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On the lo
al moduli of squarenessbyAntonio J. Guirao (Mur
ia)Abstra
t. We introdu
e the notions of pointwise modulus of squareness and lo
almodulus of squareness of a normed spa
e X. This answers a question of C. Benítez,K. Przesªawski and D. Yost about the de�nition of a sensible lo
alization of the modulusof squareness. Geometri
al properties of the norm of X (Fré
het smoothness, Gâteauxsmoothness, lo
al uniform 
onvexity or stri
t 
onvexity) are 
hara
terized in terms of thebehaviour of these moduli.1. Introdu
tion. Let us re
all the notion of modulus of squareness,originally de�ned in [7℄, where it arose naturally from studying Lips
hitz
ontinuous set-valued fun
tions. Given a normed spa
e X, one observes thatfor any x, y ∈ X with ‖y‖ < 1 < ‖x‖, there is a unique z = z(x, y) in theline segment [x, y] with ‖z‖ = 1. We put
ω(x, y) =

‖x − z(x, y)‖

‖x‖ − 1and de�ne ξ = ξX : [0, 1) → [1,∞] by
ξ(β) = sup{ω(x, y) : ‖y‖ ≤ β < 1 < ‖x‖}.It is shown in [7℄ that for an inner produ
t spa
e, ξ(β) = ξ2(β) = 1/

√

1 − β2,and for any normed spa
e 
ontaining l1(2), ξ(β) = ξ1(β) = (1 + β)/(1 − β).The following theorem [1, Theorem O℄ puts together all the known propertiesof this modulus.Theorem 1.1. Let X be any normed spa
e, and ξ its modulus of square-ness. Then(a) ξ(β) = sup{ξM (β) : M ⊂ X, dim M = 2},(b) ξ is stri
tly in
reasing and 
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176 A. J. Guirao(
) ξ < ξ1 everywhere on (0, 1), unless X 
ontains arbitrarily 
lose 
opiesof l1(2),(d) ξ′ ≤ ξ′1 almost everywhere on (0, 1),(e) ξ > ξ2 everywhere on (0, 1), unless X is an inner produ
t spa
e,(f) X is uniformly 
onvex if and only if limβ→1(1 − β)ξ(β) = 0,(g) X is uniformly smooth if and only if ξ′(0) = 0,(h) ξX∗(β) = 1/ξ−1(1/β) for β ∈ [0, 1),(i) if ξ(β) < 1/(1− β) for some β, then X has uniformly normal stru
-ture.The proof of these properties 
an be found in [1, 7℄ and also some of themas well as a more geometri
al 
hara
terization of ξ in [9�11℄.Observe in parti
ular that the behaviour of ξ near 1 is related to 
onvex-ity, and its behaviour near zero is related to smoothness.The question of the existen
e of a sensible lo
alization of the modulus ofsquareness was posed in [1℄. In order to answer this question we de�ne twonew moduli.From now on and for the sake of 
larity, for any norm one ve
tor x, λ > 0and y with ‖y‖ < 1, we put
ωx(λ, y) = ω((1 + λ)x, y) and zx(λ, y) = z((1 + λ)x, y).Therefore ωx(λ, y) = ‖(1 + λ)x− zx(λ, y)‖/λ. Moreover, we 
an dedu
e thatfor y ∈ span{x} and for any λ > 0, ωx(λ, y) = 1, sin
e zx(λ, y) would be x.Definition 1.2. For any norm one ve
tors x, y the pointwise modulusof squareness at x in dire
tion y is the fun
tion ξX,x,y = ξx,y : [0, 1) → [1,∞)de�ned by

ξx,y(β) = sup{ωx(λ, γy) : |γ| ≤ β, λ > 0}.Definition 1.3. For any norm one ve
tor x the lo
al modulus of square-ness at x is the fun
tion ξX,x = ξx : [0, 1) → [1,∞) de�ned by
ξx(β) = sup{ωx(λ, y) : ‖y‖ ≤ β, λ > 0} = sup

‖y‖=1

{ξx,y(β)}.Observe that for any subspa
e M ⊂ X of dimension 2 
ontaining normone ve
tors x, y we have ξx,y = ξM,x,y. For ξx we establish an analogue to(a) of Theorem 1.1. Indeed,
ξx(β) = sup{ξM,x(β) : x ∈ M ⊂ X, dimM = 2}.One 
an see that for any β ∈ [0, 1),

ξ(β) = sup{ξx(β) : x ∈ SX} = sup{ξx,y(β) : x, y ∈ SX}.We shall show how these moduli are related to various geometri
al prop-erties of the norm of X. In parti
ular, in Se
tion 3 we re
all the notionsof Gâteaux smoothness and Fré
het smoothness and show that whether ornot a normed spa
e X is Fré
het (resp. Gâteaux) smooth depends on the
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al (resp. pointwise) modulus of squareness near zero. InSe
tion 4 we re
all the notions of lo
al uniform 
onvexity and stri
t 
on-vexity and show that whether or not X is lo
ally uniformly (resp. stri
tly)
onvex depends on the behaviour of the lo
al (resp. pointwise) modulus ofsquareness near 1. More pre
isely, we shall establish:Theorem 1.4. Let X be a normed spa
e and x a norm one ve
tor. Then(a) X is Gâteaux smooth at x i� ξ′x,y(0) = 0 for all y with ‖y‖ = 1.(b) X is Fré
het smooth at x i� ξ′x(0) = 0.(
) X is stri
tly 
onvex at x i� limβ→1(1 − β)ξx,y(β) = 0 for all y with
‖y‖ = 1.(d) X is lo
ally uniformly 
onvex at x i� limβ→1(1 − β)ξx(β) = 0.In the following se
tion we fo
us on the properties of the ratio ωx(·, ·).2. Properties of ωx(λ, y). By a normed spa
e we mean a pair (X, ‖·‖),where X is a linear spa
e and ‖ · ‖ is a norm, although we will often write

X instead of (X, ‖ · ‖). We set BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X :
‖x‖ = 1}.The following lemma 
an be found in [1℄ as part of the proof that ξ islo
ally Lips
hitz 
ontinuous.Lemma 2.1. Let X be a normed spa
e and x, y ∈ SX . Then, for any
λ > 0 and 0 ≤ β < γ < 1,

ωx(λ, γy) − ωx(λ, βy) ≤ ξ1(γ) − ξ1(β).For �xed norm one ve
tors x, y, the modulus ξx,y 
an be expressed in asimpler way:Proposition 2.2. Let X be a normed spa
e and x, y two norm oneve
tors. Then, for all β ∈ [0, 1),
ξx,y(β) = sup {ωx(λ,±βy) : λ > 0} .Proof. It is enough to show that for any �xed λ > 0 and any γ ≤ β wehave ωx(λ, βy) ≥ ωx(λ, γy). We use the following result whi
h 
an be foundin [3, 4, 8℄.Lemma 2.3. Let X be a two-dimensional normed spa
e and let K1, K2be 
losed 
onvex subsets of X with nonempty interior. If K1 ⊂ K2 then

r(K1) ≤ r(K2), where r(Ki) denotes the length of the 
ir
umferen
e of Ki,
i = 1, 2.This lemma 
an be applied to the triangles: K1 with verti
es the origin,
zx(λ, γy) and (1+λ)x, and K2 with verti
es the origin, zx(λ, βy) and (1+λ)x.



178 A. J. GuiraoTherefore
r(K1) = ‖(1 + λ)x‖ + ‖zx(λ, γy)‖ + ‖(1 + λ)x − zx(λ, γy)‖

≤ ‖(1 + λ)x‖ + ‖zx(λ, βy)‖ + ‖(1 + λ)x − zx(λ, βy)‖ = r(K2).Simplifying and dividing by λ, we obtain the desired inequality.Proposition 2.4. Let X be a normed spa
e. If x, y are norm one ve
torsand 0 ≤ β < γ < 1, then
ξx,y(γ) − ξx,y(β) ≤ ξ1(γ) − ξ1(β),(2.1)

ξx(γ) − ξx(β) ≤ ξ1(γ) − ξ1(β).(2.2)In parti
ular , ξx,y and ξx are lo
ally Lips
hitz 
ontinuous fun
tions.Proof. From Lemma 2.1 we dedu
e that ωx(λ, γy) − ξx,y(β) ≤ ξ1(γ) −
ξ1(β) and, by Proposition 2.2, we obtain inequality (2.1), taking supremaover λ > 0. Inequality (2.2) follows similarly from (2.1), on taking supremaover y ∈ SX .Trying to simplify the expression for ξx,y obtained in Proposition 2.2,one 
an study the behaviour of the fun
tion ωx(·, y) for �xed x ∈ SX and
y ∈ B̊X . The next useful result is evident.Proposition 2.5. Let X be a normed spa
e and x ∈ SX . Then

1 ≤ ωx(λ) := sup{ωx(λ, y) : y ∈ B̊X} ≤ 1 + 2/λ.We now prove that the limit of the fun
tion ωx(λ, y) when λ goes to zeroalways exists and we 
ompute it.Re
all that for a normed spa
e X and x, y ∈ X \ {0}, one 
an de�ne theright derivative of the norm at x in dire
tion y as the limit
N+(x, y) = lim

λց0

‖x + λy‖ − ‖x‖

λ
.Proposition 2.6. Let X be any normed spa
e, x ∈ SX , and y ∈ X with

‖y‖ < 1. Then
lim
λց0

ωx(λ, y) =
‖x − y‖

1 − N+(x, y)
.In order to prove this result we need to introdu
e some notation.Fix a normed spa
e X, x ∈ SX and y ∈ B̊X with y /∈ span{x}. We denoteby z′(λ) the unique ve
tor whi
h lies in span{zx(λ, y)} and on the ray whi
hstarts at x and has dire
tion y, that is,

z′(λ) = {x + µy : µ ≥ 0} ∩ span{zx(λ, y)}.We 
an write z′(λ) = x+µ(λ)y for some µ(λ) ≥ 0. Denote by fλ a 
ontinuousfun
tional on X satisfying fλ(x) = fλ(zx(λ, y)) = 1. We 
an also write
zx(λ, y) = (1 + λ)x + ν(λ)(y − (1 + λ)x) for some ν(λ) ∈ [0, 1].
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al moduli of squareness 179Lemma 2.7. Let X be a normed spa
e, x ∈ SX and y ∈ B̊X su
h that
y /∈ span{x}. Then(a) limλց0 zx(λ, y) = x.(b) limλց0 µ(λ) = 0.(
) limλց0 fλ(y) = N+(x, y).Proof of Lemma 2.7. For (a) it is enough to show that ν(λ) tends tozero as λ → 0. First, observe that ϕ(t) = ‖(1 + λ)x + t(y − (1 + λ)x)‖is a 
onvex fun
tion satisfying ϕ(1) = ‖y‖ and ϕ(0) = 1 + λ. Therefore
ϕ(t) ≤ (1 + λ) + t(‖y‖− (1+ λ)) for t ∈ [0, 1]. Se
ondly, sin
e zx(λ, y) ∈ SX ,we have ϕ(ν(λ)) = 1, that is, 1 ≤ (1+λ)+ν(λ)(‖y‖− (1+λ)). Finally, sin
e
ν(λ) ∈ [0, 1], we obtain limλց0 ν(λ) = 0 and (a) is proved.For (b), observe that zx(λ, y) = (1 + λ)(1 − ν(λ))x + ν(λ)y. Sin
e z′(λ)lies in span{zx(λ, y)}, there exists α(λ) ∈ R su
h that

x + µ(λ)y = z′(λ) = α(λ)zx(λ, y),from whi
h α(λ) = (1 + λ)−1(1 − νx(λ))−1 and then
µ(λ) = ν(λ)/[(1 + λ)(1 − ν(λ))].Sin
e ν(λ) 
onverges to 0 as λ → 0, (b) is proved.In order to show (
), observe that, by (b), we have

N+(x, y) = lim
λց0

‖x + µ(λ)y‖ − ‖x‖

µ(λ)
= lim

λց0

‖z′(λ)‖ − ‖x‖

µ(λ)
.Sin
e z′(λ) ∈ span{z}, ‖z′(λ)‖ = fλ(z′(λ)). Hen
e, as fλ(x) = ‖x‖,

N+(x, y) = lim
λց0

fλ(z′(λ)) − fλ(x)

µ(λ)
= lim

λց0

µ(λ)fλ(y)

µ(λ)
= lim

λց0
fλ(y).Proof of Proposition 2.6. First of all, if y ∈ span{x} then 1−N+(x, y) =

‖x−y‖, and sin
e ωx(λ, y) = 1, this 
ase is 
lear. So, assume that y /∈ span{x}and 
onsider the unique ve
tor w(λ) satisfying the 
onditions fλ(w(λ)) = 1and w(λ) ∈ {µ((1 + λ)x − y) : µ ≥ 0}. One 
an easily see, by 
omparingsimilar triangles, that ωx(λ, y) = ‖w(λ)‖. Sin
e fλ(w(λ)) = 1, it is 
lear that
w(λ) = (1 + λ − fλ(y))−1[(1 + λ)x − y],that is,

ωx(λ, y) =
‖(1 + λ)x − y‖

1 + λ − fλ(y)
.Using the 
ontinuity of the norm and item (
) of the previous lemma weobtain the desired equality.Remark 2.8. However, this last fa
t does not help to 
ompute ξx,y(β),sin
e the fun
tion ωx(·, y) is neither 
onvex nor monotoni
 as the followingexample shows.



180 A. J. GuiraoExample 2.9. For any 0 < ε < 1/2, 
onsider in R
2 the norm de�ned by

‖x‖ = max{(1 − ε)−1‖x‖∞, ‖x‖1},and the ve
tors x = (1 − ε, 0) and y = (ε, 1 − ε). Fix β ≥ 1 − ε. Here is thegraph of the fun
tion ωx(·, βy) for ε = 0.2 and β = 0.88.
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3. On di�erentiability and lo
alized squareness moduli. Through-out this se
tion X will be a normed spa
e endowed with the norm ‖ · ‖. The
olle
tion of support fun
tionals for a norm one ve
tor x is de�ned as

D(x) = {f ∈ X∗ : ‖f‖ = 1, f(x) = ‖x‖ = 1}.We re
all that the modulus of smoothness of a normed spa
e is the fun
-tion ̺ : [0,∞) → R
+ de�ned by

̺(β) = sup{(‖x + βy‖ + ‖x − βy‖)/2 − 1 : ‖x‖ = ‖y‖ = 1}.Lo
alizations of this modulus are the lo
al modulus of smoothness, de�nedfor any x ∈ SX and all β ∈ [0,∞) by
̺x(β) = sup{(‖x + βy‖ + ‖x − βy‖)/2 − 1 : ‖y‖ = 1},and the pointwise modulus of smoothness, de�ned for any norm one ve
tors

x, y and all β ∈ [0,∞) by
̺x,y(β) = (‖x + βy‖ + ‖x − βy‖)/2 − 1.Re
all that a normed spa
e is: Gâteaux smooth at x ∈ SX in dire
tion

y ∈ SX i� ̺x,y(β)/β → 0 as β → 0; Gâteaux smooth at x ∈ SX i� it isGâteaux smooth at x in every dire
tion y ∈ SX ; Gâteaux smooth i� it isGâteaux smooth at any x ∈ SX ; Fré
het smooth at x ∈ SX i� ̺x(β)/β → 0as β → 0; and Fré
het smooth i� it is Fré
het smooth at any x ∈ SX .



Lo
al moduli of squareness 181For any norm one ve
tors x, y, we de�ne the fun
tion εx,y : [0,∞) →
[0,∞) by the formula

εx,y(β) = sup

{

‖x + βw‖ − ‖x‖

β
− f(w) : w ∈ Y, f ∈ DY (x)

}

,where Y = span{x, y} and DY (x) = {f |Y : f ∈ D(x)}. One 
an observethat this fun
tion is in
reasing and that the spa
e is Gâteaux smooth at xin dire
tion y if and only if εx,y(β) → 0 as β → 0. Let us show a relationbetween εx,y and the pointwise modulus of squareness ξx,y.Proposition 3.1. For any norm one ve
tors x, y and all β ∈ [0, 1),

ξx,y(β) ≤ 1 +
2β

(1 − β)2
εx,y

(

2β

1 − β

)

.Proof. Fix x, y ∈ SX , λ > 0, β ∈ [0, 1) and a linear fun
tional f ∈ DY (x).Then there exists z0 ∈ [βy, (1 + λ)x] su
h that f(z0) = 1. Pi
k a ve
tor
u su
h that f(u) = 0 and z0 ∈ [u, (1 + λ)x]. It follows that there exists
µ ≥ 0 su
h that u = (1 − µ)(1 + λ)x + µβy and, sin
e f(u) = 0, that
µ = (1 + λ)/(1 + λ − βf(y)). Thus,

‖u‖ ≤
(1 + λ)β

1 + λ − βf(y)
(|f(y)| + 1) ≤

2β

1 − β
.As z0 ∈ [u, (1+λ)x], there exists α ∈ (0, 1) su
h that z0 = (1−α)(1+λ)x

+ αu. Using the fa
t that f(z0) = 1, it is easily seen that α = λ/(1 + λ).Therefore
‖z0 − x‖

λ
=

‖u‖

1 + λ
≤ ‖u‖ ≤

2β

1 − β
,(3.1)

‖z0 − x‖ =
λ

1 + λ
‖u‖ ≤ ‖u‖ ≤

2β

1 − β
.(3.2)Observe now that, from the de�nition of εx,y, it follows that

‖(1 + λ)x − z0‖ − ‖λx‖ ≤ ‖x − z0‖εx,y(‖x − z0‖/λ).Dividing by λ and using (3.1) one obtains the inequality(3.3) ‖(1 + λ)x − z0‖

λ
≤ 1 +

2β

1 − β
εx,y

(

2β

1 − β

)

.Now, put z = zx(λ, βy) and denote by ξX the modulus of squarenessof X. One 
an easily see that ‖z − z0‖ ≤ (‖z0‖ − 1)ξX(β) and ‖z0‖ − 1 ≤
‖x − z0‖εx,y(‖x − z0‖). Putting both together, and using (3.1), (3.2) and
ξX ≤ ξ1, one has(3.4) ‖z − z0‖

λ
≤ ξ1(β)

(

2β

1 − β

)

εx,y

(

2β

1 − β

)

.
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e
ωx(λ, βy) ≤

‖(1 + λ)x − z0‖

λ
+

‖z − z0‖

λ
,using (3.3) and (3.4) one obtains

ωx(λ, βy) ≤ 1 +
2β

1 − β
εx,y

(

2β

1 − β

)

(1 + ξ1(β)) ,whi
h, on taking suprema over λ > 0, �nishes the proof.Now we establish a relation between the pointwise modulus of squareness
ξx,y and the pointwise modulus of smoothness ̺x,y.Proposition 3.2. For any norm one ve
tors x, y and for every β ∈
[0, 1),

̺x,y(β) ≤ ξx,y(β) − 1,(3.5)
̺x(β) ≤ ξx(β) − 1.(3.6)Proof. Observe that the se
ond inequality follows from the �rst on takingsuprema over y ∈ SX . Therefore we just have to show (3.5). Fix norm oneve
tors x, y. For a �xed β ∈ [0, 1) and λ > 0, we set

y1 = y1(λ, βy) = −(1 + λ)βy, y2 = y2(λ, βy) = (1 + λ)βy,

x′ = (1 + λ)x, zi = (1 − αi)x
′ + αiyi,where αi ∈ [0, 1] for i = 1, 2.On one hand, 1 = ‖zi‖ ≥ f(zi) for any f ∈ D(x). Therefore αi ≥

λ/(1 + λ − f(yi)). On the other hand, ‖x′ − yi‖ = (1 + λ)‖x ± βy‖. Sin
e,for λ < (1 − β)/β,
αi(λ)‖x′ − yi‖

λ
= ωx(λ,±(1 + λ)βy) ≤ ξx,y((1 + λ)β),we have

‖x′ − y1‖ + ‖x′ − y2‖ ≤ ξx,y((1 + λ)β)

(

λ

α1

+
λ

α2

)

.Sin
e αi ≥ λ/(1 + λ − f(yi)) we dedu
e that
‖x′ − y1‖ + ‖x′ − y2‖ ≤ ξx,y((1 + λ)β)(2 + 2λ − (f(y1) + f(y2)))

= ξx,y((1 + λ)β)(2 + 2λ) = 2ξx,y((1 + λ)β)(1 + λ),and therefore
‖x + βy‖ + ‖x − βy‖ ≤

‖x′ − y1‖ + ‖x′ − y2‖

1 + λ
≤ 2ξx,y((1 + λ)β),whi
h means that

̺x,y(β) ≤ ξx,y((1 + λ)β) − 1.
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al moduli of squareness 183Sin
e this is true for λ < (1 − β)/β, we 
an let λ tend to 0 and, by the
ontinuity of ξx,y, we obtain the desired inequality.Theorem 3.3. Let ξx and ξx,y be the lo
alized squareness moduli of X.Then(a) X is Gâteaux smooth at x ∈ SX in dire
tion y ∈ SX if and only if
ξ′x,y(0) = 0.(b) X is Gâteaux smooth at x ∈ SX if and only if ξ′x,y(0) = 0 for all
y ∈ SX .(
) X is Gâteaux smooth if and only if ξ′x,y(0) = 0 for all x, y ∈ SX .(d) X is Fré
het smooth at x ∈ SX if and only if ξ′x(0) = 0.(e) X is Fré
het smooth if and only if ξ′x(0) = 0 for all x ∈ SX .Proof. (a) First, by inequality (3.5) of Proposition 3.2, it is straightfor-ward that if ξ′x,y(0) = 0 then ̺x,y(β)/β tends to 0 as β → 0, i.e. the norm isdi�erentiable at x in dire
tion y.Se
ondly, assume that X is Gâteaux smooth at x in dire
tion y. If x and

y are linearly dependent the result is trivial. Suppose then that x and y arelinearly independent; then applying Proposition 3.1 one has
ξx,y(β) − 1

β
≤

2

(1 − β)2
εx,y

(

2β

1 − β

)

.Sin
e the norm of X is Gâteaux smooth at x in dire
tion y, we have εx,y(t)
→ 0 as t → 0. This implies that ξ′x,y(0) = 0.(b) This follows from (a) sin
e for 
onvex fun
tions the existen
e of alldire
tional derivatives at x implies Gâteaux smoothness at x.(
) Evident from (b).(d) On one hand, by inequality (3.6) of Proposition 3.2, it is 
lear that if
ξ′x(0) = 0 then ̺x(β)/β tends to 0 as β → 0, i.e. the spa
e is Fré
het smoothat x.On the other hand, if we assume that X is Fré
het smooth at x, thenapplying Proposition 3.1, for any y ∈ SX we have

ξx,y(β) − 1

β
≤

2

(1 − β)2
εx,y

(

2β

1 − β

)

.Taking suprema over y ∈ SX we obtain
ξx(β) − 1

β
≤

2

(1 − β)2
sup

y∈SX

{

εx,y

(

2β

1 − β

)}

.Sin
e the spa
e is Fré
het smooth at x, the right-hand side tends to 0 as
β → 0. Therefore ξ′x(0) = 0.(e) This follows from (d).
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onvexity and lo
alized squareness moduli. This se
tion isdevoted to showing a relation between the behaviour of the lo
alized moduliof squareness near 1 and the 
onvexity properties of a normed spa
e X. Inthe �rst subse
tion the lo
al modulus of squareness ξx is related to lo
aluniform 
onvexity, and in the se
ond subse
tion the pointwise modulus ofsquareness ξx,y is related to stri
t 
onvexity.4.1. Lo
al uniform 
onvexity. Fix a normed spa
e X and x ∈ SX . Thespa
e X is said to be lo
ally uniformly 
onvex at x if its lo
al modulus of
onvexity
δx(ε) = inf

{

1 −

∥

∥

∥

∥

x + y

2

∥

∥

∥

∥

: ‖y‖ = 1, ‖x − y‖ ≥ ε

}

is stri
tly positive for ea
h ε > 0. The number ε0(x) = sup{ε : δx(ε) = 0}will be 
alled the 
hara
teristi
 of 
onvexity at x. Obviously, X is lo
allyuniformly 
onvex at x if and only if ε0(x) = 0.One 
alls D(x, β) = co({x} ∪ βBX) the drop of βBX with respe
t to thepoint x, and R(x, β) = D(x, β)\βBX the residue. In [1℄ the authors observethat X is lo
ally uniformly 
onvex at x i� diamR(x, β) → 0 as β → 0.Re
all that the radius of a set A relative to a point x is de�ned by
rad(x, A) = supa∈A ‖x − a‖. It is 
lear that diam(A)/2 ≤ rad(x, A) ≤
diam(A) whenever x ∈ A. For ‖x‖ = 1 and 0 < β < 1, Kadets [6℄ de-�ned the set G(x, β) = {y : [y, z] ⊂ BX \ βB̊X}, and noted that X is lo
allyuniformly 
onvex at x i� rad(x, G(x, β)) → 0 as β → 1. Moreover, it isknown that the fun
tion ǫ(x, β) = rad(x, G(x, β)) is uniformly 
ontinuouson the set SX × [0, r] for all r < 1 and that ǫ is 
ontinuous at (x, 1) if thenorm is lo
ally uniformly 
onvex at x ∈ SX (see [2, 5℄).It is also well known that the norm is lo
ally uniformly 
onvex at x ifand only if whenever a sequen
e {xn}n satis�es

lim
n→∞

(2(‖x‖2 + ‖xn‖
2) − ‖x + xn‖

2) = 0,then limn ‖xn−x‖ = 0. This 
an be shown easily by using the lo
al modulusof 
onvexity de�ned above. Finally, we say that the norm of X is lo
allyuniformly 
onvex if it is lo
ally uniformly 
onvex at all x ∈ SX .Lemma 4.1. If a normed spa
e is lo
ally uniformly 
onvex at x ∈ SX ,then
lim
λ→0

sup
y∈B̊X

‖x − zx(λ, y)‖ = 0.Proof. Observe that for any λ > 0 and y with ‖y‖ < 1 all points ofthe segment [(1 + λ)x, zx(λ, y)] di�erent from zx(λ, y) are outside the 
losedunit ball. Indeed, the fun
tion f(α) = ‖α(1 + λ)x + (1 − α)z(λ, y)‖ satis�es
f(0) = 1 and there exists α0 < 0 su
h that f(α0) = ‖y‖ < 1. Sin
e f is
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onvex we obtain f(α) > 1 whenever α > 0. In parti
ular,
f(1/2) =

1 + λ

2

∥

∥

∥

∥

x +
zx(λ, y)

1 + λ

∥

∥

∥

∥

> 1.Therefore,
0 ≤ 2‖x‖2 + 2

∥

∥

∥

∥

zx(λ, y)

1 + λ

∥

∥

∥

∥

2

−

∥

∥

∥

∥

x +
zx(λ, y)

1 + λ

∥

∥

∥

∥

2

< 2 +
1

(1 + λ)2
−

4

(1 + λ)2

= 2 −
2

(1 + λ)2where the right hand side tends to 0 uniformly over all y ∈ B̊X and, sin
ethe spa
e is lo
ally uniformly 
onvex at x, zx(λ, y) 
onverges to x uniformlyin y ∈ B̊X .Theorem 4.2. For any normed spa
e X and for any x ∈ SX , the fol-lowing are equivalent :(a) X is lo
ally uniformly 
onvex at x.(b) diamG(x, β) → 0 as β → 1.(
) diamR(x, β) → 0 as β → 1.(d) lim supβ→1(1 − β)ξx(β) = 0.(e) lim infβ→1(1 − β)ξx(β) = 0.Moreover , lim infβ→1(1 − β)ξx(β) ≥ ε0(x).Proof. The equivalen
e between (a), (b) and (
) is known. We 
laim thatfor all 0 ≤ β < 1,(4.1) ε0(x) − 1 + β ≤ (1 − β)ξx(β).Letting β → 1 proves the last assertion and (e)⇒(a).Inequality (4.1) is trivial if ε0(x) = 0, so suppose that X is not lo
allyuniformly 
onvex at x. This means that, given any λ > 0, we 
an �nd anorm one ve
tor y, at distan
e at least ε0(x) from x, and su
h that for all
γ, µ ≥ 0,

(1 + λ2)‖γx + µy‖ ≥ γ + µ.Set x′ = (1 + λ)x and y′ = βy, so that ‖x′ − y′‖ ≥ ε0(x)−λ− (1− β). Then
z = zx(λ, y′) = (1 − α)x′ + αy′ must satisfy

1 = ‖z‖ ≥
1 + λ − α(1 + λ − β)

1 + λ2
and so α ≥

λ − λ2

1 + λ − β
.But then

‖x′ − z‖

λ
=

α‖x′ − y′‖

λ
≥

(1 − λ)(ε0(x) − λ − (1 − β))

1 + λ − β
.Letting λ → 0, we see that ξx(β) ≥ (ε0(x) − 1 + β)/(1 − β), whi
h is (4.1).



186 A. J. GuiraoIt is obvious that (d) implies (e), so it only remains to show (a)⇒(d).Pi
k sequen
es {βn}n tending to 1, {δn}n tending to 0, λn > 0 and ve
tors
yn ∈ βnBX su
h that

ξx(βn) < ωx(λn, yn) + δn.We have to distinguish two 
ases:(a) If lim infn λn > 0, Lemma 2.5 shows that M = supn{ωx(λn)} < ∞and so
ξx(βn) < ωx(λn, yn) + δn ≤ ωx(λn) + δn ≤ M + δn.Therefore,
lim sup

n→∞
(1 − βn)ξx(βn) ≤ lim

n→∞
(1 − βn)(M + δn) = 0.(b) If lim infn λn = 0, then we 
an assume, passing to a subsequen
e,that λn → 0. If ne
essary we 
an 
hoose y′n in su
h a way that ‖y′n‖ = βnand y′n ∈ [yn, (1 + λn)x] ∩ G(zx(λn, yn), βn)). Set

zn = zx(λn, yn) = αn(1 + λn)x + (1 − αn)y′n.Then 1 = ‖zn‖ ≤ αn(1 + λn) + (1 − αn)βn, from whi
h it follows that
(1 − αn)(1 − βn) ≤ αnλn and

(1 − αn)(1 − βn)ωx(λn, y′n) ≤ αn‖(1 + λn)x − zn‖ = (1 − αn)‖y′n − zn‖

≤ (1 − αn) rad(zn, G(zn, β)).That is, (1 − βn)ωx(λn, yn) = (1 − βn)ωx(λn, y′n) ≤ ǫ(zn, βn). Lemma 4.1tells us that zn tends to x and therefore, sin
e ǫ(·, ·) is 
ontinuous at (x, 1),we have
lim sup

n→∞
(1 − βn)ξx(βn) ≤ lim sup

n→∞
(1 − βn)ωx(λn, yn)

≤ lim
n→∞

ǫ(zn, βn) = ǫ(x, 1) = 0,whi
h is what we wanted to show.This proposition yields a new 
hara
terization of lo
al uniform 
onvexity.Corollary 4.3. For any normed spa
e X the following are equivalent :(a) X is lo
ally uniformly 
onvex.(b) diamG(x, β) → 0 as β → 1 for all x ∈ SX .(
) diamR(x, β) → 0 as β → 1 for all x ∈ SX .(d) lim supβ→1(1 − β)ξx(β) = 0 for all x ∈ SX .(e) lim infβ→1(1 − β)ξx(β) = 0 for all x ∈ SX .4.2. Stri
t 
onvexity. Let X be a normed spa
e and x, w ∈ SX . The normof X is said to be stri
tly 
onvex at x in dire
tion w if there is no propersegment in
luded in the unit sphere starting at x with dire
tion w. Similarly,it is said to be stri
tly 
onvex at x if there is no proper segment in
luded in
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tion. X is said to be stri
tly 
onvexif it is stri
tly 
onvex at all its norm one ve
tors. We de�ne ε0(x, w) to bethe supremum of ε > 0 su
h that the segment [x, x + εw] or [x, x − εw] lieson the unit sphere. We also de�ne Cw
x = {y ∈ SX : ∃λ ∈ R, y = x + λw}.Proposition 4.4. Let X be a normed spa
e and x, w two norm oneve
tors. If lim infβ→1(1 − β)ξx,y(β) = 0 for all y ∈ Cw

x , then X is stri
tly
onvex at x in dire
tion w. Moreover ,
sup

y∈Cw
x

lim inf
β→1

(1 − β)ξx,y(β) ≥ ε0(x, w).Proof. Assume that X is not stri
tly 
onvex at x in dire
tion w. Thismeans that ε0(x, w) > 0, and that for any ε0(x, w) > δ > 0 there exists
y ∈ Cw

x su
h that ‖y − x‖ ≥ ε0(x, w) − δ. Write z = zx(λ, βy). There exists
α ∈ [0, 1] su
h that z = (1 − α)(1 + λ)x + αβy. Let us 
ompute α. Fix
f ∈ D(x) su
h that f([x, y]) = 1. We have 1 = f(z) = (1 − α)(1 + λ) + αβ.Therefore α = λ/(1 + λ − β).On the other hand,
‖(1 + λ)x − βy‖ ≥ ‖x − y‖ − ‖λx + (1 − β)y‖ ≥ ε0(x, w) − δ − λ − (1 − β).Therefore,

ξx,y(β) ≥ ωx(λ, βy) = α
‖(1 + λ)x − βy‖

λ
≥

ε0(x, w) − δ − λ − (1 − β)

1 + λ − β
.Letting λ → 0, we obtain (1 − β)ξx,y(β) ≥ ε0(x, w) − δ − (1 − β). Therefore

lim inf
β→0

(1 − β)ξx,y(β) ≥ ε0(x, w) − δ.This implies that lim infβ→0(1 − β)ξx,y(β) > 0, whi
h shows the �rst and,whenever ε0(x, w) > 0, the se
ond assertion of the theorem. The proof is�nished, sin
e the se
ond assertion is 
lear when ε0(x, w) = 0.Theorem 4.5. For any normed spa
e X and for any x ∈ SX the follow-ing are equivalent :(a) X is stri
tly 
onvex at x.(b) lim supβ→1(1 − β)ξx,y(β) = 0 for all y ∈ SX .(
) lim infβ→1(1 − β)ξx,y(β) = 0 for all y ∈ SX .Proof. The impli
ation (b)⇒(
) is evident. The impli
ation (
)⇒(a) fol-lows from Proposition 4.4. In order to see (a)⇒(b), �x y ∈ SX , and pi
k
{βn}n tending to 1, {δn}n tending to 0, λn > 0 and ve
tors yn = γny ∈ βnBXsu
h that

ξx,y(βn) < ωx(λn, yn) + δn.We have to distinguish two 
ases:



188 A. J. Guirao(a) If lim infn λn > 0, then Lemma 2.5 shows that M = supn{ωx(λn)}
< ∞ and so

ξx,y(βn) < ωx(λn, yn) + δn ≤ ωx(λn) + δn ≤ M + δn.Therefore,
lim sup

n→∞
(1 − βn)ξx,y(βn) ≤ lim

n→∞
(1 − βn)(M + δn) = 0.(b) If lim infn λn = 0, we 
an assume, passing to a subsequen
e, that

λn → 0. If ne
essary we 
an 
hoose y′n su
h that ‖y′n‖ = βn and y′n ∈ [yn,
(1+λn)x]∩GY (zx(λn, yn), βn)), where Y = span{x, y}. Write zn = zx(λn, yn)
= αn(1+λn)x+(1−αn)y′n. Then 1 = ‖zn‖ ≤ αn(1+λn)+(1−αn)βn, fromwhi
h it follows that (1 − αn)(1 − βn) ≤ αnλn and

(1 − αn)(1 − βn)ωx(λn, y′n) ≤ αn‖(1 + λn)x − zn‖ = (1 − αn)‖y′n − zn‖

≤ (1 − αn) rad(zn, GY (zn, β)).That is, (1 − βn)ωx(λn, yn) = (1 − βn)ωx(λn, y′n) ≤ ǫY (zn, βn). Sin
e Y islo
ally uniformly 
onvex at x, Lemma 4.1 tells us that zn tends to x andtherefore, sin
e ǫY (·, ·) is 
ontinuous at (x, 1), we have
lim sup

n→∞
(1 − βn)ξx,y(βn) ≤ lim sup

n→∞
(1 − βn)ωx(λn, yn)

≤ lim
n→∞

ǫY (zn, βn) = ǫY (x, 1) = 0,whi
h is what we wanted to show.From this theorem one 
an easily dedu
e the following one.Theorem 4.6. For any normed spa
e X the following are equivalent :(a) X is stri
tly 
onvex.(b) lim supβ→1(1 − β)ξx,y(β) = 0 for all x, y ∈ SX .(
) lim infβ→1(1 − β)ξx,y(β) = 0 for all x, y ∈ SX .A
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