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On the perturbation functions and similarity orbits

by

Häıkel Skhiri (Monastir)

Abstract. We show that the essential spectral radius %e(T ) of T ∈ B(H) can be
calculated by the formula %e(T ) = inf{F]·](XTX

−1) : X an invertible operator}, where
F]·](T ) is a Φ1-perturbation function introduced by Mbekhta [J. Operator Theory 51
(2004)]. Also, we show that if G]·](T ) is a Φ2-perturbation function [loc. cit.] and if T is a
Fredholm operator, then dist(0, σe(T )) = sup{G]·](XTX

−1) : X an invertible operator}.

1. Terminology and introduction. Let (H, ‖ · ‖) be a complex, infi-
nite-dimensional Hilbert space and let N denote the set of all norms ] · ]
on H that are equivalent to ‖ · ‖, and derived from an inner product ≺·, ·�
on H, that is, ]x] =

√≺x, x� for all x ∈ H (1).
Let B(H) be the Banach algebra of all bounded linear operators on H

and let K(H) be its ideal of compact operators. If T ∈ B(H) and ] · ] ∈ N ,
we will denote by ]T ] the operator-norm of T relative to ] · ].

We denote by N(T ) the kernel and by R(T ) the range of T ∈ B(H).
The spectrum of T is denoted by σ(T ), and the adjoint by T ∗. An operator
T ∈ B(H) is called Fredholm (resp. semi-Fredholm) if R(T ) is closed and
max{dimN(T ), codimR(T )}<∞ (resp. min{dimN(T ), codimR(T )}<∞).
We denote by Φ(H) (resp. Φ±(H)) the set of all Fredholm (resp. semi-
Fredholm) operators. Set C(H) = B(H)/K(H), the Calkin algebra (see
[3, 4]); it is well known that C(H) is a C∗-algebra.

The essential spectrum of T is σe(T ) = {λ ∈ C : T−λI 6∈ Φ(H)}, and the
semi-Fredholm spectrum of T is σ±(T ) = {λ ∈ C : T − λI 6∈ Φ±(H)}. Recall
that the essential spectral radius of T is %e(T ) = sup{|λ| : λ ∈ σe(T )}.

If T a semi-Fredholm operator, then the index of T is defined as

ind(T ) = dimN(T )− codimR(T ).
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(1) From the polar identity, it follows that the inner product is unique:

4≺x, y� = ]x+ y]2 − ]x− y]2 + i]x+ iy]2 − i]x− iy]2.
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Let Φn± denote the set of semi-Fredholm operators with ind(T ) = n ∈ Z ∪
{+∞,−∞}. Finally, let G(H) be the group of all invertible elements in
B(H).

The rest of this paper is organized as follows. In the next section we shall
show that for aΦ1-perturbation functionF]·], the infimum of {F]·](XTX−1) :
X ∈ G(H)} is equal to %e(T ). In Section 3 we prove that if T is a Fredholm
operator and if G]·](T ) is a Φ2-perturbation function, then the supremum of
{G]·](XTX−1) : X ∈ G(H)} is equal to dist(0, σe(T )).

2. Similarity orbits and Φ1-perturbation functions. Recently,
Mbekhta [8] has introduced the following definition.

Definition 2.1 ([8, Definition 2.1]). Let ] · ] ∈ N . A Φ1-perturbation
function on B(H) is a function F]·] which associates to each T ∈ B(H) a
real number F]·](T ) ≥ 0 such that:

(a) F]·](T +K) = F]·](T ) for all K ∈ K(H);
(b) F]·](I) = 1;
(c) min{F]·](ST ),F]·](TS)} ≤ ]S]F]·](T ) for all T, S ∈ B(H);
(d) if |λ| > F]·](T ) then T − λI is Fredholm.

Remark. The definition given by Galaz-Fontes [5] for a perturbation
function is a particular case of the above definition.

From now on, we shall denote by F]·] a Φ1-perturbation function with
] · ] ∈ N .

In the proof of the following lemma, we use a method introduced by
Mbekhta [7].

Lemma 2.2. Let T ∈ B(H) and ε > 0. Then there exists Wε ∈ B(H)
such that

F]·](eWεTe−Wε) ≤ %e(T ) + ε.

Proof. By [10, Lemma 6], there exists a finite rank operator Kε such
that

%(T +Kε) ≤ %e(T ) + ε/2.

Since %
(
T+Kε
%e(T )+ε

)
< 1, it follows from the Rota theorem [12, Theorem 2] that

there exists Xε ∈ B(H) invertible such that

(∗) ]Xε(T +Kε)X−1
ε ] ≤ %e(T ) + ε.

Let Xε = UPε be the polar decomposition of Xε with Pε = (X∗εXε)1/2.
Recall that U is unitary, and Pε is positive and invertible. Since σ(Pε) ⊆
]0,+∞[, log is a continuous real function on σ(Pε). It follows from the sym-
bolic calculus that there is a self-adjoint Wε ∈ B(H) such that Pε = eWε .
Thus P−1

ε = e−Wε . Since U is unitary, we see that ]Xε(T + Kε)X−1
ε ] =
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]eWε(T +Kε)e−Wε]. By property (a) of Definition 2.1, it follows that

F]·](eWεTe−Wε) = F]·](eWε(T +Kε)e−Wε).

Using properties (b) and (c) of Definition 2.1, we deduce that

F]·](eWε(T +Kε)e−Wε) ≤ ]eWε(T +Kε)e−Wε]

≤ ]Xε(T +Kε)X−1
ε ] ≤ %e(T ) + ε.

Therefore, F]·](eWεTe−Wε) ≤ %e(T ) + ε.

Remark. In the above proof, we used the notion of adjoint operator,
which depends on the scalar product associated to the norm ] · ].

Theorem 2.3. Let T ∈ B(H). Then

%e(T ) = inf{F]·](XTX−1) : X ∈ G(H)}.

Proof. First, by the property (d) of F]·](T ) (see Definition 2.1), for all
invertible operators X we have

%e(XTX−1) ≤ F]·](XTX−1).

Since %e(XTX−1) = %e(T ), we obtain

%e(T ) ≤ inf{F]·](XTX−1) : X ∈ G(H)}.

Conversely, given ε > 0, by Lemma 2.2 there exists Wε ∈ B(H) such that

F]·](eWεTe−Wε) ≤ %e(T ) + ε.

Since eWε is invertible, we deduce that

inf{F]·](XTX−1) : X ∈ G(H)} ≤ inf{%e(T ) + ε : ε > 0} = %e(T ).

Remark. If F]·](·) = ] · ]e , the result we obtain is the same as in [11],
when the C∗-algebra is B(H) and I = K(H).

From the first part of the above proof and Lemma 2.2, we obtain the
following theorem.

Theorem 2.4. Let T ∈ B(H). Then

%e(T ) = inf{F]·](eXTe−X) : X ∈ B(H)}.

Remark. If F]·](·) = ] · ]e, we obtain the result of [9] in the particular
case when the C∗-algebra is C(H) = B(H)/K(H).

Theorems 2.3 and 2.4 have the following consequence.

Corollary 2.5. Let T ∈ B(H). Then

%e(T ) = inf{F]·](XTX−1) : X ∈ G(H), ] · ] ∈ N}
= inf{F]·](eXTe−X) : X ∈ B(H), ] · ] ∈ N}.
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Consider the natural map π : B(H) → C(H) = B(H)/K(H). Let X ∈
Φ(H). We say that Xπ ∈ B(H) is a π-inverse of X if π(Xπ) is the inverse
of π(T ) in C(H), i.e.

(2.1) π(X)π(Xπ) = π(Xπ)π(X) = π(I).

From (2.1), it is easily seen that

σe(T ) = σe(XTXπ) = σe(XπTX),(2.2)
%e(T ) = %e(XTXπ) = %e(XπTX).(2.3)

Corollary 2.6. Let T ∈ B(H). Then

%e(T ) = inf{F]·](XTXπ) : X ∈ Φ(H)}.

Proof. Since G(H) ⊆ Φ(H), it follows from Theorem 2.3 that

%e(T ) = inf{F]·](XTX−1) : X ∈ G(H)} ≥ inf{F]·](XTXπ) : X ∈ Φ(H)}.
Conversely, by the property (d) of F]·] (see Definition 2.1), for all X ∈ Φ(H)
we have

(2.4) %e(XTXπ) ≤ F]·](XTXπ).

The result follows from (2.4) and (2.3).

Corollary 2.7. Let T ∈ B(H). Then

%e(T ) = inf{F]·](XTXπ) : X ∈ Φ(H), ] · ] ∈ N}.

We will show similar results for left and right invertible operators. First
we need some notation. Let Gl(H) denote the set of all left invertible oper-
ators:

Gl(H) = {X ∈ B(H) : ∃L ∈ B(H) such that LX = I},
and Gr(H) the set of all right invertible operators:

Gr(H) = {X ∈ B(H) : ∃R ∈ B(H) such that XR = I}.

We shall denote by X l (resp. Xr) a left (resp. right) inverse of X ∈ Gl(H)
(resp. X ∈ Gr(H)).

Corollary 2.8. Let T ∈ B(H). Then

%e(T ) = inf{F]·](XTX l) : X ∈ Gl(H), ind(X) ∈ Z−}.

Proof. Since G(H) ⊆ {X ∈ Gl(H) : ind(X) ∈ Z−} ⊆ Φ(H), it follows
from Theorem 2.3 and Corollary 2.6 that

%e(T ) = inf{F]·](XTX−1) : X ∈ G(H)}
≥ {F]·](XTX l) : X ∈ Gl(H), ind(X) ∈ Z−}
≥ inf{F]·](XTXπ) : X ∈ Φ(H)} = %e(T ).
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Corollary 2.9. Let T ∈ B(H). Then

%e(T ) = inf{F]·](XTX l) : X ∈ Gl(H), ind(X) ∈ Z−, ] · ] ∈ N}.

For right invertible operators we have the following corollaries.

Corollary 2.10. Let T ∈ B(H). Then

%e(T ) = inf{F]·](XTXr) : X ∈ Gr(H), ind(X) ∈ N}.

Corollary 2.11. Let T ∈ B(H). Then

%e(T ) = inf{F]·](XTXr) : X ∈ Gr(H), ind(X) ∈ N, ] · ] ∈ N}.

We denote by G±(H) = Gl(H) ∪ Gr(H) the set of all semi-invertible
operators. When X ∈ G±(H), we simply write X± for a left inverse or a
right inverse of X.

The proof of the following is exactly the same as the proof of Corol-
lary 2.8.

Corollary 2.12. Let T ∈ B(H). Then

%e(T ) = inf{F]·](XTX±) : X ∈ G±(H), ind(X) ∈ Z}.

Corollary 2.13. Let T ∈ B(H). Then

%e(T ) = inf{F]·](XTX±) : X ∈ G±(H), ind(X) ∈ Z, ] · ] ∈ N}.

3. Similarity orbits and Φ2-perturbation functions. We denote
by σl(T ) = {λ ∈ C : T − λI 6∈ Gl(H)} the left spectrum and by σr(T ) =
{λ ∈ C : T − λI 6∈ Gr(H)} the right spectrum. Moreover, Φn±(T ) = {λ ∈ C :
T − λI ∈ Φn±}, with n ∈ Z ∪ {+∞,−∞}.

The following definition was introduced by Mbekhta [8].

Definition 3.1 ([8, Definition 3.4]). Let ] · ] ∈ N . A Φ2-perturbation
function on B(H) is a function G]·] which associates to each T ∈ B(H) a
real number G]·](T ) ≥ 0 such that:

(a) G]·](T +K) = G]·](T ) for all K ∈ K(H);
(b) G]·](I) = 1;
(c) min{G]·] (ST ),G]·](TS)} ≤ ]S]G]·](T ) for all T, S ∈ B(H);
(d) if T ∈ Φ(H) and |λ| < G]·](T ), then T − λI ∈ Φ(H).

We shall denote by G]·] a Φ2-perturbation function with ] · ] ∈ N .
The following theorem is the main result of this section.

Theorem 3.2. Let T ∈ Φ(H). Then

dist(0, σe(T )) = sup{G]·](XTX−1) : X ∈ G(H)}.
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For the proof we need some lemmas.

Lemma 3.3. Let S ∈ B(H). If λ0 ∈ σe(S)c ∩ ∂[σl(S)], then λ0 is an
isolated point of σl(S).

Proof. The result follows from [3, Theorem 3.2.10] (see also [6, Theorem
V.1.6 and Corollary V.1.7]).

Lemma 3.4. Let T ∈ Φ(H) and let K be a compact operator such that

σe(T ) = [σl(T +K) ∩ σr(T +K)] ∪ Φ+∞
± (T ) ∪ Φ−∞± (T ).

Then ∂(σl(T +K)) ∩ [σe(T )]c = ∅.

Proof. Suppose there exists λ0 ∈ ∂(σl(T + K)) ∩ [σe(T )]c. Lemma 3.3
asserts that λ0 is an isolated point of σl(T +K). This proves that T +K−λ0

is a right invertible operator, because otherwise λ0 ∈ σl(T+K)∩σr(T+K) ⊆
σe(T ), which is a contradiction. Now, since T + K − λ0 is right invertible,
we see that ind(T + K − λ0I) ≥ 0. But λ0 ∈ ∂(σl(T + K)), which implies
that ind(T +K − λ0I) < 0, a contradiction.

Lemma 3.5. Let T ∈Φ(H) and let K be a compact operator as in Lem-
ma 3.4. If 0 6∈ σl(T +K), then dist(0, σe(T )) = dist(0, σl(T +K)).

Proof. First, it is easy to see that ∂[σe(T )] ⊆ σl(T + K) ∩ σr(T + K).
Therefore,

dist(0, σe(T )) = dist(0, σl(T +K) ∩ σr(T +K)).

We consider the case where 0 6∈ σr(T +K). Since ∂(σr(T +K)) ⊆ σl(T +K)
and ∂(σl(T +K)) ⊆ σr(T +K), we obtain

dist(0, σe(T )) = dist(0, σl(T +K) ∩ σr(T +K))
= dist(0, σl(T +K)) = dist(0, σr(T +K)).

On the other hand, if 0 ∈ σr(T + K), it was shown in Lemma 3.4 that
∂(σl(T +K)) ∩ σe(T )c = ∅. Thus, ∂(σl(T +K)) ⊆ σe(T ). Therefore,

dist(0, σe(T )) ≤ dist(0, ∂(σl(T +K)) ≤ dist(0, σl(T +K))
≤ dist(0, σl(T +K) ∩ σr(T +K)) ≤ dist(0, σe(T )).

This proves the lemma.

Proof of Theorem 3.2. First, we show that

dist(0, σe(T )) ≥ sup{G]·](XTX−1) : X ∈ G(H)}.
Let X ∈ B(H) be an invertible operator, and let λ ∈ C be such that
|λ| < G]·](XTX−1). Since X(T −λ)X−1 = XTX−1−λ ∈ Φ(H), we see that
T − λ is Fredholm. Therefore,

dist(0, σe(T )) ≥ sup{G]·](XTX−1) : X ∈ G(H)}.
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Conversely, Theorem 4.5 of [1] asserts that there is K ∈ K(H) such that
σ±(T ) = σl(T +K) ∩ σr(T +K). But

σe(T ) = σ±(T ) ∪ Φ+∞
± (T ) ∪ Φ−∞± (T ),

so
σe(T ) = [σl(T +K) ∩ σr(T +K)] ∪ Φ+∞

± (T ) ∪ Φ−∞± (T ).

Since 0 6∈ σe(T ), we obtain 0 6∈ σl(T +K) or 0 6∈ σr(T +K). We will suppose
that 0 6∈ σl(T + K); the other case is similar. It was shown in Lemma 3.5
that dist(0, σe(T )) = dist(0, σl(T +K)). Corollary 2.6 of [2] implies that

(∗) dist(0, σe(T )) = dist(0, σl(T +K)) = sup{1/%(S) : S(T +K) = I}.

On the other hand, let S ∈ B(H) be a left inverse of T +K and let ε > 0.
Since %

(
S

%(S)+ε

)
< 1, it follows from the Rota theorem [12, Theorem 2] that

there exists an invertible operator Zε such that

(∗∗) ]ZεSZε
−1] ≤ %(S) + ε.

Consider the polar decomposition Zε = UPε, where Pε = (Z∗εZε)
1/2 and

U is the partial isometry with N(U) = N(Zε) and R(U) = R(Zε). This
implies that U is unitary. Recall that Pε is positive and invertible. Since
σ(Pε) ⊆ ]0,+∞[, log is a continuous real function on σ(Pε). It follows from
the symbolic calculus that there is a self-adjoint Wε ∈ B(H) such that
Pε = eWε . Thus P−1

ε = e−Wε . It is obvious that

[eWε(T +K)e−Wε ][eWεSe−Wε ][eWε(T +K)e−Wε ] = eWε(T +K)e−Wε .

It follows from [8, Lemme 3.18] that

G]·](eWεTe−Wε) = G]·](eWε(T +K)e−Wε) ≥ 1
]eWεSe−Wε]e

.

But ]eWεSe−Wε] ≥ ]eWεSe−Wε]e, so

G]·](eWεTe−Wε) ≥ 1
]eWεSe−Wε]

.

Since Zε = UPε = UeWε and U is a unitary operator, we deduce that

G]·](eWεTe−Wε) ≥ 1
]ZεSZ

−1
ε ]

.

It follows from (∗∗) that

sup
ε>0
{G]·](eWεTe−Wε)} ≥ sup

ε>0

{
1

]ZεSZ
−1
ε ]

}
≥ 1
%(S)

.

But
sup{G]·](XTX−1) : X ∈ G(H)} ≥ sup

ε>0
{G]·](eWεTe−Wε)}.
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We deduce that

(∗∗∗) sup{G]·](XTX−1) : X ∈ G(H)} ≥ 1/%(S).

Since (∗∗∗) holds for all left inverses of T +K, we obtain

sup{G]·](XTX−1) : X ∈ G(H)} ≥ sup{1/%(S) : S(T +K) = I}.

It follows from (∗) that

sup{G]·](XTX−1) : X ∈ G(H)} ≥ dist(0, σe(T )).

It is easy to see that the above proof yields the following result.

Theorem 3.6. Let T ∈ Φ(H). Then

dist(0, σe(T )) = sup{G]·](eXTe−X) : X ∈ B(H)}.

Corollary 3.7. Let T ∈ Φ(H). Then

dist(0, σe(T )) = sup{G]·](XTX−1) : X ∈ G(H), ] · ] ∈ N}
= sup{G]·](eXTe−X) : X ∈ B(H), ] · ] ∈ N}.

Corollary 3.8. Let T ∈ Φ(H). Then

dist(0, σe(T )) = sup{G]·](XTXπ) : X ∈ Φ(H)}.

Proof. Let X ∈ Φ(H) and let λ ∈ C be such that

|λ| < G]·](XTXπ).

It follows from the fact that X(T − λ)Xπ = XTXπ − λXXπ ∈ Φ(H) and
the relation (2.2) that T − λ ∈ Φ(H). Then by Theorem 3.2,

dist(0, σe(T )) ≥ sup{G]·](XTXπ) : X ∈ Φ(H)}
≥ sup{G]·](XTX−1) : X ∈ G(H)} ≥ dist(0, σe(T )).

Corollary 3.9. Let T ∈ Φ(H). Then

dist(0, σe(T )) = sup{G]·](XTXπ) : X ∈ Φ(H), ] · ] ∈ N}.

Corollary 3.10. Let T ∈ Φ(H). Then

dist(0, σe(T )) = sup{G]·](XTX l) : X ∈ Gl(H), ind(X) ∈ Z−}.

Proof. We deduce from Corollary 3.8 that

dist(0, σe(T )) = sup{G]·](XTXπ) : X ∈ Φ(H)}
≥ sup{G]·](XTX l) : X ∈ Gl(H), ind(X) ∈ Z−}.

By Theorem 3.2, we conclude that

dist(0, σe(T )) = sup{G]·](XTX−1) : X ∈ G(H)}
≤ sup{G]·](XTX l) : X ∈ Gl(H), ind(X) ∈ Z−}.
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We also have the following corollary.

Corollary 3.11. Let T ∈ Φ(H). Then

dist(0, σe(T )) = sup{G]·](XTX l) : X ∈ Gl(H), ind(X) ∈ Z−, ] · ] ∈ N}.
For right invertible operators we have the following corollaries.

Corollary 3.12. Let T ∈ Φ(H). Then

dist(0, σe(T )) = sup{G]·](XTXr) : X ∈ Gr(H), ind(X) ∈ N}.
Corollary 3.13. Let T ∈ Φ(H). Then

dist(0, σe(T )) = sup{G]·](XTXr) : X ∈ Gr(H), ind(X) ∈ N, ] · ] ∈ N}.
The proof of the following corollary is exactly the same as the proof of

Corollary 3.10.

Corollary 3.14. Let T ∈ Φ(H). Then

dist(0, σe(T )) = sup{G]·](XTX±) : X ∈ G±(H), ind(X) ∈ Z}.
We easily obtain the following.

Corollary 3.15. Let T ∈ Φ(H). Then

dist(0, σe(T )) = sup{G]·](XTX±) : X ∈ G±(H), ind(X) ∈ Z, ] · ] ∈ N}.
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