_p(\mathfrak{X})} \varphi(x,x) = \mathfrak{s}^p(x)^2, \quad \forall x \in \mathfrak{X}.$$

This implies that

$$\overline{\varphi}(x,y) = \frac{1}{4} \sum_{k=0}^{3} i^k \sup_{\varphi \in \mathcal{S}_p(\mathfrak{X})} \varphi(x+i^k y, x+i^k y).$$

Therefore, the right hand side of this equality must be a sesquilinear form on $\mathfrak{X} \times \mathfrak{X}$, which is not true in general. As we shall see below, a necessary and sufficient condition for this to hold is provided by the so-called *net property* (see [1, Sec. 9.3]).

DEFINITION 3.11. We say that $S_p(\mathfrak{X})$ has the *net property* if, for any finite subset $\{x_1, \ldots, x_m\}$ of \mathfrak{X} , there exists a sequence $\{\varphi_n\}$ in $S_p(\mathfrak{X})$ such that

$$\lim_{n \to \infty} \varphi_n(x_k, x_k) = \sup_{\varphi \in \mathcal{S}_p(\mathfrak{X})} \varphi(x_k, x_k)$$

for k = 1, ..., m.

THEOREM 3.12. Let \mathfrak{X} be a left $\mathfrak{A}_{\#}$ -module and p an M-seminorm on \mathfrak{X} . The following statements are equivalent.

(i) There exists an MC^{*}-seminorm q satisfying the parallelogram law and such that

(i.a) $q(x) \leq p(x)$ for every $x \in \mathfrak{X}$; (i.b) $C_q(\mathfrak{X}) = C_p(X)$.

- (ii) There exists a modular representation (Φ, π) of \mathfrak{X} such that $\|\Phi(x)\| = \mathfrak{s}^p(x)$ for every $x \in \mathfrak{X}$ and $\|\pi(a)\| = \mathfrak{s}^p_0(a)$ for every $a \in \mathfrak{A}_{\#}$.
- (iii) $\mathcal{S}_p(\mathfrak{X})$ has a maximum.
- (iv) $\mathcal{S}_p(\mathfrak{X})$ has the net property.

Proof. (i) \Rightarrow (ii): The assumption implies, by Proposition 3.10, that there exists a modular representation (Φ, π) of \mathfrak{X} such that $\|\Phi(x)\| = q(x)$ for every $x \in \mathfrak{X}$ and $\|\pi(a)\| = q_0(a)$ for every $a \in \mathfrak{A}_{\#}$. By (ii) and (iii) of

Proposition 3.8 one has

$$q(x) = \mathfrak{s}^q(x) = \mathfrak{s}^p(x), \quad \forall x \in \mathfrak{X},$$

and hence

$$q_0(a) = \mathfrak{s}_0^q(a) = \mathfrak{s}_0^p(a), \quad \forall a \in \mathfrak{A}_\#.$$

The equality $\mathfrak{s}^p(\cdot) = \mathfrak{s}^q(\cdot)$ is due to (i.b).

(ii) \Rightarrow (iii): Put $\overline{\varphi}(x, y) = \langle \Phi(x) | \Phi(y) \rangle$ for every $x, y \in \mathfrak{X}$. Then it is easily seen that $\overline{\varphi} \in \mathcal{S}_p(\mathfrak{X})$. If $\varphi \in \mathcal{S}_p(\mathfrak{X})$ we have

$$\varphi(x,x) \le \mathfrak{s}^p(x)^2 = \|\varPhi(x)\|^2 = \overline{\varphi}(x,x), \quad \forall x \in \mathfrak{X}.$$

Hence $\overline{\varphi}$ is a maximum of $\mathcal{S}_p(\mathfrak{X})$.

(iii) \Rightarrow (iv): Let $\overline{\varphi}$ be the maximum of \mathfrak{X} . It is clear that the constant sequence $\{\varphi_k\}$ with $\varphi_k = \overline{\varphi}$ satisfies the requirements of Definition 3.11.

(iv) \Rightarrow (iii): Since $S_p(\mathfrak{X})$ has the net property, if we put

$$\overline{\varphi}(x,y) = \frac{1}{4} \sum_{k=0}^{3} i^{k} \sup_{\varphi \in \mathcal{S}_{p}(\mathfrak{X})} \varphi(x+i^{k}y, x+i^{k}y), \quad x,y \in \mathfrak{X},$$

then $\overline{\varphi}$ is a positive sesquilinear form on $\mathfrak{X} \times \mathfrak{X}$ satisfying the conditions of Definition 2.2, thus it is a modular invariant sesquilinear form on \mathfrak{X} . One has

$$\overline{\varphi}(x,x) = \sup_{\varphi \in \mathcal{S}_p(\mathfrak{X})} \varphi(x,x) \le p(x)^2.$$

Hence $\overline{\varphi} \in \mathcal{S}_p(\mathfrak{X})$ and it is the maximum.

(iii) \Rightarrow (i): Let $\overline{\varphi}$ be the maximum of $\mathcal{S}_p(\mathfrak{X})$ and define $q(x) = \overline{\varphi}(x, x)^{1/2}$, $x \in \mathfrak{X}$. Then, clearly, $q(x) \leq p(x)$ for every $x \in \mathfrak{X}$. Moreover, if $\varphi \in \mathcal{S}_p(\mathfrak{X})$, then

$$\varphi(x,x) \leq \overline{\varphi}(x,x) = q(x)^2, \quad \forall x \in \mathfrak{X}.$$

Hence, $\varphi \in S_q$. This easily implies the equality $C_q(\mathfrak{X}) = C_p(X)$.

REMARK 3.13. We conclude by noticing that the existence of an MC^* seminorm p on \mathfrak{X} has other profitable features that are worth mentioning: these are due to the fact that a natural Banach C^* -module is defined by p. Indeed, let, as before,

$$N(p) = \{ x \in \mathfrak{X} : p(x) = 0 \}, \quad N(p_0) = \{ a \in \mathfrak{A}_{\#} : p_0(a) = 0 \}.$$

Now, let \mathfrak{X}^p denote the completion of $\mathfrak{X}/N(p)$ with respect to the norm $||x + N(p)||_p = p(x)$, and $\mathfrak{A}^p_{\#}$ the completion of $\mathfrak{A}_{\#}/N(p_0)$ with respect to the norm $||a + N(p_0)||_{p_0} = p_0(a)$. Then $\mathfrak{A}^p_{\#}$ is a C^* -algebra and \mathfrak{X}^p is a Banach $\mathfrak{A}^p_{\#}$ -module. Let $(\widetilde{\Phi}, \widetilde{\pi})$ be a modular representation of \mathfrak{X}^p . Then we define a representation of \mathfrak{X} by

$$\Phi(x) = \Phi(x + N(p)), \quad x \in \mathfrak{X},$$

and a *-representation π of $\mathfrak{A}_{\#}$ by

$$\pi(a) = \widetilde{\pi}(a + N(p_0)), \quad a \in \mathfrak{A}_{\#}.$$

Then (Φ, π) is a modular representation of \mathfrak{X} . Indeed, since $aN(p) \subseteq N(p)$ for every $a \in \mathfrak{A}_{\#}$ and $N(p_0)x \subseteq N(p)$ for every $x \in \mathfrak{X}$, we get

$$\Phi(ax) = \Phi(ax + N(p)) = \Phi((a + N(p_0))(x + N(p)))$$

= $\tilde{\pi}(a + N(p_0))\tilde{\Phi}(x + N(p)) = \pi(a)\Phi(x).$

The *-representation π of $\mathfrak{A}_{\#}$ is automatically bounded and $p_0\text{-continuous}.$ One has indeed

$$\|\pi(a)\| = \|\widetilde{\pi}(a+N(p_0))\| \le p_0(a), \quad \forall a \in \mathfrak{A}_{\#}.$$

The *p*-continuity of Φ can also be checked by verifying one of the characterizations of the continuity of modular representations of Banach C^* modules discussed in [8]. There are, of course, other situations where properties of $(\tilde{\Phi}, \tilde{\pi})$ can be pulled back to obtain properties of (Φ, π) . For instance, if we prove that there exists a representation $\tilde{\Phi}$ of \mathfrak{X}^p satisfying

$$|\Phi(x + N(p))|| = ||x + N(p)||_p = p(x),$$

then also a representation of \mathfrak{X} with the same property is found.

4. Examples. In this final section we give some examples and applications of the ideas developed so far.

EXAMPLE 4.1. Let \mathfrak{X} be a left Hilbert $\mathfrak{A}_{\#}$ -module in the sense of [4]. Then \mathfrak{X} is at once a left $\mathfrak{A}_{\#}$ -module and a Hilbert space with inner product $\langle \cdot | \cdot \rangle$ such that

$$\langle ax|y
angle = \langle x|a^{\#}y
angle, \quad orall a \in \mathfrak{A}_{\#}, \, x, y \in \mathfrak{X}.$$

Then $\varphi(x,y) = \langle x|y\rangle$, $x,y \in \mathfrak{X}$, is a modular invariant form and it is, obviously, bounded with respect to the norm $p(\cdot) = \langle \cdot|\cdot\rangle^{1/2}$. If $\varphi \in \mathcal{C}_p(\mathfrak{X})$, then there exists a bounded operator T_{φ} in \mathfrak{X} such that

$$\varphi(x,y) = \langle T_{\varphi} x | y \rangle, \quad \forall x, y \in \mathfrak{X}.$$

From the properties of φ one deduces that $T_{\varphi} \geq 0$ and that $T_{\varphi}L_a = L_a T_{\varphi}$ for every $a \in \mathfrak{A}_{\#}$, where L_a denotes the operator of left multiplication by a.

Now $\varphi \in \mathcal{S}_p(\mathfrak{X})$ if, and only if, $||T_{\varphi}|| \leq 1$. Indeed, we have

$$\varphi \in \mathcal{S}_p(\mathfrak{X}) \iff \sup \frac{\varphi(x,x)}{p(x)^2} \le 1 \iff \sup \frac{\langle T_{\varphi}x|x\rangle}{p(x)^2} \le 1 \iff ||T_{\varphi}|| \le 1,$$

taking into account that T_{φ} is self-adjoint. Finally, it is clear that $\mathcal{S}_p(\mathfrak{X})$ has a maximum. Indeed, for any $\varphi \in \mathcal{S}_p(\mathfrak{X})$,

$$|\varphi(x,x)| \le p(x)^2 = \langle x|x\rangle.$$

The norm p of \mathfrak{X} is clearly regular.

EXAMPLE 4.2. Let I be an interval of the real line. We consider $L^{r}(I)$, $r \geq 1$, as a Banach $L^{\infty}(I)$ -module (if I has finite Lebesgue measure, then $L^{\infty}(I) \subset L^{r}(I)$ and we speak in this case of a CQ^{*} -algebra). Of course we take p to be the usual norm of $L^{r}(I)$ and we simply write $S(\mathfrak{X})$ instead of $S_{p}(\mathfrak{X})$. It is not difficult to see that, if $r \geq 2$, then $S(L^{r}(I))$ is quite rich [3]; indeed,

$$\mathcal{S}(L^{r}(I)) = \{\varphi_{w} : w \in L^{r/(r-2)}(I), \, \|w\|_{r/(r-2)} = 1, \, w \ge 0\},\$$

where

$$\varphi_w(x,y) = \int_I x(t)\overline{y(t)}w(t) dt, \quad x,y \in L^r(I).$$

If $1 \le r < 2$ then, as in [3], one can prove that $\mathcal{S}(L^r(I)) = \emptyset$. If $r \ge 2$, then

$$\sup\{\varphi_w(x,x): w \in L^{r/(r-2)}(I), \|w\|_{r/(r-2)} = 1, w \ge 0\} = \|x\|_r$$

for all $x \in L^r(I)$. Then $\mathcal{S}(L^r(I))$ may have a maximum if it satisfies the parallelogram law. But this happens only if r = 2 (the maximum being the inner product itself).

If I is a bounded interval (we take I = [0, 1]), then, according to Proposition 3.7, a modular representation (Φ, π) of $L^r(I)$ with π bounded exists for any $r \geq 2$. Indeed, it suffices to define, for $x \in L^r(I)$, $\Phi(x) = x \in L^2(I)$ and, for every $v \in L^{\infty}(I)$, $(\pi(v)x)(t) = v(t)x(t)$, $x \in L^r(I)$.

EXAMPLE 4.3. Any *-algebra $\mathfrak{A}_{\#}$ may be viewed, in the obvious way, as a left $\mathfrak{A}_{\#}$ -module. If ω is a positive linear functional on $\mathfrak{A}_{\#}$ then putting $\varphi_{\omega}(a,b) = \omega(b^{\#}a)$, one obtains a modular invariant form. Assume that there exists an *M*-seminorm on $\mathfrak{A}_{\#}$ such that the set of positive linear functionals ω on $\mathfrak{A}_{\#}$ for which φ_{ω} is *p*-bounded is nontrivial. This, of course, implies that $\mathcal{S}(\mathfrak{A}_{\#})$ is nontrivial. Then $\mathfrak{A}_{\#}$ admits a nonzero *C**-seminorm, namely \mathfrak{s}_{0}^{p} . Hence $\mathfrak{A}_{\#}$ admits bounded *-representations.

EXAMPLE 4.4. Let $\mathfrak{A}_{\#}$ be a *-algebra (possibly without unit) and \mathfrak{X} a left $\mathfrak{A}_{\#}$ -module. Assume that $\mathfrak{A}_{\#}$ contains two elements a, b such that

$$(4.1) abx - bax = x, \forall x \in \mathfrak{X}.$$

Then there cannot exist any modular representation (Φ, π) , with π bounded, since in this case,

$$\pi(a)\pi(b)\Phi(x) - \pi(b)\pi(a)\Phi(x) = \Phi(x), \quad \forall x \in \mathfrak{X}.$$

The density of $\Phi(\mathfrak{X})$ would then imply that $\pi(a)\pi(b) - \pi(b)\pi(a) = \mathbb{I}$, and this is impossible because of the Wiener–Wielandt theorem (see, e.g., [6, Sect. 2.2]). If $\mathfrak{A}_{\#}$ has a unit *e*, then from (4.1) it follows that ab-ba = e; if \mathfrak{X} admits an *M*-seminorm *p*, then necessarily $S_p(\mathfrak{X}) = \{0\}$, since otherwise \mathfrak{s}_0^p would be a *C*^{*}-seminorm on $\mathfrak{A}_{\#}$, and $\mathfrak{A}_{\#}$ would have a bounded *-representation π such that $\pi(a)\pi(b) - \pi(b)\pi(a) = \mathbb{I}$.

References

- J.-P. Antoine, A. Inoue and C. Trapani, Partial *-Algebras and Their Operator Realizations, Kluwer, Dordrecht, 2002
- [2] —, —, —, Biweights of partial *-algebras, J. Math. Anal. Appl. 242 (2000), 164–190.
- [3] F. Bagarello and C. Trapani, L^p-spaces as quasi *-algebras, ibid. 197 (1996), 810–824.
- [4] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin, 1973.
- R. T. Palmer, Banach Algebras and the General Theory of #-Algebras. II: #-Algebras, Encyclopedia Math. Appl. 79, Cambridge Univ. Press, 2001.
- [6] S. Sakai, Operator Algebras in Dynamical Systems, Cambridge Univ. Press, Cambridge, 1991.
- Z. Sebestyen, Every C^{*}-seminorm is automatically submultiplicative, Period. Math. Hungar. 10 (1979), 1–8.
- [8] C. Trapani and S. Triolo, Representations of certain Banach C^{*}-modules, Mediterr. J. Math. 1 (2004), 441–461.
- [9] B. Yood, C^{*}-seminorms, Studia Math. 118 (1996), 19–26.

Dipartimento di Matematica ed Applicazioni Università di Palermo I-90123 Palermo, Italy E-mail: trapani@unipa.it salvo@math.unipa.it

> Received September 19, 2006 Revised version October 30, 2007

(6000)