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1-amenability of A(X) for Banach spaces
with 1-unconditional bases

by

A. Blanco (Belfast)

Abstract. The main result of the note is a characterization of 1-amenability of Ba-
nach algebras of approximable operators for a class of Banach spaces with 1-unconditional
bases in terms of a new basis property. It is also shown that amenability and symmet-
ric amenability are equivalent concepts for Banach algebras of approximable operators,
and that a type of Banach space that was long suspected to lack property A has in fact
the property. Some further ideas on the problem of whether or not amenability (in this
setting) implies property A are discussed.

1. Introduction. The homological notion of an amenable Banach alge-
bra was introduced by Johnson in [J1] and it has been the object of much
study ever since. A Banach algebra A is said to be amenable if every contin-
uous derivation from A into a dual Banach A-bimodule is inner, or equiv-
alently, if the first (continuous) cohomology group of A with coefficients in
any dual A-bimodule is trivial.

In the case of Banach algebras that sit on some particular structure there
has been much interest in characterizing amenability in terms of properties
of the underlying structure. The best example of this kind is the celebrated
result of Johnson that the group algebra, L1(G), of a locally compact group
G is amenable if and only if the group G is amenable [J1, Theorem 2.5]. One
would expect an analogous characterization to be possible for the Banach
algebras A(X) and B(X) of approximable and bounded operators, respec-
tively, acting on a Banach space X, but to date, we do not know of any such
result.

In this note, our main concern will be the Banach algebra A(X). The
study of amenability of this algebra was initiated in [J1] and then contin-
ued in [GJW], where a certain Banach space property, which the authors
called property A, was identified and shown to be a sufficient condition for
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amenability of A(X). Later on, in [BG2], we showed that a weaker version
of property A was, in fact, equivalent to amenability of A(X) whenever X is
a π-space. This new condition was compared with the Følner condition for
group amenability. However, still this characterization was not entirely sat-
isfactory. It reduced the problem of amenability of A(X) to the existence of
a bounded net of so-called generalized diagonals. These objects are elements
of projective tensor products of the form F(Y, Z) ⊗̂ F(Z, Y ), where Y and
Z are finite-dimensional subspaces of X. Although they are well described
from the algebraic point of view, the intractability of the projective norm
(at least for practical purposes) led us to abandon any hope of being able to
further translate our condition into a geometric property of the underlying
Banach space.

In this paper, we shall be able to translate 1-amenability of A(X) for a
wide class of Banach spaces with 1-unconditional bases into a property of
the basis which is much in the spirit of property A. It has long been known
that local unconditional structure of the underlying space is not required for
amenability of A(X) ([GJW, Corollary 2.7]). However, in its full generality,
the problem mentioned at the end of the previous paragraph seems to be
rather difficult. For this reason, we have chosen to start by looking at Banach
spaces with 1-unconditional bases. It is known that there are Banach spaces
with 1-unconditional bases whose algebras of approximable operators are
not amenable ([BG2, Theorem 5.6]) while, on the other hand, if X has a
subsymmetric basis (or even less, if X has a 1-unconditional basis such that
the right and left shift operators with respect to it are power bounded)
then A(X) is amenable. So even in this restrictive setting the answer to our
problem is far from trivial.

We should point out that also the 1-amenability assumption will play a
key role in our results. It is essentially this condition that will allow us to
translate the existence of a sequence of generalized diagonals into a property
of the given 1-unconditional basis. In doing so, we shall rely heavily on ap-
proximate versions of known results about norm-one projections on Banach
spaces with 1-unconditional bases as well as on known results about the
extreme properties of the identity element of a Banach algebra. We do not
know if whenever A(X) is amenable, an equivalent renorming, X̃, of X exists
such that A(X̃) is 1-amenable and, in case of X having a 1-unconditional ba-
sis, such that, in addition, the unconditionality constant be preserved. If the
answer to this last question were negative (as we suspect) then it seems very
unlikely that our results will still hold if one removes the 1-unconditionality
and 1-amenability assumptions.

Lastly, the note has been organized as follows. In the next section, we will
cover some of the background material and terminology needed throughout
these pages. Section 3 might seem to the reader like a small digression, but
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we feel it belongs in here. In it, we will look at the relationship between
amenability and symmetric amenability in the context of Banach algebras
of approximable operators. The notion of symmetric amenability was in-
troduced in [J3] and was expected to be (in this context) stronger than
amenability and closely related to property A. We will show in Section 3
that this is not the case. We will then turn our attention, in Section 4, to
the finite-dimensional situation of our main problem. It will be shown in
this section that if X is finite-dimensional and has a 1-unconditional ba-
sis then 1-amenability of A(X) is equivalent to X having property A with
constant 1.

In Section 5, we will prove the main result of the note, i.e., our char-
acterization of 1-amenability of A(X) for a Banach space X with a 1-
unconditional basis in terms of a basis property. Unfortunately, apart from
1-unconditionality, other assumptions on the basis will be needed. We will
introduce and discuss them also in Section 5. The last section of the paper,
Section 6, will be devoted to the question of whether property A is a neces-
sary condition for amenability of A(X). This question goes back to [GJW]
and is closely related to the main problem of this note. Although we have
been unable to answer it, we expect the results of this paper, and in partic-
ular those from the last section, will help addressing this seemingly simpler
question.

2. Background material and notation. The notation and terminol-
ogy that we will use in what follows are standard and mostly consistent with
those used in previous papers. Let us recall here some of them. Others will
be introduced or recalled later on as they are needed.

To simplify the statement of the results, we shall denote by `∞ the linear
space, usually denoted by c0, of all bounded scalar sequences tending to
zero. Given a normed space X we denote by X ′ its topological dual. If X
and Y are isomorphic (resp., isometric) normed spaces, we write this as
X ' Y (resp., X ∼= Y ), and denote by d(X,Y ) the Banach–Mazur distance
between them, that is, the infimum of the numbers ‖T‖ ‖T−1‖, where T is
an isomorphism between X and Y .

The adjoint of an operator T : X → Y is denoted by T ∗ and we write
rg T (resp., rkT ) for the range (resp., rank) of T . The identity operator on
a normed space X will be denoted by idX or just id if the space X is clear
from context. Given a linear map T : X → Y and linear subspaces E ⊆ X
and F ⊆ Y we will denote by T |E and T |F , respectively, the restriction to
E and corestriction to F of T .

We write ‖ · ‖∧ (resp., ‖ · ‖) for the projective (resp., operator) norm.
Given a subset S of a Banach space X, we write sp(S) for its linear span
and co(S) for the norm-closure of its convex hull. In the case of an indexed
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subset {ei : i ∈ I} of X, we write [ei]i∈I (or [ei : i ∈ I]) for the closure of its
linear span. We denote by X[1] the (closed) unit ball of a normed space X.
We write (xi)

n
i=1 for the sequence consisting of the elements x1, . . . , xn, or

just (xi) if n is clear from context.
Given Banach spaces X and Y we write F(X,Y ) for the normed space

of all finite-rank operators from X to Y endowed with the operator norm.
When appropriate we will identify F(X,Y ) with X ′⊗Y , so that, for f ∈ X ′
and y ∈ Y , the rank-1 operator x 7→ f(x)y will be denoted by f ⊗ y. When
X = Y we simply write F(X). We will denote by tr : X ′ ⊗̂ X → C the
trace functional, i.e., the linear functional defined on elementary tensors by
tr(f ⊗ x) := f(x).

There is an intrinsic characterization of amenability that is particularly
useful in this setting and will be crucial to the results of this paper. Precisely,
a Banach algebra A is amenable if and only if it has a bounded approximate
diagonal, i.e., a bounded net (dα) in A ⊗̂ A such that

π(dα)a→ a and adα − dαa→ 0 (a ∈ A),

where π : A ⊗̂ A → A, a ⊗ b 7→ ab [J2, Lemma 1.2 and Theorem 1.3]. The
Banach algebra A is said to beK-amenable if it has an approximate diagonal
of bound K. The smallest such K is called the amenability constant of A.
Recall that a bounded approximate identity (b.a.i. for short) for a Banach
algebra A is a bounded net (eα) in A such that limα eαa = limα aeα = a
(a ∈ A). So, in particular, if (dα) is a bounded approximate diagonal for A
then (π(dα)) is a b.a.i. for A.

Let ◦ : A⊗̂A → A⊗̂A be defined by (a⊗b)◦ := b⊗a (a⊗b ∈ A⊗̂A). The
algebra A is said to be symmetrically amenable if it has a bounded approx-
imate diagonal (dα) all of whose elements satisfy d◦α = dα. An approximate
diagonal with this last property is said to be symmetric. In general, sym-
metric amenability is stronger than amenability. For commutative Banach
algebras and group algebras they agree ([J3, Corollary 2.3 and Theorem 4.1])
and we will see below that they also agree for Banach algebras of approx-
imable operators.

A Banach spaceX is said to have property A if there is inA(X) a bounded
net (pα) of projections such that:

(i) (pα) converges strongly to idX ;
(ii) (p∗α) converges strongly to idX′ ; and
(iii) for every α there is a finite group Gα ⊂ A(rg pα)[K] such that

sp(Gα) = A(rg pα), where K is a constant independent of α.

It is easy to show that, in this case, the elements |Gα|−1
∑

T∈Gα T ⊗ T
−1

form a symmetric approximate diagonal for A(X) of boundK. We shall refer
to the smallest constant K for which (i)–(iii) hold as the property A constant
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of X. Recall also that a Banach space X such that A(X) contains a bounded
net of projections converging strongly to idX is said to be a π-space.

Given a pair of finite-dimensional Banach spaces X and Y , an element d
of F(Y,X)⊗̂F(X,Y ) is called a generalized diagonal for F(X) if π(d) = idX
and Wd = dW (W ∈ F(X)). If (xk)

m
k=1 and (yi)

n
i=1 are bases for X and Y ,

respectively, and d is a generalized diagonal, then d can be represented in the
form

∑
i,j ai,j

∑
k(y
∗
j ⊗ xk)⊗ (x∗k ⊗ yi), where the ai,j ’s are scalars such that∑

i ai,i = 1. Conversely, any element of this form is a generalized diagonal
for F(X). There is in F(X)⊗̂F(X) a unique generalized diagonal for F(X),
d say, with the additional property that d◦ is also a generalized diagonal for
F(X). We shall refer to this unique element as the symmetric diagonal for
F(X).

It was shown in [BG2, Corollary 3.3] that if X is a Banach space with
a bounded net (pα)α∈I of projections converging strongly to idX and such
that (p∗α)α∈I converges strongly to idX′ then A(X) is amenable if and only
if there is a constant K ≥ 1 such that, for every α ∈ I, there is β ∈ I such
that F(rg pβ, rg pα) ⊗̂ F(rg pα, rg pβ) contains a generalized diagonal dα for
F(rg pα) of norm ≤ K. Moreover, if A(X) is 1-amenable and limα ‖pα‖ = 1
then, given an arbitrary net (εα) of positive real numbers converging to zero,
the dα’s can be chosen to satisfy ‖dα‖∧ ≤ 1+εα. The latter was not explicitly
stated in [BG2], but it is implicit in the proof of [BG2, Proposition 3.1].

Recall that a Schauder basis (xi) for a Banach space X is said to be
1-unconditional if ∥∥∥∑

i

αixi

∥∥∥ ≤ ∥∥∥∑
i

βixi

∥∥∥
whenever (αi) and (βi) are (eventually null) scalar sequences with |αi| ≤ |βi|
(i ∈ N). If ‖xi‖ = 1 (i ∈ N) then the basis is said to be normalized. Given a
basis (xi) we write x∗k for the kth biorthogonal functional associated with it.
If the associated sequence (x∗i ) of biorthogonal functionals forms a basis for
X ′ then we call the basis shrinking.

If X is a Banach space with a Schauder basis (xi) then we denote by
suppx the support of a vector x ∈ X, i.e., the set {i ∈ N : x∗i (x) 6= 0}.
Vectors x and y will be said to be disjointly supported if suppx∩ supp y = ∅.
By a support functional for a given vector x ∈ X we always mean a norm-
one linear functional f ∈ X ′ such that f(x) = ‖x‖. As is customary while
working with sequence spaces, if E and F are non-empty subsets of N, we
write E < F to mean maxE < minF and denote also by E the projection∑

i αixi 7→
∑

i∈E αixi.
Given a Banach space X with a 1-unconditional Schauder basis (xi),

there is, for each pair of positive integers m < n, a natural isometric Ba-
nach algebra embedding A([xi]

m
i=1) ↪→ A([xi]

n
i=1) induced by the natural
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embedding [xi]
m
i=1 ↪→ [xi]

n
i=1. Letting m and n vary we obtain a direct sys-

tem of Banach algebras and isometric Banach algebra homomorphisms. Its
inductive limit is also a Banach algebra that we shall denote by A0(X). In
general, A0(X) is properly contained in A(X), but if (xi) is shrinking then
A0(X) = A(X). When A(X) is selfinduced (see [BG1, Section 1.2] for the
definition) the amenability of A(X) can be deduced from that of A0(X)
([BG1, Lemma 2.2]).

Since we will rely on [BG2, Corollary 3.3] we will need the natural projec-
tions with respect to a given basis for X to form a b.a.i. for A(X). However,
rather than assuming this (or equivalently, that the basis is shrinking), it
seems more natural to us to state our results for A0(X), and this is precisely
what we will do.

Lastly, in what follows, operator always means continuous linear operator
and we assume all our Banach spaces to be over the complex field. We write
R+ for the set {t ∈ R : t > 0}.

3. Symmetric amenability of A(X). There is no obvious reason at
all to expect that whenever a bounded approximate diagonal for A(X) exists
there is also a symmetric one. However, as we will see next, this happens to
be the case.

Theorem 3.1. Let X be a Banach space. Then A(X) is amenable if and
only if it is symmetrically amenable.

Proof. In what follows, mainly to simplify notation, we shall identify
F(X) with X ′ ⊗X (see fifth paragraph of the previous section). It is with
this identification in mind that we shall apply ‖ · ‖∧ and tr to operators in
F(X).

Of course, we only need to show that if A(X) is amenable then it is
symmetrically amenable. To this end, let (dα) ⊂ F(X)⊗F(X) be a bounded
approximate diagonal for A := A(X), so (π(dα)) is a b.a.i. for A. For each
α, set eα = π(dα) and choose a projection pα ∈ A so that pαeα = eα and

‖eα(eα − 2 id)‖∧‖pα‖
tr pα

≤ εα := 1/rk eα.

This is possible because for every finite-dimensional subspace E of X there
exists a projection onto it of norm no greater than

√
dimE (see [Pi1, Theo-

rem 1.14]). Also note that limα εα = 0. Choose γ (= γ(α)) ‘greater’ than α
such that ∣∣∣∣1− tr(pαeγ)

tr pα

∣∣∣∣ ≤ εα,
and such that, for some λα ∈ C,
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‖π((fαd
◦
γfα)◦)pα − λαpα‖∧ ≤ εα,

where fα = id − eα. That the latter is possible follows on noting that we
have wdγ − dγw → 0 ⇒ wπ((fαd

◦
γfα)◦)− π((fαd

◦
γfα)◦)w → 0, for

‖wπ((fαd
◦
γfα)◦)− π((fαd

◦
γfα)◦)w‖ = ‖π(w(fαd

◦
γfα)◦ − (fαd

◦
γfα)◦w)‖

≤ ‖w(fαd
◦
γfα)◦ − (fαd

◦
γfα)◦w‖∧

≤ ‖fα‖2‖wdγ − dγw‖∧.

Therefore, we can get pαπ((fαd
◦
γfα)◦)pα as close to the center of Aα :=

pαApα (i.e., as close to a multiple of pα) as we wish. Since

pαπ((fαd
◦
γfα)◦)pα−π((fαd

◦
γfα)◦)pα = (pαπ((fαd

◦
γfα)◦)−π((fαd

◦
γfα)◦)pα)pα

and Aα is finite-dimensional, the same holds for π((fαd
◦
γfα)◦)pα.

For each α, define

δα := (fαd
◦
γfα)◦ + fαd

◦
γfα.

We show next that the net (δα) is a (bounded) symmetric approximate
diagonal for A. That δ◦α = δα for every α is easy to check. To see that
wδα − δαw →

α
0 (w ∈ A), simply note that

‖wδα − δαw‖∧ ≤ ‖w(fαd
◦
γfα)◦ − (fαd

◦
γfα)◦w‖∧ + ‖wfαd◦γfα − fαd◦γfαw‖∧

≤ ‖fα‖2‖wdγ − dγw‖∧ + ‖fα‖ ‖dγ‖∧(‖wfα‖+ ‖fαw‖),

and the last expression tends to zero with α for every w ∈ A.
It remains to show that (π(δα)) is a b.a.i. for A. For this, first note that

trπ((fαd
◦
γfα)◦pα) = trπ(fα(pαdγ)◦fα) = tr(f2απ((pαdγ)◦))

= tr(pαeγ) + tr(eα(eα − 2 id)π((pαdγ)◦)),

so we have

(1− λα) tr pα = [tr pα − tr(pαeγ)] + [trπ((fαd
◦
γfα)◦pα)− λα tr pα]

− tr(eα(eα − 2 id)π((pαdγ)◦)),

and in turn,

|1− λα| ≤ εα(2 + ‖dγ‖∧).

For every w ∈ A, let wα := eαw. Then

‖π(δα)wα − wα‖ = ‖π((fαd
◦
γfα)◦)wα + fαπ(d◦γ)fαwα − wα‖(3.1)

≤ ‖π((fαd
◦
γfα)◦)wα − wα‖+ ‖fα‖ ‖dγ‖∧‖fαwα‖,

and
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(3.2) ‖π((fαd
◦
γfα)◦)wα − wα‖

≤ ‖π((fαd
◦
γfα)◦)pαwα − λαpαwα‖+ ‖λαwα − wα‖

≤ ‖π((fαd
◦
γfα)◦)pα − λαpα‖ ‖wα‖+ |1− λα| ‖wα‖

≤ εα(3 + ‖dγ‖∧)‖wα‖.

Combining (3.1) and (3.2) we readily see that ‖π(δα)wα − wα‖ →
α

0.

To finish the proof simply note that

‖π(δα)w − w‖ ≤ ‖π(δα)w − π(δα)wα‖+ ‖π(δα)wα − wα‖+ ‖wα − w‖
≤ (1 + 2‖fα‖2‖dγ‖∧)‖wα − w‖+ ‖π(δα)wα − wα‖,

and the last expression converges to 0 with α.

Thus, it will make no difference whatsoever, while working with Banach
algebras of approximable operators, to assume that the algebra is symmetri-
cally amenable instead of just amenable. However, this does not mean that, in
the case of π-spaces, we shall be able to find an approximate diagonal whose
elements are simultaneously generalized diagonals and symmetric tensors.
Indeed, our proof of Theorem 3.1 suggests that, in general, one might need
to give up the property of each π(dα) being a projection in order to sym-
metrize the terms of the approximate diagonal. In what follows, the existence
of an approximate diagonal whose terms are generalized diagonals will be a
far more useful property to us, and so we shall not be concerned again with
the symmetric aspect.

4. 1-Amenability (the finite case). The results of this section are
particular cases of those to be discussed in the next section. However, the
proofs in the finite-dimensional case are rather simple and therefore more
transparent. We expect, by doing things in this way, to ease the reading of the
next section, where fairly often, due to technicalities proper to the infinite-
dimensional setting, the arguments will be long and involved. In addition,
it seems worth pointing out that the answer to the question of whether
1-amenability implies property A turns out to be ‘almost’ affirmative in the
finite-dimensional case, as we shall see in Theorem 4.4 and Corollary 4.5
below.

Our first lemma is well known. Recall first that, given a convex subset
C of a vector space, a point x ∈ C is said to be an extreme point of C if
whenever x ∈ [x1, x2] ⊂ C either x = x1 or x = x2.

Lemma 4.1. Let x be an extreme point of a convex subset C of a Ba-
nach space. If (xi) and (λi) are sequences (possibly finite) in C and R+,
respectively, such that x =

∑
i λixi and

∑
i λi = 1 then xj = x (j ∈ N).
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Clearly, in the finite-dimensional situation, the net (pα) figuring in the
definition of property A can be replaced by the identity map, and (i) and
(ii) hold trivially. So only the third condition is of interest in this case and
our next two lemmas deal essentially with it.

Lemma 4.2. Let A be a Banach algebra and let e ∈ A be a non-zero
idempotent. If

∑
i ui ⊗ vi ∈ eA ⊗̂ Ae is such that

∑
i ‖ui‖ ‖vi‖ = 1 and∑

i uivi = e then uivi = ‖ui‖ ‖vi‖e for every i.

Proof. First note that

1 =
∑
i

‖ui‖ ‖vi‖ ≥
∑
i

‖uivi‖ ≥ ‖e‖ ≥ 1,

so
∑

i ‖uivi‖ = 1 and ‖ui‖ ‖vi‖ = ‖uivi‖ for every i. Next note that e is the
identity of eAe, so it must be an extreme point of its unit ball (see Section 3
of [Lu]). Since

∑
i ‖uivi‖(‖uivi‖−1uivi) = e, we must have, by the previous

lemma, uivi = ‖uivi‖e = ‖ui‖ ‖vi‖e for every i.

Lemma 4.3. Let A be a finite-dimensional Banach algebra, let e ∈ A
be an idempotent and let

∑
i ui ⊗ vi ∈ eA ⊗̂ Ae be such that

∑
i viui is

invertible and
∑

i aui ⊗ vi =
∑

i ui ⊗ via (a ∈ eAe). Then sp{ui} = eA and
sp{vi} = Ae.

Proof. Let
∑

i ui⊗vi be as in the hypotheses. Without loss of generality,
suppose v1, . . . , vn form a basis for sp{vi}, so vi = αi,1v1 + · · · + αi,nvn
for every i > n. Then

∑
i ui ⊗ vi =

∑n
i=1(ui +

∑
k>n αk,iuk)⊗ vi. Let ũi :=

ui+
∑

k>n αk,iuk (1 ≤ i ≤ n), and let J = sp{ũi}. Clearly, J ⊆ sp{ui} ⊆ eA.
Next note that, for every a ∈ eAe and every 1 ≤ i ≤ n, aũi ∈ J . Indeed,
suppose otherwise, that there are 1 ≤ i0 ≤ n and a ∈ A such that aũi0 /∈ J .
Choose φ ∈ (eA)′ and ψ ∈ (Ae)′ such that φ(J ) = {0}, φ(aũi0) = 1 and
ψ(vi) = δii0 (1 ≤ i ≤ n). Then, applying the linear functional φ⊗ ψ to both
sides of the identity

∑
i aũi ⊗ vi =

∑
i ũi ⊗ via, we reach the absurd 1 = 0.

Let u be the invertible element
∑

i viui. Then, for every a ∈ A, we find,
using the result from the previous paragraph, that

ea = (eau−1)u =
∑
i

(eau−1)viui =
n∑
i=1

(eau−1)viũi ∈ J ,

i.e., eA ⊆ J . It follows that sp{ui} = eA, as claimed.
That sp{vi} = Ae is proved analogously.

Notice that the assumption that
∑

i viui is invertible cannot just be
dropped from the hypotheses of the last lemma. For instance, if X is a finite-
dimensional Banach space with basis (xi)

n
i=1 then ∆ :=

∑n
k=1(x

∗
1 ⊗ xk) ⊗

(x∗k⊗x1) is a diagonal for A(X), but neither sp{x∗k⊗x1 : 1 ≤ k ≤ n} = A(X)
nor sp{x∗1 ⊗ xk : 1 ≤ k ≤ n} = A(X).
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Now the main result of the section reads as follows.

Theorem 4.4. A finite-dimensional Banach algebra A is 1-amenable
if and only if there is a group G of invertible elements in A[1] such that
sp(G) = A.

Proof. Of course, asA is finite-dimensional, amenability and contractibil-
ity of A are the same thing, so we can talk of a diagonal instead of an
approximate one.

It is well known that if there is a group G of invertible elements in A[1]

whose linear span is the whole of A then A is 1-amenable. Simply replace
G, if necessary, by its norm-closure G and take as a norm-1 diagonal the
element µ(G)−1

	
G g ⊗ g

−1 dµ(g), where µ denotes the Haar measure on the
group G endowed with the topology induced by the norm.

In the opposite direction, if A is 1-amenable then there is a diagonal
∆ for A of norm 1. Furthermore, as A is finite-dimensional, ∆ admits a
finite representation

∑n
i=1 ui ⊗ vi such that ‖

∑
i ui ⊗ vi‖∧ =

∑
i ‖ui‖ ‖vi‖

(see [TJ, Proposition 8.6]). Let e be the identity of A. Then, by Lemma 4.2,
uivi = ‖ui‖ ‖vi‖e (1 ≤ i ≤ n). It follows from this, combined with the
finite-dimensionality of A, that ‖vi‖−1vi = (‖ui‖−1ui)−1 (1 ≤ i ≤ n), so also∑

i viui = e. The group G =
〈
‖ui‖−1ui : 1 ≤ i ≤ n

〉
is clearly contained in

A[1] and, by Lemma 4.3, its linear span must be the whole of A.

We do not know whether Theorem 4.4 remains true if one replaces in it 1
by a larger constant. We think this is very unlikely to happen but we do not
have any examples. Clearly, the answer to this question would be positive
whenever there is a renorming Ã of A with amenability constant 1.

Also, we are unable to conclude anything, in general, about the finite-
ness of the group G appearing in Theorem 4.4. In certain cases, though,
this is possible, as our next result shows. Recall first that a Hilbert (or
Hilbertian) component of a Banach space X with a 1-unconditional ba-
sis (xi) is simply any maximal (in the sense of inclusion) linear subspace
of the form [xi : i ∈ J ], J ⊆ N, which is isometrically isomorphic to
a Hilbert space. (This definition of Hilbert component is not the usual
one, but it is equivalent and it will suffice for our subsequent work. For
the standard definition, which involves the concept of a Hermitian projec-
tion, we refer the reader to [KW, Sections 3–5].) Hilbert components of
dimension greater than 1 are said to be non-trivial. It is known (see [KW,
Theorem 5.3]) that the Hilbert components of a Banach space with a 1-
unconditional basis form a (topological) direct sum decomposition of the
space.

Corollary 4.5. Let X be a finite-dimensional Banach space with a
normalized 1-unconditional basis (xi) and without non-trivial Hilbert com-
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ponents. Then A(X) has property A with constant 1 if and only if A(X) is
1-amenable.

Proof. In view of Theorem 4.4, all that is needed is to show that if
A is 1-amenable then G can be chosen to be finite. Let G = 〈‖ui‖−1ui :
1 ≤ i ≤ n〉 be the group constructed in the proof of Theorem 4.4, so each
‖ui‖−1ui is a linear isometry. In the special case under consideration, all
linear isometries T : X → X are of the form T (

∑
i αixi) =

∑
i λiαixπ(i),

where π is a permutation of the index set and the λi’s are scalars of modulus
one (see [KW, Theorem 6.1]). Thus, each element ‖ui‖−1ui can be written
as the product of a permutation operator, which we shall denote by Πi, and
a diagonal linear isometry. Clearly, we must have ‖Πi‖ = 1 (1 ≤ i ≤ n).
For every η ∈ {−1, 1}dimX , let Uη : X → X be defined by Uη(

∑
i αixi) :=∑

i ηiαixi. It is easy to see that G0 := 〈UηΠi : 1 ≤ i ≤ n, η ∈ {−1, 1}dimX〉
is finite, that G0 ⊂ A(X)[1] and that spG0 = A(X) (the latter follows on
noting that, as spG = A(X), there is, for every pair 1 ≤ i, j ≤ dimX, an
element ‖uk‖−1uk ∈ G such that x∗i (ukxj) 6= 0, and therefore the same must
hold with respect to G0). The rest is clear.

The absence of non-trivial Hilbertian components is not a major require-
ment in Corollary 4.5, and can be dropped without affecting the rest of
it. Indeed, by [ST, 2.3], if X1, . . . , Xm are the Hilbert components of X
then there is a normed space Y with a 1-unconditional basis (yi)

m
i=1 such

that ‖(xi)mi=1‖X =
∥∥∑m

i=1 ‖xi‖yi
∥∥
Y

((xi) ∈
⊕m

i=1Xi) and every isometry
T : X → X is of the form T ((xi)

m
i=1) = (Uixπ(i))

m
i=1, where π is a permuta-

tion and U1, . . . , Um are unitary operators. If A(X) is 1-amenable then, com-
bining these facts with the fact that the group G of the proof of Corollary 4.5
must span the whole of A(X), one finds that all Hilbert components must
be of the same dimension, and also that, if necessary, the group G can be re-
placed by a finite one that still spans A(X). (For this last, one simply needs
to note that every operator T : X → X of the form T ((xi)

m
i=1) := (Uixi)

m
i=1,

where U1, . . . , Um are unitaries, is an isometry.) Unfortunately, it is not the
same in the infinite-dimensional case, where instead one needs to deal with
non-surjective (almost) isometric maps. For this reason, in this note, we shall
restrict our attention to Banach spaces all of whose Hilbert components are
trivial.

5. 1-Amenability of A0(X) when X has a 1-unconditional basis.
We now extend the results from the previous section to the infinite-dimen-
sional setting. From the characterization of amenability ofA(X) for π-spaces,
highlighted in Section 2, it follows easily that if X is a Banach space with
a 1-unconditional basis (xi) and Xn := [xi]

n
i=1 (n ∈ N) then A0(X) is 1-

amenable if and only if, for every n ∈ N, there exist m ∈ N and a generalized
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diagonal dn ∈ F(Xm, Xn) ⊗̂ F(Xn, Xm) such that limn ‖dn‖∧ = 1. Clearly,
Lemmas 4.3 and 4.2 concern the more general situation of a generalized
diagonal, but Lemma 4.3, which is central to the results from the previous
section, assumes, in addition, that the norm of the generalized diagonal is
one. We do not know whether the dn’s can always be chosen to have norm
one, and consequently we need to modify the results from the previous section
to take into account this new difficulty. It is apparent, though, from the proof
of [BG2, Proposition 3.1] that, although finding dn’s of norm one might not
always be possible, it is always possible (by choosing m large enough) to find
dn’s with norms as close to 1 as we wish, and we shall take advantage of this
fact.

Our first two lemmas are analogs of Lemmas 4.1 and 4.2, respectively.
Recall that, given a closed convex subset C of a Banach space X, a point
x ∈ C is said to be an exposed point of C if there is a real-linear, real-valued,
norm-one functional f on X such that f(x) > f(c) (c ∈ C \ {x}).

Lemma 5.1. Let C be a compact convex subset of a Banach space X and
suppose x is an exposed point of C. For every τ > 0 there exists a constant
κτ such that whenever (xi) ⊂ C and (λi) ⊂ R+ are sequences (possibly finite)
satisfying x =

∑
i λixi and

∑
i λi ≥ 1 one has∑

i: ‖x−xi‖>τ

λi ≤ κτ
(∑

i

λi − 1
)
.

Proof. Let τ > 0 arbitrary and let x, (xi) and (λi) be as in the hypothe-
ses. Let ui = x − xi (i ∈ N) and let I = {i : ‖ui‖ > τ}. As x is an exposed
point of C, there is a real-linear, real-valued, norm-one functional f on X
such that f(x) > f(c) (c ∈ C \ {x}). Compactness of C guarantees that
f(x) > supc∈Cτ f(c), where Cτ := C \ (x+ τX[1]). So,(∑

i

λi − 1
)
‖x‖ =

∥∥∥∑
i

λix−
∑
i

λixi

∥∥∥ =
∥∥∥∑

i

λiui

∥∥∥
≥ f

(∑
i

λiui

)
≥
∑
i∈I

λif(ui)

≥
(
f(x)− sup

c∈Cτ
f(c)

)∑
i∈I

λi.

We can take κτ = ‖x‖/(f(x)− supc∈Cτ f(c)).

It is not hard to see that an exposed point is always an extreme point but,
unfortunately, the converse is not true, and the conclusion of Lemma 5.1 does
not seem to hold under the weaker assumption of x being an extreme point.
Fortunately, for any finite-dimensional unital Banach algebra the identity
element is an exposed point of its unit ball. (This seems to be known but we
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have not found any reference. For completeness, a proof is given as part of
the proof of our next lemma.)

Lemma 5.2. Let A be a Banach algebra and let e ∈ A be a non-zero
idempotent such that eAe is finite-dimensional. Then for every τ > 0 there
exists a constant κτ such that whenever

∑
i ui ⊗ vi ∈ eA ⊗̂ Ae satisfies∑

i uivi = e one has∑
i∈Iτ

‖ui‖ ‖vi‖ ≤ κτ
(∑

i

‖ui‖ ‖vi‖ − 1
)
,

where Iτ =
{
i : ‖(‖ui‖−1ui)(‖vi‖−1vi)− e‖ > τ

}
.

Proof. Let C be the unit ball of eAe =: A. Let us start by showing that
e is an exposed point of C. It is well known ([BK, Theorem 2]) that the set
of all states of A is total. Choose a basis of states f1, . . . , fn for A′, choose
λ1, . . . , λn ∈ R+ such that

∑
i λi = 1, and define f :=

∑
i λifi. Then

Re f(e) = 1 > Re f(a) (a ∈ C \ {e}).
To see this, suppose Re f(a) = 1 for some a ∈ C. Then f(a) = 1, so 0 =
f(e−a) =

∑
i λifi(e−a). Since Re fi(e−a) ≥ 0 (1 ≤ i ≤ n), it follows from

the last equality that Re fi(e − a) = 0 (1 ≤ i ≤ n). In turn, using the fact
that fi(e) = 1 (1 ≤ i ≤ n), we deduce that fi(e− a) = 0 (1 ≤ i ≤ n), and as
the fi’s form a basis for A′, we must have e = a. (The same argument can be
easily adapted to any unital Banach algebra whose set of states contains a
countable, weak∗-dense subset. One simply replaces the basis of states in the
above argument by this countable subset. The rest of the argument, apart
from the obvious modifications, remains the same.)

Now, let x = e and, for every τ > 0, define κτ as in the previous lemma.
If
∑

i ui ⊗ vi is such that
∑

i uivi = e then∑
i

‖ui‖ ‖vi‖ ≥
∑
i

‖uivi‖ ≥ ‖e‖ ≥ 1

and
e =

∑
i

‖ui‖‖vi‖(‖ui‖−1ui)(‖vi‖−1vi),

so
∑

i∈Iτ ‖ui‖ ‖vi‖ ≤ κτ (
∑

i ‖ui‖ ‖vi‖ − 1).
Notice that the finite-dimensionality assumption of Lemma 5.2 is impor-

tant. For instance, in B(`2), the identity is an exposed point of the unit ball
[Gr, Theorem 1], but it is not denting [GS, Theorem 1] (a point x of a subset
C of a Banach space X is denting if, for every δ > 0, x /∈ co(C \{x+δX[1]})),
and therefore a functional as in the proof of Lemma 5.1 cannot exist in this
case.

As mentioned in the introduction, apart from 1-unconditionality, other
assumptions on the basis will be needed for our approach to work. We dis-
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cuss next the most significant of these restrictions. Recall first that a 1-
unconditional basis (xi) for a Banach space X is said to be strictly monotone
if ‖x + y‖ > ‖x‖ for every pair x, y ∈ X+, where X+ := {

∑
i αixi ∈ X :

αi ≥ 0 (i ∈ N)}.
Now, let X and Y be finite-dimensional Banach spaces with 1-uncondi-

tional bases (xi) and (yj), respectively, and let u : Y → X and v : X → Y be
linear maps such that uv = idX and ‖u‖ ‖v‖ = 1. Then v|rg v is a surjective
isometry and vu is a norm-one projection onto rg v. Suppose X has no non-
trivial Hilbert components and the basis (yj) is strictly monotone. First
note that since X has no non-trivial Hilbert components, the same must
hold for rg v, and hence, as the sequence (vxi) is a 1-unconditional basis for
rg v, each subspace 〈vxi〉 must be a Hilbert component of rg v. It is easy
to see that rg v = rg vu, and so, by [Ra1, Theorem 3.1], the vxi’s must be
disjointly supported with respect to (yj). It was precisely a particular case
of this result that allowed us to translate the existence of a norm-1 diagonal
into property A, in the proof of Corollary 4.5. Now, it is apparent from
Lemma 5.2 that, in the present situation, we will not be dealing necessarily
with isometries, and so we will also need an approximate version of this
result. To this end, we first introduce the following ‘uniform’ version of the
concept of a strictly monotone basis.

Definition 5.3. Let X be a Banach space with a normalized 1-uncon-
ditional basis (xi), and let µX : [0, 1]→ [0, 1] be defined by

µX(t) := inf{‖x+ ty‖ − 1 : x, y ∈ X+ and ‖x‖ = ‖y‖ = 1}.

(It is easy to see that µX is non-decreasing and that limt→0 µX(t) = 0.) We
shall say that the basis (xi) is uniformly strictly monotone (u.s.m. for short)
if µX(t) > 0 (1 ≥ t > 0).

Any normalized 1-unconditional basis in a uniformly convex Banach
space X, i.e., such that δX(t) := inf{1 − ‖(x + y)/2‖ : ‖x‖ = ‖y‖ = 1
and ‖x − y‖ ≥ t} > 0 (2 ≥ t > 0), is uniformly strictly monotone. To
see this, let X be uniformly convex and suppose towards a contradiction
that µX(t) = 0 for some 1 ≥ t > 0. For every n ∈ N, choose xn, yn ∈
X+ such that ‖xn‖ = ‖yn‖ = 1 and ‖xn + tyn‖ − 1 ≤ 1/n, and set
ξn = (xn + tyn)/‖xn + tyn‖. Then, for n large enough, we should have
‖ξn− xn‖ ≥ t/2, and hence ‖(xn + ξn)/2‖ ≤ 1− δX(t/2), while on the other
hand, lim inf ‖(xn+ξn)/2‖ = lim inf ‖xn+(t/2)yn‖ ≥ 1. Notice, though, that
uniformly convex Banach spaces are not the only ones which can possibly
have uniformly strictly monotone Schauder bases. For instance, µ`1(t) = t
(1 ≥ t > 0) and `1 is not uniformly convex.

Before stating and proving our approximate version of the result dis-
cussed prior to Definition 5.3, we should recall a few things. First, the nu-
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merical range of an operator T acting on a Banach space X is defined to be
the set

V(T ) := {f(Tx) : x ∈ X, f ∈ X ′, ‖x‖ = ‖f‖ = f(x) = 1}

and its numerical radius is defined to be the number

|V(T )| := sup{|z| : z ∈ V(T )}.

When X is a complex Banach space one has ‖T‖ ≤ 4|V(T )| for every
T ∈ B(X) ([Lu, Theorem 5]). Recall also that a linear operator T such that
V(T ) ⊂ R is said to be Hermitian. In a Banach space with a 1-unconditional
basis and without non-trivial Hilbertian components, the Hermitian oper-
ators are precisely those whose representation with respect to the given
1-unconditional basis is diagonal (see [KW, Theorem 6.1]).

Lemma 5.4. Let X and Y be finite-dimensional Banach spaces with nor-
malized 1-unconditional bases (xi)

m
i=1 and (yi)

n
i=1, respectively. Suppose X

has no non-trivial Hilbertian components and (yi) is u.s.m. Then for every
ε > 0 there exists δ > 0, independent of n, such that if V : Y → X and
W : X → Y are norm-one operators satisfying ‖VW − idX‖ ≤ δ then there
are pairwise disjoint subsets E1, . . . , Em of {1, . . . , n} such that

‖Wxi − EiWxi‖ ≤ ε (1 ≤ i ≤ m).

Proof. First note that, since X has no non-trivial Hilbert components,
x∗i (Txj) = 0 (1 ≤ i 6= j ≤ m) for every Hermitian operator T ∈ B(X). Com-
bining this fact with the finite-dimensionality of B(X), one easily deduces
that for every η > 0 there is a δ̄ such that if T ∈ B(X) satisfies

V(T ) ⊂ [−1, 1] + δ̄C[1] (=: G(δ̄))

then |x∗i (Txj)| < η (1 ≤ i 6= j ≤ m). Indeed, otherwise, for some η > 0,
there would be a sequence (Tn) in B(X) such that V(Tn) ⊂ G(1/n) yet
max{|x∗i (Tnxj)| : 1 ≤ i 6= j ≤ m} ≥ η (n ∈ N). Since B(X) is finite-
dimensional and (Tn) is bounded, one could assume, by passing to a sub-
sequence if necessary, that (Tn) converges to some T ∈ B(X). Clearly, T
would be a Hermitian operator, and therefore limn x

∗
i (Tnxj) = x∗i (Txj) = 0

(1 ≤ i 6= j ≤ m), which is a contradiction.
Now, let ε > 0 be arbitrary. Choose ε̄ > 0 small enough, so that µY (t) ≤

8ε̄⇒ t ≤ ε/(2m); choose 0 < δ̄ < 9
√
ε̄ so that for every T ∈ B(X) satisfying

V(T ) ⊂ G(δ̄) one has |x∗i (Txj)| < ε̄/(m + 1) (1 ≤ i 6= j ≤ m); and choose
0 < δ < min{1/2, (δ̄/9)2}. Let V : Y → X and W : X → Y be norm-
one operators such that ‖VW − idX‖ ≤ δ, let ξi = Wxi and ξ∗i = x∗iV
(1 ≤ i ≤ m), and let P = WV =

∑m
i=1 ξ

∗
i ⊗ ξi.
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Let (x, f) ∈ X ×X ′ be such that ‖x‖ = ‖f‖ = f(x) = 1. Then∣∣1− ‖fV ‖−1fV (Wx)
∣∣ ≤ ∣∣‖fV ‖ − 1

∣∣
‖fV ‖

+
|f(x)− fV (Wx)|

‖fV ‖
≤ 2δ

1− δ
≤ 4δ,

and, by the Bishop–Phelps–Bollobás theorem ([BD, Section 16, Theorem 1])
applied to the pair (Wx, ‖fV ‖−1fV ) ∈ Y ×Y ′, there is (y, g) ∈ Y ×Y ′ such
that ‖y‖ = ‖g‖ = g(y) = 1, ‖Wx− y‖ ≤ 4

√
δ and

∥∥ ‖fV ‖−1fV − g∥∥ ≤ 4
√
δ.

Note the last implies that

‖fV − g‖ ≤
∥∥fV − ‖fV ‖−1fV ∥∥+

∥∥ ‖fV ‖−1fV − g∥∥ ≤ δ + 4
√
δ ≤ 5

√
δ.

If D is a norm-one operator on Y then

|f(V DWx)− g(Dy)| ≤ |f(V DWx)− g(DWx)|+ |g(DWx)− g(Dy)|
≤ ‖fV − g‖+ ‖Wx− y‖ ≤ 9

√
δ,

and so if D is in addition Hermitian, then V(V DW ) ⊂ G(9
√
δ). Thus, for

every norm-one Hermitian D ∈ B(Y ), V(V DW ) ⊂ G(δ̄), and in turn, by our
choice of δ̄,

|ξ∗i (Dξj)| = |x∗i (V DWxj)| <
ε̄

m+ 1
(1 ≤ i 6= j ≤ m).

Now, let 1 ≤ k 6= l ≤ m, ξk =
∑

i αiyi and ξl =
∑

i βiyi. Define ξ :=∑
i γiyi, where γi := αi|βi|/(2|αi|) if |αi| > |βi| and γi := αi/2 otherwise.

Note that for E = {1 ≤ i ≤ n : |αi| > |βi|} one has

(5.1) ‖ξk − Eξk‖ ≤ 2‖ξ‖ and ‖Eξl‖ ≤ 2‖ξ‖.
Let Dk, Dl1 and Dl2 be Hermitian maps in B(Y ) of norm ≤ 1 and such that
Dkξk = ξ = (Dl1 + iDl2)ξl. Then

‖Pξ‖ =
∥∥∥ m∑
i=1

ξ∗i (ξ)ξi

∥∥∥
≤
∥∥∥∑
i 6=k

ξ∗i (Dkξk)ξi + (ξ∗k(Dl1ξl) + iξ∗k(Dl2ξl))ξk

∥∥∥
≤
∑
i 6=k
|ξ∗i (Dkξk)| ‖ξi‖+ (|ξ∗k(Dl1ξl)|+ |ξ∗k(Dl2ξl)|)‖ξk‖ ≤ ε̄.

It follows from this and the definition of µY that(
1 + µY

(
‖ξ‖

‖ξk − ξ‖

))
‖ξk − ξ‖ ≤ ‖ξk‖ ≤ ‖Pξk‖+ δ

< ‖P (ξk − ξ) + Pξ‖+ ε̄ ≤ ‖ξk − ξ‖+ 2ε̄.

Thus,

µY

(
‖ξ‖

‖ξk − ξ‖

)
≤ 2ε̄

‖ξk − ξ‖
≤ 8ε̄,
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where we have used that 2‖ξk− ξ‖ ≥ ‖ξk‖ ≥ 1− δ ≥ 1/2. By our choice of ε̄,

‖ξ‖ ≤ ε

2m
‖ξk − ξ‖ ≤

ε

2m
‖ξk‖ ≤

ε

2m
,

and combining this last with (5.1), we arrive at

‖ξk − Eξk‖ ≤
ε

m
and ‖Eξl‖ ≤

ε

m
.

Now, for each pair 1 ≤ i < j ≤ m, choose a subset Ei,j of {1, . . . , n} with

‖ξi − Ei,jξi‖ ≤
ε

m
and ‖Ei,jξj‖ ≤

ε

m
(which is possible, by our previous result). Define Ei,j := Ecj,i for i > j, and
for 1 ≤ i ≤ m, define Ei :=

⋂
j 6=iEi,j . Then

‖ξi − Eiξi‖ = ‖Eci ξi‖ =
∥∥∥(⋃

j

Eci,j

)
ξi

∥∥∥ ≤∑
j

‖Eci,jξi‖ < ε (1 ≤ i ≤ m),

where the superscript ‘c’ stands for complement. Moreover,

Ek ∩ El =
( ⋂
j 6=k

Ek,j

)
∩
(⋂
j 6=l

El,j

)
⊂ Ek,l ∩ El,k = ∅ (1 ≤ k 6= l ≤ m),

so, in addition, the sets E1, . . . , Em are pairwise disjoint, as needed. This
concludes the proof of the lemma.

Recall that a biorthogonal system {xi, fi}ni=1 for a Banach space X is
a pair of sequences (xi)

n
i=1 ⊂ X and (fi)

n
i=1 ⊂ X ′ such that fi(xj) = δi,j

(1 ≤ i, j ≤ n). We shall say that the biorthogonal system {yi, gi}ni=1 is
normalized if (yi)

n
i=1 and (gi)

n
i=1 are normalized, that it is C-complemented

if ‖
∑

i gi ⊗ yi‖ ≤ C, and that it is C-equivalent to a biorthogonal system
{xi, fi}ni=1 if, for every scalar sequence (αi)

n
i=1,∥∥∥∑

i

αiyi

∥∥∥ ≤ C∥∥∥∑
i

αixi

∥∥∥ and
∥∥∥∑

i

αigi|Y
∥∥∥ ≤ C∥∥∥∑

i

αifi|X
∥∥∥,

where X = [xi]
n
i=1 and Y = [yi]

n
i=1. Note that two biorthogonal systems

{xi, fi}ni=1 and {yi, gi}ni=1 are C-equivalent if and only if, for every scalar
sequence (αi)

n
i=1,

1

C

∥∥∥∑
i

αixi

∥∥∥ ≤ ∥∥∥∑
i

αiyi

∥∥∥ ≤ C∥∥∥∑
i

αixi

∥∥∥.
To see this, simply note that if T : X ′ → Y ′ and S : Y → X are the
linear maps defined by Tfi|X := gi|Y (1 ≤ i ≤ n) and Syi := xi (1 ≤
i ≤ n), respectively, then T ∗ = S, so ‖S‖ = ‖T‖. Thus, C-equivalence of
biorthogonal systems is a symmetric relation.

We shall call a biorthogonal system {yi, gi}ni=1 in a Banach space X with
Schauder basis (xi) a block biorthogonal system (b.b.s. for short) if the yi’s
are disjointly supported with respect to (xi), each gi is a support functional
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for yi and supp gi = supp yi (1 ≤ i ≤ n). (Note that we do not require
supp y1 < · · · < supp yn.)

With this, we are at last ready to state and prove our main result.

Theorem 5.5. Let X be a Banach space with a u.s.m. basis (xi) and
without non-trivial Hilbert components. Then A0(X) is 1-amenable if and
only if, given an arbitrary null sequence (εn) ⊂ R+, there are, for every
n ∈ N, normalized block biorthogonal systems {xj,1, fj,1}nj=1, {xj,2, fj,2}nj=1,
. . . , {xj,Nn , fj,Nn}nj=1, (1 + εn)-complemented and (1 + εn)-equivalent to
{xj , x∗j}nj=1, and positive scalars λ1, . . . , λNn satisfying

∑
i λi = 1, such that

(5.2)
∑
k

∣∣∣ Nn∑
i=1

λif1,i(xk)x
∗
k(x1,i)−

Nn∑
i=1

λifj,i(xk)x
∗
k(xj,i)

∣∣∣ ≤ εn
for every 1 < j ≤ n.

Proof. Suppose first that (xi) is a basis satisfying the conditions of the
theorem, and let (εn) be a non-negative sequence such that limn nεn = 0.
For every n ∈ N, define

dn :=
1

2n+Kn

∑
ξ∈{−1,1}n

∑
η∈{−1,1}Kn

Nn∑
i=1

λi UξRiUη ⊗ UηSiUξ,

where

Kn := max
⋃

1≤j≤n
1≤i≤Nn

suppxj,i, Uξ :=
n∑
j=1

ξjx
∗
j ⊗ xj , Uη :=

Kn∑
k=1

ηkx
∗
k ⊗ xk,

Ri :=

n∑
j=1

fj,i ⊗ xj and Si :=

n∑
j=1

x∗j ⊗ xj,i (1 ≤ i ≤ Nn),

and the xj,i’s and fj,i’s have been chosen to satisfy the hypotheses of the
theorem with respect to the sequence (εn). We show next that the sequence
(dn) is an approximate diagonal for A0(X) such that ‖dn‖∧ ≤ (1 + εn)3

(n ∈ N).
It follows easily from our definition of dn that

π(dn) =
n∑
j=1

x∗j ⊗ xj =: Pn.

Let

d̃n :=
∑

1≤j≤n
1≤k≤Kn

( Nn∑
i=1

λif1,i(xk)x
∗
k(x1,i)

)
(x∗k ⊗ xj)⊗ (x∗j ⊗ xk) (n ∈ N),
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so d̃n is a generalized diagonal for F(Xn). Then note that

dn =
1

2n+Kn

∑
ξ

∑
η

Nn∑
i=1

λi

( n∑
h=1

fh,iUη ⊗ ξhxh
)
⊗
( n∑
j=1

ξjx
∗
j ⊗ Uηxj,i

)

=
1

2Kn

∑
η

Nn∑
i=1

λi
∑

1≤h,j≤n

( 1

2n

∑
ξ

ξjξh

)
(fh,iUη ⊗ xh)⊗ (x∗j ⊗ Uηxj,i)

=

Nn∑
i=1

λi
∑

1≤j≤n

∑
1≤k,l≤Kn

(
1

2Kn

∑
η

ηkηl

)
(fj,i(xk)x

∗
k ⊗ xj)⊗ (x∗j ⊗ x∗l (xj,i)xl)

=
∑

1≤j≤n
1≤k≤Kn

( Nn∑
i=1

λifj,i(xk)x
∗
k(xj,i)

)
(x∗k ⊗ xj)⊗ (x∗j ⊗ xk).

By (5.2), ‖d̃n − dn‖∧ ≤ nεn, and so, for every W ∈ F(Xn),

‖Wdn − dnW‖∧ ≤ ‖W‖ ‖dn − d̃n‖∧ + ‖d̃n − dn‖∧‖W‖ ≤ 2nεn‖W‖.
Since A0(X) is the inductive limit of the algebras F(Xn) we must have
PnWPn → W (W ∈ A0(X)). Combining this fact with the previous in-
equality one easily concludes that Wdn − dnW → 0 (W ∈ A0(X)).

Lastly, as {xj,i, fj,i}nj=1 is (1 + εn)-complemented and (1 + εn)-equivalent
to {xj , x∗j}nj=1, one has

‖Ri(x)‖ =
∥∥∥∑

j

fj,i(x)xj

∥∥∥
≤ (1 + εn)

∥∥∥∑
j

fj,i(x)xj,i

∥∥∥ ≤ (1 + εn)2‖x‖ (x ∈ X),

and also

‖Si(x)‖ =
∥∥∥∑

j

x∗j (x)xj,i

∥∥∥
≤ (1 + εn)

∥∥∥∑
j

x∗j (x)xj

∥∥∥ ≤ (1 + εn)‖x‖ (x ∈ X),

so
‖dn‖∧ =

∑
i

λi‖Ri‖ ‖Si‖ ≤ max
i
‖Ri‖max

i
‖Si‖ ≤ (1 + εn)3.

Thus, if (xi) satisfies the conditions of the theorem then A0(X) is 1-amen-
able.

Conversely, suppose A0(X) is 1-amenable and let (εn) be a positive se-
quence bounded by 1 and converging to zero. (Note that the general case, in
which (εn) is an arbitrary positive sequence converging to zero, follows im-
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mediately from this one.) For each εn, choose 0 < τn < ε2n/(30n)2 such
that for every pair of norm-one linear maps V : Xn → Xm and W :
Xm → Xn satisfying ‖VW − Pn‖ ≤ τn there are disjoint subsets E1, . . . , En
of {1, . . . ,m} such that ‖Wxj −EjWxj‖ ≤ ε2n/(30n)2 (1 ≤ j ≤ n), which is
possible by Lemma 5.4 and the uniform strict monotonicity of the basis (xi).
Next, let κ(τn) be as in Lemma 5.2, and choose δn > 0 small enough so
that 8(1 + 2κ(τn))δn ≤ εn. Lastly, choose a bounded approximate diagonal
(dn)n∈N for A0(X) such that

(i) dn ∈ F(XKn , Xn) ⊗̂ F(Xn, XKn) for some Kn ∈ N;
(ii) π(dn) = Pn;
(iii) Wdn = dnW (W ∈ PnA(X)Pn); and
(iv) ‖dn‖∧ ≤ 1 + δn.

As indicated in Section 2, the proof that such an approximate diagonal exists
is exactly the same as that of [BG2, Proposition 3.1].

Now, fix n. As in the proof of Theorem 4.4, the finite-dimensionality of
Xn and XKn implies that dn admits a finite representation

∑Mn
i=1Ri ⊗ Si

such that
∑Mn

i=1RiSi = Pn and
∑Mn

i=1 ‖Ri‖ ‖Si‖ ≤ 1 + δn. We shall assume
that ‖Ri‖ ‖Si‖ 6= 0 (1 ≤ i ≤Mn). By Lemma 5.2,

(5.3)
∑
i∈Iτn

‖Ri‖ ‖Si‖ ≤ κ(τn)δn,

where
Iτn = {i :

∥∥(‖Ri‖−1Ri)(‖Si‖−1Si)− Pn
∥∥ > τn}.

For each 1 ≤ i ≤ Mn, let Vi = ‖Ri‖−1Ri and Wi = ‖Si‖−1Si. Note, in
particular, that ‖ViWi − Pn‖ ≤ τn (i ∈ Icτn). Hence, by our choice of τn, for
every i ∈ Icτn , there exist disjoint subsets E1,i, . . . , En,i of {1, . . . ,Kn} such
that ‖Wixj − Ej,iWixj‖ ≤ ε2n/(30n)2 (1 ≤ j ≤ n). Let yj,i := Ej,iWixj and
gj,i := x∗jViEj,i (i ∈ Icτn , 1 ≤ j ≤ n). Then

|1− gj,i(yj,i)| ≤ |x∗j (xj)− x∗jVi(Wixj)|+ |x∗jVi(Wixj − yj,i)|

≤ τn +

(
εn

30n

)2

≤ 2

(
εn

30n

)2

,

and∣∣1− ‖gj,i‖−1gj,i(yj,i)∣∣
≤ |1− gj,i(yj,i)|+

∣∣1− ‖gj,i‖∣∣
‖gj,i‖

≤ |1− gj,i(yj,i)|+
|1− gj,i(yj,i)|

1− |1− gj,i(yj,i)|

≤ 2

(
εn

30n

)2

+
2
(
εn
30n

)2
1− 2

(
εn
30n

)2 ≤ ( εn
15n

)2 1− 1
900

1− 2
900

≤
(
εn

14n

)2

.
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By the Bishop–Phelps–Bollobás theorem ([BD, Section 16, Theorem 1]),
there are pairs (xj,i, fj,i) ∈ [xj : j ∈ Ej,i]× [x∗j : j ∈ Ej,i] (i ∈ Icτn , 1 ≤ j ≤ n)
such that ‖xj,i‖ = ‖fj,i‖ = fj,i(xj,i) = 1, ‖yj,i − xj,i‖ ≤ εn/(7n) and∥∥ ‖gj,i‖−1gj,i − fj,i∥∥ ≤ εn/(7n). Note that

‖fj,i − gj,i‖ ≤
∥∥gj,i − ‖gj,i‖−1gj,i∥∥+

εn
7n

≤ |1− gj,i(yj,i)|+
εn
7n
≤ 2

(
εn

30n

)2

+
εn
7n
.

Then, for every scalar sequence α1, . . . , αn, we have∥∥∥∑
j

αjxj,i

∥∥∥ ≤∑
j

|αj | ‖xj,i − yj,i‖+
∑
j

|αj | ‖yj,i −Wixj‖+
∥∥∥∑

j

αjWixj

∥∥∥
≤
(
εn
7n

+

(
εn

30n

)2)∑
j

|αj |+
∥∥∥∑

j

αjxj

∥∥∥
≤
(

1 +
εn
7

+
ε2n

900n

)∥∥∥∑
j

αjxj

∥∥∥,
and

(1− τn)
∥∥∥∑

j

αjxj

∥∥∥
≤
∥∥∥ViWi

(∑
j

αjxj

)∥∥∥ ≤ ∥∥∥∑
j

αjWixj

∥∥∥
≤
∑
j

|αj | ‖Wixj − yj,i‖+
∑
j

|αj | ‖yj,i − xj,i‖+
∥∥∥∑

j

αjxj,i

∥∥∥
≤
(

1 +
εn
7

+
ε2n

900n

)∥∥∥∑
j

αjxj,i

∥∥∥,
which in turn, since εn → 0, yields

1

1 + εn

∥∥∥∑
j

αjxj

∥∥∥ ≤ ∥∥∥∑
j

αjxj,i

∥∥∥ ≤ (1 + εn)
∥∥∥∑

j

αjxj

∥∥∥.
Thus, each b.b.s. {xj,i, fj,i}nj=1 (i ∈ Icτn) is (1+εn)-equivalent to {xj , x∗j}nj=1.

To show that each b.b.s. {xj,i, fj,i}nj=1 (i ∈ Icτn) is (1+εn)-complemented,
we argue as follows. First, for every ξ ∈ {−1, 1}n, define Ei,ξ :=

∑
j ξjEj,i.

Then define Φi,ξ : X ′ ⊗X → X ′ ⊗X by

Φi,ξ(f ⊗ x) := fViEi,ξ ⊗ Ei,ξWix,

and define Φi := 2−n
∑

ξ Φi,ξ. Note that each Φi,ξ has norm ‖Vi‖ ‖Wi‖ ≤ 1,
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so ‖Φi‖ ≤ 1. We then have

1 ≥
∥∥∥Φi(∑

j

x∗j ⊗ xj
)∥∥∥

=
∥∥∥∑

j

∑
k,l

2−n
(∑

ξ

ξkξl

)
x∗jViEk,i ⊗ El,iWixj

∥∥∥
=
∥∥∥∑

j

∑
k

x∗jViEk,i ⊗ Ek,iWixj

∥∥∥
≥
∥∥∥∑

j

gj,i ⊗ yj,i
∥∥∥−∑

k 6=j
‖Ek,iWixj‖

≥
∥∥∥∑

j

fj,i ⊗ xj,i
∥∥∥−∑

j

‖fj,i − gj,i‖

−
∑
j

‖xj,i − yj,i‖ − (n− 1)
∑
j

‖(id− Ej,i)Wixj‖,

which combined with our previous estimates gives∥∥∥∑
j

fj,i ⊗ xj,i
∥∥∥

≤ 1 + n

(
εn
7n

)
+ n

(
εn
7n

+ 2

(
εn

30n

)2)
+ n2

(
εn

30n

)2

≤ 1 + εn,

as required.
To finish our proof we show that∑
k

∣∣∣ ∑
i∈Icτn

λif1,i(xk)x
∗
k(x1,i)−

∑
i∈Icτn

λifj,i(xk)x
∗
k(xj,i)

∣∣∣ ≤ εn (1 ≤ j ≤ n).

So Nn = |Icτn |.
First, the fact that dn is a generalized diagonal for F(Xn) easily implies

that

(x∗1 ⊗ xk)dn(x∗k ⊗ x1) = (x∗j ⊗ xk)dn(x∗k ⊗ xj) (1 < j ≤ n, 1 ≤ k ≤ Kn).

Applying the linear functional F(X)⊗F(X)→ C, R⊗S 7→ tr(R) tr(S), on
both sides of the last identity one obtains

Mn∑
i=1

x∗1(Rixk)x
∗
k(Six1) =

Mn∑
i=1

x∗j (Rixk)x
∗
k(Sixj),

or equivalently,

(5.4)
Mn∑
i=1

λ̃ix
∗
1(Vixk)x

∗
k(Wix1) =

Mn∑
i=1

λ̃ix
∗
j (Vixk)x

∗
k(Wixj) (1 < j ≤ n),
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where λ̃i = ‖Ri‖ ‖Si‖ (1 ≤ i ≤ Mn). Define λi := λ̃i/
∑

l∈Icτn
λ̃l (i ∈ Icτn).

Using (5.4), one obtains

(5.5)
∣∣∣ ∑
i∈Icτn

λif1,i(xk)x
∗
k(x1,i)−

∑
i∈Icτn

λifj,i(xk)x
∗
k(xj,i)

∣∣∣
≤
∑
i∈Icτn

|λif1,i(xk)x∗k(x1,i)− λ̃ix∗1(Vixk)x∗k(Wix1)|

+
∑
i∈Icτn

|λ̃ix∗j (Vixk)x∗k(Wixj)− λifj,i(xk)x∗k(xj,i)|

+
∑
i∈Iτn

λ̃i|x∗1(Vixk)x∗k(Wix1)|+
∑
i∈Iτn

λ̃i|x∗j (Vixk)x∗k(Wixj)|.

For each 1 ≤ j ≤ n, choose ηj ∈ TKn (where T = {z ∈ C : |z| = 1}) such
that∑

k

|λifj,i(xk)x∗k(xj,i)− λ̃ix∗j (Vixk)x∗k(Wixj)|

= |λifj,i(Uηjxj,i)− λ̃ix∗j (ViUηjWixj)|.
Then note that

|fj,i(Uηjxj,i)− x∗j (ViUηjWixj)|
≤ |fj,i(Uηjxj,i)− fj,i(Uηjyj,i)|+ |fj,i(Uηjyj,i)− x∗j (ViUηjyj,i)|

+ |x∗j (ViUηjyj,i)− x∗j (ViUηjWixj)|

≤ ‖xj,i − yj,i‖+ ‖fj,i − gj,i‖+ ‖yj,i −Wixj‖ ≤
2εn
7n

+ 3

(
εn

30n

)2

.

Combining this last estimate with the previous identity and taking (5.3) into
account we obtain, for every 1 ≤ j ≤ n,

(5.6)
∑
k

|λifj,i(xk)x∗k(xj,i)− λ̃ix∗j (Vixk)x∗k(Wixj)|

≤ λi|fj,i(Uηjxj,i)− x∗j (ViUηjWixj)|+ |λi − λ̃i||x∗j (ViUηjWixj)|

≤ λi
(

2εn
7n

+ 3

(
εn

30n

)2)
+ λi

∣∣∣1− ∑
l∈Icτn

λ̃l

∣∣∣
≤ λi

(
2εn
7n

+ 3

(
εn

30n

)2

+ (1 + κ(τn))δn

)
.

Similarly, for every 1 ≤ j ≤ n, there is a ζj ∈ TKn such that

(5.7)
∑
k

|x∗j (Vixk)x∗k(Wixj)| = |x∗j (ViUζjWixj)| ≤ 1.



120 A. Blanco

Finally, combining (5.6) and (5.7) with (5.5), and once again taking into
account (5.3), we obtain∑

k

∣∣∣ ∑
i∈Icτn

λif1,i(xk)x
∗
k(x1,i)−

∑
i∈Icτn

λifj,i(xk)x
∗
k(xj,i)

∣∣∣
≤ 2

∑
i∈Icτn

λi

(
2εn
7n

+ 3

(
εn

30n

)2

+ (1 + κ(τn))δn

)
+ 2

∑
i∈Iτn

λ̃i

≤ 4εn
7n

+ 6

(
εn

30n

)2

+ 2(1 + 2κ(τn))δn

≤ 4εn
7n

+ 6

(
εn

30n

)2

+
εn
4
< εn.

This concludes the proof of the theorem.

Remark 5.6. It might be worth pointing out that condition (5.2) is
equivalent to the following:

max
η∈{−1,1}N

{ Nn∑
i=1

λif1,i(Uηx1,i)−
Nn∑
i=1

λifj,i(Uηxj,i)
}
≤ εn (1 < j ≤ n).

Indeed, since each fj,i is a support functional for xj,i and the basis (xi) is
1-unconditional, there is η ∈ {−1, 1}N such that

∑
k

∣∣∣ Nn∑
i=1

λif1,i(xk)x
∗
k(x1,i)−

Nn∑
i=1

λifj,i(xk)x
∗
k(xj,i)

∣∣∣
=
∑
k

ηk

( Nn∑
i=1

λif1,i(xk)x
∗
k(x1,i)−

Nn∑
i=1

λifj,i(xk)x
∗
k(xj,i)

)
=

Nn∑
i=1

λif1,i(Uηx1,i)−
Nn∑
i=1

λifj,i(Uηxj,i)

≤ max
ξ∈{−1,1}N

{ Nn∑
i=1

λif1,i(Uξx1,i)−
Nn∑
i=1

λifj,i(Uξxj,i)
}
,

and the opposite inequality is proved similarly. Notice also that since the
basis (xi) is 1-unconditional the block biorthogonal systems of Theorem 5.5
can be chosen to be positive, i.e., with each vector in them having all its
coordinates with respect to either (xi) or (x∗i ) real positive.

In the following two examples, the corresponding algebras of approx-
imable operators are well known to be amenable. Their only purpose is to
illustrate the conditions of Theorem 5.5 in some concrete situations.
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Example 5.7. LetX be a Banach space with a normalized 1-unconditio-
nal basis (xi) such that the left and right shift operators with respect to it are
both norm-one. Then for every null sequence (εn) there is a sequence (Nn) of
positive integers such that, for every n ∈ N, the block biorthogonal systems
{xi+j , x∗i+j}nj=1, 0 ≤ i ≤ Nn − 1, satisfy the conditions of Theorem 5.5 with
respect to the given sequence (εn). Indeed, each b.b.s. {xi+j , x∗i+j}nj=1 is
clearly 1-complemented and 1-equivalent to {xj , x∗j}nj=1 (the latter because
both shifts are norm-one). As for (5.2), note that

∑
k

∣∣∣∣ 1

N

N−1∑
i=0

x∗i+1(xk)x
∗
k(xi+1)−

1

N

N−1∑
i=0

x∗i+j(xk)x
∗
k(xi+j)

∣∣∣∣
=

1

N

∑
k

∣∣∣ N∑
i=1

δi,k −
N+j−1∑
i=j

δi,k

∣∣∣
=

1

N

∑
k

∣∣∣ j−1∑
i=1

δi,k −
N+j−1∑
i=N+1

δi,k

∣∣∣
= 2

j − 1

N
(1 ≤ j ≤ n, n ∈ N, N ∈ N).

So, to have (5.2) satisfied with respect to (εn), it is enough to choose Nn ≥
2n/εn (n ∈ N). Clearly, this will not affect the other two conditions.

Example 5.8. Let X := (
⊕

i `
i
p)`q , 1 ≤ p 6= q ≤ ∞, and let (εn) ⊂ R+

be an arbitrary null sequence. It is convenient to write down the unit vector
basis of X in the form x

(1)
1 , x

(2)
1 , x

(2)
2 , . . . , x

(n)
1 , x

(n)
2 , . . . , x

(n)
n , . . . , where x(i)j

(1 ≤ j ≤ i, i ∈ N) stands for the jth vector of the unit vector basis of the ith
summand of X. To simplify notations let us denote by f (i)j the associated
biorthogonal functional. Then, for every n ∈ N, there is a positive integer
Nn such that the block biorthogonal systems

{x(i)j , x
(i+1)
j , x

(i+1)
j+1 , . . . , x

(i+n)
j , x

(i+n)
j+1 , . . . , x

(i+n)
j+n ,

f
(i)
j , f

(i+1)
j , f

(i+1)
j+1 , . . . , f

(i+n)
j , f

(i+n)
j+1 , . . . , f

(i+n)
j+n }

(1 ≤ j ≤ i, 1 ≤ i ≤ Nn)

are 1-complemented, 1-equivalent to

{x(1)1 , x
(2)
1 , x

(2)
2 , . . . , x

(n+1)
1 , x

(n+1)
2 , . . . , x

(n+1)
n+1 ,

f
(1)
1 , f

(2)
1 , f

(2)
2 , . . . , f

(n+1)
1 , f

(n+1)
2 , . . . , f

(n+1)
n+1 },

and satisfy (5.2). Again, only this last needs a proof. For this, note that, in
the present situation, the left hand side of (5.2) takes the form
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2

Nn(Nn + 1)

∑
l∈N

l∑
k=1

∣∣∣ Nn∑
i=1

i∑
j=1

f
(i)
j (x

(l)
k ) f

(l)
k (x

(i)
j )

−
Nn+κ∑
i=κ+1

i−κ+m∑
j=m+1

f
(i)
j (x

(l)
k ) f

(l)
k (x

(i)
j )
∣∣∣,

where 0 ≤ m ≤ κ and 0 ≤ κ ≤ n. After some straightforward simplifications
this last expression becomes

2

Nn(Nn + 1)

∑
l∈N

l∑
k=1

∣∣∣ κ∑
i=1

i∑
j=1

δi,lδj,k +

Nn∑
i=κ+1

m∑
j=1

δi,lδj,k

+

Nn∑
i=κ+1

i∑
j=i−κ+m+1

δi,lδj,k −
Nn+κ∑
i=Nn+1

i−κ+m∑
j=m+1

δi,lδj,k

∣∣∣
≤ 2

Nn(Nn + 1)
[κ2 + (κ − 1)(Nn − κ) + κNn] ≤ 4n

Nn + 1
,

which can clearly be made smaller than any ε > 0 by choosing Nn large
enough.

With this, we have verified the conditions of the theorem for every n
of the form k(k + 1)/2 (k ∈ N). But this is enough, for, in general, if
the conditions of Theorem 5.5 are satisfied for every positive integer in an
increasing sequence (nk) with respect to some null sequence (εk) ⊂ R+

and nk−1 < m < nk for some k > 1, then the block biorthogonal sys-
tems {xj,1, fj,1}mj=1, . . . , {xj,Nnk , fj,Nnk}

m
j=1, obtained from those correspond-

ing to nk by removing the last nk −m vectors, will be (1 + εk)-equivalent to
{xj , x∗j}mj=1, (1 + εk)-complemented and still satisfy (5.2) for εk. From this
observation one easily obtains the desired conclusion. We leave the details
to the reader.

We should notice that the same kind of argument can be used for any
Banach space of the form X = (

⊕
i `
ni
p )`q , where 1 ≤ p 6= q ≤ ∞ and

limi ni =∞. But, in the general case, the details are a bit more involved.
We finish the section with a few observations. First of all, note that

uniform strict monotonicity of the basis is not a necessary condition for
1-amenability. For instance, A(`∞) is 1-amenable, but the unit vector basis
of `∞ is not u.s.m. (recall our convention about the meaning of `∞). We do
not know whether the result of Theorem 5.5 (or a similar one) will still hold
if one removes this assumption.

Second, it is apparent that our proof of Theorem 5.5 relies on a ‘good’
description of the norm-one projections on X in terms of the unconditional
basis (xi). Unfortunately, the only results of this kind that the author is aware
of depend heavily on the assumption that the unconditionality constant of
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the basis is 1 (see, for instance, the survey [Ra2]). So Theorem 5.5 may well
be the best one can hope for regarding translation of amenability into a
basis property.

Lastly, it seems very unlikely to the author that, even for Banach spaces
with u.s.m. bases, the conditions of Theorem 5.5 can be equivalent to prop-
erty A, but we do not have any relevant example. In the next section, we
shall say more about this problem. Here, just to give an idea of the sort of
difficulty involved, let us look at a simple case in which 1-amenability implies
property A. First, suppose d ∈ F(Y,X) ⊗̂F(X,Y ) is a norm-one generalized
diagonal such that wd◦ = d◦w (w ∈ F(Y )). This implies, in particular, that
π(d◦) is in the center of F(Y ), i.e., it is a multiple of idY . Let

∑m
i=1 λiRi⊗Si

be a finite representation for d such that
∑

i λi = 1 and ‖Ri‖ = ‖Si‖ = 1
(1 ≤ i ≤ m). From Lemma 4.2 we know that RiSi = idX for every i. Define
Φ : F(Y,X) ⊗̂ F(X,Y )→ F(X) ⊗̂ F(X) by

Φ(U ⊗ V ) := US1 ⊗R1V (U ⊗ V ∈ F(Y,X) ⊗̂ F(X,Y )).

Then note that

wd = dw ⇒ wΦ(d) = Φ(d)w (w ∈ F(X)),

wΦ(d)◦ = wR1d
◦S1 = R1(S1wR1)d

◦S1

= R1d
◦(S1wR1)S1 = R1d

◦S1w = Φ(d)◦w (w ∈ F(X)),

π(Φ(d)◦) = R1π(d◦)S1 = R1

(
tr(π(d))

dimY
idY

)
S1 =

dimX

dimY
idX ,

and

π(Φ(d)) =
tr(π(Φ(d)))

dimX
idX =

tr(π(Φ(d)◦))

dimX
idX =

dimX

dimY
idX ,

so ∆ := (dimY/dimX)Φ(d) is the corresponding symmetric diagonal for
F(X) and ‖∆‖∧ ≤ dimY/dimX. It follows easily that if X is an infinite-
dimensional Banach space and A(X) has an approximate diagonal (dα)α∈I
such that, for every α ∈ I,

(i) π(dα) is a projection,
(ii) wdα = dαw (w ∈ F(rg(π(dα)))),
(iii) wd◦α = d◦αw (w ∈ F(rg(π(d◦α)))),
(iv) ‖dα‖∧ = 1, and
(v) rk(π(d◦α)) ≤ C rk(π(dα)) for some constant C independent of α,

then A(X) has property A with constant ≤ C. Note that the first and second
assumptions on (dα) are not significant restrictions. Indeed, as indicated in
Section 2, if X is a π-space then (dα) can always be chosen to satisfy both
of them.
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6. On the existence of a Banach space X without property A
and with A(X) amenable. In [GJW, Theorem 6.5], it was shown that
every Banach space of the form (

⊕∞
k=1 `

nk
p )`q , where 1 ≤ p 6= q ≤ ∞ and

lim supk nk = ∞, carries an amenable algebra of approximable operators.
However, the question of whether or not these spaces have property A was
left open in that paper. For this reason, it was expected that Banach spaces
of this form could provide an affirmative answer to the problem in the title
of this section. Let us start by showing that this is not the case. In fact,
quite the opposite, every Banach space of this form has property A.

The idea of the proof is simple. For instance, if nk = k (k ∈ N) then, for
every n ∈ N, ( 2n⊕

k=1

`kp

)
`q

∼=
( n⊕
k=1

(`kp ⊕q `2n−k+1
p )

)
`q

and

d
(( n⊕

k=1

(`kp ⊕q `2n−k+1
p )

)
`q
,
( n⊕
k=1

`2n+1
p

)
`q

)
≤ 2(q−1)/q.

Since the symmetric diagonal for A((
⊕n

k=1 `
2n+1
p )`q) has norm 1 (see [BG2,

Proposition 3.7]), the symmetric diagonal for A((
⊕n

k=1(`
k
p ⊕q `2n−k+1

p ))`q)

should have norm ≤ 22(q−1)/q, and so (
⊕∞

k=1 `
k
p)`q has property A with con-

stant ≤ 22(q−1)/q.
We shall prove here a result slightly stronger than the one mentioned

above. For this, we shall rely on the following particular case of [JRZ,
Lemma 2.4].

Lemma 6.1. Let X be a Banach space and let P : X → E be a finite-
rank projection onto the subspace E of X. If F is a linear subspace of X
such that dimF = dimE and ‖(P − id)|F ‖ ≤ ε, where ε ∈ (0, 1) satisfies
(1− ε)−1ε dimE < 1, then there is a projection U : X → F such that

‖U − P‖ ≤ (1− ε)−1ε dimE‖P‖.

Recall that, given an infinite-dimensional Banach space E with a 1-
unconditional Schauder basis e = (ei) and a sequence of Banach spaces
(Xi, ‖ · ‖i), the Banach space (

⊕
iXi)e is defined to be the linear space

{(xi) ∈ ΠiXi : the series
∑

i ‖xi‖iei converges in E}, endowed with the
norm ‖(xi)‖ =

∥∥∑
i ‖xi‖iei

∥∥
E
. If Xi = {0} for every i > m then we also

write (
⊕m

i=1Xi)e. Furthermore, if for some Banach space X and m ∈ N,
Xi = X for every 1 ≤ i ≤ m and Xi = {0} for every i > m (resp. Xi = X
for every i ∈ N) then we write Em(X) (resp., E(X)) instead of (

⊕m
i=1Xi)e

(resp. (
⊕

iXi)e).
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Proposition 6.2. Let X be a Banach space and let (pi) be a bounded se-
quence of projections in A(X) with a subsequence converging strongly to idX .
Let Xi := rg pi (i ∈ N) and let E be a Banach space with a 1-unconditional
shrinking Schauder basis e := (ei). If A(E(X)) has property A with constant
M then A((

⊕
iXi)e) has property A with constant

≤ 4M
(

2 sup
i
‖pi‖+M

)2(
sup
i
‖pi‖+M

)2
.

Proof. Let (dα)α∈J be an approximate diagonal for A(E(X)) of norm
≤M such that, for every α ∈ J , dα is the symmetric diagonal for A(rgQα),
where Qα := π(dα). Note that each Qα must be a projection. Also, let
πi : E(X) → X (resp., ıi : X → E(X)) stand for the ith coordinate pro-
jection (resp., embedding), and let Pk :=

∑k
i=1 ıipiπi (k ∈ N). Clearly, to

prove the desired result, it will suffice to exhibit a bounded sequence (qk)k∈N
of projections in A((

⊕
iXi)e) converging strongly to the identity map on

(
⊕

iXi)e and such that, for every k ∈ N, there is an α (= α(k)) ∈ J such
that d(rg qk, rgQα) ≤ C for some constant C independent of k.

For each k ∈ N we construct qk as follows. First choose α = α(k) ∈ J
such that rgPkQαPk = rgPk and∥∥(Pk − id)|rgQαPk

∥∥ < 1/(rkPk)
2.

Then choose positive integers n1 < · · · < nN greater than k such that if
Rk =

∑N
i=1 ıipniπi then rgQαRkQα = rgQα, rgPkRkQαPk = rgPk,∥∥(Pk− id)|rgRkQαPk

∥∥ ≤ 1/(rkPk)
2 and

∥∥(Qα− id)|rgRkQα
∥∥ ≤ 1/(rkQα)2.

(The existence of such integers is guaranteed by the fact that (pi) contains
a subsequence that converges strongly to idX .) By Lemma 6.1, for every
k large enough, there are projections Uk : E(X) → rgRkQαPk and Vk :
E(X)→ rgRkQα such that

‖Uk − Pk‖ ≤ (rkPk − 1)−1‖Pk‖ and ‖Vk −Qα‖ ≤ (rkQα − 1)−1‖Qα‖.
In addition, it follows from our choice of α and Rk above that

d(rgUk, rgPk) = d(rgRkQαPk, rgPkRkQαPk) ≤
rkPk + 1

rkPk − 1
,

and
d(rgQα, rg Vk) = d(rgQαRkQα, rgRkQα) ≤ rkQα + 1

rkQα − 1
,

where we have used the fact that if ‖Tx− x‖ ≤ ε‖x‖ (x ∈ F ) for some 0 <
ε < 1, then ‖T |F ‖ ≤ 1+ε, ‖(T |F )−1‖ ≤ 1−ε and d(F, TF ) ≤ (1+ε)/(1−ε).

Define Yk := rgRk and Ỹk := {(xi) ∈ (
⊕

iXi)e : xi = 0 if i 6= nj
(1 ≤ j ≤ N)}. Clearly, Yk ∼= Ỹk, so d(Yk, Ỹk) = 1. Let us write Ũk and Ṽk for
the projections on Ỹk corresponding to Uk|Yk and Vk|Yk , respectively. Also,
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let us write Zk for (
⊕k

i=1Xi)e. Note that rgPk ∼= Zk, so d(rgPk, Zk) = 1.
Moreover, if R : rgUk → Zk and S : rg(Vk−Uk)→ rg(Ṽk−Ũk) are linear iso-
morphisms such that ‖R‖ = 1, ‖R−1‖ = d(rgUk, Zk) and ‖S‖ = ‖S−1‖ = 1
then, for every x ∈ rgUk and every y ∈ rg(Vk − Uk),

‖x+ y‖ ≤ (‖R−1‖+ 1)‖Rx+ Sy‖
≤ (‖R−1‖+ 1)(‖RUk‖+ ‖Vk − Uk‖)‖x+ y‖
≤ (1 + d(rgUk, Zk))(‖Uk‖+ ‖Vk − Uk‖)‖x+ y‖,

so

d(rgUk + rg(Vk − Uk), Zk + rg(Ṽk − Ũk))
≤ (1 + d(rgUk, Zk))(‖Uk‖+ ‖Vk − Uk‖).

Thus,

d(rgQα, Zk + rg(Ṽk − Ũk))
≤ d(rgQα, rg Vk) d(rgUk + rg(Vk − Uk), Zk + rg(Ṽk − Ũk))
≤ d(rgQα, rg Vk) (1 + d(rgUk, Zk))(‖Uk‖+ ‖Vk − Uk‖),

and so, given an arbitrary ε > 0, we should have, for k large enough,

d(rgQα, Zk + rg(Ṽk − Ũk)) ≤ (2 + ε)(‖Pk‖+ ‖Qα − Pk‖).
We then define qk to be the composite of the natural projection from
(
⊕

iXi)e onto Zk + Ỹk with the projection idZk ⊕ (Ṽk − Ũk) : Zk + Ỹk →
Zk + rg(Ṽk− Ũk). One easily sees that the sequence (qk) satisfies all required
conditions.

As for the property A constant of A((
⊕

iXi)e), simply note that if∑
iRi,α ⊗ Si,α ∈ F(rgQα)⊗F(rgQα) is a representation of dα (α ∈ J) and

Tk : rgQα(k) → rg qk is a linear isomorphism (k ∈ N) then
∑

i TkRi,α(k)T
−1
k qk

⊗TkSi,α(k)T−1k qk is the symmetric diagonal for A(rg qk). Thus, the property
A constant of A((

⊕
iXi)e) cannot exceed

M lim inf
k

d(rg qk, rgQα)2‖qk‖2 ≤ 4M
(

2 sup
i
‖pi‖+M

)2(
sup
i
‖pi‖+M

)2
.

Although the estimates provided by Proposition 6.2 are far from sharp,
we suspect that, in general, if E and X are incomparable Banach spaces then
the property A constant of (

⊕
k[xi]

nk
i=1)e will be greater than the property A

constants of both E and X. We do not have a proof for this, not even in the
case where both E andX are `p-spaces. However, assuming this were true for
`p-spaces, and bearing in mind that A((

⊕
k `

nk
p )`q) is 1-amenable whenever

lim supk nk =∞ ([BG2, Example 3.6]), one might wonder whether iterating
this construction and taking some kind of direct limit one could produce a
Banach space X carrying an amenable algebra of approximable operators
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and yet lacking property A. Our next result shows why this idea is unlikely
to work.

Corollary 6.3. Let 1 ≤ p1, . . . , pm+1 ≤ ∞, and let (ni,1), (ni,2), . . . ,
(ni,m) be sequences of non-negative integers. Define E1 := `p1 and Ek+1 :=
(
⊕

i `
ni,k
pk+1)e(k) (1 ≤ k ≤ m), where e(k) is the natural unit vector basis of Ek.

If lim supi ni,m = supi ni,m then Em+1 has property A with constant ≤ 144.

Proof. Define E := `p1(`p2(· · · (`pm) · · · )). It is known that A(E) has
property A with constant 1. (This follows easily by induction combined with
an argument very similar to that used in the proof of [BG2, Proposition 3.7].)
It is clear that the unit vector basis of E can be reordered so as to contain the
unit vector basis of Ek as a subsequence. Denote by e the new (reordered)
basis for E. Then one can realize Em+1 as a space of the form (

⊕
i `
ni
pm+1

)e
for some sequence (ni) of non-negative integers. Of course, one may have
ni = 0 for infinitely many values of i. Now, let γ := supi ni,m (if (ni,m) is
unbounded then let γ = ∞). By hypothesis, (ni,m) contains a subsequence
converging to γ, and since (ni) contains (ni,m) as a subsequence, also (ni)
has a subsequence converging to γ. In turn, this means that (qi) ⊂ A(`γpm+1),
where qi stands for the natural projection onto the linear span of the first
ni vectors of the unit vector basis of `γpm+1 , has a subsequence converging
strongly to the identity map on `γpm+1 (if γ =∞ then `γpm+1 = `pm+1). Thus,
by Proposition 6.2, Em+1 has property A with constant ≤ 4(2 + 1)2(1 + 1)2.
(Actually, in this case, it is not hard to see, from the proof of Proposition 6.2,
that the property A constant of Em+1 should be ≤ 4.)

Remark 6.4. Note that starting with numbers 1 ≤ p1, . . . , pm+1 ≤ ∞
and sequences (nk,1), (nk,2), . . . , (nk,m) as in the statement of Corollary 6.3
one could, alternatively, define F1 := `p1 and then Fk+1 := (

⊕
i[ej,k]

ni,k
j=1)`pk+1

(1 ≤ k ≤ m), where (ej,k)j∈N is the natural unit vector basis for Fk. However,
it is not hard to see that if one drops the assumption on (ni,m) then this
construction will produce exactly the same family of Banach spaces as the
construction considered in Corollary 6.3.

In view of the above results, one is naturally led to ask whether there are
other families of Banach spaces that could yield the desired example. Our
next result will provide a class of Banach spaces, essentially different from
the one considered thus far, all of whose members lack property A. We think
it could contain examples of Banach spaces X for which A(X) is amenable,
although, so far, we have failed to find any. Recall first that an operator ideal
norm on the operator ideal F of all finite-rank operators between Banach
spaces is a function γ : F → [0,∞[ that satisfies the following:

(a) γ|F(X,Y ) is a norm for every pair of Banach spaces X and Y ;
(b) γ(idC : C→ C) = 1; and
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(c) if A : Y → Y0 and B : X0 → X are bounded operators and T ∈
F(X,Y ) then γ(ATB) ≤ ‖A‖γ(T )‖B‖.

Proposition 6.5. Let X be a Banach space. Suppose that for some
δ > 0 and some operator ideal norm γ on F there is a map P 7→ QP
from the set of all projections in A(X) into itself such that, for every pro-
jection P ∈ A(X), PQP = QP = QPP and rkQP ≥ δ rkP ; and, whenever
(Pα) ⊂ A(X) is a bounded net of projections converging strongly to idX ,
lim supα γ(Pα)/γ(QPα) = ∞. Then A(X) cannot have a bounded approxi-
mate diagonal (dα)α∈I such that, for every α ∈ I,

(i) Pα := π(dα) is a projection;
(ii) π(d◦α) = π(dα); and
(iii) Pαdα = dα and Wdα = dαW (W ∈ PαA(X)Pα).
Proof. Suppose towards a contradiction that A(X) has a bounded ap-

proximate diagonal (dα)α∈I satisfying conditions (i)–(iii) above.
For each α ∈ I, let

∑
iRi,α ⊗ Si,α be a representation of dα such that∑

i ‖Ri,α‖ ‖Si,α‖ ≤ 2‖dα‖∧, and let Qα = QPα . Condition (iii) implies that
π(
∑

iRi,α ⊗QαSi,α) = cPα for some scalar c. Moreover, c ≥ δ, for

c(rkPα) = tr(cPα) = tr
(
π
(∑

i

Ri,α ⊗QαSi,α
))

= tr
(∑

i

Ri,αQαSi,α

)
= tr

((∑
i

Si,αRi,α

)
Qα

)
= rkQα

(where we have used (i) and (ii)). Then note that

γ(cPα) ≤
∑
i

γ(Ri,αQαSi,α) ≤
∑
i

‖Ri,α‖γ(Qα)‖Si,α‖ ≤ 2‖dα‖∧γ(Qα),

and hence
γ(Pα)/γ(Qα) ≤ 2‖dα‖∧/δ (α ∈ I),

which contradicts our hypothesis.
The conditions of Proposition 6.5 have been modeled on the defining

properties of weak Hilbert spaces. Recall that weak Hilbert spaces are Ba-
nach spaces which are both weak type and weak cotype 2. A well known
characterization of them states that a weak Hilbert space is a Banach space
X such that for every 0 < δ < 1, there is a constant C(δ) with the
following property: every finite-dimensional subspace E ⊂ X contains a
subspace F ⊂ E with dimF ≥ δ dimE such that d(F, `dimF

2 ) ≤ C(δ)
and there is a projection P : X → F with ‖P‖ ≤ C(δ) ([Pi2, Theo-
rem 12.2]). So, in particular, every weak Hilbert space non-isomorphic to
a Hilbert space satisfies the conditions of Proposition 6.5 with γ = γ2 (recall
γ2(T : X → Y ) = inf{‖R‖ ‖S‖ : R : `2 → Y, S : X → `2 and RS = T}).
The class of weak Hilbert spaces ranges from the classical Hilbert spaces,
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all of which have property A with constant 1, to the 2-convexified Tsirelson
spaces, which fail to be amenable. These spaces have been extensively stud-
ied. However, if one restricts attention to this class then the problem gets
slightly more difficult, as indicated by our next result, which may be seen as
an extension of [CS, Theorem Ae15].

Proposition 6.6. Let H be a weak Hilbert space. If A(H) has a bounded
approximate diagonal (dα)α∈I such that, for every α ∈ I,

(i) Pα := π(dα) is a projection;
(ii) π(d◦α) is a scalar multiple of a projection; and
(iii) Pαdα = dα and Wdα = dαW (W ∈ PαA(X)Pα),

then H is isomorphic to a Hilbert space.

Proof. Suppose towards a contradiction that A(H) has a bounded ap-
proximate diagonal (dα)α∈I with the indicated properties. Set Hα = rgPα
(α ∈ I). Recall that, since H is a weak Hilbert space, there are constants
0 < δ ≤ 1 and C ≥ 1 such that for every finite-dimensional subspace
X of H there exist a linear subspace Y ⊆ X with dimY ≥ δ dimX and
d(Y, `dimY

2 ) ≤ C, and a projection Q : H → Y with ‖Q‖ ≤ C.
Let dα =

∑m(α)
i=1 Rαi ⊗Sαi , where the Rαi ’s and the Sαi ’s have been chosen

in such a way that
∑

i ‖Rαi ‖2 = 1 and (
∑

i ‖Sαi ‖2)1/2 = ‖dα‖∧, and let H◦α =
rg π(d◦α). By the previous paragraph, there exist a subspace Kα of H◦α and a
projection Qα : H → Kα such that dimKα ≥ δ dimH◦α, d(Kα, `

dimKα
2 ) ≤ C

and ‖Qα‖ ≤ C. Define d̃α :=
∑

iR
α
i α⊗QαSαi , where we have written α for

the natural inclusion of Kα into H. For each i, let Xα
i
∼= `dimKα

2 and let Ti :
Kα → Xα

i be a norm-1 linear isomorphism such that ‖T−1i ‖ = d(Kα, X
α
i ).

Define Xα := (
⊕

iX
α
i )`2 , and let πi : Xα → Xα

i and ıi : Xα
i → Xα be

the ith coordinate projection and embedding, respectively. Lastly, define
R :=

∑
iR

α
i αT

−1
i πi and S :=

∑
i ıiTiQαS

α
i . Clearly, RS = π(d̃α) = κPα

for some scalar κ. Let tr(π(d◦α)) = cdimH◦α and note that tr(π(d◦α)) =
tr(π(dα)) = dimHα, so

κ dimHα = tr(π(d̃α)) = tr(π(d̃◦α))

= tr(Qαπ(d◦α)) =
dimHα

dimH◦α
tr(idKα) ≥ δ dimHα,

i.e., κ ≥ δ. Moreover, for every (x1, . . . , xm) ∈ Xα,

‖R(x1, . . . , xm)‖ =
∥∥∥∑

i

Rαi αT
−1
i (xi)

∥∥∥
≤
(∑

i

‖Rαi αT−1i ‖
2
)1/2(∑

i

‖xi‖2
)1/2

≤ C‖(x1, . . . , xm)‖,
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and, for every h ∈ Hα,

‖S(h)‖ =
(∑

i

‖TiQαSαi (h)‖2
)1/2

≤ C‖dα‖∧‖h‖.

Thus, d(Hα, `
dimHα
2 ) = d(Hα, rgR) ≤ κ−1‖R‖ ‖S‖ ≤ δ−1C2‖dα‖∧.

Since the net (Pα) converges strongly to idH , it follows easily from our last
estimate that d(E, `dimE

2 ) ≤ δ−1C2 supα ‖dα‖∧ for every finite-dimensional
subspace E of H. In turn, by [LP, Proposition 5.2], we conclude that H is
isomorphic to a Hilbert space.

We finish the note with the following question:
Is it possible for a weak Hilbert space which is not isomorphic to a Hilbert

space to carry an amenable Banach algebra of approximable operators?
In view of the above, an affirmative answer to this question would imply

a positive answer to the problem in the title of the section.
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