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Representations of modules over a ∗-algebra

and related seminorms

by

Camillo Trapani and Salvatore Triolo (Palermo)

Abstract. Representations of a module X over a ∗-algebra A# are considered and
some related seminorms are constructed and studied, with the aim of finding bounded
∗-representations of A#.

1. Introduction. As is known, if A# is an involutive algebra and π is
a ∗-representation of A# with domain D(π) in a Hilbert space H, then D(π)
may be viewed as a left A#-module with module operation defined by

a · ξ = π(a)ξ, a ∈ A#, ξ ∈ D(π).

From the reverse point of view, one can ask if every A#-module X admits a
representation that reproduces the situation of the above example. Such a
representation, to be called modular, consists of a couple (Φ, π) where Φ is
a linear map of X into some Hilbert space, π is a ∗-representation defined
on D(π) = Φ(X), and Φ and π are coupled by the relation

π(a)Φ(x) = Φ(ax), a ∈ A#, x ∈ X.

The existence of a modular representation and its possible continuity were
examined in [8] in the case where X is a Banach module over the C∗-algebra
A# and it was proved that the existence of a modular representation is
equivalent to the possibility of performing a sort of Gelfand–Naimark–Segal
(GNS) representation starting from certain (in general, not everywhere de-
fined) positive sesquilinear forms, called modular biweights for the close anal-
ogy they exhibit with biweights on a partial ∗-algebra [1, 2]. These existence
results will be restated (mostly without proofs) in Section 2 for the general
case where X is a left A#-module. In the case considered in [8], A# was taken
as a C∗-algebra, hence there was no room for a possibly unbounded repre-
sentation of A#. In more general situations (for instance, if A# is simply
a ∗-algebra), ∗-representations of A# take values in the ∗-algebra L†(D(π))
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of all weakly continuous endomorphisms of a pre-Hilbert space D(π), and
these are often unbounded operators.

The problem we want to investigate here originates from the very well-
known fact that a ∗-algebra A# admits a bounded representation if, and
only if, there is a C∗-seminorm defined on A# [5]. A similar approach is
suggested here by the following simple example.

Let (Φ, π) be a modular representation of A#, with π a bounded ∗-re-
presentation of A# in Hilbert space H. If we put

pΦ(x) = ‖Φ(x)‖, x ∈ X,

then pΦ is a seminorm on X enjoying the following properties:

(i) pΦ(ax) ≤ ‖π(a)‖pΦ(x), ∀a ∈ A#, x ∈ X,
(ii) pΦ

0 (a) := suppΦ(x)=1 pΦ(ax) = ‖π(a)‖, ∀a ∈ A#.

Thus the reduced seminorm pΦ
0 of pΦ is a C∗-seminorm on A#. This

example suggests considering seminorms p on X for which the map x 7→ ax
is p-continuous for every a ∈ A# (we name them M -seminorms) and the
corresponding reduced seminorm p0 is a C∗-seminorm (in this case p is
called an MC∗-seminorm)

On the other hand, if X admits a nontrivial MC∗-seminorm, then A#

certainly possesses bounded ∗-representations, but in general we cannot say
that a modular representation (Φ, π) of X with π bounded does really exist.

The aim of this paper is to characterize the existence of a modular rep-
resentation (Φ, π) such that π is bounded and (Φ, π) satisfies prescribed
conditions of continuity. More precisely, assuming that an M -seminorm p is
defined on X, we look for a modular representation (Φ, π) with π bounded
and such that {

‖Φ(x)‖ ≤ p(x), ∀x ∈ X,

‖π(a)‖ ≤ p0(a), ∀a ∈ A#.

We prove that a necessary and sufficient condition for this to hold is that
the family Sp(X) of all p-bounded modular invariant forms (i.e. everywhere
defined modular biweights) is nontrivial. This characterization relies on the
fact that if X carries an M -seminorm p, then starting from Sp(X), it is
possible to construct a nontrivial MC∗-seminorm sp on X.

As a second step, coming back to the example discussed above, we con-
sider the following stronger question: given an M -seminorm p on X, does
there exist a modular representation (Φ, π) such that p(x) = ‖Φ(x)‖ for
every x ∈ X and p0(a) = ‖π(a)‖ for every a ∈ A#? The answer is that a
necessary and sufficient condition for a representation (Φ, π) of this type to
exist is that p is an MC∗-seminorm satisfying the parallelogram law. The
latter condition is, of course, quite strong, because it forces X to be con-
tained (up to a quotient) in a Hilbert space. Thus, going one step further,
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we refer the same question to the MC∗-seminorm sp, which is, in general,
weaker than p. The outcome is that a necessary and sufficient condition for
the existence of a modular representation (Φ, π) with π bounded and having
the properties {

‖Φ(x)‖ = sp(x), ∀x ∈ X,

‖π(a)‖ = s
p
0(a), ∀a ∈ A#,

is that Sp(X) is rich enough and has a maximum.

2. Modules and representations. In this section we collect some def-
initions and preliminary results that are needed in what follows. We also give
some examples that, as we shall see, play a crucial role for representations.

Let A# be a ∗-algebra, with involution #, and X a vector space. We say
that X is a left A#-module if there is a bilinear map

(a, x) 7→ ax

from A# × X into X such that

(a1a2)x = a1(a2x), ∀a1, a2 ∈ A#, x ∈ X.

If A# has no unit, we can consider its unitization Ae
#

:= A# ⊕ C; then X is
also an Ae

#
-module with module multiplication defined by

(a, λ)x := ax + λx, x ∈ X, a ∈ A#, λ ∈ C.

Thus there is no loss of generality in assuming that A# has a unit.
We shall always suppose that the module action of A# on X is nontrivial,

i.e., if a ∈ A# and ax = 0 for every x ∈ X, then a = 0.

Definition 2.1. Let X be a left A#-module. A modular representation of
X in a Hilbert space H consists of a linear map Φ : X → H, with Φ(X) dense
in H, and a #-representation of A#, π : A# → L†(D(π)), with D(π) = Φ(X),
such that

Φ(ax) = π(a)Φ(x), ∀a ∈ A#, x ∈ X.

A modular representation as above will be denoted (Φ, π).

Let X be a left A#-module and ϕ a positive sesquilinear form on X×X.
Positivity implies that the Cauchy–Schwarz inequality holds and that ϕ is
hermitian; i.e.,

• |ϕ(x, y)| ≤ ϕ(x, x)1/2ϕ(y, y)1/2, ∀x, y ∈ X,

• ϕ(x, y) = ϕ(y, x), ∀x, y ∈ X.

Definition 2.2. Let X be a left A#-module. A positive sesquilinear form
ϕ on X × X is said to be modular invariant if

ϕ(ax, y) = ϕ(x, a#y), ∀a ∈ A#, x, y ∈ X.

The set of all modular invariant forms of X is denoted by MI(X).
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Remark 2.3. A modular invariant sesquilinear form is an everywhere
defined modular biweight. Modular biweights were introduced in [8] for
studying modular representations of Banach C∗-modules. They are, in gen-
eral, defined only on a submodule of X.

We will show that every ϕ ∈ MI(X) can be used to construct a modular
representation of X.

Let X be a left A#-module. Assume that there exists a linear map Φ :
D(Φ) → H, where H is a Hilbert space, such that Φ(X) is dense in H and

〈Φ(ax)|Φ(y)〉 = 〈Φ(x)|Φ(a#y)〉, ∀a ∈ A#, x, y ∈ X.

Then a #-representation of A# can be easily defined by putting
{
D(π) := Φ(X),

π(a)Φ(x) = Φ(ax), a ∈ A#, x ∈ X.

It is easily seen that (Φ, π) is a modular representation of X.
Moreover, if we define

ϕΦ(x, y) := 〈Φ(x)|Φ(y)〉, x, y ∈ X,

then ϕ is a modular invariant form in the sense of Definition 2.2. Conversely,
we will show that any modular invariant form defines a modular represen-
tation.

Theorem 2.4. For each ϕ ∈ MI(X), there exist a Hilbert space Hϕ, a

linear map Φϕ : X → Hϕ and a closed ∗-representation πϕ of A# into Hϕ

such that :

• ϕ(x, y) = 〈Φϕ(x)|Φϕ(y)〉, ∀x, y ∈ X,
• ϕ(ax, y) = 〈πϕ(a)Φϕ(x)|Φϕ(y)〉, ∀a ∈ A#, x, y ∈ X.

Proof. We put

Nϕ = {x ∈ X : ϕ(x, x) = 0} = {x ∈ X : ϕ(x, y) = 0, ∀y ∈ X}.

Let Xϕ := X/Nϕ and put λϕ(x) := x+Nϕ, x ∈ X. Then Xϕ is a pre-Hilbert
space with respect to the inner product

〈λϕ(x)|λϕ(y)〉 = ϕ(x, y), x, y ∈ X.

Let Hϕ be the Hilbert space completion of Xϕ. The map

Φϕ : x ∈ X 7→ λϕ(x) ∈ Xϕ ⊂ Hϕ

is, clearly, linear. Moreover, Φϕ(X) is, by the definition itself, dense in Hϕ.
Since if x ∈ Nϕ then ax ∈ Nϕ for every a ∈ A#, the map

π0
ϕ(a)λϕ(x) = λϕ(ax), x ∈ X,

is a well-defined operator in Xϕ. It is easy to prove that π0
ϕ is a ∗-representa-

tion of A#. The closure πϕ of π0
ϕ is the desired ∗-representation of A#.
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Definition 2.5. The triple (Φϕ, πϕ,Hϕ) is called the GNS construction

for the modular invariant form ϕ of X.

The previous discussion can be summarized in the following

Proposition 2.6. Let X be a left A#-module. The following statements

are equivalent.

(i) There exists a nontrivial modular representation (Φ, π) of X.

(ii) There exists a linear map Φ : X → H, with H a Hilbert space and

Φ(X) dense in H, with the property

〈Φ(ax)|Φ(y)〉 = 〈Φ(x)|Φ(a#y)〉, ∀a ∈ A#, x, y ∈ X.

(iii) There exists a nonzero modular invariant sesquilinear form ϕ on X.

Proposition 2.7. Let X be a left A#-module. The following statements

are equivalent.

(i) There exists a modular representation (Φ, π) of X with π bounded.

(ii) There exists ϕ ∈ MI(X) such that

∀a ∈ A#, ∃γa > 0 : ϕ(ax, ax) ≤ γaϕ(x, x), ∀x ∈ X.

Proof. If ϕ ∈ MI(X), then the ∗-representation πϕ is bounded if, and
only if, the condition stated in (ii) is fulfilled, as is readily checked. On
the other hand, if (Φ, π) is a modular representation of X with π bounded,
it is easy to see that the modular invariant form ϕ defined by ϕ(x, y) =
〈Φ(x)|Φ(y)〉, x, y ∈ X, satisfies the condition given in (ii).

3. Bounded ∗-representations and MC∗-seminorms. We now in-
troduce some classes of seminorms on X which will help us analyse the
existence of bounded ∗-representations of A#.

Let X be a left A#-module and p a seminorm on X. We say that p is an
M -seminorm if, for each a ∈ A#, there exists γa > 0 such that

p(ax) ≤ γap(x), ∀x ∈ X.

In this case, we can define the reduced seminorm p0 by

p0(a) = sup
p(x)=1

p(ax), a ∈ A#.

With this definition one has

(3.1) p(ax) ≤ p0(a)p(x), ∀a ∈ A#, x ∈ X.

Moreover,

(3.2) p0(ab) ≤ p0(a)p0(b), ∀a, b ∈ A#.

If p0 is a C∗-seminorm on A#, i.e. if it satisfies the C∗-condition p0(a
#a)

= p0(a)2 for every a ∈ A#, then we say that p is an MC∗-seminorm. We
notice that the C∗-condition implies that p0 is submultiplicative [7].
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Let (Φ, π) be a modular representation of X. We put

pΦ(x) = ‖Φ(x)‖, x ∈ X.

Then pΦ is a Hilbert seminorm, i.e. it satisfies the parallelogram law

pΦ(x + y)2 + pΦ(x − y)2 = 2pΦ(x)2 + 2pΦ(y)2, ∀x, y ∈ X.

Moreover,

Proposition 3.1. The following statements are equivalent.

(i) pΦ is an M -seminorm.

(ii) π is bounded on D(π) = Φ(X).
(iii) pΦ is an MC∗-seminorm.

Proof. (i)⇒(ii): If pΦ is an M -seminorm, then, for every a ∈ A#, there
exists γa > 0 such that

pΦ(ax) ≤ γap
Φ(x), ∀x ∈ X.

Then we have

‖π(a)Φ(x)‖ = ‖Φ(ax)‖ = pΦ(ax) ≤ γap
Φ(x) = γa‖Φ(x)‖.

Therefore the restriction of π to D(π) is bounded.
(ii)⇒(iii): We have

pΦ
0 (a) = sup

pΦ(x)=1

pΦ(ax) = sup
‖Φ(x)‖=1

‖Φ(ax)‖ = sup
‖Φ(x)‖=1

‖π(a)Φ(x)‖ = ‖π(a)‖.

Therefore pΦ
0 is a C∗-seminorm on A#.

(iii)⇒(i): This is trivial.

Let X be a left A#-module and p an M -seminorm on X. We denote
by Cp(X) the family of modular invariant sesquilinear forms ϕ that are p-
bounded, i.e.

|ϕ(x, y)| ≤ γp(x)p(y) for some γ > 0 and all x, y ∈ X.

We denote by ‖ϕ‖p the infimum of all γ’s for which the above inequality
holds. Finally, let

Sp(X) = {ϕ ∈ Cp(X) : ‖ϕ‖p ≤ 1}.

We put
s
p(x) = sup

ϕ∈Sp(X)
ϕ(x, x)1/2, x ∈ X,

and
N(sp) = {x ∈ X : s

p(x) = 0}.

Then, as is easily seen, sp is a seminorm on X satisfying sp(x) ≤ p(x) for
every x ∈ X, and N(sp) is an A#-submodule of X.

Proposition 3.2. For every M -seminorm p, sp is an MC∗-seminorm

on X.
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Proof. For every ϕ ∈ MI(X), we put

ωx
ϕ(a) = ϕ(ax, x), a ∈ A#.

Then ωx
ϕ is a positive linear functional on A#, and if ϕ ∈ Cp(X), it is p0-

continuous, since

|ωx
ϕ(a)| ≤ ‖ϕ‖p p0(a)p(x)2, ∀a ∈ A#.

The family

F = {ωx
ϕ : ϕ ∈ Cp(X), x ∈ X}

is balanced in the sense of Yood [9]. Therefore, if we put

|a|F = sup{ωx
ϕ(a#a)1/2 : ϕ ∈ Cp(X), x ∈ X, ϕ(x, x) = 1},

then

D(F) = {a ∈ A# : |a|F < ∞} = A#

and | · |F is a C∗-seminorm on A#.

Since, for every ϕ ∈ F and x ∈ X, the form ωx
ϕ is | · |F -continuous, we

get, for every n ∈ N,

ϕ(ax, ax) ≤ ϕ(x, x)1−2−n

(‖ωx
ϕ‖F |(a#a)2

n

|F )2
−n

, ∀a ∈ A#,

where ‖ωx
ϕ‖F = sup{|ωx

ϕ(a)| : |a|F = 1}. Letting n → ∞, we have

(3.3) ϕ(ax, ax) ≤ |a#a|F ϕ(x, x).

This in turn implies that

s
p(ax) ≤ |a|2Fs

p(x), ∀x ∈ X, a ∈ A#.

Thus sp is an M -seminorm on X. From this estimate it also follows that

(3.4) s
p
0(a) ≤ |a|F , a ∈ A#.

To complete the proof we only need to prove the converse inequality. For
this, making use of the definition of sp and of (3.1), for every ϕ ∈ Cp(X),
one has

|ϕ(ax, x)| ≤ ‖ϕ‖p s
p(ax)sp(x) ≤ ‖ϕ‖ps

p
0(a)sp(x)2, ∀a ∈ A#, x ∈ X.

Therefore, every ωx
ϕ is s

p
0-continuous. Then, proceeding as we did for getting

the inequality (3.3), we can prove

ωx
ϕ(a#a) = ϕ(ax, ax) ≤ s

p
0(a

#a)ϕ(x, x).

This implies that

(3.5) |a#a|F = |a|2F ≤ s
p
0(a

#a), ∀a ∈ A#.

Hence, by (3.4),

s
p
0(a)2 ≤ |a|2F = |a#a|F ≤ s

p
0(a

#a) ≤ s
p
0(a

#)sp
0(a), ∀a ∈ A#.
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Thus, s
p
0(a) ≤ s

p
0(a

#), which in turn implies s
p
0(a) = s

p
0(a

#) for every a ∈ A#.
Coming back to (3.5), one finally obtains

|a|F ≤ s
p
0(a), ∀a ∈ A#.

Then |a|F = s
p
0(a) for all a ∈ A#, and thus s

p
0 is a C∗-seminorm on A#.

Remark 3.3. Since |ωx
ϕ(a)| ≤ p0(a)p(x)2 for every a ∈ A# and x ∈ X,

we have

|ωx
ϕ(a#a)| ≤ p0(a)2ϕ(x, x), ∀a ∈ A#, x ∈ X.

This implies that, in general, s
p
0(a) ≤ p0(a) for every a ∈ A#.

Remark 3.4. Given a left A#-module X, it may well happen that Sp(X)
= {0}. If this occurs, one clearly has sp(x) = 0 for every x ∈ X. This is quite
a singular case, since it implies that there are no nontrivial modular repre-
sentations of X. For this reason, we will suppose that Sp(X) is nontrivial.

Definition 3.5. An MC∗-seminorm p on X is called regular if p(x) =
sp(x) for every x ∈ X.

As we have seen before, to every ϕ ∈ Sp(X) there corresponds a GNS
construction (Φϕ, πϕ,Hϕ). The p-boundedness of ϕ implies the p-continuity
of Φϕ and ‖Φϕ(x)‖ ≤ p(x) for every x ∈ X. Conversely, to every linear map
Φ from X into some Hilbert space H with the property

〈Φ(ax)|Φ(y)〉 = 〈Φ(x)|Φ(a#y)〉, ∀a ∈ A#, x, y ∈ X,

and such that

‖Φ(x)‖ ≤ p(x), ∀x ∈ X,

there corresponds a sesquilinear form ϕΦ ∈ Sp(X) with

ϕΦ(x, y) = 〈Φ(x)|Φ(y)〉, ∀x, y ∈ X.

Thus we have

Proposition 3.6. N(sp) coincides with the intersection of the kernels of

all the maps Φ, where (Φ, π) is a modular representation of X with ‖Φ(x)‖ ≤
p(x) for every x ∈ X. N(sp) is a p-closed A#-submodule of X (i.e. if {xn} ⊂
N(sp) and p(xn − x) → 0, then x ∈ N(sp)).

As a consequence, the existence of an M -seminorm on X such that Sp(X)
is nontrivial implies that s

p
0 is a nonzero C∗-seminorm on A#. Therefore, A#

admits a bounded ∗-representation π such that ‖π(a)‖ = s
p
0(a) for every

a ∈ A#. But we can say more.

Proposition 3.7. Let X be a left A#-module and p an M -seminorm

on X. The following conditions are equivalent.
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(i) There exists a modular representation (Φ, π) with the properties
{
‖Φ(x)‖ ≤ p(x), ∀x ∈ X,

‖π(a)‖ ≤ p0(a), ∀a ∈ A#.

(ii) Sp(X) 6= {0}.

Proof. (i)⇒(ii): Define

ϕ(x, y) = 〈Φ(x)|Φ(y)〉, x, y ∈ X.

Then it is easy to see that ϕ ∈ Sp(X).
(ii)⇒(i): Assume that ϕ ∈ Sp(X) and let (λϕ, πϕ,Hϕ) be the correspond-

ing GNS construction. Then, putting as before Φϕ(x) = λϕ(x), x ∈ X, we
have

‖Φϕ(x)‖2 = ‖λϕ(x)‖2 = ϕ(x, x) ≤ p(x)2, ∀x ∈ X,

and

‖πϕ(a)λϕ(x)‖2 = ϕ(ax, ax) ≤ s
p
0(a)2ϕ(x, x) = s

p
0(a)2‖λϕ(x)2‖, ∀a ∈ A#.

Hence πϕ is bounded and

‖πϕ(a)‖ ≤ s
p
0(a) ≤ p0(a), ∀a ∈ A#.

As we have seen, if an M -seminorm p on X is defined, then, if Sp(X) 6= {0}
there exists a nontrivial MC∗-seminorm on X, namely sp. Since s

p
0 is a C∗-

seminorm, it is then natural to pose the following

Question 1. Given an M -seminorm p on X, does there exist a modular
representation (Φ, π) such that Φ is p-bounded and s

p
0(a) = ‖π(a)‖ for every

a ∈ A#?

In order to answer this question, we first state the following stronger one:

Question 2. Given an M -seminorm p on X, does there exist a rep-
resentation (Φ, π) of X such that p(x) = ‖Φ(x)‖ for every x ∈ X and
p0(a) = ‖π(a)‖ for every a ∈ A#?

If the answer to Question 2 is affirmative, then, by Proposition 3.1, p is
automatically an MC∗-seminorm. Some additional properties of p and sp

are given in the following

Proposition 3.8. Let X be a left A#-module and p an M -seminorm

on X. Assume that there exists a modular representation (Φ, π) such that

p(x) = ‖Φ(x)‖ for every x ∈ X. Then the following statements hold.

(i) p is a Hilbert seminorm.

(ii) p is a regular MC∗-seminorm.

(iii) p0(a) = s
p
0(a) = ‖π(a)‖ for every a ∈ A#.

(iv) The set Sp(X) has a maximum, i.e. there exists ϕ ∈ Sp(X) such that

ϕ(x, x) = sup
ϕ∈Sp(X)

ϕ(x, x) = s
p(x)2 = p(x)2, ∀x ∈ X.
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Proof. (i) Since p(·) = ‖Φ(·)‖ and ‖Φ(·)‖ is a Hilbert seminorm, p must
obey the parallelogram law.

(ii) We put, as before, ϕΦ(x, y) = 〈Φ(x)|Φ(y)〉, x, y ∈ X. Then

|ϕΦ(x, y)| = |〈Φ(x)|Φ(y)〉| ≤ ‖Φ(x)‖ ‖Φ(y)‖ = p(x)p(y), ∀x, y ∈ X.

Thus, ϕΦ ∈ Sp(X). Then we have

p(x)2 = ‖Φ(x)‖2 ≤ sup
ϕ∈Sp(X)

ϕ(x, x) = s
p(x)2.

Hence p(x) = sp(x) for every x ∈ X.
(iii) The equality p(·) = sp(·) also implies that s

p
0(a) = p0(a) for every

a ∈ A#. Moreover,

p0(a) = sup
p(x)=1

p(ax) = sup
‖Φ(x)‖=1

‖Φ(ax)‖

= sup
‖Φ(x)‖=1

‖π(a)Φ(x)‖ = ‖π(a)‖, ∀a ∈ A#.

(iv) The form ϕΦ is indeed a maximum for Sp(X). We have, in fact, for
any ϕ ∈ Sp(X),

ϕ(x, x) ≤ p(x)2 = ‖Φ(x)‖2 = 〈Φ(x)|Φ(x)〉 = ϕΦ(x, x), ∀x ∈ X.

In order to prove the converse of the previous proposition, we need the
following

Lemma 3.9. Let A be a C∗-algebra with unit e, with norm ‖ · ‖ and

involution ∗. Let B be a closed subalgebra of A which is a C∗-algebra, with

respect to the same norm ‖ · ‖ and the involution #, and such that e ∈ B

and e# = e. Then x# = x∗ for every x ∈ B.

Proof. Let F be a positive linear functional on A. Then F is bounded
and ‖F‖ = F (e). Let F0 denote the restriction of F to B. Then

F (e) ≤ ‖F0‖ ≤ ‖F‖ = F (e).

Hence, F0 is positive on B, i.e., F (x#x) ≥ 0 for every x ∈ B. Let now y ∈ B

with y# = y. Then F0(y) is real and, since F is hermitian, we get

F (y∗) = F (y) = F (y).

Hence F (y∗ − y) = 0 and, from the arbitrariness of F , y = y∗.
Let now x ∈ B. Then x = z + iw where z = (x + x#)/2 and w =

(x − x#)/2i. Then, since z = z# and w = w#, one has z = z∗ and w = w∗.
These imply that

x + x# = x∗ + x#∗ and x − x# = x#∗ − x∗,

whence it follows that x = x#∗. We conclude that x∗ = x#.

Proposition 3.10. Let X be a left A#-module and p an M -seminorm

on X. The following statements are equivalent.
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(i) p is an MC∗-seminorm and a Hilbert seminorm.

(ii) There exists a modular representation (Φ, π) such that ‖Φ(x)‖ = p(x)
for every x ∈ X and ‖π(a)‖ = p0(a) for every a ∈ A#.

Proof. We need only prove that (i)⇒(ii). Since p satisfies the parallelo-
gram law, if we put

ϕp(x, y) =
1

4

3∑

k=0

ikp(x + iky)2, x, y ∈ X,

then ϕp is a positive sesquilinear form on X and

{x ∈ X : ϕp(x, x) = 0} = {x ∈ X : p(x) = 0} =: N(p).

Then X/N(p) is a pre-Hilbert space with inner product

〈λp(x)|λp(y)〉p = ϕp(x, y), x, y ∈ X,

where λp(x) := x + N(p). Let Hp denote the Hilbert space completion of
X/N(p). We put Φ(x) = λp(x), x ∈ X. Then Φ is a linear map of X into Hp.
By the definition itself, Φ(X) is dense in X and ‖Φ(x)‖ = p(x) for every
x ∈ X.

For every a ∈ A#, we define a linear map π(a) on X/N(p) by

π(a)λp(x) = λp(ax), x ∈ X.

This map is well-defined, since if a ∈ A# and x ∈ N(p), then ax ∈ N(p).
Moreover, π(a) is bounded. Indeed,

‖π(a)λp(x)‖2
p = ‖λp(ax)‖2

p = ϕp(ax, ax) = p(ax)2

≤ p0(a)2p(x)2 = p0(a)2‖λp(x)‖2
p.

Therefore π(a) extends to a bounded operator on Hp, denoted by the same
symbol. It is easily seen that π preserves the algebraic operations of A#. For
a ∈ A#, let π(a)∗ denote the Hilbert adjoint of π(a). It remains to prove
that π(a#) = π(a)∗ for every a ∈ A#.

For every a ∈ A#, we have

p0(a) = sup
p(x)=1

p(ax) = sup
ϕp(x,x)=1

ϕp(ax, ax)1/2

= sup
‖λp(x)‖p=1

‖λp(ax)‖p = ‖π(a)‖.

Since p0 is a C∗-seminorm, we have

(3.6) ‖π(a)‖2 = p0(a)2 = p0(a
#a) = ‖π(a#a)‖.

Let N0 be the norm closure of the algebra {π(a) : a ∈ A#}. By (3.6), N0

is a C∗-algebra with respect to the norm ‖ · ‖ of bounded operators in Hp

and the involution π(a) 7→ π(a#), which is well-defined since (3.6) implies
that ‖π(a#)‖ = ‖π(a)‖ for every a ∈ A#. Let N be the C∗-subalgebra
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of B(Hp) generated by N0. Since π(e)∗ = π(e#) = I, the identity of Hp,
Lemma 3.9 implies that π(a#) = π(a)∗ for every a ∈ A#. Therefore π is a
∗-representation of A#.

As is apparent from Proposition 3.8, the condition ‖Φ(x)‖ = p(x) for
every x ∈ X seems to be a really strong one, essentially because it forces p
to be a Hilbert seminorm. The analysis of this situation, however, is of some
help for answering Question 1.

If the set Sp(X) has a maximum ϕ, in the sense of (iv) of Proposition 3.8,
then

ϕ(x, x) = sup
ϕ∈Sp(X)

ϕ(x, x) = s
p(x)2, ∀x ∈ X.

This implies that

ϕ(x, y) =
1

4

3∑

k=0

ik sup
ϕ∈Sp(X)

ϕ(x + iky, x + iky).

Therefore, the right hand side of this equality must be a sesquilinear form
on X×X, which is not true in general. As we shall see below, a necessary and
sufficient condition for this to hold is provided by the so-called net property

(see [1, Sec. 9.3]).

Definition 3.11. We say that Sp(X) has the net property if, for any
finite subset {x1, . . . , xm} of X, there exists a sequence {ϕn} in Sp(X) such
that

lim
n→∞

ϕn(xk, xk) = sup
ϕ∈Sp(X)

ϕ(xk, xk)

for k = 1, . . . , m.

Theorem 3.12. Let X be a left A#-module and p an M -seminorm on X.

The following statements are equivalent.

(i) There exists an MC∗-seminorm q satisfying the parallelogram law

and such that

(i.a) q(x) ≤ p(x) for every x ∈ X;
(i.b) Cq(X) = Cp(X).

(ii) There exists a modular representation (Φ, π) of X such that ‖Φ(x)‖
= sp(x) for every x ∈ X and ‖π(a)‖ = s

p
0(a) for every a ∈ A#.

(iii) Sp(X) has a maximum.

(iv) Sp(X) has the net property.

Proof. (i)⇒(ii): The assumption implies, by Proposition 3.10, that there
exists a modular representation (Φ, π) of X such that ‖Φ(x)‖ = q(x) for
every x ∈ X and ‖π(a)‖ = q0(a) for every a ∈ A#. By (ii) and (iii) of
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Proposition 3.8 one has

q(x) = s
q(x) = s

p(x), ∀x ∈ X,

and hence

q0(a) = s
q
0(a) = s

p
0(a), ∀a ∈ A#.

The equality sp(·) = sq(·) is due to (i.b).

(ii)⇒(iii): Put ϕ(x, y) = 〈Φ(x)|Φ(y)〉 for every x, y ∈ X. Then it is easily
seen that ϕ ∈ Sp(X). If ϕ ∈ Sp(X) we have

ϕ(x, x) ≤ s
p(x)2 = ‖Φ(x)‖2 = ϕ(x, x), ∀x ∈ X.

Hence ϕ is a maximum of Sp(X).

(iii)⇒(iv): Let ϕ be the maximum of X. It is clear that the constant
sequence {ϕk} with ϕk = ϕ satisfies the requirements of Definition 3.11.

(iv)⇒(iii): Since Sp(X) has the net property, if we put

ϕ(x, y) =
1

4

3∑

k=0

ik sup
ϕ∈Sp(X)

ϕ(x + iky, x + iky), x, y ∈ X,

then ϕ is a positive sesquilinear form on X × X satisfying the conditions of
Definition 2.2, thus it is a modular invariant sesquilinear form on X. One
has

ϕ(x, x) = sup
ϕ∈Sp(X)

ϕ(x, x) ≤ p(x)2.

Hence ϕ ∈ Sp(X) and it is the maximum.

(iii)⇒(i): Let ϕ be the maximum of Sp(X) and define q(x) = ϕ(x, x)1/2,
x ∈ X. Then, clearly, q(x) ≤ p(x) for every x ∈ X. Moreover, if ϕ ∈ Sp(X),
then

ϕ(x, x) ≤ ϕ(x, x) = q(x)2, ∀x ∈ X.

Hence, ϕ ∈ Sq. This easily implies the equality Cq(X) = Cp(X).

Remark 3.13. We conclude by noticing that the existence of an MC∗-
seminorm p on X has other profitable features that are worth mentioning:
these are due to the fact that a natural Banach C∗-module is defined by p.
Indeed, let, as before,

N(p) = {x ∈ X : p(x) = 0}, N(p0) = {a ∈ A# : p0(a) = 0}.

Now, let Xp denote the completion of X/N(p) with respect to the norm
‖x + N(p)‖p = p(x), and A

p
# the completion of A#/N(p0) with respect to

the norm ‖a + N(p0)‖p0
= p0(a). Then A

p
# is a C∗-algebra and Xp is a

Banach A
p
#-module. Let (Φ̃, π̃) be a modular representation of Xp. Then we

define a representation of X by

Φ(x) = Φ̃(x + N(p)), x ∈ X,
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and a ∗-representation π of A# by

π(a) = π̃(a + N(p0)), a ∈ A#.

Then (Φ, π) is a modular representation of X. Indeed, since aN(p) ⊆ N(p)
for every a ∈ A# and N(p0)x ⊆ N(p) for every x ∈ X, we get

Φ(ax) = Φ̃(ax + N(p)) = Φ̃((a + N(p0))(x + N(p)))

= π̃(a + N(p0))Φ̃(x + N(p)) = π(a)Φ(x).

The ∗-representation π of A# is automatically bounded and p0-continuous.
One has indeed

‖π(a)‖ = ‖π̃(a + N(p0))‖ ≤ p0(a), ∀a ∈ A#.

The p-continuity of Φ can also be checked by verifying one of the char-
acterizations of the continuity of modular representations of Banach C∗-
modules discussed in [8]. There are, of course, other situations where prop-

erties of (Φ̃, π̃) can be pulled back to obtain properties of (Φ, π). For instance,

if we prove that there exists a representation Φ̃ of Xp satisfying

‖Φ̃(x + N(p))‖ = ‖x + N(p)‖p = p(x),

then also a representation of X with the same property is found.

4. Examples. In this final section we give some examples and applica-
tions of the ideas developed so far.

Example 4.1. Let X be a left Hilbert A#-module in the sense of [4].
Then X is at once a left A#-module and a Hilbert space with inner product
〈·|·〉 such that

〈ax|y〉 = 〈x|a#y〉, ∀a ∈ A#, x, y ∈ X.

Then ϕ(x, y) = 〈x|y〉, x, y ∈ X, is a modular invariant form and it is,
obviously, bounded with respect to the norm p(·) = 〈·|·〉1/2. If ϕ ∈ Cp(X),
then there exists a bounded operator Tϕ in X such that

ϕ(x, y) = 〈Tϕx|y〉, ∀x, y ∈ X.

From the properties of ϕ one deduces that Tϕ ≥ 0 and that TϕLa = LaTϕ

for every a ∈ A#, where La denotes the operator of left multiplication by a.
Now ϕ ∈ Sp(X) if, and only if, ‖Tϕ‖ ≤ 1. Indeed, we have

ϕ ∈ Sp(X) ⇔ sup
ϕ(x, x)

p(x)2
≤ 1 ⇔ sup

〈Tϕx|x〉

p(x)2
≤ 1 ⇔ ‖Tϕ‖ ≤ 1,

taking into account that Tϕ is self-adjoint. Finally, it is clear that Sp(X) has
a maximum. Indeed, for any ϕ ∈ Sp(X),

|ϕ(x, x)| ≤ p(x)2 = 〈x|x〉.

The norm p of X is clearly regular.
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Example 4.2. Let I be an interval of the real line. We consider Lr(I),
r ≥ 1, as a Banach L∞(I)-module (if I has finite Lebesgue measure, then
L∞(I) ⊂ Lr(I) and we speak in this case of a CQ∗-algebra). Of course we
take p to be the usual norm of Lr(I) and we simply write S(X) instead of
Sp(X). It is not difficult to see that, if r ≥ 2, then S(Lr(I)) is quite rich [3];
indeed,

S(Lr(I)) = {ϕw : w ∈ Lr/(r−2)(I), ‖w‖r/(r−2) = 1, w ≥ 0},

where

ϕw(x, y) =
\
I

x(t)y(t)w(t) dt, x, y ∈ Lr(I).

If 1 ≤ r < 2 then, as in [3], one can prove that S(Lr(I)) = ∅. If r ≥ 2, then

sup{ϕw(x, x) : w ∈ Lr/(r−2)(I), ‖w‖r/(r−2) = 1, w ≥ 0} = ‖x‖r

for all x ∈ Lr(I). Then S(Lr(I)) may have a maximum if it satisfies the
parallelogram law. But this happens only if r = 2 (the maximum being the
inner product itself).

If I is a bounded interval (we take I = [0, 1]), then, according to Propo-
sition 3.7, a modular representation (Φ, π) of Lr(I) with π bounded exists
for any r ≥ 2. Indeed, it suffices to define, for x ∈ Lr(I), Φ(x) = x ∈ L2(I)
and, for every v ∈ L∞(I), (π(v)x)(t) = v(t)x(t), x ∈ Lr(I).

Example 4.3. Any ∗-algebra A# may be viewed, in the obvious way,
as a left A#-module. If ω is a positive linear functional on A# then putting
ϕω(a, b) = ω(b#a), one obtains a modular invariant form. Assume that there
exists an M -seminorm on A# such that the set of positive linear functionals
ω on A# for which ϕω is p-bounded is nontrivial. This, of course, implies
that S(A#) is nontrivial. Then A# admits a nonzero C∗-seminorm, namely
s
p
0. Hence A# admits bounded ∗-representations.

Example 4.4. Let A# be a ∗-algebra (possibly without unit) and X a
left A#-module. Assume that A# contains two elements a, b such that

(4.1) abx − bax = x, ∀x ∈ X.

Then there cannot exist any modular representation (Φ, π), with π bounded,
since in this case,

π(a)π(b)Φ(x)− π(b)π(a)Φ(x) = Φ(x), ∀x ∈ X.

The density of Φ(X) would then imply that π(a)π(b)−π(b)π(a) = I, and this
is impossible because of the Wiener–Wielandt theorem (see, e.g., [6, Sect.
2.2]). If A# has a unit e, then from (4.1) it follows that ab−ba = e; if X admits
an M -seminorm p, then necessarily Sp(X) = {0}, since otherwise s

p
0 would

be a C∗-seminorm on A#, and A# would have a bounded ∗-representation
π such that π(a)π(b) − π(b)π(a) = I.
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