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Almost-distribution cosine functions and
integrated cosine functions

by

Pedro J. Miana (Zaragoza)

Abstract. We introduce the notion of almost-distribution cosine functions in a setting
similar to that of distribution semigroups defined by Lions. We prove general results on
equivalence between almost-distribution cosine functions and α-times integrated cosine
functions.

Introduction. Integrated cosine functions of operators in Banach
spaces have been introduced to study abstract second order “ill-posed”
Cauchy problems ([11]). α-Times integrated cosine functions were intro-
duced for α ∈ N in [1] and later defined for α ≥ 0 ([11], [12]). 0-times
integrated cosine functions are usual cosine functions. Differential operators
in Euclidean spaces are examples of α-times integrated cosine functions (see
[1] and [11]).

E. Marschall considered vector-valued cosine transforms defined by co-
sine functions ([5]) and he applied them to study spectral properties and the
spectral mapping theorem for cosine functions. The present author worked
with trigonometric convolution products, cosine functions and sine functions
(1-times integrated cosine functions) to define vector-valued cosine and sine
transforms ([6]). Almost-distribution cosine function is a new related con-
cept, closer to distribution semigroups defined by J.-L. Lions [4].

Every α-times integrated cosine function leads to an almost-distribution
cosine function of order α. We apply Banach algebras T (α)

+ (τα, ∗c) with re-
spect to cosine convolution product, which are defined using Weyl fractional
derivation. Conversely, almost-distribution cosine functions of order α define
integrated cosine functions. These ideas also hold in the case of integrated
semigroups and distribution semigroups (see [7]). The main facts of frac-
tional calculi are presented in the first section.
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Notation. <z is the real part of a complex number z; Γ is the Gamma
function; X,Y are Banach spaces; X ↪→ Y means a continuous embedding;
T : X → Y is a bounded linear map from X to Y and kerT is the kernel
of T ; B(X) is the set of bounded linear operators on X; Cα is a constant
which may depend on α.

1. Fractional Banach algebras on R+. In this section we review
some results and also prove new ones about Weyl fractional calculus (see
Theorem 3). Let τ0 : [0,∞) → [0,∞) be a measurable function on [0,∞)
such that τ0(t + s) ≤ C0τ0(t)τ0(s) and τ0(t − s) ≤ C0τ0(t)τ0(s) for any
0 < s < t and C0 > 0. Then L1(R+, τ0) is the Banach space of functions f
with ‖f‖τ0 :=

� ∞
0 |f(t)|τ0(t) dt <∞. Take f, g∈L1(R+, τ0). Then f ∗ g, f ◦ g

∈ L1(R+, τ0), where

f ∗ g(t) :=
t�

0

f(t− s)g(s) ds, f ◦ g(t) :=
∞�

t

f(s− t)g(s) ds, t ≥ 0.

The cosine convolution product f ∗c g is defined by f ∗c g := 1
2(f ∗g+f ◦g+

g ◦ f) (see [10]). Let D+ be the class of C∞ functions of compact support on
[0,∞). For f ∈ D+ and α > 0, the Weyl fractional integral W−α+ f of order
α is defined by

W−α+ f(t) :=
1

Γ (α)

∞�

t

(s− t)α−1f(s) ds, t ≥ 0,

and the Weyl fractional derivative Wα
+f of order α is given by

Wα
+f(t) :=

(−1)n

Γ (n− α)
dn

dtn

∞�

t

(s− t)n−α−1f(s) ds, t ≥ 0,

with n = [α] + 1. It is known that Wα+β
+ = Wα

+(W β
+) for any α, β ∈ R,

where W 0
+ = Id is the identity operator ([8]). The following proposition can

be checked directly:

Proposition 1. Given f, g ∈ D+ and α ∈ R, we have

(i) Wα
+(f ◦ g) = f ◦Wα

+g.
(ii) Wα

+(f ∗c g) = 1
2(Wα

+(f ∗ g) + f ◦Wα
+g + g ◦Wα

+f).

Weyl fractional calculus can also be applied to functions not belonging
to D+ (see [8, p. 248]). For example, let f and g be measurable functions on
[0,∞) such that W−α+ f exists and g = W−α+ f a.e. Then we set Wα

+g = f .
For example, the Bochner–Riesz functions (Rθt )t>0 defined by

Rθt (s) =
(t− s)θ
Γ (θ + 1)

χ(0,t)(s) for t > 0 and θ > −1

satisfy Wα
+R

θ
t = Rθ−αt for θ + 1 > α ≥ 0.
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We recall that Ωα is the set of nondecreasing continuous functions τα on
(0,∞) such that infu>0 u

−ατα(u) > 0 and there exists a constant Cα > 0
with �

[0,r]∪[s,s+r]

uα−1τα(r + s− u) du ≤ Cατα(r)τα(s), 0 ≤ r ≤ s

(see [2]). The functions τα(t) = tα; tβ(1 + t)ν with β ∈ [0, α] and ν ≥ α− β;
tβeτt with τ > 0 and β ∈ [0, α], all belong to Ωα. If τα ∈ Ωα then τν ∈ Ων ,
where τν(t) := tν−ατα(t) for t ≥ 0 and ν ≥ α. The subset of functions
τα(t) = tαw0(t), where w0 is a continuous nondecreasing weight, is denoted
by Ωh

α (see [2] for more details).

Lemma 2. Let α > 0 and τα ∈ Ωα. If 0 < s < t then

(i)
t�

t−s
(r − t+ s)α−1τα(r) dr ≤ Cατα(t)τα(s).

(ii)
s�

0

(r + t− s)α−1τα(r) dr ≤ Cατα(t)τα(s).

Proof. As τα is nondecreasing, we get
t�

t−s
(r − t+ s)α−1τα(r) dr ≤ τα(t)

t�

t−s
(r − t+ s)α−1 dr

=
τα(t)
α

sα ≤ Cατα(t)τα(s).

(ii) is proven in a similar way.

In [2, Propositions 1.4 and 1.5] the convolution product ∗ is considered,
leading to results similar to Theorem 3 below. We denote by Mul(A) the set
of multipliers of a Banach algebra A.

Theorem 3. Let α > 0 and τα ∈ Ωα. The expression

qτα(f) :=
1

Γ (α+ 1)

∞�

0

τα(t)|Wα
+f(t)| dt, f ∈ D+,

defines a norm on D+. Moreover , qτα(f ∗c g) ≤ Cαqτα(f)qτα(g) for f, g

∈ D+, and Cα > 0 is independent of f and g. Denote by T (α)
+ (τα, ∗c) the

Banach algebra obtained as the completion of D+ in the norm qτα .

(i) T (α)
+ (τα, ∗c) ↪→ T (α)

+ (tα, ∗c) ↪→ L1(R+, ∗c).
(ii) If β > α > 0, and τβ ∈ Ωβ is such that

1
Γ (β − α)Γ (α+ 1)

t�

0

(t−s)β−α−1τα(s) ds ≤ 1
Γ (β + 1)

τβ(t), t ≥ 0,
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then T (β)
+ (τβ, ∗c) ↪→ T (α)

+ (τα, ∗c); in particular T (β)
+ (tβ, ∗c) ↪→

T (α)
+ (tα, ∗c).

(iii) Rν−1
t ∈T (α)

+ (τα, ∗c) for t>0 and ν>α, and qτα(Rν−1
t )≤Cν,αtν−ατα(t)

for t > 0, where Cν,α > 0 is independent of t.

(iv) Rα−1
t ∈ Mul(T (α)

+ (τα, ∗c)) and ‖Rα−1
t ‖

Mul(T (α)
+ (τα,∗c)) ≤ Cτα(t) for

t > 0.

Proof. Clearly qτα is a norm on D+ and

qτα(f ∗c g) ≤ 1
2

(qτα(f ∗ g) + qτα(f ◦ g) + qτα(g ◦ f)).

As qτα(f ∗ g) ≤ Cαqτα(f)qτα(g) (see [2, Proposition 1.4]), it is enough to
check qτα(f ◦ g) ≤ Cαqτα(f)qτα(g). We apply Proposition 1(i), the Fubini
theorem and Lemma 2 to get

qτα(f ◦ g) ≤
∞�

0

τα(t)
∞�

t

1
Γ (α)

∞�

s−t
(u− s+ t)α−1|Wα

+f(u)| du|Wα
+g(s)| ds dt

≤ 1
Γ (α)

∞�

0

|Wα
+g(s)|

s�

0

|Wα
+f(u)|

s�

s−u
(u− s+ t)α−1τα(t) dt du ds

+
1

Γ (α)

∞�

0

|Wα
+g(s)|

∞�

s

|Wα
+f(u)|

s�

0

(u− s+ t)α−1τα(t) dt du ds

≤ Cαqτα(f)qτα(g).

(i) and (ii) are checked directly and (iii) appears in [2].

(iv) Take f ∈ D+; we shall prove Rα−1
t ∗ f ∈ T (α)

+ (τα, ∗c) for any t > 0.

By [2, Proposition 1.5], Rα−1
t ∈ Mul(T (α)

+ (τα, ∗)), and it is enough to prove

Rα−1
t ◦ f, f ◦Rα−1

t ∈ T (α)
+ (τα, ∗c). Since Wα(Rα−1

t ◦ f) = Rα−1
t ◦Wα

+f and
Wα

+(f ◦ Rα−1
t )(s) = f(s + t) for s, t > 0, we use again Lemma 2 to obtain

Rα−1
t ∈ Mul(T (α)

+ (τα, ∗c)), and ‖Rα−1
t ‖

Mul(T (α)
+ (τα,∗c)) ≤ Cτα(t) for t > 0.

If τα ∈ Ωh
α with α ≥ 0, the algebra T (α)

+ (τα, ∗c) has bounded approximate

identities (take φ ∈ T (α)
+ (τα) such that

� ∞
0 φ(t) dt = 1 and consider (φs =

(1/s)φ( · /s))0<s<1). In general, the algebras T (α)
+ (τα, ∗c) do not have any

bounded approximate identity.

2. α-Times integrated cosine functions. Given α > 0, a family
(Cα(t))t≥0 ⊂ B(X) of strongly continuous operators is an α-times integrated
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cosine function if Cα(0) = 0 and

(1) 2Γ (α)Cα(t)Cα(s)x =
( t+s�

t

−
s�

0

)
(t+ s− r)α−1Cα(r)x dr

+
t�

t−s
(r − t+ s)α−1Cα(r)x dr +

s�

0

(r + t− s)α−1Cα(r)x dr

for all t > s > 0 and x ∈ X. Every α-times integrated cosine function
(Cα(t))t≥0 yields a ν-times integrated cosine function (Cν(t))t≥0 defined by

Cν(t)x :=
1

Γ (ν − α)

t�

0

(t− s)ν−α−1Cα(s)x ds, t ≥ 0, x ∈ X.(2)

0-Times integrated cosine functions are usual cosine functions. An α-times
integrated cosine function (Cα(t))t≥0 is called nondegenerate if Cα(t)x = 0
for all t ≥ 0 implies that x = 0. We only consider nondegenerate integrated
cosine functions. We define its generator (A,D(A)), where D(A) is the set
of x ∈ X such that there exists y ∈ X satisfying

Cα(t)x− tα

Γ (α+ 1)
x =

t�

0

(t− r)Cα(r)y dr, t > 0,(3)

and Ax := y. It is straightforward to check that (A,D(A)) is a closed oper-
ator. For every x ∈ X,

� t
0(t− s)Cα(s)x ds ∈ D(A) and

Cα(t)x = A

t�

0

(t− s)Cα(s)x ds+
tα

Γ (α+ 1)
x.

If x ∈ D(A) then Cα( · )x is differentiable for t ≥ 0 and

(4)

d

dt
Cα(t)x =

t�

0

Cα(s)Axds+
tα−1

Γ (α)
x for α > 0,

d

dt
C0(t)x =

t�

0

C0(s)Axds

([9], [11]). If ‖Cα(t)‖ ≤ Ceλ0t with C, λ0 ≥ 0, condition (1) is equivalent
(via Laplace transform) to

R(λ2, A)x := λα−1
∞�

0

e−λtCα(t)x dt, x ∈ X, <λ2 > λ0,

being a pseudo-resolvent operator, i.e.,

R(λ2, A)−R(µ2, A) = (µ2 − λ2)R(λ2, A)R(µ2, A), <λ2,<µ2 > λ0
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(for α = n see [9, Theorem 1.3]). In the nondegenerate case, <λ2 belongs to
the resolvent set %(A) and R(λ2, A) = (λ2 −A)−1.

For ν>α, (Rν−1
t )t>0 is a ν-times integrated cosine function in T (α)

+ (τα, ∗c).
This may be proved using Laplace transform. This family is the canonical
integrated cosine function (see Theorem 4(i)). In the case of cosine functions,
this result appears in [5].

Theorem 4. Let (Cα(t))t≥0 be an α-times integrated cosine function
on X generated by (A,D(A)) such that ‖Cα(t)‖ ≤ Cτα(t), t ≥ 0, where
τα ∈ Ωα. Then the map C+ : T (α)

+ (τα, ∗c)→ B(X) given by

C+(f)x =
∞�

0

Wα
+f(t)Cα(t)x dt, f ∈ T (α)

+ (τα, ∗c), x ∈ X,

is a continuous Banach algebra homomorphism. Moreover ,

(i) If ν > α and (Rν−1
t )t>0 are the Bochner–Riesz functions then Cν(t)

= C+(Rν−1
t ), where (Cν(t))t≥0 is defined as in (2) and
∞�

0

Wα
+f(t)Cα(t)x dt =

∞�

0

W ν
+f(t)Cν(t)x dt, x ∈ X,

for f ∈ T (ν)
+ (τν , ∗c) ↪→ T (α)

+ (τα, ∗c) and τν(t) := tν−ατα(t) for t ≥ 0.
(ii) If x ∈ D(A) then Cα( · )x is differentiable for any t ≥ 0, and for

f ∈ D+,
∞�

0

Wα
+f(t)

d

dt
Cα(t)x dt = AC+(W−1

+ f)x+ f(0)x for α > 0,

∞�

0

f(t)
d

dt
C0(t)x dt = AC+(W−1

+ f)x.

Proof. We suppose α > 0. As ‖Cα(t)‖ ≤ Cτα(t) for any t ≥ 0, the
expression

C+(f)x :=
∞�

0

Wα
+f(t)Cα(t)x dt, f ∈ T (α)

+ (τα, ∗c), x ∈ X,

defines a continuous linear homomorphism C+ : T (α)
+ (τα, ∗c) → B(X). In-

deed, for f, g ∈ D+ we shall prove C+(f ∗c g) = C+(f)C+(g). By Proposi-
tion 1(ii), we have

Γ (α)C+(f ∗c g)x = Γ (α)
∞�

0

Wα
+(f ∗c g)(t)Cα(t)x dt

=
Γ (α)

2

∞�

0

(Wα
+(f ∗ g) + f ◦Wα

+g + g ◦Wα
+f)(t)Cα(t)x dt,



Almost-distribution cosine functions 177

for x ∈ X. Using [7, Proposition 1.1] and Fubini theorem, we get

Γ (α)
∞�

0

Wα
+(f ∗ g)(t)Cα(t)x dt

=
∞�

0

Wα
+g(r)

r�

0

Wα
+f(s)

(( s+r�

r

−
s�

0

)
(s+ r − t)α−1Cα(t)x dt

)
ds dr

+
∞�

0

Wα
+g(r)

∞�

r

Wα
+f(s)

(( s+r�

s

−
r�

0

)
(s+ r − t)α−1Cα(t)x dt

)
ds dr.

Again by the Fubini theorem,
∞�

0

(f ◦Wα
+g)(t)Cα(t)x dt =

∞�

0

Wα
+g(r)

r�

0

f(r − t)Cα(t)x dt dr

and using f(r − t) = W−α+ (Wα
+f)(r − t), we obtain

Γ (α)
∞�

0

(f ◦Wα
+g)(t)Cα(t)x dt

=
∞�

0

Wα
+g(r)

r�

0

Wα
+f(s)

r�

r−s
(s− r + t)α−1Cα(t)x dt ds dr

+
∞�

0

Wα
+g(r)

∞�

r

Wα
+f(s)

r�

0

(t+ s− r)α−1Cα(t)x dt ds dr.

In the same way, we also get

Γ (α)
∞�

0

(g ◦Wα
+f)(t)Cα(t)x dt

=
∞�

0

Wα
+g(r)

∞�

r

Wα
+f(s)

r�

s−r
(s− r + t)α−1Cα(t)x dt ds dr

+
∞�

0

Wα
+g(r)

r�

0

Wα
+f(s)

r�

0

(t+ s− r)α−1Cα(t)x dt ds dr.

We join these six summands to conclude that

Γ (α)C+(f ∗c g)x = Γ (α)
∞�

0

Wα
+g(r)Cα(r)

r�

0

Wα
+f(s)Cα(s)x ds dr

+ Γ (α)
∞�

0

Wα
+g(r)Cα(r)

∞�

r

Wα
+f(s)Cα(s)x ds dr

= Γ (α)C+(g)C+(f)x.

Parts (i) and (ii) are checked using (3) and (4).
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3. Almost-distribution cosine functions

Definition 5. An almost-distribution cosine function on X is a contin-
uous linear map C+ : D+ → B(X) with the following properties:

(i) C+(f ∗c g) = C+(f)C+(g) for any f, g ∈ D+.
(ii)

⋂{ker C+(f) | f ∈ D+} = {0}.
The generator (A,D(A)) of an almost-distribution cosine function C+ is
defined by: x ∈ D(A) when there exists y ∈ X such that C+(f)y = C+(f ′′)x+
f ′(0)x for any f ∈ D+, and Ax := y. The generator (A,D(A)) is well
defined, closed, C+(D+)X ⊂ D(A), and AC+(f)x = C+(f ′′)x + f ′(0)x for
any f ∈ D+ and x ∈ X. If x ∈ D(A) and f ∈ D+ then AC+(f)x = C+(f)Ax.
An almost-distribution cosine function C+ is said to be of order α > 0 and
growth τα ∈ Ωα if C+, regarded as defined on D+, can be extended to a
continuous linear map C+ : T (α)

+ (τα, ∗c) → B(X). We connect this kind of
almost-distribution cosine functions and integrated cosine functions.

Theorem 6. Let (Cα(t))t≥0 be an α-times integrated cosine function on
X generated by (A,D(A)) such that ‖Cα(t)‖≤Cτα(t), (t≥0, τα∈Ωα). Then
(A,D(A)) generates an almost-distribution cosine function, C+ : T (α)

+ (τα, ∗c)
→ B(X),

C+(f)x =
∞�

0

Wα
+f(t)Cα(t)x dt, f ∈ T (α)

+ (τα, ∗c), x ∈ X,

of order α > 0 and growth τα ∈ Ωα.

Proof. Condition (i) of Definition 5 is proven in Theorem 4. Take x ∈⋂
f∈D+

ker C+(f). Then Cα+1(t)x = 0 and Cα(t)x = d
dtCα+1(t)x = 0 for any

t > 0, so we conclude that x = 0 and C+ is an almost-distribution cosine
function.

Let (B,D(B)) be the generator of C+ and x ∈ D(A) with y = Ax.
Applying Theorem 4(i) and (3), we see that, for f ∈ D+,

C+(f)y =
∞�

0

Wα+2
+ f(t)Cα+2(t)y dt =

∞�

0

Wα+1
+ f(t)

t�

0

(t− s)Cα(s)y ds dt

=
∞�

0

Wα+2
+ f(t)

(
Cα(t)x− tαx

Γ (α+ 1)

)
dt

=
∞�

0

Wα
+f
′′(t)Cα(t)x dt−

∞�

0

Wα+2
+ f(t)

tαx

Γ (α+ 1)
dt

= C+(f ′′)x+ f ′(0)x.

Hence x ∈ D(B) and Bx = Ax. Now we take x ∈ D(B) and y = Bx and
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since (Rα+2
t )t>0 ⊂ T (α)

+ (τα), we get

Cα+3(t)y = Cα+1(t)x− tα+1

Γ (α+ 2)
x.

Differentiating gives Cα+2(t)y = Cα(t)x − tα

Γ (α+1)x. Thus x ∈ D(A) and
Ax = Bx.

Now we prove the first converse to Theorem 6.

Theorem 7. Given α ≥ 0, τα ∈ Ωα, and an almost-distribution cosine
function C+ : T (α)

+ (τα, ∗c) → B(X) generated by (A,D(A)). Then for any
ν > α, (A,D(A)) generates a ν-times integrated cosine function (Cν(t))t≥0
such that ‖Cν(t)‖ ≤ Cντν(t) with τν(t) = tν−ατα(t) for any t ≥ 0, and

C+(f)x =
∞�

0

W ν
+f(t)Cν(t)x dt, f ∈ T (ν)

+ (τν , ∗c), x ∈ X.

Proof. Take ν > α. By Theorem 3(iii), the Bochner–Riesz functions
(Rν−1

t )t≥0 belong to T (α)
+ (τα, ∗c) with ν > α and qτα(Rν−1

t ) ≤ Cν,αtν−ατα(t)
for t ≥ 0. Moreover, (Rν−1

t )t≥0 is a ν-times integrated cosine function in
T (α)

+ (τα, ∗c). We define Cν(t) := C+(Rν−1
t ) for any t ≥ 0. It is clear that

(Cν(t))t≥0 is a ν-times integrated cosine function and by the continuity of
C+, ‖Cν(t)‖ ≤ Cν,αt

ν−ατα(t) for any t ≥ 0. Take now τν(t) := tν−ατα(t).

Then τν ∈ Ων and by Theorem 6, there exists C ′+ : T (ν)
+ (τν , ∗c)→ B(X) such

that

C′+(f)x =
∞�

0

W ν
+f(t)Cν(t)x dt, f ∈ T (ν)

+ (τν , ∗c), x ∈ X.

As T (ν)
+ (τν , ∗c) ↪→ T (α)

+ (τα, ∗c), and C+ is continuous, we have

C′+(f)x =
∞�

0

W ν
+f(t)C+(Rν−1

t )x dt = C+

(∞�

0

W ν
+f(t)Rν−1

t dt
)
x = C+(f)x

for any f ∈ T (ν)
+ (τν , ∗c) and x ∈ X. If (B,D(B)) generates (Cν(t))t>0 then

it generates C ′+ (Theorem 6), and (A,D(A)) = (B,D(B)).

By Theorem 3(iv), the Bochner–Riesz functions (Rα−1
t )t>0 are multipli-

ers of the algebra T (α)(τα, ∗c) for any t > 0 and (Rα−1
t )t>0 is an α-times

integrated cosine function in Mul(T (α)(τα, ∗c)). If T (α)
+ (τα, ∗c) has a bounded

approximate identity, then Cohen’s factorization theorem holds, and we may
define (C+(Rα−1

t ))t≥0. We get the second converse to Theorem 6. The proof
is similar to [7, Theorem 4.9].

Theorem 8. Let α ≥ 0, τα ∈ Ωh
α and (A,D(A)) a closed and densely

defined operator on X. The following conditions are equivalent.
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(i) (A,D(A)) generates an α-times integrated cosine function (Cα(t))t≥0
such that ‖Cα(t)‖ ≤ Cατα(t) for any t ≥ 0.

(ii) (A,D(A)) generates an almost-distribution cosine function C+ of or-
der α > 0 and growth τα such that C+(D+)(X) is dense in X.
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