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On the perturbation functions and similarity orbits
by

HAIKEL SKHIRI (Monastir)

Abstract. We show that the essential spectral radius g.(T) of T € B(H) can be
calculated by the formula g.(T) = inf{F;.4(XTX ') : X an invertible operator}, where
Fi4(T) is a &i-perturbation function introduced by Mbekhta [J. Operator Theory 51
(2004)]. Also, we show that if Gy4.4(T') is a P2-perturbation function [loc. cit.] and if T is a
Fredholm operator, then dist(0, oe(T)) = sup{Gy.4(XTX ') : X an invertible operator}.

1. Terminology and introduction. Let (H, || - ||) be a complex, infi-
nite-dimensional Hilbert space and let A denote the set of all norms f - #
on H that are equivalent to || - ||, and derived from an inner product <-,->
on H, that is, fzf = /<z, 2~ for all z € H (1).

Let B(H) be the Banach algebra of all bounded linear operators on H
and let K(H) be its ideal of compact operators. If T € B(H) and §-£ € NV,
we will denote by #T1 the operator-norm of T relative to f - .

We denote by N(T') the kernel and by R(T) the range of T' € B(H).
The spectrum of T' is denoted by ¢(T'), and the adjoint by 7. An operator
T € B(H) is called Fredholm (resp. semi-Fredholm) if R(T) is closed and
max{dim N (T"), codim R(T)} < oo (resp. min{dim N(7'), codim R(T")} < c0).
We denote by ®(H) (resp. ¢+ (H)) the set of all Fredholm (resp. semi-
Fredholm) operators. Set C(H) = B(H)/K(H), the Calkin algebra (see
[3, 4]); it is well known that C'(H) is a C*-algebra.

The essential spectrum of T is 0(T) ={\ € C: T— X ¢ ®#(H)}, and the
semi-Fredholm spectrum of T is 04 (T) ={\ € C: T — A\ ¢ &, (H)}. Recall
that the essential spectral radius of T is p.(T') = sup{|A| : A € 0.(T)}.

If T a semi-Fredholm operator, then the index of T is defined as

ind(T) = dim N(T) — codim R(T).
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(1) From the polar identity, it follows that the inner product is unique:

A<z, y- =tz + yi® — o — yf® + ifle + iyl® — ite — iyt®
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Let @} denote the set of semi-Fredholm operators with ind(7') =n € ZU
{+00, —o0}. Finally, let G(H) be the group of all invertible elements in
B(H).

The rest of this paper is organized as follows. In the next section we shall
show that for a #;-perturbation function Fy.4, the infimum of {Fy4(XTX 1) :
X € G(H)} is equal to 0.(T). In Section 3 we prove that if T is a Fredholm
operator and if Gy4(T) is a $o-perturbation function, then the supremum of
{Gy(XTX 1) : X € G(H)} is equal to dist(0, oc(T)).

2. Similarity orbits and ¢@i-perturbation functions. Recently,
Mbekhta [8] has introduced the following definition.

DEFINITION 2.1 ([8, Definition 2.1]). Let f-# € N. A ®1-perturbation
function on B(H) is a function Fy4 which associates to each T' € B(H) a
real number Fy4(T") > 0 such that:

(a) fw(T—l—K) Fyy(T) for all K € K(H);

() FalD) = 1

(c) mulrﬂl{}—w(ST) fM(TS)} < ﬁSﬁfM( ) for all T, S € B(H);
(d) if |A| > Fy4(T) then T' — AI is Fredholm.

REMARK. The definition given by Galaz-Fontes [5] for a perturbation
function is a particular case of the above definition.

From now on, we shall denote by Fy; a ®1-perturbation function with
t-feN.

In the proof of the following lemma, we use a method introduced by
Mbekhta [7].

LEMMA 2.2. Let T € B(H) and € > 0. Then there exists W, € B(H)
such that

Frp(eVeTe ™) < 0.(T) + <.
Proof. By [10, Lemma 6], there exists a finite rank operator K. such
that
o(T + K.) < 0e(T) + ¢/2.
Since g( (%(E ) < 1, it follows from the Rota theorem [12, Theorem 2] that
there exists X, € B(H) invertible such that

(%) $X (T + K ) X' < 0.(T) +e.

Let X, = UP. be the polar decomposition of X, with P. = (X;‘Xe)l/z.
Recall that U is unitary, and P. is positive and invertible. Since o(P:) C
10, +00], log is a continuous real function on o(P:). It follows from the sym-
bolic calculus that there is a self-adjoint W. € B(H) such that P. = e"-.
Thus P! = e="=. Since U is unitary, we see that X (T + K.)X 't =

13
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tee(T + K.)e="=4. By property (a) of Definition 2.1, it follows that
Fig(eVeTe o) = Foy(e"= (T + K.)e V).
Using properties (b) and (c) of Definition 2.1, we deduce that
Fpa(eVe (T + Ko)e™e) < eV (T + K.)e Vet
<HX(T + K) XM < 0e(T) + &
Therefore, Fy4(eVeTe W) < 0. (T) + ¢. m

REMARK. In the above proof, we used the notion of adjoint operator,
which depends on the scalar product associated to the norm f - f.

THEOREM 2.3. Let T'€ B(H). Then
0e(T) = inf{Fps(XTX 1) : X € G(H)}.

Proof. First, by the property (d) of F44(T") (see Definition 2.1), for all
invertible operators X we have

0c(XTX 1) < Frp(XTXH).
Since 0o (XTX 1) = 0.(T), we obtain
0e(T) < inf{Fps(XTX 1) : X € G(H)}.
Conversely, given € > 0, by Lemma 2.2 there exists W, € B(H) such that
Fip(eeTe o) < 0.(T) + <.
Since "¢ is invertible, we deduce that
inf{Fuy(XTX 1) : X € G(H)} < inf{oe(T) +e:6> 0} = 0.(T). m

REMARK. If Fy4(-) =1 -fle, the result we obtain is the same as in [11],
when the C*-algebra is B(H) and I = K(H).

From the first part of the above proof and Lemma 2.2, we obtain the
following theorem.

THEOREM 2.4. Let T € B(H). Then
0e(T) = inf{Fy4(eXTe ™) : X € B(H)}.

REMARK. If Fy4(-) = # - §e, we obtain the result of [9] in the particular
case when the C*-algebra is C(H) = B(H)/K(H).

Theorems 2.3 and 2.4 have the following consequence.
COROLLARY 2.5. Let T € B(H). Then
0e(T) = inf{Fps(XTX 1) : X € G(H), §-§ € N}
= inf{F4(eXTe ™) : X € B(H), t-1 € N}.
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Consider the natural map 7 : B(H) — C(H) = B(H)/K(H). Let X €
&(H). We say that X, € B(H) is a m-inverse of X if m(X;) is the inverse
of 7(T) in C(H), i.e

(2.1) m(X)m(Xyg) = 7(Xp)7(X) = w(1).
From (2.1), it is easily seen that

2.2 0e(T) = 0o(XTX,) = 0 (XoTX),
(2.3) 0e(T) = 0e(XT X)) = 0e(X7TX).

COROLLARY 2.6. Let T € B(H). Then
0e(T) = inf{Fp4(XTXy): X € d(H)}.
Proof. Since G(H) C ®(H), it follows from Theorem 2.3 that
0e(T) = Inf{Fps(XTX 1) : X € G(H)} > inf{Fy4(XTX,): X € ®(H)}.

Conversely, by the property (d) of Fy.4 (see Definition 2.1), for all X € &(H)
we have

(2.4) 0e(XTX7) < Fyy(XTXy).
The result follows from (2.4) and (2.3). =
COROLLARY 2.7. Let T € B(H). Then
0(T) = inf{Foy(XTX,): X € B(H), §-4 € N},

We will show similar results for left and right invertible operators. First
we need some notation. Let G;(H) denote the set of all left invertible oper-
ators:

Gi(H) = {X € B(H) : 3L € B(H) such that LX = I},
and G, (H) the set of all right invertible operators:
G,(H) = {X € B(H) : 3R € B(H) such that XR = I}.

We shall denote by X! (resp. X") a left (resp. right) inverse of X € G;(H)
(resp. X € G,(H)).

COROLLARY 2.8. Let T € B(H). Then
0e(T) = inf{F34(XTX") : X € Gy(H), ind(X) € Z_}.
Proof. Since G(H) C {X € Gi(H) : ind(X) € Z_} C ¢(H), it follows
from Theorem 2.3 and Corollary 2.6 that
0e(T) = inf{Fps(XTX 1) : X € G(H)}
> {(Foy(XTXY) : X € Gy(H), ind(X) € Z_}
> inf{Fs(XTX,) : X € D(H)} = 0.(T). u
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COROLLARY 2.9. Let T € B(H). Then
0e(T) = inf{Fpy(XTX") : X € Gy(H), ind(X) € Z_, §- 4 € N'}.
For right invertible operators we have the following corollaries.
COROLLARY 2.10. Let T € B(H). Then
0e(T) = inf{Fy4(XTX"): X € G.(H), ind(X) € N}.
COROLLARY 2.11. Let T € B(H). Then
0e(T) =inf{Fu4(XTX"): X € G,(H), ind(X) €N, §-f € N}.

We denote by G4 (H) = Gi(H) U G,(H) the set of all semi-invertible
operators. When X € G+ (H), we simply write X* for a left inverse or a
right inverse of X.

The proof of the following is exactly the same as the proof of Corol-
lary 2.8.

COROLLARY 2.12. Let T € B(H). Then
0e(T) = inf{Fp4(XTX*) : X € G(H), ind(X) € Z}.
COROLLARY 2.13. Let T € B(H). Then
0e(T) = inf{F4(XTX®): X € GL(H), nd(X) €Z, t-4 € N}

3. Similarity orbits and @s-perturbation functions. We denote
by oy(T) ={\N € C: T — X & Gi(H)} the left spectrum and by o,(T) =
{ANeC:T -\ & G,(H)} the right spectrum. Moreover, @1 (T) = {A € C:
T— X\ € P}, withn € ZU {400, —0}.

The following definition was introduced by Mbekhta [8].

DEFINITION 3.1 ([8, Definition 3.4]). Let £ - £ € N. A Po-perturbation
function on B(H) is a function Gy4 which associates to each T € B(H) a
real number Gy.4(7") > 0 such that:

(a) Gy4(T + K) = Gyy(T) for all K € K(H);

(b) Gy4(1) = 1;

(c) min{Gyy (ST), Gy4(T'S)} < 4S8 Gy4(T) for all T, S € B(H);

(d) if T'e &(H) and |A| < Gy4(T), then T'— A\ € ¢(H).

We shall denote by Gy.4 a Po-perturbation function with § - € V.
The following theorem is the main result of this section.

THEOREM 3.2. Let T € ¢(H). Then
dist(0, 0¢(T)) = sup{Gy4(XTX 1) : X € G(H)}.
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For the proof we need some lemmas.

LEMMA 3.3. Let S € B(H). If Ay € 0.(S)¢ N 9[oy(S)], then Ay is an
isolated point of 0;(S).

Proof. The result follows from [3, Theorem 3.2.10] (see also [6, Theorem
V.1.6 and Corollary V.1.7]). =

LEMMA 3.4. Let T € $(H) and let K be a compact operator such that
oe(T) = [o(T + K) Nop (T + K)| UL (T) U SL>(T).
Then 9(o)(T + K)) N [oe(T)]¢ = 0.

Proof. Suppose there exists Ao € 9(o;(T + K)) N [0¢(T)]¢. Lemma 3.3
asserts that \g is an isolated point of 0;(T'+ K). This proves that T+ K — \g
is a right invertible operator, because otherwise A\g € 0;(T+K)No,.(T+K) C
0e(T), which is a contradiction. Now, since T'+ K — )¢ is right invertible,
we see that ind(T'+ K — AoI) > 0. But \g € 9(0y(T + K)), which implies
that ind(T'+ K — A\oI) < 0, a contradiction.

LEMMA 3.5. Let Te®(H) and let K be a compact operator as in Lem-
ma 3.4. If 0 & 01(T + K), then dist(0,0.(T")) = dist(0, oy(T' + K)).

Proof. First, it is easy to see that J[oe(T")] C oy(T + K) N o, (T + K).
Therefore,

dist(0, oo (T)) = dist(0, oy(T + K) N o (T + K)).

We consider the case where 0 ¢ o,.(T + K). Since 9(o,.(T+ K)) C 0y(T+ K)
and J(o)(T + K)) C 0,.(T + K), we obtain

dist(0, o¢(T)) = dist(0, 07(T + K) N o (T + K))
= dist(0, 0;(T + K)) = dist(0, 0, (T + K)).

On the other hand, if 0 € ¢,(T + K), it was shown in Lemma 3.4 that
Io(T 4+ K)) Noo(T)¢ = 0. Thus, d(oy(T + K)) C 0c(T). Therefore,

dist(0, 0 (7)) < dist(0,9(0y(T + K)) < dist(0,0;(T + K))
< dist(0,00(T + K) N0 (T + K)) < dist(0,0.(T")).
This proves the lemma. =
Proof of Theorem 3.2. First, we show that
dist(0, 0¢(T)) > sup{Gs4y(XTX ) : X € G(H)}.

Let X € B(H) be an invertible operator, and let A € C be such that
Al < Gy (XTX 1Y), Since X (T—A\) X1 = XTX 1 —\ € &(H), we see that
T — X is Fredholm. Therefore,

dist(0, 0¢(T)) > sup{Gy4(XTX 1) : X € G(H)}.
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Conversely, Theorem 4.5 of [1] asserts that there is K € K(H) such that
or(T) =0T+ K)No (T + K). But
0e(T) = 0(T) UDL™(T) U S>(T),
SO
0e(T) = [o(T + K) Nop(T + K)] USL™(T) U DL>(T).

Since 0 & 0.(T'), we obtain 0 & 0;(T+ K) or 0 ¢ o,(T+ K). We will suppose
that 0 & 0;(T + K); the other case is similar. It was shown in Lemma 3.5
that dist(0, 0.(T)) = dist(0, 0;(T + K)). Corollary 2.6 of [2] implies that
(%) dist(0,0¢(T)) = dist(0,0¢(T + K)) = sup{1/0(S) : S(T+ K) = I}.

On the other hand, let S € B(H) be a left inverse of 7'+ K and let € > 0.
Since Q(Q(TSHE) < 1, it follows from the Rota theorem [12, Theorem 2] that
there exists an invertible operator Z. such that

(x%) 42.87.7 1 < o(S) +e.
Consider the polar decomposition Z. = UP., where P. = (Z *Zg)l/ 2 and

&g
U is the partial isometry with N(U) = N(Z.) and R(U) = R(Z.). This
implies that U is unitary. Recall that P. is positive and invertible. Since
o(P:) C€]0,400], log is a continuous real function on o(F:). It follows from
the symbolic calculus that there is a self-adjoint W, € B(H) such that
P. = e, Thus P! = e=W=. It is obvious that

[V (T + K)e Ve ][V Se e[V (T + K)e™We] = V(T + K)e W=,
It follows from [8, Lemme 3.18] that

1
4V Te™e) = Gup(eV (T + K)e™We) > —————— .
gﬁ ﬁ(e € ) gﬁ ﬁ(e ( + )e ) — ﬁeWE SC_W€ ﬁe

But feV=Se Wet > eV Se Mot so

W W 1
) fTe "e) > ——
Gpy(e™ Te ) 2 feWeSeWey

Since Z. = UP. = Ue"= and U is a unitary operator, we deduce that

Worn W, 1
-

g VeTe ey > —— .

Grale™Te™™) 2 42.52"

It follows from () that

1 1
w(@WeTe Wyl > { } > .
SUpiGes(c ™ Te )} 28U\ s 1 | 2 o)

But
Sup{gﬁ.ﬁ(XTX—l) : X eGH)} > Sup{gﬁ.ﬁ(eWETe_WE)}_
>0



64 H. Skhiri

We deduce that
(k%) sup{Gy4(XTX 1) : X € G(H)} > 1/0(S).
Since (**x) holds for all left inverses of T+ K, we obtain
sup{Gy4(XTX 1) : X € G(H)} > sup{1/0(S) : S(T + K) = I}.
It follows from (x) that
sup{Gy4(XTX 1) : X € G(H)} > dist(0,0¢(T)). =
It is easy to see that the above proof yields the following result.
THEOREM 3.6. Let T € ¢(H). Then
dist(0,0¢(T)) = sup{Gy4(e*Te ™) : X € B(H)}.
COROLLARY 3.7. Let T € ®(H). Then
dist(0,0¢(T)) = sup{Gs4(XTX 1) : X € G(H), t -4 € N}
=sup{Gy4(e*Te ™) : X € B(H), -t € N'}.
COROLLARY 3.8. Let T € ®(H). Then
dist(0, 0¢(T)) = sup{Gs4(XTX,) : X € &(H)}.
Proof. Let X € ¢(H) and let A\ € C be such that
Al < Gpp(XTX7).

It follows from the fact that X(7T'— \) X, = XTX; — A XX, € &(H) and
the relation (2.2) that 7'— A € ¢(H). Then by Theorem 3.2,

dist(0,0¢(T)) > sup{Gp4(XTX:) : X € &(H)}
> sup{Gy4(XTX 1) : X € G(H)} > dist(0,0¢(T)). m
COROLLARY 3.9. Let T € ®(H). Then
dist(0,0¢(T)) = sup{Gs4(XTX,) : X € D(H), § -t € N'}.
COROLLARY 3.10. Let T € &(H). Then
dist(0,0.(T)) = sup{Gy4s(XTX") : X € G(H), ind(X) € Z_}.
Proof. We deduce from Corollary 3.8 that
dist (0, 0¢(T)) = sup{Gp4(XTX) : X € &(H)}
> sup{Gy4(XTX") : X € Gy(H),ind(X) € Z_}.
By Theorem 3.2, we conclude that
dist(0, 0¢(T)) = sup{Gy4(XTX 1) : X € G(H)}
< sup{Gyy(XTX") : X € Gy(H), nd(X) € Z_}. u
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We also have the following corollary.
COROLLARY 3.11. Let T € ®(H). Then

dist(0, 0o (T)) = sup{Gs4(XTX") : X € Gy(H), ind(X) € Z_, §- 4 € N'}.
For right invertible operators we have the following corollaries.
COROLLARY 3.12. Let T € ®(H). Then

dist(0,0.(T)) = sup{Gy4(XTX") : X € G,(H), ind(X) € N}.

COROLLARY 3.13. Let T € &(H). Then

dist(0,0¢(T)) = sup{Gs4(XTX") : X € G,(H), ind(X) €N, § - € N'}.

The proof of the following corollary is exactly the same as the proof of
Corollary 3.10.

COROLLARY 3.14. Let T € ®(H). Then
dist(0, 0o (T)) = sup{Gs4(XTXF) : X € G4(H), ind(X) € Z}.
We easily obtain the following.
COROLLARY 3.15. Let T € ®(H). Then
dist(0,0.(T)) = sup{Gy4(XTXE): X € G(H), ind(X) €Z, £ -4 € N'}.
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