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Deformation coproducts and differential maps

by

R. L. Hudson (Loughborough) and S. Pulmannová (Bratislava)

Abstract. Let T be the Itô Hopf algebra over an associative algebra L into which the
universal enveloping algebra U of the commutator Lie algebra L is embedded as the sub-
algebra of symmetric tensors. We show that there is a one-to-one correspondence between
deformations ∆[h] of the coproduct in T and pairs (~d[h],

~

d[h]) of right and left differential
maps which are deformations of the differential maps for T [Hudson and Pulmannová,
J. Math. Phys. 45 (2004)]. Corresponding to the multiplicativity and coassociativity of

∆[h], ~d[h] and

~

d[h] satisfy the Leibniz–Itô formula and a mutual commutativity condition.

∆[h] is recovered from ~d[h] and

~

d[h] by a generalised Taylor expansion. As an illustrative
example we consider the differential maps corresponding to the quantisation of quasitri-
angular commutator Lie bialgebras of [Hudson and Pulmannová, Lett. Math. Phys. 72
(2005)].

1. Introduction. Motivated by quantum stochastic calculus [5], in
which case the multiplication rule is essentially that for iterated stochastic
integrals and the natural coproduct is related to the continuous tensor prod-
uct structure of Fock space, in [6] we introduced a noncommutative general-
isation of the shuffle product Hopf algebra, called the Itô Hopf algebra. The
universal enveloping algebra of the commutator Lie algebra of the underlying
associative algebra is embedded in this as a Hopf subalgebra. Furthermore,
we showed in [7] that this could be used to effect a quantisation of commuta-
tor Lie bialgebras of quasitriangular [2] type. The quantisation is effected by
conjugating the standard coproduct by a “double product integral” whose
generator is derived from the solution of the classical Yang–Baxter equation
determining the quasitriangular structure, to obtain a deformed coproduct.
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The purpose of this article is to investigate more general deformed co-
products, and corresponding quantisations, living in the generalised shuffle
product Hopf algebra, which are not given by such conjugations. We shall
investigate them using the corresponding differential maps. These were in-
troduced in [6] in the case of the undeformed coproduct where they were
found to be useful in the construction of double product integrals. Here
we show that deformations of the differential maps of [6] can be associated
with deformations of the coproduct. Corresponding to the multiplicativity,
coassociativity and counitality of the deformed coproduct, the differential
maps satisfy respectively the Leibniz–Itô formula, a mutual commutativity
condition and a counitality condition related to an analog of the Maclau-
rin expansion for polynomials. Conversely, given deformed differential maps
satisfying these three conditions, a corresponding deformed coproduct can
be constructed by an analog of the Taylor expansion.

In a subsequent paper we shall show how such differential maps can
be constructed, essentially from an infinitesimal which is the first order
coefficient in their formal power series expansions, thus giving a general
method of quantising commutator Lie bialgebras.

We use the following notational convention. If V1, . . . ,Vn are vector
spaces and π is a permutation of {1, . . . , n} then τπ is the linear map from
V1 ⊗ · · · ⊗ Vn to Vπ(1) ⊗ · · · ⊗ Vπ(n) which appropriately permutes the com-
ponents of product tensors.

2. The Itô Hopf algebra. Let L be a not necessarily unital associative
algebra over a field F and let T =

⊕∞
n=0

⊗nL denote the vector space of
all tensors over L. Thus elements of T are sequences T = (T0, T1, T2, . . .) of
homogeneous tensors Tn ∈

⊗nL of which only finitely many are nonzero.
T becomes a unital associative algebra under the multiplication RS = T,
where the homogeneous component Tn of rank n of the tensor T is defined
in terms of those of R and S by

Tn =
∑

A∪B={1,...,n}

RA|A|S
B
|B|,(1)

where the sum is over all 3n ordered pairs of subsets (A,B) whose union is
{1, . . . , n}, RA|A| indicates that the |A|th rank homogeneous component R|A|
of R is placed in the tensor product

⊗
j∈AL of the copies of L labelled by

elements j of A within the full n-fold tensor product
⊗nL, SB|B| is defined

analogously, so that RA|A| and SB|B| jointly occupy every copy of L in
⊗nL,

and double occupancies are reduced using the multiplication in L. Note
that when the multiplication in L is trivial, all products vanishing, then the
associative algebra T is just the shuffle algebra over L.
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The algebra T becomes a Hopf algebra when the coproduct ∆0 is defined
by linear extension of the action on homogeneous product tensors

∆0(L1 ⊗ · · · ⊗ Ln) =
n∑
j=0

(L1 ⊗ · · · ⊗ Lj)⊗ (Lj+1 ⊗ · · · ⊗ Ln).(2)

The counit ε is
ε : (T0, T1, T2, . . .) 7→ T0

and the antipode S acts on homogeneous product tensors as

S(L1 ⊗ · · · ⊗ Ln) = (−1)nLn ⊗ · · · ⊗ L1 + terms of lower rank.

An explicit formula for S is given in the Appendix.
The kernel of ε is evidently the ideal T0 of T comprising tensors whose

zero-rank homogeneous component is zero. We call the map

ε1 : T0 3 (0, T1, T2, . . .) 7→ T1 ∈ L

the enabling map. Note that it is a homomorphism of associative algebras.
The map L 3 L 7→ (0, L, 0, 0, . . .) ∈ T is a Lie algebra homomorphism

when both L and T have their commutator Lie brackets, whose universal
extension is an isomorphism of Hopf algebras from the universal enveloping
algebra U of L onto the Hopf subalgebra S of T consisting of symmetric
tensors.

3. The undeformed differential maps. We define right and left dif-
ferential maps ~d0 and

~

d0 from T to T ⊗L and L⊗ T respectively by linear
extension of the actions

(3) ~d0(1T ) = 0, ~d0(L1 ⊗ · · · ⊗ Ln) = (L1 ⊗ · · · ⊗ Ln−1)⊗ Ln,
(4)

~

d0(1T ) = 0,

~

d0(L1 ⊗ · · · ⊗ Ln) = L1 ⊗ (L2 ⊗ · · · ⊗ Ln),

respectively, for arbitrary n ∈ N and L1, . . . , Ln ∈ L. Alternatively

~d0(T ) = (idT ⊗ ε1)(∆0(T )− T ⊗ 1T ),~

d0(T ) = (ε1 ⊗ idT )(∆0(T )− 1T ⊗ T )
(5)

for arbitrary T ∈ T . As a consequence of the latter form, they both satisfy
the Leibniz–Itô formula

~d0(ST ) = ~d0(S)T + S~d0(T ) + ~d0(S)~d0(T ),~

d0(ST ) =

~

d0(S)T + S

~

d0(T ) +

~

d0(S)

~

d0(T )

for arbitrary S, T ∈ T , where, in the first two terms of the right hand sides,
T ⊗L and L⊗T are regarded as T -modules with the natural multiplicative
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actions and, in the third terms, as associative algebras using the tensor
product multiplication (1).

For T ∈ T , if both ~d0(T ) = 0 and ε(T ) = 0, then T = 0. Similarly if, for
T ∈ T ⊗ T , both

(idT ⊗ ~d0)T = 0, (idT ⊗ ε)T = 0,(6)

it follows that T = 0.
By checking actions on homogeneous product tensors it can be verified

that the differential maps satisfy the commutation relation

(idL ⊗ ~d0)

~

d0 = (

~

d0 ⊗ idL)~d0

and that, in so far as

T ⊗ T =
∞⊕
n=0

(T ⊗ (
⊗nL)) =

∞⊕
n=0

((
⊗nL)⊗ T ),

the Taylor expansions

∆0 =
∞⊕
n=0

~d
(n)
0 =

∞⊕
n=0

~

d
(n)
0

hold, where the iterated differential maps are defined by ~d(0)
0 =

~

d
(0)
0 = idT ,

~d
(1)
0 = ~d0,

~

d
(1)
0 =

~

d0 and, for n > 1,

~d
(n)
0 = (~d0 ⊗ idNn−1 L)~d(n−1)

0 ,

~

d
(n)
0 = (idNn−1 L ⊗

~

d0)

~

d
(n−1)
0 .

Also we have the Maclaurin formulas

(ε⊗ idNn L)~d(n)
0 = (idNn L ⊗ ε)

~

d
(n)
0 ,

both being equal to the projection

T 3 (T0, T1, T2, . . .) 7→ Tn ∈
⊗nL.

We note that ∆0 is the unique solution of the “differential equation”, for
a linear map from T to T ⊗ T ,

(idT ⊗ ~d0)∆0 = (∆0 ⊗ idL)~d0, (idT ⊗ ε)∆0 = idT .(7)

Indeed, that it satisfies (7) follows from the corresponding Taylor expansion.
To prove uniqueness, suppose that ∆′0 also satisfies (7). Then the difference
D = ∆0 −∆′0 is a linear map from T to T ⊗ T satisfying

(idT ⊗ ~d0)D = (D ⊗ idL)~d0, (idT ⊗ ε)D = 0.

Since ~d0(1T ) = 0 we deduce that

(idT ⊗ ~d0)D(1T ) = (D ⊗ idL)~d0(1T ) = 0, (idT ⊗ ε)D(1T ) = 0,

(1) By modifying either the right or the left actions by the inclusion of the third term,
it can be seen that both the right and left differential maps define differential calculi in
the sense of Woronowicz [8], [4].
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and hence from (6) that D(1T ) = 0. Next consider a rank 1 tensor
(0, L, 0, 0, . . .) ∈ T . From (7) we deduce that

(idT ⊗ ~d0)D(0, L, 0, 0, . . .) = (D ⊗ idL)~d0(0, L, 0, 0, . . .)
= (D ⊗ idL)(1T ⊗ L) = 0

since D(1T ) = 0, whence, since also (idT ⊗ ε)D(0, L, 0, 0, . . .) = 0, it again
follows from (6) that D(0, L, 0, 0, . . .) = 0. A simple inductive argument
shows that similarly D vanishes on homogeneous tensors of arbitrary rank.

A similar argument shows that ∆0 is the unique solution of

(

~

d0 ⊗ idT )∆0 = (idL ⊗∆0)

~

d0, (ε⊗ idT )∆0 = idT .

4. From deformed coproducts to differential maps. We equip the
space T [[h]] of formal power series with coefficients in T with the convolution
product derived from that in T ,

∞∑
N=0

hNS(N)
∞∑
N=0

hNT (N) =
∞∑
N=0

hN
N∑
j=0

S(j)T (N−j).

We denote by A the subalgebra of T [[h]] consisting of formal power series∑∞
N=0 h

NS(N) whose zero-order coefficient S(0) is a symmetric tensor. Thus
the universal enveloping algebra U ' S is embedded as the algebra of “con-
stants” in A and we can seek quantum groups, in the form of deformations
of U , in A. We do this by equipping T with a deformation coproduct

∆[h] =
∞∑
N=0

hN∆N : T → (T ⊗ T )[[h]],

where the zero-order coefficient ∆0 is the natural coproduct defined in T
by (2). We shall assume that the undeformed counit ε in T remains counital
for the deformed coproduct;

(ε⊗ idT )∆[h] = (idT ⊗ ε)∆[h] = idT .(8)

Here and elsewhere, maps defined on coefficient algebras of formal power
series are extended to formal power series by actions on coefficients. In par-
ticular, the coefficients of order greater than zero of ∆[h] are annihilated
by ε:

(ε⊗ idT )∆N = (idT ⊗ ε)∆N = 0, N = 1, 2, . . . .(9)

We associate with the deformed coproduct ∆[h] the right and left de-
formed differential maps ~d[h] : T → (T ⊗ L)[[h]],

~

d[h] : T → (L ⊗ T )[[h]]
defined by the generalisations of (5):

~d[h](T ) = (idT ⊗ ε1)(∆[h](T )− T ⊗ 1T ),~

d[h](T ) = (ε1 ⊗ idT )(∆[h](T )− 1T ⊗ T ).
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Note that in view of (8),

(idT ⊗ ε)(∆[h](T )− T ⊗ 1T ) = T − (idT ⊗ ε)(T ⊗ 1T ) = 0,

so that ∆[h](T )− T ⊗ 1T belongs to the domain of idT ⊗ ε1 and so ~d[h](T ),
and similarly

~

d[h](T ), are well defined. Also

~d[h] =
∞∑
N=0

hN ~dN ,

~

d[h] =
∞∑
N=0

hN

~

dN ,(10)

where the zero-order coefficients ~d0 and

~

d0 are the undeformed differential
maps. In view of (8),

(ε⊗ idL)~d[h](T ) = (ε⊗ idL)(idT ⊗ ε1)(∆[h](T )− T ⊗ 1T )
= ε1(ε⊗ idT )(∆[h](T )− T ⊗ 1T ) = ε1(T − ε(T )1T ),

and a similar argument shows that

(idL ⊗ ε)

~

d[h](T ) = ε1(T − ε(T )1T ).
In particular,

(ε⊗ idL)~d[h] = (idL ⊗ ε)

~

d[h]
and

(ε⊗ idL)~dN = (idL ⊗ ε)

~

dN = 0, N = 1, 2, . . . .(11)

Theorem 1. Assume that the deformed coproduct ∆[h] is multiplicative:
∆[h](ST ) = ∆[h](S)∆[h](T ).

Then the corresponding deformed differential maps ~d[h] and

~

d[h] satisfy the
Leibniz–Itô formulas

~d[h](ST ) = ~d[h](S)T + S~d[h](T ) +~d[h](S)~d[h](T ),~

d[h](ST ) =

~

d[h](S)T + S

~

d[h](T ) +

~

d[h](S)

~

d[h](T ).

Here (T ⊗ L)[[h]] and (L ⊗ T )[[h]] are regarded as T -bimodules by means
of the natural multiplicative actions on coefficients and as algebras using
the convolution product for formal power series based on the tensor product
multiplication for the coefficients.

Proof. Using the definition of ~d[h], the multiplicativity of the maps ∆[h]
and idT ⊗ ε1, and the forms of the left and right actions of T on (T ⊗L)[[h]],
we have
~d[h](S)~d[h](T )

= ((idT ⊗ ε1)(∆[h](S)− S ⊗ 1T ))((idT ⊗ ε1)(∆[h](T )− T ⊗ 1T ))

= (idT ⊗ ε1)((∆[h](S)− S ⊗ 1T )(∆[h](T )− T ⊗ 1T ))

= (idT ⊗ ε1)(∆[h](S)∆[h](T )−∆[h](S)(V ⊗ 1T )− (S ⊗ 1T )∆[h](T ).

+ (S ⊗ 1T )(T ⊗ 1T ))
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= (idU ⊗ ε1)(∆[h](ST )− (ST )⊗ 1T − (∆[h](S)− S ⊗ 1T )(T ⊗ 1T ).

− (S ⊗ 1T )(∆[h](T )− T ⊗ 1T ))

= ~d[h](ST )− (~d[h](S))T − S(~d[h](T )),

from which the Leibniz–Itô formula for ~d[h] follows. That for

~

d[h] is proved
similarly.

Theorem 2. Assume that the deformed coproduct ∆[h] is coassociative:

(idT ⊗∆[h])∆[h] = (∆[h]⊗ idT )∆[h].(12)

Then ~d[h] and

~

d[h] satisfy the commutativity condition

(idL ⊗~d[h])

~

d[h] = (

~

d[h]⊗ idL)~d[h].(13)

Here formal power series whose coefficients are maps are composed by con-
volution, for example

(idT ⊗∆[h])∆[h] =
∞∑
N=0

hN
N∑
j=0

(idT ⊗∆j)∆N−j .

Proof. For arbitrary T ∈ T ,

((idL ⊗~d[h])

~

d[h])(T ) = (idL ⊗~d[h])(

~

d[h](T ))

= (idL ⊗~d[h])((ε1 ⊗ idT )(∆[h](T )− 1T ⊗ T ))

= ((idL ⊗~d[h])(ε1 ⊗ idT ))(∆[h](T )− 1T ⊗ T )

= (ε1 ⊗~d[h])(∆[h](T )− 1T ⊗ T )

= ((ε1 ⊗ idT⊗L)(idT ⊗~d[h]))(∆[h](T )− 1T ⊗ T )

= (ε1 ⊗ idT⊗L)(idT ⊗ idT ⊗ ε1){(idT ⊗∆[h])(∆[h](T )− 1T ⊗ T )

− 1T ⊗ (∆[h](T )− 1T ⊗ T )}

= (ε1 ⊗ idT ⊗ ε1){((idT ⊗∆[h])∆[h])(T )− 1T ⊗∆[h](T )

−∆[h](T )⊗ 1T + 1T ⊗ 1T ⊗ T}.
A similar argument shows that

((

~

d[h]⊗ idL)~d[h])(T )
= (ε1 ⊗ idT ⊗ ε1){((∆[h]⊗ idT )∆[h])(T )− 1T ⊗∆[h](T )

−∆[h](T )⊗ 1T + 1T ⊗ 1T ⊗ T}.
Comparing these two expressions we see that (13) follows from (12).

The next theorem shows that the deformed coproduct ∆[h] can be re-
garded as a “flow” generated by either the right or the left deformed differ-
ential map.
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Theorem 3. Suppose that ∆[h] is coassociative. Then it is the unique
solution of either of the “differential equations”

(idT ⊗~d[h])∆[h] = (∆[h]⊗ idL)~d[h], (idT ⊗ ε)∆[h] = idT ,(14)

(

~

d[h]⊗ idT )∆[h] = (idL ⊗∆[h])

~

d[h], (ε⊗ idT )∆[h] = idT .(15)

Proof. Let us prove that ∆[h] is the unique solution of (14); the case of
(15) is proved similarly. To prove that it satisfies (14), using the definition
of ~d[h] and the coassociativity of ∆[h] we have, for arbitrary T ∈ T ,

((idT ⊗~d[h])∆[h])(T )

= (idT ⊗ idT ⊗ ε1)(((idT ⊗∆[h])∆[h])(T )− τ(1,3,2)(1T ⊗∆[h](T )))

= (idT ⊗ idT ⊗ ε1)(((∆[h]⊗ idT )∆[h])(T )− τ(1,3,2)(1T ⊗∆[h](T )))

= (∆[h]⊗ idL)((idT ⊗ ε1)(∆[h](T )− 1T ⊗ T ))

= (∆[h]⊗ idL)(~d[h](T )) = ((∆[h]⊗ idL)~d[h])(T ).

Also, by (8), (idT ⊗ ε)∆[h](T ) = T. Hence (14) holds.
Let us now prove uniqueness. Equating coefficients of powers of h in

(14) we see that the zero-order coefficient ∆0 is the solution of (7) which is
unique. The first order coefficient ∆1 satisfies

(idT ⊗ ~d0)∆1 + (idT ⊗ ~d1)∆0 = (∆0 ⊗ idL)~d1 + (∆1 ⊗ idL)~d0,

together with (idT ⊗ ε)∆1 = 0. Suppose that both ∆1 and ∆′1 satisfy these
equations. Then their difference D1 satisfies

(idT ⊗ ~d0)D1 = (D1 ⊗ idL)~d0, (idT ⊗ ε)D1 = 0.

But by the uniqueness of the solution to (7) such a map D1 must vanish
and hence the first order coefficient is unique. A similar inductive argument
now shows that the Nth order coefficient ∆N is unique.

5. From differential maps to deformed coproducts. Now let
~d[h] and

~

d[h] be arbitrary maps of the form (10) from T to (T ⊗ L)[[h]]
and (L ⊗ T )[[h]] respectively. Our strategy in what follows is to construct
a corresponding deformation coproduct ∆[h] by means of Taylor expan-
sions

∆[h] =
∞⊕
n=0

~d(n)[h] =
∞⊕
n=0

~

d(n)[h]

in terms of iterations of the maps ~d[h] and

~

d[h]. Our first task is to ensure
that these sums are well defined formal power series.
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For the moment we assume only that (10) holds, that the coefficients
~d0 and

~

d0 of h0 are indeed the undeformed right and left differential maps,
and that the higher order coefficients satisfy (11) for N > 0. We denote by
~d(n)[h] and

~

d(n)[h] the n-fold iterates

(~d[h]⊗ (
⊗n−1idL))(~d[h]⊗ (

⊗n−2idL)) · · ·~d[h],

((
⊗n−1idL)⊗

~

d[h])((
⊗n−2idL)⊗

~

d[h]) · · ·

~

d[h]

formed by multiple convolution; it is convenient also to define ~d(0)[h] =~

d(0)[h] = idT .
For fixed T ∈ T consider the sequence of formal power series (T0[h], T1[h],

T2[h], . . .) in which Tn[h] = ~d(n)[h](T ). The coefficients of h0 in this sequence
of formal power series consist of iterated actions of ~d0 on T. Because by (3)
each action of ~d0 reduces by one the maximal nonzero rank of T, only finitely
many of these coefficients are nonzero. More generally, the coefficient of hN

in Tn[h] is ∑
j1+···+jn=N

(~dj1 ⊗ (
⊗n−1idL))(~dj2 ⊗ (

⊗n−2idL)) · · · ~djn(T ),

where the sum is over ordered n-tuples of nonnegative integers (j1, . . . , jn)
whose sum is N. For fixed N, a finite number of ordered r-tuples of positive
integers (k1, . . . , kr) whose sum is N, that is, partitions of N, contribute to
this sum, supplemented by n− r zeros corresponding to actions of ~d0 which
either fall entirely to the right of the actions of ~dk1 , . . . , ~dkr or intercede
between these actions, or fall entirely to the left of them. For each fixed par-
tition, by the rank-reducing property of ~d0, only a finite number of actions
of ~d0 may fall entirely to the right and yield a nonzero contribution to the
coefficient of hN in Tn[h]. For the same reason, for each of these contribu-
tions, only a finite number of actions of ~d0 may lie between ~dkr and ~dkr−1

and yield a nonzero contribution. Continuing this argument we see that the
sequence (T0[h], T1[h], T2[h], . . .) can be rearranged as a well defined element
of (

⊕∞
n=0(T ⊗

⊗nL))[[h]] ' (T ⊗ T )[[h]]. We denote this by ~∆[h](T ) and
regard ~∆[h] as a map from T to the algebra (T ⊗ T )[[h]]. Note that by (11),

(ε⊗ idT )~∆[h](T ) = (ε⊗ idT )(~d(0)[h](T ),~d(1)[h](T ),~d(2)[h](T ), . . .)(16)

= (ε⊗ idT )(~d(0)
0 (T ),~d(1)

0 (T ),~d(2)
0 (T ), . . .) = T.

Also

(idT ⊗ ε)~∆[h](T ) = (idT ⊗ ε)(~d(0)[h](T ),~d(1)[h](T ),~d(2)[h](T ), . . .)(17)

= ~d(0)[h](T ) = T.
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In the same way, we may rearrange the sequence (

~

d(0)[h](T ),

~

d(1)[h](T ),~

d(2)[h](T ), . . .) to obtain a formal power series and hence a map

~

∆[h] from
T to (

⊕∞
n=0(

⊗nL ⊗ T ))[[h]] ' (T ⊗ T )[[h]]. In view of (16), (17) and the
corresponding identities for

~

∆[h] we have the counitality relations

(ε⊗ idT )~∆[h] = (idT ⊗ ε)~∆[h] = (ε⊗ idT )

~

∆[h](18)

= (idT ⊗ ε)

~

∆[h] = idT .

Evidently ~∆[h] and

~

∆[h] satisfy (14) and (15) respectively for the given
differential maps.

Theorem 4. Suppose that ~d[h] (resp.

~

d[h]) satisfies the Leibniz–Itô for-
mula. Then ~∆[h] (resp.

~

∆[h]) is multiplicative.

Proof. We give the proof for ~∆[h]; that for the left map is similar. We
shall show that, for arbitrary S, T ∈ T , the difference

P (S, T )[h] =
∞∑
N=0

hNPN (S, T ) = ~∆[h](ST )− ~∆[h](S)~∆[h](T )

vanishes by proving by induction on N that each PN (S, T ) is 0. We have
P0(S, T ) = 0 since the zero-order terms of ~∆[h](ST ) and ~∆[h](S)~∆[h](T )
are ∆(ST ) and ∆(S)∆(T ) respectively and the undeformed coproduct ∆ is
multiplicative.

Also, by multiplicativity of ε, for N > 1,

(ε⊗ idT )PN (S, T ) = (ε⊗ idT )
(
~∆N (ST )−

N∑
j=0

~∆j(S)~∆N−j(T )
)

= (ε⊗ idT )(~∆N (ST ))−
N∑
j=0

(ε⊗ idT )(~∆j(S))(ε⊗ idT )(~∆N−j(T )) = 0

by (16). It follows from (6) that, in order to prove that PN (S, T ) = 0, it is
sufficient to show that

(~d0 ⊗ idT )PN (S, T ) = 0

under the inductive assumption that P0(S, T ) =P1(S, T ) = · · ·=PN−1(S, T )
= 0.

Using the fact that the map idT (L) ⊗~d[h] from T ⊗ T to (T ⊗ T ⊗ L)[[h]]
satisfies the Leibniz–Itô formula when the algebra (T ⊗ T ⊗ L)[[h]] is re-
garded as a T ⊗ T -bimodule with the natural multiplicative actions, we
have

(idT (L) ⊗~d[h])P (S, T )[h]

= (idT (L) ⊗~d[h])(~∆[h](ST )− ~∆[h](S)~∆[h](T ))
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= (idT (L) ⊗~d[h])(~∆[h](ST ))− (idT (L) ⊗~d[h])(~∆[h](S))~∆[h](T )

− ~∆[h](S)(idT (L) ⊗~d[h])(~∆[h](T ))

− (idT (L) ⊗~d[h])(~∆[h](S))(idT (L) ⊗~d[h])(~∆[h](T )).

Using (14) we may write this as

(idT (L) ⊗~d[h])P (S, T )[h]

= (~∆[h]⊗ idL)~d[h](ST )− ((~∆[h]⊗ idL)~d[h])(S)~∆[h](T )

− ~∆[h](S)((~∆[h]⊗ idL)~d[h])(T )

− ((~∆[h]⊗ idL)~d[h])(S)((~∆[h]⊗ idL)~d[h])(T ),

where now (T⊗T ⊗ L)[[h]] is a T ⊗ T -module with multiplicative actions.
Using the Leibniz–Itô formula again we may replace the first term on the
right hand side of this expression by a sum of three terms which combine
with the remaining three terms to give

(idT (L) ⊗~d[h])P (S, T )[h]

= (~∆[h]⊗ idL)(~d[h](S)T )− ((~∆[h]⊗ idL)~d[h])(S)~∆[h](T )

+ (~∆[h]⊗ idL)(S~d[h](T ))− ~∆[h](S)((~∆[h]⊗ idL)~d[h])(T )

+ (~∆[h]⊗ idL)(~d[h](S)~d[h](T ))

− (~∆[h]⊗ idL)(~d[h](S))(~∆[h]⊗ idL)(~d[h](T )).

Introducing a basis (L1, L2, . . .) of L and writing ~d[h](·) =
∑

j d
j [h](·)⊗ Lj

where each dj [h] maps T to T [[h]], we may write this as

(19) (idT (L) ⊗~d[h])P (S, T )[h]

=
∑
j

P (dj [h](S), T )[h]⊗ Lj +
∑
k

P (S, dk[h](T ))[h]⊗ Lk

+
∑
j,k

P (dj [h](S), dk[h](T ))[h]⊗ LjLk,

where P (dj [h](S), T )[h], P (S, dk[h](T ))[h] and P (dj [h](S), dk[h](T ))[h] are
defined by convolution so that, for example,

P (dj [h](S), dk[h](T ))[h] =
∞∑
N=0

hN
∑

r+s+t=N

Pr(djsS, d
k
t T ),

where dj [h] =
∑∞

N=0 h
NdjN and the inner sum is over ordered triples (r, s, t)

of nonnegative integers whose sum is N. Let us now equate coefficients of
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hN on both sides of (19). In view of the inductive assumption we obtain

(idT (L) ⊗~d[h])PN (S, T ) =
∑
j

PN (dj0(S), T )⊗ Lj +
∑
k

PN (S, dk0(T ))⊗ Lk

+
∑
j,k

PN (dj0(S), dk0(T ))⊗ LjLk.

Since dj0 and dk0 are the component maps of the undifferentiated differential
map ~d0 in the chosen basis, they are rank reducing, and since

P (1T , T )[h] = ~∆[h](T )− ~∆[h](1T )~∆[h](T ) = 0,

and similarly P (S, 1T )[h] = 0, an induction on the degrees of S and T shows
that (idT (L)⊗~d[h])PN (S, T ) and hence also PN (S, T ) vanishes as required.

Next we show that, if ~d[h] and

~

d[h] satisfy the commutativity condi-
tion (13) of Theorem 2, the maps ~∆[h] and

~

∆[h] satisfy a modified coasso-
ciativity condition.

Theorem 5. Suppose that ~d[h] and

~

d[h] satisfy (13). Then

(idT ⊗ ~∆[h])

~

∆[h] = (

~

∆[h]⊗ idT )~∆[h].(20)

Proof. (20) may be expressed informally as ~∆[h]
~

∆[h] =
~

∆[h]~∆[h]
where appropriate ampliations are understood, and becomes intuitively clear
when the commutatvity condition (13) is abbreviated similarly as ~d[h]

~

d[h]
=

~

d[h]~d[h] and ~∆[h] and

~

∆[h] regarded as sums of powers of ~d[h] and

~

d[h]
respectively. More formally, we may expand the map (idT ⊗ ~∆[h])

~

∆[h] from
T to

(T ⊗ T ⊗ T )[[h]] =
( ∞⊕
m,n=0

((
⊗mL)⊗ T ⊗ (

⊗nL))
)

[[h]]

as

(idT ⊗ ~∆[h])

~

∆[h] =
∞⊕

m,n=0
{((
⊗n(idL))⊗

((~d[h]⊗ (
⊗m−1idL))(~d[h]⊗ (

⊗m−2idL)) · · ·~d[h]))

(((
⊗n−1idL)⊗

~

d[h])((
⊗n−2idL)⊗

~

d[h]) · · ·

~

d[h])}.

By making repeated use of the commutativity condition (13), we have

((
⊗nidL)⊗ ((~d[h]⊗ (

⊗m−1idL))(~d[h]⊗ (
⊗m−2idL)) · · ·~d[h]))

(((
⊗n−1idL)⊗

~

d[h])((
⊗n−2idL)⊗

~

d[h]) · · ·

~

d[h])

= ((((
⊗n−1idL)⊗

~

d[h])((
⊗n−2idL)⊗

~

d[h]) · · ·

~

d[h])

⊗ (
⊗midL))((~d[h]⊗ (

⊗m−1idL))(~d[h]⊗ (
⊗m−2idL)) · · ·~d[h])
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as maps from T to ((
⊗mL)⊗ T ⊗(

⊗nL))[[h]]. Thus

(idL ⊗

~

∆[h])~∆[h]

=
∞⊕

m,n=0
{((((

⊗n−1idL)⊗

~

d[h])((
⊗n−2idL)⊗

~

d[h]) · · ·

~

d[h])

⊗ (
⊗m(idL)))((~d[h]⊗ (

⊗m−1idL))(~d[h]⊗ (
⊗m−2idL)) · · ·~d[h])}

= (

~

∆[h]⊗ idL)~∆[h].

Applying the map idT ⊗ ε⊗ idT to both sides of (20) and using (18) we
finally obtain

~∆[h] = (idT ⊗ idT )~∆[h] = (idT ⊗ ε⊗ idT )(

~

∆[h]⊗ idT )~∆[h]

= (idT ⊗ ε⊗ idT )(idT ⊗ ~∆[h])

~

∆[h] = (idT ⊗ idT )

~

∆[h] =

~

∆[h].

If we denote the common value of ~∆[h] and

~

∆[h] by ∆[h], (20) now shows
that ∆[h] is coassociative. This completes the construction of a deformation
coproduct from the pair of differential maps ~d[h] and

~

d[h].

6. An example. We consider a deformation coproduct of the quasitri-
angular type constructed in [7],

∆0[h](T ) = R[h]∆0(T )R[h]−1,

where R[h] =
→←∏

(1 +dr[h]) is the double product integral generated by the
element r[h] of h(L ⊗ L)[[h]] satisfying the condition, sufficient for R[h] to
satisfy the quantum Yang–Baxter equation,

r[h]1,2r[h]1,3 + r[h]1,2r[h]2,3 + r[h]1,3r[h]2,3 + r[h]1,2r[h]1,3r[h]2,3

= [h]1,3r[h]1,2 + r[h]2,3r[h]1,3 + r[h]2,3r[h]1,2 + r[h]2,3r[h]1,3r[h]1,2,

so that in particular the first order coefficient r1 of r[h] satisfies the classical
Yang–Baxter equation

[r1,21 , r1,31 ] + [r1,21 , r2,31 ] + [r1,31 , r2,31 ] = 0.

The corresponding deformed right differential map acts on L ⊂ T ,
~d[h](L) = (idT ⊗ ε1)(R[h](L1 + L2)R[h]−1 − L⊗ 1T )

= 1T ⊗ L+ [r1, L1 + L2]h+ o(h2),

where we use the expansions [7]

R[h] = 1T ⊗T + r[h] + o(h2), R[h]−1 = 1T ⊗T − r[h] + o(h2).

Similarly ~

d[h](L) = L⊗ 1T + [r1, L1 + L2]h+ o(h2).

In particular the Lie bialgebra cobracket δ determined by the quasitriangular
coboundary structure r1 is expressed in terms of the first order coefficients
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of the differential maps by

δ(L) = [r1 − τ(2,1)r1, L
1 + L2] = (~d1 − τ(2,1)

~

d1)(L),

thus
δ = (~d1 − τ(2,1)

~

d1)�L.(21)

In a subsequent paper we shall show how to quantise more general Lie
bialgebras (L, δ) by constructing corresponding pairs of differential maps
satisfying (21).

Appendix. In response to a referee, we append an explicit description
of the antipode S. It is given by

(22) (Sα)N = τN

{N−1∑
p=0

(−1)N+p
∑

N≤j1<···<jp<N+p

(µj1,j1+1
N+1 ◦ · · · ◦ µjp,jp+1

N+p )(αN+p)
}
,

where the reversing permutation map τN is the linear map on
⊗NL which

reverses the order of components of product tensors, and the map µj,j+1
N+k :⊗N+kL→

⊗N+k−1L acts by applying the multiplication map µ :L ⊗ L→L
between the jth and (j + 1)th copies of L in

⊗N+kL. Equivalently S is
defined by linear extension of its action on homogeneous product tensors

S(L1 ⊗ · · · ⊗ LN ) = (−1)N (0, λ1, . . . , λN , 0, 0, . . .),(23)

where for 1 ≤ r ≤ N ,

λr =
∑

1≤k1<···<kr−1<N

Lkr−1+1 . . . LN ⊗ Lkr−2+1 . . . Lkr−1 ⊗ · · · ⊗ L1 . . . Lk1 ,

in particular λN = LN ⊗ · · · ⊗ L1, so that when µ = 0 we obtain the usual
shuffle product antipode.

We denote by i the unit map F 3 z 7→ (z, 0, 0, . . .) ∈ T (L) and by M
the multiplication map T (L)⊗ T (L) → T (L) given by linear extension of
R⊗ S 7→ T with T given by (1).

Theorem 6. The map S is an antipode for the bialgebra (T (L),M,i,∆, ε).

Proof. We must show [2] that M ◦(S⊗ idT (L))◦∆ = M ◦(idT (L)⊗S)◦∆
= i ◦ ε.

Let us prove that M ◦ (S ⊗ idT (L)) ◦ ∆ = i ◦ ε. For arbitrary T =
(T0, T1, T2, . . .) ∈ T (L) we have

((M ◦ (S ⊗ idT (L)) ◦∆)T )0 = ((M ◦ (S ⊗ idT (L)))(∆T ))0
= (T0, 0, 0, . . .) = (i ◦ ε)T.
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The proof is completed by showing that (M ◦ (S ⊗ idT (L)) ◦∆)T = 0 when
(i ◦ ε)T = 0, that is, when T0 = 0. By linearity it is sufficient to consider
the case when T = L1⊗ · · · ⊗LN is a homogeneous product vector. In view
of (23),

(24) (M ◦ (S ⊗ idT (L)) ◦∆)(L1 ⊗ · · · ⊗ LN )

=
N∑
j=0

(M ◦ (S ⊗ idT (L)))((L1 ⊗ · · · ⊗ Lj)⊗ (Lj+1 ⊗ · · · ⊗ LN ))

= (L1 ⊗ · · · ⊗ LN ) +
N∑
j=1

(−1)j
j∑
r=1

λjrνj ,

where, for 1 ≤ r ≤ j,

λjr =
∑

1≤k1<···<kr−1<j

(Lkr−1+1 . . . Lj ⊗ Lkr−2+1 . . . Lkr ⊗ · · · ⊗ L1 . . . Lk1)

and
νj = Lj+1 ⊗ · · · ⊗ LN .

We compute the actions on λjr and νj of the left differential map

~

d:

~

d(λjr) =
∑

1≤k2<···<kr−1<j

( k2−1∑
k1=1

Lkr−1+1 . . . Lj

⊗ (Lkr−2+1 . . . Lkr ⊗ · · · ⊗ L1 . . . Lk1)
)
,~

dνj = Lj+1 ⊗ νj+1.

Using the Leibniz–Itô formula we find from (24) that

(25)

~

d((M ◦ (S ⊗ idT (L)) ◦∆)(L1 ⊗ · · · ⊗ LN )) = L1 ⊗ ν1 +
N∑
j=1

(−1)j∑
1≤k2<···<kr−1<j

k2−1∑
k1=1

{
Lkr−1+1 . . .Lj⊗ (Lkr−2+1 . . .Lkr ⊗· · ·⊗L1 . . .Lk1)νj

+ Lj+1 ⊗ (Lkr−1+1 . . . Lj ⊗ Lkr−2+1 . . . Lkr ⊗ · · · ⊗ L1 . . . Lk1)νj+1

+ Lkr−1+1 . . . LjLj+1 ⊗ (Lkr−2+1 . . . Lkr ⊗ · · · ⊗ L1 . . . Lk1)νj+1

}
.

When j = 1 in the sum we obtain the terms

−L1 ⊗ ν1 − L2 ⊗ (L1)ν2 − L1L2 ⊗ ν2

of which the first cancels the initial term in (25), leaving

−L2 ⊗ (L1)ν2 − L1L2 ⊗ ν2(26)

which cancel some of the six terms which occur when j = 2, which are

L1L2 ⊗ ν2 + L3 ⊗ (L1L2)ν3 + L1L2L3 ⊗ (L1L2)ν3

+ L2 ⊗ (L1)ν2 + L3 ⊗ (L2 ⊗ L1)ν3 + L2L3 ⊗ (L1)ν3.
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After cancellation with (26) the remaining terms

+ L3 ⊗ (L1L2)ν3 + L1L2L3 ⊗ (L1L2)ν3

+ L3 ⊗ (L2 ⊗ L1)ν3 + L2L3 ⊗ (L1)ν3

cancel some of the terms which occur when j = 3. For general j, terms in
which Lj+1 does not occur either alone or multiplied by one or more Lk with
k ≤ j in the left component of the tensor product in L ⊗ T (L) cancel with
terms labelled in the sum by j − 1, whereas terms in which it does occur
cancel terms labelled by j+ 1. When j = N all terms are of the former type
and we obtain complete cancellation. We conclude that~

d((M ◦ (S ⊗ idT (L)) ◦∆)(L1 ⊗ · · · ⊗ LN )) = 0,

from which it follows that

(M ◦ (S ⊗ idT (L)) ◦∆)(L1 ⊗ · · · ⊗ LN ) = (i ◦ ε)(L1 ⊗ · · · ⊗ LN ) = 0.

The proof that M ◦ (idT (L) ⊗ S) ◦∆ = i ◦ ε is similar but makes use of the
right differential map instead of the left.
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