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Almost-distribution cosine functions and
integrated cosine functions

by

PEDRO J. MIANA (Zaragoza)

Abstract. We introduce the notion of almost-distribution cosine functions in a setting
similar to that of distribution semigroups defined by Lions. We prove general results on
equivalence between almost-distribution cosine functions and a-times integrated cosine
functions.

Introduction. Integrated cosine functions of operators in Banach
spaces have been introduced to study abstract second order “ill-posed”
Cauchy problems ([11]). a-Times integrated cosine functions were intro-
duced for @ € N in [1] and later defined for « > 0 ([11], [12]). O-times
integrated cosine functions are usual cosine functions. Differential operators
in Euclidean spaces are examples of a-times integrated cosine functions (see
[1] and [11]).

E. Marschall considered vector-valued cosine transforms defined by co-
sine functions ([5]) and he applied them to study spectral properties and the
spectral mapping theorem for cosine functions. The present author worked
with trigonometric convolution products, cosine functions and sine functions
(1-times integrated cosine functions) to define vector-valued cosine and sine
transforms ([6]). Almost-distribution cosine function is a new related con-
cept, closer to distribution semigroups defined by J.-L. Lions [4].

Every a-times integrated cosine function leads to an almost-distribution
cosine function of order . We apply Banach algebras 7 Jfa) (Tas *¢) With re-
spect to cosine convolution product, which are defined using Weyl fractional
derivation. Conversely, almost-distribution cosine functions of order o define
integrated cosine functions. These ideas also hold in the case of integrated
semigroups and distribution semigroups (see [7]). The main facts of frac-
tional calculi are presented in the first section.
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Notation. Rz is the real part of a complex number z; I' is the Gamma
function; X,Y are Banach spaces; X < Y means a continuous embedding;
T :X — Y is a bounded linear map from X to Y and kerT is the kernel
of T; B(X) is the set of bounded linear operators on X; C, is a constant
which may depend on a.

1. Fractional Banach algebras on R™. In this section we review
some results and also prove new ones about Weyl fractional calculus (see
Theorem 3). Let 79 : [0,00) — [0,00) be a measurable function on [0, c0)
such that 7o(t + s) < Coro(t)70(s) and 79(t — s) < Coro(t)70(s) for any
0 <s<tand Cyp> 0. Then L'(R*,7p) is the Banach space of functions f
with || fl|7, := §;7 1/ (¢)|70(t) dt < co. Take f,ge L*(R*, 7). Then fxg, fog
€ LY(RT*, ), where

Frgt)y:=\ft—s)g(s)ds, fog(t):=\f(s—t)g(s)ds, t=>0.
0 t

The cosine convolution product f *. g is defined by f *. g := %(f xg+ fog+
go f) (see [10]). Let D4 be the class of C* functions of compact support on
[0,00). For f € Dy and a > 0, the Weyl fractional integral W f of order
« is defined by

1 o
WIof(t) = —— \ (s =) f(s)ds, t>0,
+ e )
and the Weyl fractional derivative W f of order a is given by
oy
I'(n —«a) dt®

OSO(S — )" f(s)ds, t>0,
t

WEF(t) =

with n = [a] + 1. It is known that Wf_‘Jrﬁ = Wj‘f(W_f) for any «a, 8 € R,
where W? =1d is the identity operator ([8]). The following proposition can
be checked directly:

ProrosiTION 1. Given f,g € Dy and o € R, we have

() We(fog) = foWey.

(i) WE(f *e 9) = 5(WE(fxg) + foWeg+go W),

Weyl fractional calculus can also be applied to functions not belonging
to D4 (see [8, p. 248]). For example, let f and g be measurable functions on
[0, 00) such that W f exists and g = W “f a.e. Then we set W{g = f.
For example, the Bochner-Riesz functions (R?);~¢ defined by

t—s)f
RI(s) = %X(w)(s) fort >0and 6 > -1

satisfy WER! = R)™ for 0 +1 > a > 0.
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We recall that (2, is the set of nondecreasing continuous functions 7, on
(0,00) such that inf,sou™*74(u) > 0 and there exists a constant C,, > 0
with

S ua_lTa(T’ +s—u)du < Cota(r)Ta(s), 0<r<s
[0,r]U[s,s+7]
(see [2]). The functions 7,(t) = t*; t%(1 +t)” with 3 € [0,a] and v > a — 3;
tfe™ with 7 > 0 and 3 € [0, @], all belong to £2,. If 7, € 2, then 7, € £2,,
where 7,(t) := t" %7, (t) for t > 0 and v > «. The subset of functions
Ta(t) = t%wy(t), where wp is a continuous nondecreasing weight, is denoted
by 27 (see [2] for more details).

LEMMA 2. Let a >0 and 74 € 2. If 0 < s <t then
t
() | (r—=t+ )" ralr) dr < CaTa(t)7als).

S

~+

(i) \ (r +t — 8)* Iy (r) dr < Cora(t)Tals).

O e &

Proof. As 7, is nondecreasing, we get

V=t 9)* tra(r)ydr <7a(t) | (r—t+s)* " dr
B Ta(t) -

- a < ]
o s < Cota(t)Ta(8)

(ii) is proven in a similar way. m

In [2, Propositions 1.4 and 1.5] the convolution product # is considered,
leading to results similar to Theorem 3 below. We denote by Mul(.A) the set
of multipliers of a Banach algebra A.

THEOREM 3. Let o > 0 and 7, € §2. The expression

1
I'la+1)

o0

{ ra®)IWes@)dt, feDy,
0

qre (f) =

defines a norm on Di. Moreover, qr, (f *c g9) < Cuaqr,(f)qr,(g) for f,g
€ Dy, and Cy > 0 is independent of f and g. Denote by ’Z]fa) (Tas *c) the
Banach algebra obtained as the completion of D4 in the norm g, .

i) 7 To, %) (@) 1Y %) — LY(RY, %,.).
+ +
ii) If 8 > a >0, and 73 € {23 is such that
B B
t
_g)B—a—-1 < =
g(t s) Ta(s)ds < T

1
rg—-—a)l(a+1)
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then T_ﬁﬁ)<7'/3,*c) — Tia)(Ta,*C); in particular Tﬁﬁ)(tﬁ,*c) —
T (12, %),

(iii) R;’_le ’]]ga) (Tas *¢) fort>0 and v>a, and ¢, (Rt”_l) <Gyt To(t)
fort >0, where C, o > 0 is independent of t.

(iv) RF € Mul(T{™ (74, %)) and |RE™
t>0.

Mul(7, (7' *¢)) < CTO&( ) fO’/’

Proof. Clearly ¢, is a norm on D, and

4 50.9) < 3 (F £9) + 4 (F 0.9) + 0, (9 0 £).

As g (f x g9) < Cugr,(f)qr,(g) (see [2, Proposition 1.4]), it is enough to
check -, (f o g9) < Caqr,(f)gr,(9). We apply Proposition 1(i), the Fubini
theorem and Lemma 2 to get

Grn(fo9) < § 7a®) | 1%) [ s+ 00 W2 ()| duWeg(s)] ds dt
0 t s—t

s

< L T iweg [Wef@) | (u—s+ 6 'ra(t) dt duds
0 0

F a) S—Uu
" ﬁ V Wgg(o)l § IWef(u)]§ (u— s+ ) ra(t) dt duds
0 s 0

< Cagr, (f)qTa (g)
(i) and (ii) are checked directly and (iii) appears in [2].

(iv) Take f € Dy; we shall prove R f € ’]]ga) (Tas *c) for any ¢ > 0.
By [2, Proposition 1.5], R ¢ Mul(’]]fa)(m, %)), and it is enough to prove
RO Vo f, foRM e T\ (1y,%.). Since W(RS o f) = R* o Wof and
We(fo R 1)(s) = f(s+1) for s,t > 0, we use again Lemma 2 to obtain

a—1 (o) a—1
Ry € Mul(T," (7a, %)), and [[RY [, (T (rasee) < Cra(t) fort >0. m

If 7,, € 2 with o > 0, the algebra TJEQ) (Tas *¢) has bounded approximate

identities (take ¢ € ,]-_Ea) (o) such that §°¢(t)dt = 1 and consider (¢s =

(1/5)p(-/$))o<s<1)- In general, the algebras ’Z]fa)(Ta,*c) do not have any
bounded approximate identity.

2. a-Times integrated cosine functions. Given o > 0, a family
(Ca(t))e=0 C B(X) of strongly continuous operators is an a-times integrated
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cosine function if C,(0) = 0 and

t+s s

(1) 20(a)Ca(t)Cals)z = ( { —S) (t+ 5 — 1) Cu(r)a dr
t 0
+ S (r—t+ s)a’lCa(r)a: dr + § (r+t-— s)aflCa(r)a: dr
t—s 0

for all ¢t > s > 0 and € X. Every a-times integrated cosine function
(Ca(t))t>0 yields a v-times integrated cosine function (Cy(t))¢>0 defined by
1 t

(2) Cy(t).%' = m §) (t — S)V_a_lca(s).%' ds, t 2 0, z e X.
0-Times integrated cosine functions are usual cosine functions. An a-times
integrated cosine function (Cy(t))>0 is called nondegenerate if Co(t)z = 0
for all t > 0 implies that x = 0. We only consider nondegenerate integrated
cosine functions. We define its generator (A, D(A)), where D(A) is the set
of x € X such that there exists y € X satisfying

t
T = S (t —7r)Co(r)ydr, t>0,

0
and Ax :=y. It is straightforward to check that (A, D(A)) is a closed oper-
ator. For every = € X, Sg(t — 8)Cq(s)xds € D(A) and

ta

(3) Co(t)r — TlatD

t o
" =A\(t—9)C, — .
Colt)x é(t §)Cu(s)z ds + R
If x € D(A) then C,( - )z is differentiable for ¢ > 0 and
d t ta—l
e’ = « A e f s
dtc (t)x §)C (s) mds—i—F(a)x ora>0
(4) ) t
—Cy(t)r = XC()(S)A:E ds
dt 3

([9], [11]). If [|Ca(t)| < Cet with C,\g > 0, condition (1) is equivalent
(via Laplace transform) to

[e.e]

RN, Az =" [ e MCo(tzdt, weX, RA* > N,
0

being a pseudo-resolvent operator, i.e.,

R()‘27 A) - R(,U,Q, A) = (/1’2 - )‘Q)R()‘27 A)R(,U,z, A)7 %)‘27 §R,U/2 > Ao
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(for a = n see [9, Theorem 1.3]). In the nondegenerate case, RA\? belongs to
the resolvent set o(A) and R(\?, A) = (A2 — A)~L.

Forv>a, (R _1)t>0 is a v-times integrated cosine function in 7, Jga) (Tas *c)-
This may be proved using Laplace transform. This family is the canonical
integrated cosine function (see Theorem 4(i)). In the case of cosine functions,
this result appears in [5].

THEOREM 4. Let (Cy(t))e>0 be an a-times integrated cosine function
on X generated by (A, D(A)) such that |Co(t)]] < CTa(t), t > 0, where
Ta € 24. Then the map Cy : Tia)(m, xc) — B(X) given by

Ci(f)e =\ Wer@)Cat)zdt,  fe T (1a,%), z € X,
0
s a continuous Banach algebra homomorphism. Moreover,
(i) If v > a and (RV"Y)i=0 are the Bochner-Riesz functions then C,(t)
= C(RY™Y), where (Cy(t))i>0 is defined as in (2) and

\wefCatadt = \ WY F()C (t)zdt, =€ X,
0 0

for f € Tf’)(ﬂ,, o) < Tia) (Tay *c) and 7, (t) ==t~ *14(t) fort > 0.
(ii) If x € D(A) then Co(- )z is differentiable for any t > 0, and for

f € DJra
S WEf(t )c(lit wt)dt = ACL (W' flz+ f(0)z  for a >0,
0
T d
| r) —Co(tz dt = ACL (Wit f)a.
0

Proof. We suppose a > 0. As ||Cy(t)|| < C7u(t) for any t > 0, the
expression

Ci(f)a = \ Wer)Caltyadt,  fe T (ra %), o € X,
0
defines a continuous linear homomorphism C : 7. +(a)(7'a, *c) — B(X). In-

deed, for f,g € Dy we shall prove Co(f *. g) = C+(f)C+(g). By Proposi-
tion 1(ii), we have

I()Ci(f*cg)z=T WE(f *c 9)(#)Calt)x dt

(W(f*g)+ foWeg+goWf)(t)Calt)x dt,

°§f
e
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for x € X. Using [7, Proposition 1.1] and Fubini theorem, we get
[ee]
I(a) § WE(F # )(0)Calt)a di
0
00 T s+r s

= [ weg(r) [wes(s) (( i —S) (s 41— t)o‘*lCa(t):cdt> ds dr
0 0 ro0
[ee] 00 s+r r
+ [ wegir) § Wff(s)(( { —S) (s + 1 — )2 10, (t)z dt) ds dr.
0 r s 0
Again by the Fubini theorem,
J(fowsg)Calt)yzdt = | Weg(r) | f(r — t)Calt)z dt dr
0 0 0
and using f(r —t) = W *(W¢ f)(r —t), we obtain
I(a) | (f o Weg)(t)Calt) dt
0
= [ wegm) \wess) | (s—r+v ' Calt)zdtdsdr
0 0 r—s

+ S Wg(r) S Wf(s) S (t+s—r)2" 104 (t)x dt ds dr.
0 T 0
In the same way, we also get

[e.e]

I(a) (g0 WEF)(t)Calt) dt

0

— §W+g SW+f S (s —r 4+ )2 10y (t)z dt ds dr
0 T S—r

S Wg(r) SWff(s)S (t+5— 1) Cu(t)x dt ds dr.
0 0 0
We join these six summands to conclude that

o0

D(@)Cy(f e g)z = I'(a) | Wg(r)Calr) \ W f(5)Cals)z dsdr
0 0

+ () { Weg(r)Ca(r) | WS f(5)Cals)z ds dr
0 T

= I'(a)Ci(9)C(f)a.
Parts (i) and (ii) are checked using (3) and (4). =
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3. Almost-distribution cosine functions

DEFINITION 5. An almost-distribution cosine function on X is a contin-
uous linear map C; : Dy — B(X) with the following properties:

(i) C4(f *c 9) = C1(f)C+(g) for any f,g € Dy.

(i) N{kerC1(f) | f € Dy} = {0}
The generator (A, D(A)) of an almost-distribution cosine function C; is
defined by: 2 € D(A) when there exists y € X such that C(f)y = C+(f")z+
f(0)x for any f € D4, and Az := y. The generator (A4, D(A)) is well
defined, closed, C+(D4)X C D(A), and AC+(f)z = CL(f")x + f'(0)z for
any f € Dy andxz € X. If x € D(A) and f € D, then AC4(f)z = C4+(f)Ax.
An almost-distribution cosine function C is said to be of order o > 0 and
growth 7o € (24 if C1, regarded as defined on D4, can be extended to a
continuous linear map C4 : TJEO‘)(TQ, %) — B(X). We connect this kind of
almost-distribution cosine functions and integrated cosine functions.

THEOREM 6. Let (Co(t))i>0 be an a-times integrated cosine function on
X generated by (A, D(A)) such that ||Cq(t)|| <C1a(t), (t>0,74 € 24). Then
(A, D(A)) generates an almost-distribution cosine function, C4 : TJEO‘) (Ta, *¢)
— B(X),
Ci(fe= \ Wer@)Calt)zdt,  fe T (1a,%), z € X,
0

of order o > 0 and growth 7, € (2.

Proof. Condition (i) of Definition 5 is proven in Theorem 4. Take x €
Nsep, kerC4(f). Then Coqq(t)x = 0 and Co(t)z = %Ca+1(t)$ = 0 for any
t > 0, so we conclude that x = 0 and C4 is an almost-distribution cosine
function.

Let (B,D(B)) be the generator of C; and z € D(A) with y = Ax.
Applying Theorem 4(i) and (3), we see that, for f € D,

[e’s) [e’s) t
Co(fly = | WP f(t)Cara(tyydt = { W () | (t — 5)Cals)y ds dt
0 0 0
T o t*x
— §J W2 f(t) <Ca(t):n — m) dt
« // T (6% tax
W+f LE dt — § W +2f m dt

-
0
= C4(f"a + f(0)a.
D(B

Hence z € ) and Bz = Ax. Now we take z € D(B) and y = Bz and
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since (R®2);50 C TJfa)(Ta), we get

ta+1

Cors(t)y = Coy1(t)x — ] z.

I'a+2

Differentiating gives Cqi2(t)y = Co(t)z — F(Zy—il)x Thus =z € D(A) and
Ax = Bz.

Now we prove the first converse to Theorem 6.

THEOREM 7. Given a > 0, 7o, € {24, and an almost-distribution cosine
function C, : Tia) (Tas %¢) — B(X) generated by (A, D(A)). Then for any
v > a, (A, D(A)) generates a v-times integrated cosine function (Cy(t))e>0
such that ||Cy,(t)|| < Cy1y(t) with 7,(t) =tV “74(t) for any t > 0, and

Co(fz =\ Wi i, adt,  fe T (n,%), z€X.
0

Proof. Take v > «. By Theorem 3(iii), the Bochner-Riesz functions
(R;’_l)tzo belong to Tia)(Ta, *.) with v > « and qTa(th’_l) < Cpat’ 1o (1)
for ¢t > 0. Moreover, (RY™!)i>q is a v-times integrated cosine function in
Tﬁa)(Ta,*C). We define C,(t) := C,(RY™1) for any t > 0. It is clear that
(Cy(t))t>0 is a v-times integrated cosine function and by the continuity of
Ci, [|CL()]] < Cpat! 14(t) for any t > 0. Take now 7,(t) := ¥ “71,(t).
Then 7, € {2, and by Theorem 6, there exists C/, : ’Z]EV) (Ty, *¢) — B(X) such
that

o0

¢ (Nae=\wrrwo,ed, feT (r, %), v€X.
0

As TJfl’)(T,,, ko) +(a)(7'a, *c), and C4 is continuous, we have

C(f)e = | WL F(H)CH(R )z dt = c+( [ werere! dt)x —Co(f)x
0 0

for any f € Tf) (Ty,*c) and x € X. If (B, D(B)) generates (C,(t))¢>0 then
it generates C', (Theorem 6), and (A, D(A)) = (B,D(B)). =

By Theorem 3(iv), the Bochner-Riesz functions (R$™ 1)~ are multipli-
ers of the algebra 7(®)(r,, *.) for any ¢t > 0 and (R® 1)~ is an a-times
integrated cosine function in Mul(7 (%) (74, *.)). If ’]]fa)(Ta, *c) has a bounded
approximate identity, then Cohen’s factorization theorem holds, and we may
define (C1(RY1))¢>0. We get the second converse to Theorem 6. The proof
is similar to [7, Theorem 4.9].

THEOREM 8. Let a > 0, 7, € 2 and (A, D(A)) a closed and densely
defined operator on X. The following conditions are equivalent.



180

[10]
[11]

[12]

P. J. Miana

(i) (A, D(A)) generates an a-times integrated cosine function (Cq(t))i>0
such that ||Cyo(t)]] < Cotal(t) for any t > 0.

(ii) (A, D(A)) generates an almost-distribution cosine function Cy of or-

der o> 0 and growth 7o such that C4(D+)(X) is dense in X.
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