
STUDIA MATHEMATICA 188 (1) (2008)

Epsilon-independence between two processes

by

Tomasz Downarowicz and Paulina Grzegorek (Wrocław)

Abstract. We study the notion of ε-independence of a process on finitely (or count-
ably) many states and that of ε-independence between two processes defined on the same
measure preserving transformation. For that we use the language of entropy. First we
demonstrate that if a process is ε-independent then its ε-independence from another pro-
cess can be verified using a simplified condition. The main direction of our study is to
find natural examples of ε-independence. In case of ε-independence of one process, we find
an example among processes generated on the induced (first return time) transformation
defined on a typical long cylinder set of any given process of positive entropy. To obtain
examples of pairs of ε-independent processes we have to make an additional assumption
on the master process. Then again, we find such pairs generated on the induced transfor-
mation as above. This is the most elaborate part of the paper. While the question whether
our assumption is necessary remains open, we indicate a large class of processes where our
assumption is satisfied.

1. Introduction. Let (X,Σ, µ, T,P) be a process generated on a stan-
dard probability measure preserving invertible transformation (X,Σ, µ, T )
by a finite measurable partition P of X. Such a process is called inde-
pendent if the discrete random variables πn : X → P defined by the rule
πn(x) = p⇔ Tn(x) ∈ p (n ∈ Z) are independent (i.e., every finite collection
of such variables is independent). A synonym for an independent process is a
Bernoulli process; however, some authors use the latter name for any process
measure-theoretically isomorphic to an independent one.

A process (X,Σ, µ, T,P) is ε-independent if it satisfies an approximate
independence condition (the precise definition will be provided later). Such
processes play an important role in the Ornstein theory (see e.g. [Sh] for an
exposition on variants of this notion). The key (and rather obvious, once the
definition is stated) observation is that a process is independent if and only
if it is ε-independent for every ε > 0.
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Now consider two finite partitions of X, say P and Q. The meaning of
the statement: “the processes (X,Σ, µ, T,P) and (X,Σ, µ, T,Q) are mutu-
ally independent” is clear: any finite collection of random variables of the
form πn defined by the first process should be jointly independent of any
finite collection of analogous random variables defined by the latter process.
It seems interesting to introduce a meaningful notion of ε-independence be-
tween two processes generated by two partitions on the same measure pre-
serving transformation. In a recent paper [D-L], a prototype of such notion
has been introduced and it proved very useful in the study of the so-called
“return time asymptotics”. In the same paper the authors raise the question
whether a more general ε-independence holds for some specific pairs of pro-
cesses occurring naturally in every process of positive entropy. The details
of this question will be discussed later in this note.

This paper addresses ε-independence of a single process and between two
processes. We replicate from [D-L] an example of a class of ε-independent
processes naturally occurring in any process of positive entropy. Such a pro-
cess exists on the induced system (with the action of the first return map)
on “nearly every” sufficiently long cylinder B; it is simply the process gen-
erated by the partition P restricted to B. Also, we propose the notions of
“limit ε-independence” and “ε-independence” between two processes. We ob-
serve that two processes are mutually indpendent if and only if they are
mutually ε-independent for every ε > 0. Further, we prove that if one of
the processes is ε-independent then the notions of limit ε-independence and
ε-independence coincide. Finally, in our main result, we prove that under
some additional assumptions on the process (X,Σ, µ, T,P), the following two
processes defined on the induced system on a typical long cylinder B are mu-
tually ε-independent: the ε-independent process generated by the partition
P restricted to B (the same as mentioned above), and the N-valued process
of return times to B. These are exactly the processes appearing in the ques-
tion formulated in [D-L]. Due to the additional assumption, we do not claim
to have solved the problem posed in [D-L], nevertheless, we indicate a large
class of systems with positive entropy which satisfy our additional condition.

2. Notation and preliminaries. Let (X,Σ, µ, T ) be an automorphism
of a standard probability measure space. Let P be a finite or countable
measurable partition of the space X. We will use the following notation: if
A ⊂ Z then

(2.1) PA = PT,A =
∨
i∈A

T−i(P).

We will skip the first superscript only when it indicates the transformation
T ; we will keep it with respect to any other transformation. We will abbrevi-
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ate Pn = P [0,n−1] and P−n = P [−n,−1]. The sub-σ-field P± generated by the
union of the partitions Tn(P) over all n ∈ Z is invariant, i.e., T (P±) = P±,
and the corresponding factor system is referred to as the process gener-
ated by P. The sub-σ-field generated by the union of the partitions Tn(P)
(n ≥ 1) will be denoted by P− and called the past of the process. Clearly,
it is subinvariant, i.e., T (P−) ⊂ P−. In case it is necessary to point out the
transformation, the symbols PT,n,PT,±, etc. will appear.

The process generated by P is often represented in terms of symbolic dy-
namics, as follows. Let XP = P×Z be the set of all doubly infinite sequences
(xn) with values in P. Let ΣP denote the product σ-field in XP . Let σ de-
note the left shift transformation on XP , σ(xn) = (xn+1). Then there is a
natural (measurable) map π : X → XP , π(x) = (xn) defined by the rule
xn = p ∈ P ⇔ Tn(x) ∈ p. It is customary to call π(x) the P-name of x. We
obviously have π ◦T = σ ◦π. Finally, we obtain a shift-invariant measure µP
on ΣP from µ “via preimage”: for B ∈ ΣP we set µP(B) = µ(π−1(B)). The
process generated by P is isomorphic to (XP , ΣP , µP , σ). In this setup, the
elements of Pn coincide with the (lifted by π) cylinders over the blocks B of
length n over P. Here P is treated as the alphabet (just a set of labels or sym-
bols), the block B has the form B = B[0, n−1] = [b0, b1, . . . , bn−1] ∈ P×n, the
cylinder over B is the set CB = {(xn) ∈ XP : x[0, n− 1] = B} and the lifted
cylinder is π−1(CB), or equivalently, {x ∈ X : T i(x) ∈ bi, i = 0, 1, . . . , n−1}.
Similarly, the elements of P−n correspond to the lifted cylinders of the form
{x ∈ X : T i(x) ∈ bi+n, i = −n,−n + 1, . . . ,−1}. To simplify the nota-
tion, we will denote the lifted cylinders by the same letters as the underlying
blocks and write B ∈ Pn or B ∈ P−n. In this manner both Pn and P−n
formally denote P×n, the nth cartesian power of P, but we keep track of the
positioning of the blocks on the time axis while defining the cylinders.

Given a countable (or finite) partition α of X, its entropy (or static
entropy) is defined by

(2.2) H(α) = H(µ, α) = −
∑
A∈α

µ(A) log(µ(A)),

with the convention 0 log 0 = 0. Notice that on the set of partitions of cardi-
nality bounded by someM , this function depends continuously on the values
µ(A), moreover, it is strictly concave. If the measure µ is fixed, we will write
H(α), while H(µ, α) is used when the indication of the measure involved is
necessary.

Suppose that β is another countable partition. Then the conditional en-
tropy of α given β is defined as

(2.3) H(α |β) = H(µ, α |β) =
∑
B∈β

µ(B)H(µB, α),
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where µB is the conditional measure on B: µB(A) = µ(A ∩B)/µ(B) (if
µ(B) = 0, µB is inessential for the formula, so it can be defined as any
probability measure). Since for any A,

(2.4) µ(A) =
∑
B∈β

µ(B)µB(A),

strict concavity of H implies that H(α |β) ≤ H(α), and equality holds if
and only if µB(A) = µ(A) for every B and A, i.e., when the partitions α and
β are stochastically independent.

If H(β) < ∞, the following alternative formula for the conditional en-
tropy holds:
(2.5) H(α |β) = H(α ∨ β)−H(β).

Notice, by the way, that always H(α) ≤ H(α ∨ β) ≤ H(α) +H(β).
If F ⊂ Σ is a sub-σ-field, then the conditional entropy of α given F is

defined as
(2.6) H(α | F) = H(µ, α | F) = infH(α |β),

where β ranges over all F-measurable countable partitions. It is not hard to
prove that the infimum is achieved along any sequence of finite partitions βn
such that βn+1 refines βn for each n, and F is the σ-field generated by the
union of the partitions βn.

We now recall basic facts about the dynamical entropy of a partition. If
(X,Σ, µ, T ) is a probability measure preserving transformation and P is a
finite partition of X then we let

(2.7) Hn(P) = Hn(µ,P) =
1
n
H(Pn),

and
(2.8) h(P) = h(µ,P) = h(µ, T,P) = lim

n→∞
Hn(P) = H(P |P−).

We will tend to use the short version with respect to the “master” transfor-
mation T and measure µ. Other transformations or measures will be shown
in the notation. The above limit exists by the well-known monotonicity of
the sequence Hn(P), and the last equality is also well-known and easy to
prove.

If Q is another (possibly countable) partition, then we define

(2.9) Hn(P |Q) = Hn(µ,P |Q) =
1
n
H(Pn | Qn),

and
(2.10) h(P |Q) = h(µ,P |Q) = h(µ, T,P |QT,±) = lim

n→∞
Hn(P |Q).

This limit exists by (relatively easy to verify) subadditivity of the sequence
H(Pn | Qn). The sequence Hn(P |Q) is in fact nonincreasing, but this fact
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is almost unknown and has a rather complicated proof, so we will not invoke
it. We will be needing the following: if P is finite then

(2.11) h(P |Q) = lim
n→∞

1
n
H(Pn | Q±) = H(P |P− ∨Q±)

(see e.g. [D-S] for a proof). If, in addition, H(Q) <∞, then

(2.12) h(P |Q) = h(P ∨Q)− h(Q).

3. Independence and ε-independence. We will soon make repeated
use of an obvious fact concerning weighted averages (or, more generally,
integrals with respect to probability measures). For easy reference we isolate
this fact and call it the rectangle rule (we skip the easy proof).

Fact 3.1. Let ξ be a probability measure on a space Ω and let f ≤ g be
two real (measurable) functions on Ω. If

	
f dξ >

	
g dξ − γδ, where γ > 0

and δ > 0, then ξ{ω ∈ Ω : f(ω) ≤ g(ω)− γ} < δ.

Two countable (including finite) partitions α and β are ε-independent
(we write α ⊥ε β) if

(3.1)
∑

A∈α,B∈β
|µ(A ∩B)− µ(A) · µ(B)| < ε.

Note that the above holds for all ε > 0 if and only if the partitions are
stochastically independent.

The connection between entropy and independence is captured by the
following fact.

Fact 3.2. For every M ∈ N and ε > 0 there is δ > 0 such that for any
finite partition α with at most M elements and any countable partition β,
the following implications hold :

(3.2) α ⊥δ β ⇒ H(α |β) > H(α)− ε,

and

(3.3) H(α |β) > H(α)− δ ⇒ α ⊥ε β.

In particular, independence between α and β is equivalent to the equality

(3.4) H(α |β) = H(α)

(as already observed earlier).

Proof. Assume δ-independence. Reformulation of (3.1) yields

(3.5)
∑
B∈β

µ(B)
∑
A∈α
|µB(A)− µ(A)| < δ
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By the rectangle rule (for f(B) ≡ 0, g(B) =
∑

A∈α |µB(A) − µ(A)|), for a
collection of B’s of joint measure at least 1−

√
δ we have

(3.6)
∑
A∈α
|µB(A)− µ(A)| <

√
δ.

By continuity of H on partitions of cardinality M , and by compactness
of the simplex of M -dimensional probability vectors, for such B’s we have
|H(µB, α) −H(µ, α)| < ε/2, if δ is a priori (independently of α, depending
only on M) chosen small enough. Finally,

H(α |β) =
∑
B∈β

µ(B)H(µB, α)≥(1−
√
δ)(H(µ, α)− ε/2)(3.7)

> H(α)− ε,

again, for a well chosen δ.
Conversely, by strict concavity ofH on the compact set ofM -dimensional

probability vectors there is a uniform choice of δ such that #α < M yields

(3.8)
∑
B∈β

µ(B)
∑
A∈α
|µB(A)− µ(A)| ≥ ε ⇒ H(α |β) ≤ H(α)− δ.

Fact 3.2 allows one to use the condition H(α |β) > H(α) − ε as an
alternative notion of ε-independence for a finite partition. We will then say
that α is ε-entropy independent of β. If both partitions have finite entropy,
the condition can be written as H(α ∨ β) > H(α) +H(β)− ε, hence this is
a symmetric relation.

We say that a finite partition α is ε-independent of a σ-field F if it
is ε-independent of any countable F-measurable partition β. Analogously,
ε-entropy independence of F is defined by H(α | F) > H(α)− ε.

The process (X,Σ, µ, T,P) generated by a finite partition P is called an
independent process if the partitions {Tn(P) : n ∈ Z} are jointly indepen-
dent. By invariance, an equivalent condition is that P is independent of the
past P−, which is equivalent to h(P) = H(P).

Definition 3.3. The process is called ε-independent (resp. ε-entropy
independent) if P is ε-independent (resp. ε-entropy independent) of P−.

ε-entropy independence of a process can be written as

(3.9) h(P) > H(P)− ε,

or Hn(P) > H(P)− ε for all n.

Remark 3.4. Clearly, if H(P) is smaller than ε then the generated pro-
cess is (trivially) ε-entropy independent. It is thus natural to require, for
nontriviality of the notion, that ε is much smaller than H(P).
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Remark 3.5. If a process is ε-entropy independent for every ε > 0 then
it is an independent process.

We now turn to the case of two partitions P and Q.

Definition 3.6. Assume that P is finite, while we let Q be countable.
We will say that the process (X,Σ, µ, T,P) generated by a partition P is
ε-entropy limit-independent of the process generated by Q if

(3.10) h(P |Q) > h(P)− ε.

An equivalent condition is that eventually (for large n),

(3.11) Hn(P |Q) > Hn(P)− ε′

for some ε′ > ε. If, in addition, Q has finite entropy, then the last inequality
can be equivalently written as

(3.12) Hn(P ∨Q) > Hn(P) +Hn(Q)− ε′,

which proves that in that case the relation is symmetric. Notice that ε-
entropy limit-independence between two processes for every ε > 0 does not
imply full stochastic independence.

Remark 3.7. Clearly, a process of entropy smaller than ε is (trivially)
ε-entropy limit-independent from any process (even from itself).

This is why we introduce a stronger notion.

Definition 3.8. The process generated by P is ε-entropy independent
of the process generated by Q if

(3.13) Hn(P |Q) > Hn(P)− ε

for every n.

This notion is also symmetric among finite entropy partitions. Now, ε-
entropy independence for every ε > 0 does imply stochastic independence
between the processes. As before, for the notion to be nontrivial it is required
that ε is smaller than both H(P) and H(Q).

The notions of ε-entropy independence and ε-entropy limit-independence
coincide (via change of the parameter) if one of the processes is itself an
ε-entropy independent process.

Fact 3.9. Suppose (X,Σ, µ, T,P) is an ε-entropy independent process
and that it is ε-entropy limit-independent of the process generated by another
partition Q. Then the former process is 2ε-entropy independent of the latter.

Proof. Hn(P |Q) ≥ h(P |Q) > h(P)− ε > H(P)− 2ε ≥ Hn(P)− 2ε.



84 T. Downarowicz and P. Grzegorek

4. Induced processes. Both the notion of an ε-independent process
and that of a pair of mutually ε-independent processes are meaningful only
if there exist natural classes of examples for each of them. Moreover, we
would like to have (separate) examples for any arbitrarily small ε, and in
which ε-independence does not result from small entropy or full stochastic
independence. We will provide such examples appearing naturally “inside”
any process of positive entropy. For this we need some preliminaries on so-
called induced maps.

As usual, let (X,Σ, µ, T ) denote a probability measure preserving trans-
formation. For a set B ∈ Σ of positive measure we define RB : B → N as
the first return time to B:

(4.1) RB(x) = min{n > 0 : Tn(x) ∈ B}.
By the Poincaré theorem, RB is finite µB-almost everywhere. The induced
map TB : B → B is defined by

(4.2) TB(x) = TRB(x)(x).

It is easy to see that TB preserves the measure µB. The Abramov theorem
asserts that the measure-theoretic entropies: hµ(T ) (of the measure preserv-
ing transformation T with respect to µ) and hµB (TB) (of TB with respect to
µB) are bound by the simple relation

(4.3) hµB (TB) = hµ(T )/µ(B).

Recall that, by the Sinai theorem, the measure-theoretic entropy hµ(T ) of a
measure preserving transformation equals the dynamical entropy h(µ, T,P)
of a process generated by a partition P as soon as P is a generator for T ,
i.e., when (X,Σ, µ, T,P) is isomorphic to (X,Σ, µ, T ).

Suppose that P is a generator and thatB is a cylinder in P−n (i.e., a block
occurring at positions [−n,−1]). Two points x, y ∈ B are equal if and only
if their P-names (under the transformation T ) are equal. Thus, in order to
generate for the transformation TB, a partition of B must distinguish (under
TB) the full P-names. The simplest such partition is

(4.4) QB = P [0,RB−1].

Notice that the “exponent” is variable (depends on a point x), which has to be
properly understood. First, we take the partition RB of B depending on the
return time: RB = {Rn : n ≥ 1}, Rn = {x ∈ B : RB(x) = n}, then we refine
the partitionRB intersecting every set Rn with the cylinders of length n. The
partitionQB is usually infinite (still countable), and its “symbols” correspond
to the blocks appearing in between consecutive repetitions of the block B
in the P-names of the points of B. The figure below illustrates the passage
between a symbolic representation of x ∈ B in the process (X,Σ, µ, T,P)
and in the induced process (B,ΣB, µB, TB,QB).
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coordinate 0
↓

... B C−1 B C0 B C1 B C2 B C3 B ....

...C−1 C0 C1 C2 C3 ...

Because, as we said, QB is a generator for TB, the Abramov formula yields

(4.5) h(µB, TB,QB) = h(µ, T,P)/µ(B).

Notice that P is usually not a generator for the induced system. The
generated process (B,ΣB, µB, TB,P) “reads” only the single symbols that
follow directly to the right of the occurrences of B, as illustrated in the
figure below.

coordinate 0
↓

... B p−1.......... B p0........ B p1.. B p2.................. B p3....... B ...

... p−1p0 p1 p2 p3 ...

There is no simple direct formula for the corresponding entropy h(µB, TB,P).
Clearly, it is usually much smaller than h(µ, T,P)/µ(B), comparable with
h(µ, T,P). As the next theorem says, for n large enough, a typical such
process is ε-independent.

Let us introduce one more convention that will help us avoid frequent
repetitions of a lengthy expression. We will say that a property Φ(B) holds
with µ-tolerance ε for n-cylinders B ∈ P−n if the measure of the union of all
cylinders B ∈ P−n for which Φ fails to hold does not exceed ε.

Theorem 4.1. Let (X,Σ, µ, T,P) be a process generated by a finite
partition P and let ε > 0 be given. Then, for n sufficiently large, with
µ-tolerance ε the n-cylinders B ∈ P−n have the property that the process
(X,Σ, µB, TB,P) is ε-entropy independent.

Proof. BecauseH(P |P−n)↘ H(P |P−), for large n we haveH(P |P−n)
− ε2 < H(P |P−). Now

(4.6)
∑

B∈P−n

µ(B)H(µB,P)− ε2 = H(P |P−n)− ε2 < H(P |P−)

= H(P |P−n ∨ P−) =
∑

B∈P−n

µ(B)H(µB,P |P−).
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Clearly, for every B, the term H(µB,P) dominates H(µB,P |P−). However,
(4.6) shows that the weighted average of the first terms exceeds the weighted
average of the latter terms by no more than ε2. Thus, by the rectangle rule,

(4.7) H(µB,P) < H(µB,P |P−) + ε,

except for sets B of joint measure at most ε. We let Xn be the union of the
cylinders B satisfying the above. Because the past of the induced process is
contained (as a σ-field) in the full past P−, we have

(4.8) H(µB,P |P−) ≤ H(µB,P |PTB ,−) = h(µB, TB,P)

for every B. Thus for every B contained inXn,H(µB,P) < h(µB, TB,P)+ε,
i.e., the process generated by P for the induced map is ε-entropy indepen-
dent, as claimed.

In [D-L] the following question has been posed:

Question 1. Is it true that for the majority of sufficiently long cylinders
B ∈ P−n, the (ε-entropy independent) process (X,Σ, µB, TB,P) is also ε-
entropy limit-independent (hence, by Fact 3.9, 2ε-entropy independent) of
the process of return times (X,Σ, µB, TB,RB)?

Remark 4.2. The question is whether

(4.9) h(µB, TB,P |RB) > h(µB, TB,P)− ε,

i.e., whether

(4.10) H(µB,P |PTB ,− ∨RTB ,±
B ) > H(µB,P |PTB ,−)− ε.

In [D-L] the following partial result is proved: Given K ∈ N and ε > 0, for
the majority of sufficiently long cylinders B,

(4.11) H(µB,P |PTB ,− ∨RTB ,(−∞,K]
B ) > H(µB,P |PTB ,−)− ε.

Remark 4.3. Notice that in a process of positive entropy neither
h(µB, TB,P) nor h(µB, TB,RB) decrease to zero on average (over all blocks
of given length) as the length grows. For this reason, Question 1 cannot
be answered trivially using Remark 3.7. In fact both average entropies are
bounded below by h(µ, T,P).

Indeed, it follows from calculations (4.6) and (4.8) that∑
B∈P−n

µ(B)h(µB, TB,P) ≥ h(µ, T,P).

To see the inequality for the process of return times, consider the par-
tition {B,Bc}. Notice that the process generated by this partition and
then induced on B is precisely (X,µB, TB,RB), hence h(µ, T, {B,Bc}) =
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µ(B)h(µB, TB,RB). Summing over all B ∈ P−n we get∑
B∈P−n

µ(B)h(µB, TB,RB) =
∑

B∈P−n

h(µ, T, {B,Bc})

≥ h
(
µ, T,

∨
B∈P−n

{B,Bc}
)

= h(µ, T,P−n)

= h(µ, T,P).

5. The main result. In this section we will provide a positive answer to
Question 1 under an additional assumption on the process. We believe that
our technique will allow in the future to skip the assumption or prove that
it is always satisfied. A simple example of a process that satisfies it without
being independent or even weakly mixing is given at the end of the paper.

Theorem 5.1. Let (X,Σ, µ, T,P) be an ergodic process with positive
entropy h = H(P |P−) such that

∀δ>0 ∃γ∈(0,1/4) ∃C>1 ∃M(δ) ∀n≥M(δ)

there exists a partition Fn ∪ {Zn} ≺ P−n satisfying

µ(Zn) < δ,(5.1)
∀F,F ′∈Fn µ(F )/µ(F ′) < C,(5.2)

and , if Fn denotes the element of Fn of maximal measure, then

∀n≥M(δ) 1 + δ < µ(Fn)/µ(Fn+1) < C,(5.3)

∀F∈Fn µF {x : RF (x) < 2γ/µ(Fn) + n} < δ.(5.4)

Then for every ε > 0 there exists S such that for every s ≥ S with µ-tolerance
ε for B ∈ P−s the processes (X,Σ, µB, TB,P) and (X,Σ, µB, TB,RB) are
ε-entropy limit-independent , i.e.,

(5.5) h(µB, TB,P |RB) > h(µB, TB,P)− ε.

Proof. Fix ε ∈ (0, 1). Choose

(5.6) δ <
ε2

6h
and ζ <

γε2

24C2
,

where γ and C depend on δ as in the assumption of the theorem. By a
standard argument involving the Shannon–McMillan–Breiman theorem (see
e.g. [P]) there exists m such that

(5.7) H(µE ,Pm) ≤ m(h+ ζ)

for any subset E ⊂ X of measure larger than 1/2. We can also assume that

(5.8)
log 2
m

<
ζ

2
.
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Choose N > max{M(δ),m} such that for each n ≥ N the following condi-
tions are satisfied:

h ≤ H(P |P−n) < h+ ζ,(5.9)
mµ(Fn) log(#P) < ζ/4,(5.10)

γ

Cµ(Fn)
> n.(5.11)

Now we define S = bγ/µ(FN )+Nc. Then for every s > S we find ns > N
such that

(5.12)
γ

µ(Fns−1)
+ ns − 1 ≤ s < γ

µ(Fns)
+ ns.

We choose γs smaller than γ so that s − ns = γs/µ(Fns) =: qs. Note that
(5.11) and the assumption (5.3) imply

(5.13) qs = s− ns ≥
γ

µ(Fns−1)
− 1 >

γ

Cµ(Fns)
− 1 > ns − 1,

hence

(5.14) qs ≥ ns.
Now we estimate the ratio between γ and γs. Notice that γs is the smallest
when the following equality holds (recall conditions (5.3) and (5.11)):

(5.15)
γs

µ(Fns)
+ ns =

γ

µ(Fns−1)
+ ns − 1.

Then

(5.16) γs = γ
µ(Fns)
µ(Fns−1)

− µ(Fns) ≥
γ

C
− γ

2C
=

γ

2C
.

Main calculations. At this point we fix some s > S, n = ns, q = qs and
F ∈ Fn. The entropy of the complete induced process on F satisfies

h

µ(F )
= h(µF , TF ,QF )(5.17)

= h(µF , TF ,P [q′,RF−1]) + h(µF , TF ,Pq
′ | P [q′,RF−1])

=: W1 +W2

(recall (4.4) and (4.5); they apply to unions of cylinders of the same length,
as well), where q′ = max{min{q,RF − s}, 0}. Note that q′ = q′(x) becomes
a variable. The figure below shows q′ in four different cases depending on
whether RF ≥ 2q + n, RF ∈ (q + n, 2q + n), RF ∈ [n, q + n], RF < n.

q′=0
↓

q′=0
↓

... D0∈F
q′=q︷ ︸︸ ︷...............

q︷ ︸︸ ︷........... D1∈F︸ ︷︷ ︸
C0

q′<q︷︸︸︷......
q︷ ︸︸ ︷........... D2∈F︸ ︷︷ ︸

C1

≤q︷︸︸︷...... D3∈F︸ ︷︷ ︸
C2

D4∈F︸ ︷︷ ︸
C3

...
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By (5.14) and (5.4),

(5.18) µF ({q′ < q}) < δ.

We now estimate W1 from above, which combined with (5.17) will give
us a lower estimate of W2.

The elements of P [q′,RF−1] are cylinders Ck of various lengths appearing
in the P-names of points x ∈ X starting q′ positions to the right from every
occurrence of a block Dk ∈ F and ending at the right end of the next block
Dk+1 ∈ F (see figure above).

Let E = {T ix : x ∈ F, q′(x) < i ≤ RF (x)} (a point belongs here if the
coordinate −1 is covered by a block Ck). The process (E,ΣE , µE , TE , T (P))
“reads one by one” the symbols in the blocks Ck, “jumping” over the gaps
between them. Note also that F ⊂ E and the full induced process on F
obtained from (E,ΣE , µE , TE , T (P)) is (F,ΣF , µF , TF ,P [q′,RF−1]). Hence

(5.19) W1 = h(µF , TF ,P [q′,RF−1]) =
µ(E)
µ(F )

h(µE , TE , T (P)).

Note that by (5.18),

(5.20) µ(E) = 1− µ(F )
�

F

q′ dµF ≤ 1− µ(F )q(1− δ),

so

(5.21) W1 ≤
(

1
µ(F )

− q(1− δ)
)
h(µE , TE , T (P)).

Further, h(µE , TE , T (P)) ≤ Hm(µE , TE , T (P)) = m−1H(µE , (T (P))TE ,m).
Observe that (T (P))TE ,m differs from (T (P))T,m only on the set

⋃m−1
i=0 T−i(F )

=: V , and its measure is at most mµ(F ), which, by (5.10), is (much) smaller
than 1/4. Continuing,

(5.22) H(µE , (T (P))TE ,m)≤H(µE , (T (P))TE ,m | {V, V c})+H(µE , {V, V c})
≤ H(µE∩V c , (T (P))TE ,m) + µE(V )H(µE∩V , (T (P))TE ,m) + log 2

≤ H(µE∩V c , (T (P))T,m) +mµE(F ) log(#Pm) + log 2.

Notice that since µ(E) ≥ 1− qµ(F ) ≥ 1− γ > 3/4, the measure µ(E ∩ V c)
is greater than 1/2. The first term on the right hand side of (5.22) equals
H(µT−1(E∩V c),Pm), which by (5.7) does not exceed m(h + ζ). The second
term is at most mζ/2 (use (5.10) and the fact that µE(F ) ≤ 2µ(F )). After
dividing by m and applying (5.8), we obtain

(5.23) h(µE , TE , T (P)) ≤ h+ 2ζ.

Using (5.21) we obtain

(5.24) W1 ≤
(

1
µ(F )

− q(1− δ)
)

(h+ 2ζ).
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Hence, by elementary computations and (5.2), (5.6), (5.16),

(5.25) W2 ≥ qh(1− δ)−
2ζ
µ(F )

≥ qh(1− δ)− 2Cζ
µ(Fn)

≥ q
(
h− ε2

3

)
.

We will now transform W2 to see how it is related to the left hand side
of the assertion (5.5). We have

W2 = h(µF , TF ,Pq
′ | P [q′,RF−1]) ≤ h(µF , TF ,Pq | P [q′,RF−1])

=
q−1∑
i=0

h(µF , TF , T−iP |P [q′,RF +i−1]).

Fix 0 ≤ i < q. The partition TFP [q′,RF +i−1] will be denoted by G. Now,

h(µF , TF , T−iP |P [q′,RF +i−1]) = h(µF , TF , T−iP |T−1
F (G))

= h(µF , TF , T−iP | G)

= H(µF , T−iP | (T−iP)TF ,− ∨ GTF ,− ∨ G ∨ GTF ,+)

≤ H(µF , T−iP | (T−iP)TF ,− ∨ GTF ,− ∨ P [−s+i,i−1] ∨ GTF ,+)

=
∑

B∈P [−s+i,i−1]

µF (B)H(µB, T−iP | (T−iP)TF ,− ∨ GTF ,− ∨ GTF ,+).

To justify the above inequality consider two cases. If q′ > 0 then RF ≥
q′ + q + n = q′ + s and hence T−1

F G = P [q′,RF +i−1] � P [RF−s+i,RF +i−1] =
T−1
F P [−s+i,i−1]. If q′ = 0 then maybe G � P [−s+i,i−1], still the missing coor-

dinates are contained in GTF ,− and thus GTF ,− ∨ G � GTF ,− ∨ P [−s+i,i−1].
It is easy to see that the σ-algebra of all return times to B (i.e., RTB ,±

B ) is
coarser than GTF ,−∨GTF ,+ and that (T−iP)TB ,− is coarser than (T−iP)TF ,−∨
GTF ,−. Thus we have∑

B∈P [−s+i,i−1]

µF (B)H(µB, T−iP | (T−iP)TF ,− ∨ GTF ,− ∨ GTF ,+)

≤
∑

B∈P [−s+i,i−1]

µF (B)H(µB, T−iP | (T−iP)TB ,− ∨RTB ,±
B )

=
∑

B∈P [−s+i,i−1]

µF (B)h(µB, TB, T−iP |RB).

We have obtained

(5.26) W2 ≤
q−1∑
i=0

∑
B∈P [−s+i,i−1]∩F

µF (B)h(µB, TB, T−iP |RB).
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Combining (5.25) and (5.26) and averaging over all F ∈ Fn, we get( ∑
F∈Fn

µ(F )
)
q(h− ε2/3)

≤
∑
F∈Fn

µ(F )
q−1∑
i=0

∑
B∈P [−s+i,i−1]

µF (B)h(µB, TB, T−iP |RB).

We can move the sumation over i to the left. Then we can add to the right
hand side the contribution to the entropy from the (missing) sets B ⊂ Zn.
The sum is now over all blocks B ∈ P [−s+i,i−1] and it no longer depends
on i. Thus, we can write

q−1∑
i=0

∑
F∈Fn

µ(F )
∑

B∈P [−s+i,i−1]

µF (B)h(µB, TB, T−iP |RB)

≤ q
∑

B∈P−s

µ(B)h(µB, TB,P |RB)

Now we use the fact that µ(Zn) < δ to obtain

q(h− 2ε2/3) ≤ (1− δ)q(h− ε2/3) ≤
( ∑
F∈Fn

µ(F )
)
q(h− ε2/3)

≤ q
∑

B∈P−s

µ(B)h(µB, TB,P |RB)

≤ q
∑

B∈P−s

µ(B)h(µB, TB,P)

≤ q
∑

B∈P−s

µ(B)H(µB,P)

= qH(µ,P |P−s)
≤ q(h+ ζ)(5.27)

≤ q(h+ ε2/3)

using (5.9) for the inequality (5.27) and (5.6) near the end of the computa-
tions. Thus, the difference between∑

B∈P−s

µ(B)h(µB, TB,P |RB) and
∑

B∈P−s

µ(B)h(µB, TB,P)

is not larger than ε2. Since h(µB, TB,P |RB) ≤ h(µB, TB,P) for each B ∈
P−s, we can apply the rectangle rule to conclude that with µ-tolerance ε for
B ∈ P−s,

0 ≤ h(µB, TB,P)− h(µB, TB,P |RB) ≤ ε.
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6. A class of examples. In this section we indicate a class of processes
which satisfy the assumptions (and hence the assertion) of Theorem 5.1. We
remark that, by a theorem of Sinai ([S]), any process of positive entropy is
an extension of an independent process. Below we require that the extension
XP is via a finite code. Notice that any process (X,Σ, µ, T,P) is isomorphic
to one which is an extension via a block code, even via an amalgamation, i.e.,
a code with radius r = 0 (see below for the meaning of r) of an independent
process, but has a rather specific generator. For example, the partition P∨Q,
where Q is the independent generator of the Bernoulli factor whose existence
is granted by the theorem of Sinai, generates a process isomorphic to the
original one, while it maps to the independent process generated by Q by
the amalgamation P ∩Q 7→ Q (P ∈ P, Q ∈ Q).

Theorem 6.1. Let (X,Σ, µ, T ) be an invertible measure preserving trans-
formation and let P and Q be two measurable partitions of X. Suppose Q
generates an independent process, while P is such that there exists a fi-
nite code from XP to XQ, i.e., there exists an r ∈ N such that P [−r,r] re-
fines Q. Then the process (X,Σ, µ, T,P) satisfies the assumptions (5.1)–(5.4)
of Theorem 5.1.

Proof. First notice that if we have cylinders of length n grouped into
sets F ∈ Fn satisfying (5.1)–(5.4) in the independent process (X,Σ, µ, T,Q)
then the preimages of the sets F via the finite code form a correct grouping
of cylinders of length n+2r in (X,Σ, µ, T,P). The conditions (5.1)–(5.3) are
satisfied since the factor map preserves the measure, and (5.4) holds since
the sets F ∈ Fn occur in (X,Σ, µ, T,Q) at exactly the same times as their
preimages in (X,Σ, µ, T,P). (In order for the condition (5.4) to have correct
parameters for the preimage cylinders, we must replace “+n” by “+n+ 2r”
in this condition.) Therefore it suffices to prove that the grouping is possible
in any independent process.

Let (X,Σ, µ, T,Q) be an independent process of entropy h. Pick δ > 0
so small that e

3
4
(h−δ/4) > 1 + 2δ and choose γ < δ/4. We let C = 2eh (not

depending on δ). We choose M(δ) so large that for every n > M(δ) the
Shannon–McMillan–Breiman theorem is satisfied for [n/2] with δ/4, the ex-
pressions (6.1), (6.2) below are smaller than δ/4, (6.4) is smaller than δ/2,
the right hand side of (6.5) is smaller than δ/2, and (6.3) holds.

If B is a block of length n, we will denote by B′ its “left half”, i.e., the
block B[0, [n/2]− 1].

We begin by creating the set Zn. First, we include in Zn all cylinders
B of length n which do not obey the S-M-B theorem or such that B′ does
not obey the S-M-B theorem. The joint measure of such cylinders is smaller
than 2(δ/4).
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Next, we also put into Zn the cylinders B of length n such that B′
is repeated again within B. We need to estimate the joint measure of the
cylinders satisfying this condition. If B is such a block then let k ≤ [n/2]
be the smallest integer such that B[k, k+ [n/2]− 1] = B′. Let Q = B[[n/2],
k+[n/2]−1]. This block of length k completely determines B′ (B′ consists of
periodic repetitions of Q except perhaps the leftmost repetition which may
be truncated, see the diagram below).

B′︷ ︸︸ ︷
Q Q Q Q

︸ ︷︷ ︸
repeated B′

Let B′(Q) denote the block B′ of length [n/2] determined by Q ∈ Qk in the
above manner. The joint measure of all blocks B with the property that B′
is repeated again, can be estimated from above by the following sum:∑

Q∈Q
µ(B′(Q))µ(Q) +

∑
Q∈Q2

µ(B′(Q))µ(Q) + · · ·+ 2
∑

Q∈Q[n/2]

µ(Q)µ(Q)

(6.1) ≤ ([n/2] + 1)e−[n/2](h−δ/4)

(in the last sum B′(Q) = Q). Above, the measures of the cylinders B′(Q) are
estimated by e−[n/2](h−δ/4), because the cylinders B for which B′ does not
satisfy the S-M-B-theorem have already been included in Zn in the preceding
step. The last sum is doubled to include the case when k = [n/2]+1. By the
choice of n the measure of the set Zn (so far) does not exceed 3

4δ.
The remaining cylinders will be grouped to form the sets F ∈ Fn (more

precisely, some cylinders will still be added to Zn). First we classify cylinders
B into groups G(B′) by their initial “half-block” B′. From each group G(B′)
we will create many sets F ∈ Fn, as follows: We choose one by one different
cylinders B ∈ G(B′) (say in a random order) and we add their measures. We
stop when the joint measure is for the first time not smaller than e−

3
4
n(h−δ/4).

The union of the chosen cylinders B is our first set F ∈ F . Note that
every cylinder B has measure at most e−n(h−δ/4), much smaller than the
measure of F , while the union of the whole group G(B′) has measure at
least e−[n/2](h+δ/4), much larger than F . Thus, after F is created, in G(B′)
there are still many “unused” cylinders B left and we can similarly create
the next set F ∈ Fn, again adding cylinders from G(B′) until the desired
measure is reached. We repeat the construction until the joint measure of
the unused cylinders B in G(B′) is smaller than e−

3
4
n(h−δ/4). Finally, we add

these “left-over cylinders” to the set Zn. We apply the same procedure with
respect to every group G(B′).
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As a result, the measure of the set Zn is increased by at most

(6.2) e−
3
4
n(h−δ/4)e[n/2](h+δ/4)

since there are (according to the S-M-B theorem applied to B′) at most
e[n/2](h+δ/4) groups G(B′). We have arranged the number (6.2) to be smaller
than δ/4. Jointly, the measure of Zn is smaller than δ.

Notice that the measure of any set F ∈ Fn is less than e−
3
4
n(h−δ/4) +

e−n(h−δ/4) and thus condition (5.2) is satisfied with the constant C = 2, and
the more so with C = 2eh. The right hand side inequality in condition (5.3)
is satisfied by a straightforward verification and the left hand side inequality
follows from the computation below:

µ(Fn)
µ(Fn+1)

≥ e−
3
4
n(h−δ/4)

e−
3
4
(n+1)(h−δ/4) + e−(n+1)(h−δ/4)

(6.3)

=
e

3
4
(h−δ/4)

1 + e−
n+1

4
(h−δ/4)

> 1 + δ,

where the last inequality holds by the choice of δ and n.
We now check the condition (5.4). Consider a set F ∈ F . All points x

in F have the same block B′ at positions [0, [n/2] − 1]. First we estimate
the conditional measure µF of the event {RF (x) < n}. This event happens
only when B′ is repeated in x before position n. But by the construction of
F , B′ does not occur in x before time [n/2]. Its occurrence at any position
between [n/2] and n is independent of its occurrence at coordinate 0, so we
can write

µF {RF (x) < n} ≤ 1
µ(F )

([
n

2

]
+ 1
)
e−2[n/2](h−δ/4)

≤
([

n

2

]
+ 1
)
e−

n
4
(h−δ/4).(6.4)

Finally, we estimate µF {n ≤ RF < 2γ/µ(Fn) + n + 2r}. (Recall that 2r is
added to the left bound, so that the condition (5.4) is properly carried over
to preimages via the code of radius r.) By independence, this conditional
measure does not exceed 2γ/µ(Fn) + 2r times the measure of F , i.e.,

(6.5) 2γ + 2rµ(F ) < 2γ + 4re−
3
4
n(h−δ/4).

Now, µF {RF < 2γ/µ(Fn) + n + 2r} is estimated by the sum of the right
hand sides of (6.4) and (6.5), which we have arranged to be less than δ. The
proof is complete.
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