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Representations of modules over a *-algebra
and related seminorms

by

CAMILLO TRAPANI and SALVATORE TRIOLO (Palermo)

Abstract. Representations of a module X over a *-algebra 24 are considered and

some related seminorms are constructed and studied, with the aim of finding bounded
*-representations of 2.

1. Introduction. As is known, if 2, is an involutive algebra and 7 is
a *-representation of 2, with domain D() in a Hilbert space H, then D()
may be viewed as a left A ,-module with module operation defined by

a-§=m(a)l, ae€Uy, &eD(nm).

From the reverse point of view, one can ask if every 2,-module X admits a
representation that reproduces the situation of the above example. Such a
representation, to be called modular, consists of a couple (@, 1) where @ is
a linear map of X into some Hilbert space, w is a *-representation defined
on D(m) = ¢(X), and ¢ and 7 are coupled by the relation

m(a)P(x) = Plax), a€Uy,, xeX.

The existence of a modular representation and its possible continuity were
examined in [8] in the case where X is a Banach module over the C*-algebra
A, and it was proved that the existence of a modular representation is
equivalent to the possibility of performing a sort of Gelfand—-Naimark—Segal
(GNS) representation starting from certain (in general, not everywhere de-
fined) positive sesquilinear forms, called modular biweights for the close anal-
ogy they exhibit with biweights on a partial *-algebra [1, 2]. These existence
results will be restated (mostly without proofs) in Section 2 for the general
case where X is a left 2,-module. In the case considered in [8], 2, was taken
as a C*-algebra, hence there was no room for a possibly unbounded repre-
sentation of 2(,. In more general situations (for instance, if 2, is simply
a *-algebra), *-representations of 2, take values in the *-algebra Lf(D(r))
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of all weakly continuous endomorphisms of a pre-Hilbert space D(w), and
these are often unbounded operators.

The problem we want to investigate here originates from the very well-
known fact that a *-algebra 2(, admits a bounded representation if, and
only if, there is a C*-seminorm defined on 2, [5]. A similar approach is
suggested here by the following simple example.

Let (@, 7) be a modular representation of 2, with 7 a bounded *-re-
presentation of 2, in Hilbert space H. If we put

pP(@) = 2(@)], weX,
then p? is a seminorm on X enjoying the following properties:
(i) p?(az) < [Im(a)[[p(2), Va € Ay, v € X,
(i) p(a) := supysgy—1 p*(az) = [7(a)]], Va € 2A,.

Thus the reduced seminorm pg of p? is a C*-seminorm on 2. This
example suggests considering seminorms p on X for which the map x +— ax
is p-continuous for every a € 2, (we name them M-seminorms) and the
corresponding reduced seminorm py is a C*-seminorm (in this case p is
called an M C*-seminorm)

On the other hand, if X admits a nontrivial M C*-seminorm, then 2,
certainly possesses bounded *-representations, but in general we cannot say
that a modular representation (@, 7) of X with = bounded does really exist.

The aim of this paper is to characterize the existence of a modular rep-
resentation (@, 7) such that 7 is bounded and (&, ) satisfies prescribed
conditions of continuity. More precisely, assuming that an M-seminorm p is
defined on X, we look for a modular representation (@, ) with = bounded

and such that
{ [@(2)[| < p(z), VzeX,
Im(a)ll < pola), Va €Ay

We prove that a necessary and sufficient condition for this to hold is that
the family S,(X) of all p-bounded modular invariant forms (i.e. everywhere
defined modular biweights) is nontrivial. This characterization relies on the
fact that if X carries an M-seminorm p, then starting from S,(X), it is
possible to construct a nontrivial M C*-seminorm sP on X.

As a second step, coming back to the example discussed above, we con-
sider the following stronger question: given an M-seminorm p on X, does
there exist a modular representation (@, ) such that p(x) = [|@(x)| for
every x € X and po(a) = ||7(a)| for every a € A,7 The answer is that a
necessary and sufficient condition for a representation (@, ) of this type to
exist is that p is an M C*-seminorm satisfying the parallelogram law. The
latter condition is, of course, quite strong, because it forces X to be con-
tained (up to a quotient) in a Hilbert space. Thus, going one step further,
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we refer the same question to the M C*-seminorm sP, which is, in general,
weaker than p. The outcome is that a necessary and sufficient condition for
the existence of a modular representation (@, 7) with 7 bounded and having

the properties
{ |6(2)]| = s#(x), Var € X,

Im(a)|l = sG(a), Va €Ay,

is that Sp(X) is rich enough and has a maximum.

2. Modules and representations. In this section we collect some def-
initions and preliminary results that are needed in what follows. We also give
some examples that, as we shall see, play a crucial role for representations.

Let 2, be a *-algebra, with involution #, and X a vector space. We say
that X is a left A,-module if there is a bilinear map

(a,x) — ax
from 2, x X into X such that
(a1a2)x = ay(agz), Vaj,az € Ay, x € X.
If 2, has no unit, we can consider its unitization 2%, := 2, & C; then X is
also an 2l%,-module with module multiplication defined by
(a, Nz :=ax+Ax, zxz€X,aecUy,\eC.

Thus there is no loss of generality in assuming that 2, has a unit.
We shall always suppose that the module action of 2, on X is nontrivial,
ie.,if a € A, and ax = 0 for every z € X, then a = 0.

DEFINITION 2.1. Let X be a left A ,-module. A modular representation of
X in a Hilbert space H consists of a linear map @ : X — H, with &(X) dense
in H, and a #-representation of A, 7 : A, — LT(D(n)), with D(7) = (%),
such that

b(ax) = m(a)P(x), VaecUy zeX.
A modular representation as above will be denoted (&, ).

Let X be a left /,-module and ¢ a positive sesquilinear form on X x X.
Positivity implies that the Cauchy—Schwarz inequality holds and that ¢ is
hermitian; i.e.,

o lo(z,y)| < oz, 2) Py, y)'/?, Va,y € X,

o o(z,y) = p(y,x), Yo,y € X.

DEFINITION 2.2. Let X be a left 2 ,-module. A positive sesquilinear form
@ on X x X is said to be modular invariant if

Sﬁ(al‘»?/) :@(fﬂaa#y)a VGEQ[#, »Taye—'f-
The set of all modular invariant forms of X is denoted by MZ(%).
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REMARK 2.3. A modular invariant sesquilinear form is an everywhere
defined modular biweight. Modular biweights were introduced in [8] for
studying modular representations of Banach C*-modules. They are, in gen-
eral, defined only on a submodule of X.

We will show that every ¢ € MZ(X) can be used to construct a modular
representation of X.

Let X be a left A -module. Assume that there exists a linear map @ :
D(®) — H, where H is a Hilbert space, such that ¢(X) is dense in H and

(P(ax)|D(y)) = (D(2)|P(a’y)), Va €Uy, x,y€X.
Then a #-representation of 2(,, can be easily defined by putting
D(m) = (%),
{ﬂ'(a)@(:c) =P(ax), acUy zeX.

It is easily seen that (@, ) is a modular representation of X.

Moreover, if we define

po(z,y) = (2(2)|2(y)), 2,y€X,
then ¢ is a modular invariant form in the sense of Definition 2.2. Conversely,

we will show that any modular invariant form defines a modular represen-
tation.

THEOREM 2.4. For each ¢ € MI(X), there exist a Hilbert space Hy, a
linear map @, : X — H, and a closed *-representation m, of A, into H,
such that:

o go(a:,y) = <¢<P(x)’¢<p(y)>7 V:U,y € %7

o laz,y) = (m,(a) Py (2)|Py (), Va € Ay, x,y € X.

Proof. We put

N, ={reX:pxx)=0}={zrecX: ¢y =0, VyecX}
Let X, := X/M, and put A\ (z) := 2+ N, z € X. Then X, is a pre-Hilbert
space with respect to the inner product
<>‘<P($)|>\<P(y)> :SD(:E,Z/), a:,yef.
Let H, be the Hilbert space completion of X,. The map
D,:xeX— N(x) € Xy CH,y

is, clearly, linear. Moreover, @,(X) is, by the definition itself, dense in H,,.
Since if z € M, then ax € N, for every a € A, the map

ﬂg(a))\g,(x) = Ap(ax), ze€X,

is a well-defined operator in X,. It is easy to prove that 772 is a *-representa-
tion of A,. The closure 7, of 7727 is the desired *-representation of 2(,. =
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DEFINITION 2.5. The triple (@, 7, Hy) is called the GNS construction
for the modular invariant form ¢ of X.

The previous discussion can be summarized in the following

PROPOSITION 2.6. Let X be a left A,-module. The following statements
are equivalent.

(i) There exists a nontrivial modular representation (P, ) of X.
(ii) There exists a linear map ¢ : X — H, with H a Hilbert space and
&(X) dense in H, with the property
(P(az)[@(y)) = (B(x)|P(a”y)), Va €Uy, v,y € X,
(iii) There exists a nonzero modular invariant sesquilinear form ¢ on X.

PROPOSITION 2.7. Let X be a left A, -module. The following statements
are equivalent.

(i) There exists a modular representation (P, 7) of X with ™ bounded.
(ii) There exists ¢ € MZI(X) such that

Va € Uy, I, >0 @laz,ax) < yup(z,x), VYo e X.
Proof. If ¢ € MZ(X), then the *-representation 7, is bounded if, and
only if, the condition stated in (ii) is fulfilled, as is readily checked. On
the other hand, if (®,7) is a modular representation of X with 7 bounded,

it is easy to see that the modular invariant form ¢ defined by ¢(z,y) =
(D(x)|P(y)), x,y € X, satisfies the condition given in (ii). m

3. Bounded *-representations and M C*-seminorms. We now in-
troduce some classes of seminorms on X which will help us analyse the
existence of bounded *-representations of 2.

Let X be a left 2,-module and p a seminorm on X. We say that p is an
M -seminorm if, for each a € 2, there exists v, > 0 such that

plax) < vap(z), Vz € X.
In this case, we can define the reduced seminorm pgy by

po(a) = sup p(azx), a€Ay,.

p(x)=1
With this definition one has
(3.1) plax) <po(a)p(z), VaeA,, xecX.
Moreover,
(3.2) po(ab) < po(a)po(b), Va,be A,.

If po is a C*-seminorm on A, i.e. if it satisfies the C*-condition po(a®a)
= po(a)? for every a € A, then we say that p is an MC*-seminorm. We
notice that the C*-condition implies that pg is submultiplicative [7].
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Let (@, m) be a modular representation of X. We put
@
p (z) = |o(x)], zeX
Then p? is a Hilbert seminorm, i.e. it satisfies the parallelogram law
P+ +p" (@ -y =22 () + 29" (y)*, Ve,ye X

Moreover,

PROPOSITION 3.1. The following statements are equivalent.

(i) p? is an M-seminorm.

(ii) 7 is bounded on D(mw) = P(X).

(iii) p? is an MC*-seminorm.

Proof. (i)=(ii): If p® is an M-seminorm, then, for every a € 2, there
exists v, > 0 such that

p(ax) < vap®(z), VreX.

Then we have
() ()| = [|@(az)|| = p(az) < vap”(2) = Yol P()].
Therefore the restriction of 7 to D(7) is bounded.
(ii)=-(iii): We have
po(a)= sup pPlax)= suwp [P(az)|= suwp |n(a)P(z)] =[x (a)l.
p?(z)=1 [@(=)]=1 [@()lI=1
Therefore pd is a C*-seminorm on 2A.,.
(iii)=(i): This is trivial. m
Let X be a left 2,-module and p an M-seminorm on X. We denote

by Cp(X) the family of modular invariant sesquilinear forms ¢ that are p-
bounded, i.e.

lp(z,y)| < vp(x)p(y) for some v >0 and all z,y € X.

We denote by ||¢]|, the infimum of all 4’s for which the above inequality

holds. Finally, let

Sp(X) = {p € Cp(X) : [lplly < 1}
We put

()= sup o(z,2)Y?, zek,
PESH(X)
and
N(sP) = {z € X : sP(x) = 0}.

Then, as is easily seen, s” is a seminorm on X satisfying s”(z) < p(z) for
every € X, and N(sP) is an A -submodule of X.

PRroOPOSITION 3.2. For every M-seminorm p, sP is an MC*-seminorm
on X.
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Proof. For every ¢ € MZ(X), we put

wy(a) = plar,x), a€y.

Then w is a positive linear functional on 24, and if ¢ € Cp(X), it is po-
continuous, since

wi(a)l < llellppo(a)p(a)®,  Va e Uy
The family
F={ws:p €Cp(X), x € X}
is balanced in the sense of Yood [9]. Therefore, if we put
la|F = sup{w;’g(a#a)l/2 tp €Cp(X), z € X, p(z,z) =1},
then

and |- |7 is a C*-seminorm on 2.
Since, for every ¢ € F and xz € X, the form w
get, for every n € N,

plaz,az) < p(o,2)' 7 " (|wgllz l(a*a)*|7)* ", Va ey,

T

% is | - | F-continuous, we

where ||wg| 7 = sup{|wi(a)| : |a|F = 1}. Letting n — oo, we have
(3.3) plax,ax) < |a*a|r p(z, x).
This in turn implies that
sP(ax) < |a|%sP(z), Vr € X, ac U,
Thus s” is an M-seminorm on X. From this estimate it also follows that
(3.4) sh(a) <lalr, a€Uy.

To complete the proof we only need to prove the converse inequality. For
this, making use of the definition of s” and of (3.1), for every ¢ € C,(X),
one has

p(az,2)| < llplly s (a2)s? () < lsh(@)s (@), Va € Ay, w € X,

Therefore, every wg is sh-continuous. Then, proceeding as we did for getting
the inequality (3.3), we can prove

wi(aa) = plax,ax) < sp(a*a)p(z, ).
This implies that

(3.5) la*a|F = |a|% < sB(a*a), Va €U,
Hence, by (3.4),

$5(a)” < al% = |a*alr < sh(a*a) < sh(a*)sh(a), Va € Ay
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Thus, sh(a) < sh(a*), which in turn implies s} (a) = s (a*) for every a € UA,,.
Coming back to (3.5), one finally obtains

la|r <sb(a), VaeU,.
Then |a|z = sf(a) for all a € 2, and thus sf is a C*-seminorm on 2A,. =

REMARK 3.3. Since |w%(a)| < po(a)p(x)? for every a € 2, and z € X,
we have

wi(a*a)| < po(a)’p(x,z), Va €Uy, v € X
This implies that, in general, sf(a) < po(a) for every a € 2.

REMARK 3.4. Given a left 2,-module X, it may well happen that S,(X)
= {0}. If this occurs, one clearly has sP(z) = 0 for every x € X. This is quite
a singular case, since it implies that there are no nontrivial modular repre-
sentations of X. For this reason, we will suppose that S,(X) is nontrivial.

DEFINITION 3.5. An MC*-seminorm p on X is called regular if p(z) =
sP(x) for every z € X.

As we have seen before, to every ¢ € S,(X) there corresponds a GNS
construction (@, 74, H,). The p-boundedness of ¢ implies the p-continuity
of &, and ||P,(z)| < p(z) for every z € X. Conversely, to every linear map
@ from X into some Hilbert space H with the property

(P(ax)|D(y)) = (P(2)|P(a*y)), Va €Uy, z,y € X,
and such that
[@(2)[| < p(z), VoeX,
there corresponds a sesquilinear form ¢pg € Sp(X) with

po(z,y) = (2(2)[2(y)), Vr,yeX.

Thus we have

PROPOSITION 3.6. N (sP) coincides with the intersection of the kernels of
all the maps @, where (P, ) is a modular representation of X with ||P(z)|| <
p(z) for every x € X. N(sP) is a p-closed U, -submodule of X (i.e. if {zn} C
N(sP) and p(x, — z) — 0, then x € N(sP)).

As a consequence, the existence of an M-seminorm on X such that S,(%)
is nontrivial implies that sf; is a nonzero C*-seminorm on 2. Therefore, 2,
admits a bounded *-representation 7 such that ||7(a)|| = sh(a) for every
a € 2. But we can say more.

PROPOSITION 3.7. Let X be a left A,-module and p an M-seminorm
on X. The following conditions are equivalent.
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(i) There exists a modular representation (P, ) with the properties
{ [@(2)[| < p(x), VzeX,
Im(a)ll < pola), Va e,
(i) Sp(X) # {0}
Proof. (i)=(ii): Define
p(z,y) = (D(x)|D(y)), wyeX.
Then it is easy to see that ¢ € Sp(X).

(ii)=(i): Assume that ¢ € Sp(X) and let (A, my, H,,) be the correspond-
ing GNS construction. Then, putting as before @,(z) = A,(x), x € X, we
have

12, (2) 1> = [Ap(2)|* = p(z,x) < plz)?, Vo€ X,
and
1T (@) X (@)[* = p(az, az) < sf(a)®p(z, ) = sp(a)?[Ap(2)?],  Va € Ay
Hence 7, is bounded and
7o (a)]l < s5(a) < po(a), VaeU,. m

As we have seen, if an M-seminorm p on X is defined, then, if S,(X) # {0}
there exists a nontrivial M C*-seminorm on X, namely s”. Since s}, is a C*-
seminorm, it is then natural to pose the following

QUESTION 1. Given an M-seminorm p on X, does there exist a modular
representation (@, 7) such that @ is p-bounded and sh(a) = ||7(a)| for every
a € Q[#?

In order to answer this question, we first state the following stronger one:

QUESTION 2. Given an M-seminorm p on X, does there exist a rep-
resentation (@, 7) of X such that p(z) = ||&(x)| for every x € X and
po(a) = ||7(a)]| for every a € 2,7

If the answer to Question 2 is affirmative, then, by Proposition 3.1, p is
automatically an MC*-seminorm. Some additional properties of p and sP

are given in the following

PROPOSITION 3.8. Let X be a left A, -module and p an M-seminorm
on X. Assume that there exists a modular representation (®,7) such that
p(z) = ||@(z)|| for every x € X. Then the following statements hold.

(i) p is a Hilbert seminorm.
(ii) p is a regular M C*-seminorm.
(if) po(a) = sh(a) = (@) for every a € 2.
(iv) The set Sp(X) has a mazimum, i.e. there exists p € Sp(X) such that

Pr,a)= swp (o) = @) =p(e)f, VoeX
PESH(X)
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Proof. (i) Since p(-) = ||2(+)|| and ||®(-)|| is a Hilbert seminorm, p must
obey the parallelogram law.

(ii) We put, as before, pa(z,y) = (P(x)|2(y)), z,y € X. Then

lpa(z,y)| = (2(2)|2(y)| < @) [|2W)|| = p(x)p(y), Yo,y € X.
Thus, ¢¢ € Sp(X). Then we have

p(2)* = [P(@)|* < sup p(z,z) = sP(2)*
PESH(X)

Hence p(z) = sP(z) for every x € X.

(iii) The equality p(-) = sP(-) also implies that s)(a) = po(a) for every
a € 2. Moreover,

po(a) = sup plax) = sup |D(az)

p(a)=1 19 ()]|=1
= sup |[7(a)®(@)|| = [|7(a)ll, Va €Ay,
()| =1

(iv) The form g is indeed a maximum for S,(X). We have, in fact, for
any ¢ € Sp(X),

p(z,2) <p(2)* = ||9(2)|* = (P(2)|2(2)) = vo(w,x), VrEX. m

In order to prove the converse of the previous proposition, we need the
following

LEMMA 3.9. Let A be a C*-algebra with unit e, with norm || - | and
involution *. Let B be a closed subalgebra of A which is a C*-algebra, with
respect to the same norm || - || and the involution #, and such that e € B
and e = e. Then x* = x* for every v € B.

Proof. Let F be a positive linear functional on 2. Then F' is bounded
and | F|| = F(e). Let Fy denote the restriction of F' to B. Then

Fe) < [[Foll < [F]| = F(e).

Hence, Fj is positive on B, i.e., F(z#z) > 0 for every = € B. Let now y € B
with y# = y. Then Fy(y) is real and, since F' is hermitian, we get

Fy") = Fy) = F(y).
Hence F(y* — y) = 0 and, from the arbitrariness of F', y = y*.
Let now x € B. Then x = z + iw where z = (x4 2#)/2 and w =
(x — 2#)/2i. Then, since z = z# and w = w#, one has z = z* and w = w*.
These imply that

#_

r4+ao¥=2"+2* and z-—=x x?* — ¥,

whence it follows that z = 2#*. We conclude that 2* = 7. u

PROPOSITION 3.10. Let X be a left A,-module and p an M-seminorm
on X. The following statements are equivalent.
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(i) p is an MC*-seminorm and a Hilbert seminorm.
(ii) There exists a modular representation (P, ) such that ||®(x)|| = p(x)
for every x € X and ||7(a)|| = po(a) for every a € A,.

Proof. We need only prove that (i)=-(ii). Since p satisfies the parallelo-
gram law, if we put
3
Z i*plz +i*y)?,  z,y € X,
k=0
then ¢, is a positive sesquilinear form on X and
{reX:pp(z,2) =0} ={x € X:p(z) =0} =: N(p).
Then X/N(p) is a pre-Hilbert space with inner product

</\p(x)‘)‘p(y)>p = Sap(xvy)v T,y € %7
where A\y(z) := = + N(p). Let H,, denote the Hilbert space completion of
X/N(p). We put @(x) = A\p(x), x € X. Then @ is a linear map of X into H,.
By the definition itself, @(X) is dense in X and ||®(x)|| = p(z) for every
x € X.
For every a € 2, we define a linear map 7(a) on X/N(p) by

w(a)Ap(z) = Ap(azx), x€X.
This map is well-defined, since if a € 2, and =z € N(p), then axz € N(p).
Moreover, 7(a) is bounded. Indeed,
I (a)\p ()15 = [Ap(az)lly = wp(az, az) = p(az)”
< po(a)?p(x)® = po(a)? | Ap(2)[5.
Therefore 7(a) extends to a bounded operator on H,, denoted by the same
symbol. It is easily seen that 7 preserves the algebraic operations of 2. For
a € Ay, let m(a)* denote the Hilbert adjoint of m(a). It remains to prove
that w(a*) = 7(a)* for every a € U,,.
For every a € A, we have

SOP(:C’ y) =

o |

po(a) = sup plax) = sup ¢p(az, ax)1/2
p(z)=1 ep(z,x)=1
= sup [[Ap(az)lp = [ (a)]]
[Ap () lp=1
Since pg is a C*-seminorm, we have

(3.6) Im(a)[[* = po(a)* = po(a*a) = ||x(a*a)].
Let 91 be the norm closure of the algebra {m(a) : a € A,}. By (3.6), Mo
is a C*-algebra with respect to the norm || - || of bounded operators in H,,

and the involution 7(a) — m(a#), which is well-defined since (3.6) implies
that ||w(a®)|| = ||w(a)| for every a € 2A,. Let M be the C*-subalgebra
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of B(Hp) generated by 9. Since m(e)* = m(e*) = I, the identity of H,p,
Lemma 3.9 implies that w(a*) = 7(a)* for every a € . Therefore 7 is a
*-representation of A,. m

As is apparent from Proposition 3.8, the condition ||¢(z)| = p(x) for
every x € X seems to be a really strong one, essentially because it forces p
to be a Hilbert seminorm. The analysis of this situation, however, is of some
help for answering Question 1.

If the set Sp(X) has a maximum @, in the sense of (iv) of Proposition 3.8,
then

B(z,z) = sup o(x,z) =s"(x)?, VzeX.
PESH(X)

This implies that

3
1
P(x,y) =~ Z i* sup  p(x + iy, @+ ity).
k=0 PESH(X)

W

Therefore, the right hand side of this equality must be a sesquilinear form
on X x X, which is not true in general. As we shall see below, a necessary and
sufficient condition for this to hold is provided by the so-called net property
(see [1, Sec. 9.3]).

DEFINITION 3.11. We say that S,(X) has the net property if, for any
finite subset {z1,...,2m} of X, there exists a sequence {¢,} in Sp(X) such
that

lim @, (zg, ;) = sup  o(zg, k)

fork=1,...,m.

THEOREM 3.12. Let X be a left A, -module and p an M -seminorm on X.
The following statements are equivalent.

(i) There exists an MC*-seminorm q satisfying the parallelogram law
and such that

(i.a) q(x) < p(x) for every x € X;
(ib) Cy(X) = G, (X).

(ii) There ezists a modular representation (®,m) of X such that ||®(z)||
= sP(x) for every x € X and ||w(a)|| = sh(a) for every a € As,.

(iii) Sp(X) has a mazimum.

(iv) Sp(X) has the net property.

Proof. (i)=(ii): The assumption implies, by Proposition 3.10, that there
exists a modular representation (®,7) of X such that ||®(z)| = ¢(z) for
every © € X and ||7(a)|| = qo(a) for every a € 2,. By (ii) and (iii) of
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Proposition 3.8 one has

q(z) =sl(z) =s"(x), VzelX,
and hence

w(a) = s§(a) = shla),  Va € 2,

The equality sP(-) = s9(-) is due to (i.b).
(il)=-(iii): Put p(z,y) = (P(z)|P(y)) for every x,y € X. Then it is easily
seen that @ € Sy(X). If ¢ € §p(X) we have

p(z,2) < ()" = |0(2)|* = B(x,2), VzeX.

Hence @ is a maximum of S,(X).
(iii)=-(iv): Let ¥ be the maximum of X. It is clear that the constant
sequence {yy} with ¢ = P satisfies the requirements of Definition 3.11.
(iv)=-(iii): Since Sp(X) has the net property, if we put

1 3

Blw,y) =<y " swp o+ifya+ity), wzyeX,
4 Sp(x
k=0 %ESH(X)
then P is a positive sesquilinear form on X x X satisfying the conditions of
Definition 2.2, thus it is a modular invariant sesquilinear form on X. One

has
2

Pz, 2) = sup p(z,x) < p(x)™.
PESH(X)

Hence @ € S,(%) and it is the maximum.

(iii)=(i): Let % be the maximum of S,(X) and define ¢(z) = B(z, z)'/?,
x € X. Then, clearly, q(z) < p(x) for every x € X. Moreover, if ¢ € S,(X),
then

o(z,z) <Pz, r) = q(z)?, VreX.

Hence, ¢ € S,. This easily implies the equality Cy(X) = Cp(X). n

REMARK 3.13. We conclude by noticing that the existence of an MC*-
seminorm p on X has other profitable features that are worth mentioning:
these are due to the fact that a natural Banach C*-module is defined by p.
Indeed, let, as before,

N(p) ={z € X:p(x) =0}, N(po) ={a €y :po(a) =0}.
Now, let XP denote the completion of X/N(p) with respect to the norm
lz + N(p)|lp = p(x), and AL, the completion of A, /N (py) with respect to
the norm |la + N(po)|lp, = po(a). Then AL, is a C*-algebra and X? is a

Banach 2%,-module. Let (®,7) be a modular representation of X*. Then we
define a representation of X by

&(x) =P(x+ N(p)), =z€X,
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and a *-representation 7 of A, by
m(a) =7(a+ N(po)), a€Uy,.

Then (&, 7) is a modular representation of X. Indeed, since aN(p) C N(p)
for every a € 2, and N(pg)z C N(p) for every = € X, we get

P(ax) = P(ax + N(p)) = ¢((a + N(po))(z + N(p)))

=7(a+ N(po))®(z + N(p)) = w(a)®(z).
The *-representation 7 of 2(,, is automatically bounded and pg-continuous.
One has indeed
Im(a)l| = [[7(a + N(po))ll < pola), VaeA,.

The p-continuity of @ can also be checked by verifying one of the char-
acterizations of the continuity of modular representations of Banach C*-
modules discussed in [8]. There are, of course, other situations where prop-

erties of (@, 7) can be pulled back to obtain properties of (@, 7). For instance,
if we prove that there exists a representation @ of X? satisfying

[2(z + N))|| = [z + N@)l, = p(z),
then also a representation of X with the same property is found.

4. Examples. In this final section we give some examples and applica-
tions of the ideas developed so far.

EXAMPLE 4.1. Let X be a left Hilbert 2,-module in the sense of [4].
Then X is at once a left 2,-module and a Hilbert space with inner product
(-]-) such that

(ax|y) = (z|a®y), Va €U, x,yeX.

Then ¢(z,y) = (zly), =,y € X, is a modular invariant form and it is,
obviously, bounded with respect to the norm p(-) = (:|)1/2. If ¢ € C,(X),
then there exists a bounded operator Tj, in X such that

o(x,y) = (Tpxly), Va,yeX.
From the properties of ¢ one deduces that T, > 0 and that T,,L, = L,T,
for every a € A, where L, denotes the operator of left multiplication by a.
Now ¢ € §,(X) if, and only if, || T, || < 1. Indeed, we have
p(z,z) (Typz|z)
p(x)? p(z)?
taking into account that T, is self-adjoint. Finally, it is clear that S,(X) has
a maximum. Indeed, for any ¢ € S,(%),
|o(x, )| < p(z)? = (z[z).
The norm p of X is clearly regular.

p e Sy(X) & sup <1 & sup <1 & T, <1,
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EXAMPLE 4.2. Let I be an interval of the real line. We consider L"(I),
r > 1, as a Banach L°°(I)-module (if / has finite Lebesgue measure, then
L*>°(I) € L"(I) and we speak in this case of a CQ*-algebra). Of course we
take p to be the usual norm of L"(I) and we simply write S(X) instead of
Sp(X). It is not difficult to see that, if » > 2, then S(L"(1)) is quite rich [3];
indeed,

S(L7(D) = {pw s w € L7OID), [wllyrs) = 1, w = 0},

where

pu(@y) = 2)yOw(t)dt, x,yeL(I).
I

If 1 <r < 2 then, as in [3], one can prove that S(L"(I)) = (. If » > 2, then
sup{ew(@,2) :w € L), |Jwll, /gy = 1, w > 0} = ||z,

for all x € L"(I). Then S(L"(I)) may have a maximum if it satisfies the
parallelogram law. But this happens only if » = 2 (the maximum being the
inner product itself).

If I is a bounded interval (we take I = [0, 1]), then, according to Propo-
sition 3.7, a modular representation (@, ) of L"(I) with 7 bounded exists
for any 7 > 2. Indeed, it suffices to define, for x € L"(I), ®(z) = = € L*(I)
and, for every v € L>(I), (7(v)z)(t) = v(t)x(t), z € L"(I).

EXAMPLE 4.3. Any *-algebra 20, may be viewed, in the obvious way,
as a left A,-module. If w is a positive linear functional on A, then putting
Yw(a,b) = w(b*a), one obtains a modular invariant form. Assume that there
exists an M-seminorm on 2, such that the set of positive linear functionals
w on A, for which ¢, is p-bounded is nontrivial. This, of course, implies
that S(2,) is nontrivial. Then 2(, admits a nonzero C*-seminorm, namely
sp. Hence 2, admits bounded *-representations.

EXAMPLE 4.4. Let 2, be a *-algebra (possibly without unit) and X a
left 2,-module. Assume that 2, contains two elements a, b such that

(4.1) abr —bax =z, VrelX.

Then there cannot exist any modular representation (@, ), with 7 bounded,
since in this case,

m(a)m(b)®(x) — 7(b)w(a)®(x) = P(x), Ve X.
The density of &(X) would then imply that w(a)m(b) —m(b)w(a) = L, and this
is impossible because of the Wiener—Wielandt theorem (see, e.g., [6, Sect.
2.2]). If 2, has a unit e, then from (4.1) it follows that ab—ba = e; if X admits
an M-seminorm p, then necessarily S,(X) = {0}, since otherwise s would

be a C*-seminorm on 2A,, and A, would have a bounded *-representation
7 such that 7(a)mw(b) — w(b)w(a) = L
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