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Inhomogeneous self-similar sets and box dimensions

by

Jonathan M. Fraser (St Andrews)

Abstract. We investigate the box dimensions of inhomogeneous self-similar sets.
Firstly, we extend some results of Olsen and Snigireva by computing the upper box di-
mensions assuming some mild separation conditions. Secondly, we investigate the more
difficult problem of computing the lower box dimension. We give some non-trivial bounds
and provide examples to show that lower box dimension behaves much more strangely
than upper box dimension, Hausdorff dimension and packing dimension.

1. Introduction. In this paper we investigate the dimensions of in-
homogeneous attractors. If a dimension function is countably stable (the
dimension of a countable union of sets is equal to the supremum of the in-
dividual dimensions), then the dimension is easy to compute. In particular,
the dimension is the maximum of the dimension of the corresponding ho-
mogeneous attractor and the dimension of the condensation set. However,
if a dimension function is not countably stable, then the problem is more
difficult. As such we investigate the (not countably stable) box dimensions
of inhomogeneous self-similar sets. We extend some results of Olsen and
Snigireva [OSn, Sn] by computing the upper box dimensions assuming some
mild separation conditions. We show that in our setting upper box dimen-
sion behaves in the same way as the countably stable dimensions. Secondly,
we investigate the more difficult problem of computing the lower box dimen-
sion. We give some non-trivial bounds on the lower box dimension and prove
that it does not behave as the other dimensions. In particular, the lower box
dimension is not in general the maximum of the lower box dimensions of
the homogeneous self-similar set and the condensation set. We introduce a
quantity which we call the covering regularity exponent which is designed
to give information about the oscillatory behaviour of the covering function
Nδ and use it to study the lower box dimensions. We believe the covering
regularity exponent will be a useful quantity in other circumstances where
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one needs finer information about the asymptotic properties of Nδ, or indeed
of other functions where the asymptotic oscillations are important.

1.1. Inhomogeneous attractors. Let (X, d) be a compact metric
space. An iterated function system (IFS) is a finite collection I = {Si}Ni=1 of
contracting self-maps on X. It is a fundamental result in fractal geometry
(see [H]) that for every IFS there exists a unique non-empty compact set, F ,
called the attractor, which satisfies

(1) F =
N⋃
i=1

Si(F ).

We call such attractors homogeneous attractors. Now fix a compact set
C ⊆ X, sometimes called the condensation set. Analogous to above, there
is a unique non-empty compact set, FC , satisfying

(2) FC =

N⋃
i=1

Si(FC) ∪ C,

which we refer to as an inhomogeneous attractor (with condensation C).
Note that homogeneous attractors are inhomogeneous attractors with con-
densation equal to the empty set. From now on we will assume that the
condensation set is non-empty.

Inhomogeneous attractors were introduced and studied in [BD] and are
also discussed in detail in [B2] where, among other things, Barnsley gives
applications of these schemes to image compression. Define the orbital set,O,
by

O = C ∪
⋃
k∈N

⋃
i1,...,ik∈{1,...,N}

Si1 ◦ · · · ◦ Sik(C),

i.e., the union of the condensation set, C, with all images of C under com-
positions of maps in the IFS. The term orbital set was introduced in [B2]
and it turns out that this set plays an important role in the structure of
inhomogeneous attractors; in particular,

(3) FC = F∅ ∪ O = O,

where F∅ is the homogeneous attractor of the IFS I.
The relationship (3) was proved in [Sn, Lemma 3.9] in the case where X is

a compact subset of Rd and the maps are similarities. We note here that Sni-
gireva’s arguments easily generalise to obtain the general case stated above.
Writing dimH and dimP for Hausdorff and packing dimensions respectively,
it follows immediately from (3) that

dimH FC = max{dimH F∅, dimHC}, dimP FC = max{dimP F∅, dimPC}
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Fig. 1. A flock of birds from above (left). The ‘flock’ is represented by an inhomogeneous
self-similar set. The large bird in the middle is the condensation and there are three
similarity mappings in the IFS all with contraction ratio 1/3. The corresponding homoge-
neous attractor is shown on the right. This is a totally disconnected self-similar set with
Hausdorff and box dimension equal to 1.

since Hausdorff and packing dimensions are countably stable. Indeed such a
relation holds for any definition of dimension which is countably stable, for
example, modified upper and lower box dimension (see [F4, Section 3.3]).
However, upper and lower box dimensions are not countably stable and in
fact lower box dimension is not even finitely stable, and so studying the lower
and upper box dimensions of inhomogeneous attractors is a more subtle
problem. In [OSn, Corollary 2.6] and [Sn, Theorem 3.10(2)] it was proved
that if X ⊂ Rd, each Si is a similarity, and the sets S1(FC), . . . , SN (FC), C
are pairwise disjoint, then

dimB FC = max{dimB F∅,dimBC}.
The authors then asked the following question (see [OSn, Question 2.7] and
[Sn, Question 3.12]).

Question 1.1. Does the above formula for upper box dimension remain
true if we relax the separation conditions to only the inhomogeneous open
set condition (IOSC )?

We give an affirmative answer to this question and furthermore prove
that it holds assuming only that the IFS, I, satisfies the strong open set
condition (which is equivalent to the open set condition if X ⊂ Rd) (see
Corollary 2.2), and even without assuming any separation conditions it holds
generically (see Corollary 2.3). We remark here that the definitions of the
IOSC given in [OSn, Sn] are slightly different. Rather than give both of the
technical definitions we simply remark that we are able to answer Question
1.1 using significantly weaker separation conditions than either version of
the IOSC. In particular, the condensation set can have arbitrary overlaps
with the basic sets in the construction of the homogeneous attractor.
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In [OSn, Sn] the authors also point out that they are not aware if the
corresponding formula holds for lower box dimension. The following question
is asked in [Sn, Question 3.11].

Question 1.2. If X ⊂ Rd, each Si is a similarity and the sets S1(FC),
. . . , SN (FC), C are pairwise disjoint, then is it true that

dimB FC = max{dimB F∅, dimBC}?
We prove that the answer to this question is no (see Theorem 2.8 and

Proposition 2.11(2)). We also give some sufficient conditions for the answer
to be yes (see Corollary 2.6, Corollary 2.10, Theorem 2.9 and Proposition
2.11(i)).

1.2. Basic definitions and notation. In this section we recall some
basic definitions and fix some notation needed to state our results. The
following separation condition is fundamental in the theory of IFSs.

Definition 1.3. An IFS, {S1, . . . , SN}, with attractor F satisfies the
strong open set condition (SOSC) if there exists a non-empty open set, U ,
with F ∩ U 6= ∅ and such that

N⋃
i=1

Si(U) ⊆ U

with the union disjoint.

A celebrated result of Schief [S1] is that the SOSC is equivalent to the
weaker open set condition (OSC) if X ⊂ Rd and the maps in the IFS are
similarities. The OSC is the same as the SOSC but without the requirement
that F ∩U 6= ∅. We adapt the SOSC to the case of inhomogeneous attractors
in the following way.

Definition 1.4. An IFS, {S1, . . . , SN}, together with a compact set
C ⊆ X, satisfies the condensation open set condition (COSC) if the IFS,
{S1, . . . , SN}, satisfies the SOSC and the open set U can be chosen such
that C ⊆ U .

The COSC will only be used to obtain one of our results, Theorem 2.8.
Recall that a map S : X → X is called a similarity if, for all x, y ∈ X, we

have d(S(x), S(y)) = cd(x, y) for some constant c ∈ (0, 1). The constant c is
called the Lipschitz constant, and for a similarity, S, we will write Lip(S) to
denote the Lipschitz constant for S. Given an IFS, I = {S1, . . . , SN}, con-
sisting of similarities, the similarity dimension of the homogeneous attractor
of I is defined to be the unique solution to Hutchinson’s formula

(4)

N∑
i=1

Lip(Si)
s = 1.



Inhomogeneous self-similar sets 137

It is well-known that if such an IFS satisfies the SOSC, then the similarity
dimension equals the Hausdorff, packing and box dimension of the homoge-
neous attractor (see [S2], or for the Euclidean case see [H] or [F4, Section
9.3]).

We will now recall the definition of box dimension. For a non-empty
subset F ⊆ X and some δ > 0, let Nδ(F ) be the minimum number of sets
of diameter δ required to cover F . The lower and upper box dimensions of
F are defined by

dimB F = lim inf
δ→0

logNδ(F )

− log δ
and dimB F = lim sup

δ→0

logNδ(F )

− log δ
,

respectively. If dimB F = dimB F , then we call the common value the box
dimension of F and denote it by dimB F . What we call box dimension is
also sometimes referred to as box-counting dimension, entropy dimension or
Minkowski dimension. For a non-empty subset F ⊆ X we note the following
relationships between the dimensions discussed above:

dimP F

≤ ≤

dimH F dimB F.
≤ ≤

dimB F

Furthermore, if F is a homogeneous self-similar set, then we have equality of
these four dimensions, regardless of separation conditions (see [F2] or [F3,
Corollary 3.3]). For more details on the basic properties of box dimension and
its interplay with Hausdorff and packing dimensions, the reader is referred
to [F4, Chapter 3].

2. Results. In this section we will state our main results. Fix an IFS,
I = {S1, . . . , SN}, where each Si is a similarity on (X, d), fix a non-empty
compact condensation set C ⊆ X and let s denote the similarity dimension
of F∅. Our results concerning upper box dimension will be given in Section
2.1 and those concerning lower box dimension will be given in Section 2.2.
We will write B(x, r) to denote the open ball of radius r centred at x.

2.1. Upper box dimension. In this section we significantly gener-
alise the results in [OSn, Sn] concerning upper box dimension, which were
obtained as corollaries to results on the Lq-dimensions of inhomogeneous
self-similar measures. Our proofs are direct and deal only with sets. Our first
result bounds the upper box dimension of an inhomogeneous self-similar set,
without assuming any separation conditions.
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Theorem 2.1. We have

max{dimB F∅, dimBC} ≤ dimB FC ≤ max{s,dimBC}.
Although the bounds given in Theorem 2.1 are not tight in general, we

can apply them in two useful situations to obtain an exact result. The fol-
lowing corollary answers Question 1.1 in the affirmative and, in fact, proves
something stronger in that the separation conditions can be severely weak-
ened and we can work in an arbitrary compact metric space.

Corollary 2.2. Suppose that the IFS I satisfies the SOSC. Then

dimB FC = max{dimB F∅,dimBC}.
Proof. This follows immediately from Theorem 2.1 since if I satisfies the

SOSC, then s = dimB F∅ (see [S2]).

Of course, if X ⊆ Rd then the SOSC is equivalent to the OSC. We can
also obtain an exact result in a generic sense.

Corollary 2.3. Let d ∈ N and fix linear contracting similarities,
{T1, . . . , TN}, each mapping Rd to itself with Lip(Ti) < 1/2, and fix a com-
pact condensation set C ⊂ Rd. For t = (t1, . . . , tN ) ∈ ×Ni=1Rd, let Ft,∅ denote
the homogeneous attractor satisfying

Ft,∅ =

N⋃
i=1

(Ti(Ft,∅) + ti)

and let Ft,C denote the inhomogeneous attractor satisfying

Ft,C =

N⋃
i=1

(Ti(Ft,C) + ti) ∪ C.

Then, writing LdN for the N -fold product of d-dimensional Lebesgue mea-
sure, we have

dimB Ft,C = max{dimB Ft,∅, dimBC}

for LdN -almost all t = (t1, . . . , tN ) ∈ ×Ni=1Rd.

Proof. This follows immediately from Theorem 2.1 since, for LdN -almost
all t = (t1, . . . , tN ) ∈ ×Ni=1Rd, dimB Ft,∅ is equal to the solution of

N∑
i=1

Lip(Ti)
s = 1,

which is also the similarity dimension of Ft,∅. This is a special case of a
classical result of Falconer and Solomyak on the almost sure dimensions of
self-affine sets (see [F1, So]).

We conclude this section with two open questions:
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Question 2.4. Is it true that

dimB FC = max{dimB F∅,dimBC}
even if dimB F∅ < s? In particular, such systems cannot satisfy the SOSC.

Question 2.5. Is it true that

dimB FC = max{dimB F∅,dimBC}
even if FC is a more general inhomogeneous attractor, i.e., if the contrac-
tions are not similarities?

2.2. Lower box dimension. In this section we examine the lower box
dimension. Theorem 2.1 gives us the following immediate corollary which
gives (basically trivial) bounds on the lower box dimension.

Corollary 2.6. We have

max{dimB F∅,dimBC} ≤ dimB FC ≤ dimB FC ≤ max{s,dimBC},
and if I satisfies the SOSC, then

max{dimB F∅, dimBC} ≤ dimB FC ≤ dimB FC ≤ max{dimB F∅, dimBC}.
So we can compute the lower box dimension in three easy cases:

• If the box dimension of C exists and dimBC ≥ s, then

dimB FC = dimB FC = dimBC.

• If the box dimension of C exists and I satisfies the SOSC, then

dimB FC = dimB FC = max{dimB F∅, dimBC}.
• If I satisfies the SOSC and dimBC ≤ s, then

dimB FC = dimB FC = s = dimB F∅.

Note that in each of the above cases the answer to Question 1.2 is yes, i.e.,

dimB FC = max{dimB F∅,dimBC}.
Even when I satisfies the SOSC, computing dimB FC appears to be a

subtle and difficult problem if max{s, dimBC} < dimBC. We will now
briefly outline the reason for this. Firstly, note that since lower box di-
mension is stable under taking closures, it follows from (3) that

dimB FC = dimBO = dimBO.
We can thus restrict our attention to the orbital set. However, computing
the dimension of O is difficult as it consists of copies of C scaled by different
amounts. If the box dimension of C does not exist, then the growth of the
function Nδ(C) can vary wildly as δ → 0. It turns out that the lower box
dimension of O depends not only on dimB, dimB and s but also on the
behaviour of the function δ 7→ Nδ(C).
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In order to analyse the behaviour of Nδ(C) we introduce a quantity which
we call the covering regularity exponent (CRE). For t ≥ 0 and δ ∈ (0, 1], the
(t, δ)-CRE of C is defined as

(5) pt,δ(C) = sup{p ∈ [0, 1] : Nδp(C) ≥ δ−pt}

and the t-CRE is

pt(C) = lim inf
δ→0

pt,δ(C).

Roughly speaking, pt,δ(C) tells you at scale δ how much you have to ‘scale
up’ to find a scale δ0 ≥ δ where you need at least δ−t0 sets to cover C, i.e.,
how far back you have to go to find a scale where the set is ‘hard’ to cover.
In fact, the smaller pt,δ(C) is, the further you have to go back. The constant
pt(C) tells you the ‘furthest away’ you ever are from a scale where your set
is ‘hard to cover’, as you let δ tend to zero.

The following lemma gives some simple but useful properties of the
CREs. First, recall that a metric space (X, d) is Ahlfors regular if dimHX <
∞ and there exists a constant λ > 0 such that, writing HdimHX to denote
the Hausdorff measure in the critical dimension,

1

λ
rdimHX ≤ HdimHX(B(x, r)) ≤ λrdimHX

for all x ∈ X and all 0 < r ≤ diam(F ).

Lemma 2.7.

(i) For all t, δ > 0, we have pt,δ(C), pt(C) ∈ [0, 1].
(ii) pt(C) is decreasing in t, and if t < dimBC, then pt(C) = 1, while

if t > dimBC, then pt(C) = 0.
(iii) For all δ > 0 we have

N
δ
pt,δ(C)(C) ≥ δ−pt,δ(C)t,

i.e., the supremum in (5) is attained.
(iv) For all t > dimBC, we have

pt(C) ≤ dimBC

t
< 1.

(v) For dimBC < s < t < dimBC we have

pt(C) ≤ s

t
ps(C).

(vi) Suppose X is Ahlfors regular. For all t ∈ (dimBC,dimBC), we have

pt(C) ≤ dimBC

t

dimBX − t
dimBX − dimBC

.
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Fig. 2. Left: A plot of logNδ(C)/(− log δ) for a set C with distinct upper and lower box
dimension. A horizontal line is included at a value t between the upper and lower box
dimensions. At the indicated point, δ, we have Nδ(C) < δ−t and so we have to ‘scale up’
to δ0 = δpt,δ(C) to find a scale where Nδ0(C) ≥ δ−t0 . Right: A typical graph of pt(C) for a
set C with lower box dimension 0.2 and upper box dimension 0.8.

We will prove Lemma 2.7 in Section 3.2. We will now use the CREs to
obtain non-trivial bounds on the lower box dimension of FC . From now on
we will assume that we are in the difficult case: max{s, dimBC} < dimBC.

The following theorem gives a lower bound on the lower box dimension
of FC and gives some sufficient conditions for the answer to Question 1.2 to
be no.

Theorem 2.8. Suppose (X, d) is Ahlfors regular and that I together with
C satisfies the COSC. For all t ≥ 0 we have

dimB FC ≥ pt(C)t+ (1− pt(C))s.

In particular, if for some t > max{s, dimBC} we have

pt(C) > max

{
0,

dimBC − s
t− s

}
,

then

dimB FC > max{dimB F∅,dimBC}.

We will prove Theorem 2.8 in Section 3.4. The next theorem gives an
upper bound on the lower box dimension of FC and gives some sufficient
conditions for the answer to Question 1.2 to be yes.

Theorem 2.9. For all t > max{s, dimBC} we have

dimB FC ≤ max{t, s+ pt(C)t}
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and, in particular, if pt(C) = 0 for t > max{s, dimBC}, then

dimB FC ≤ max{s, dimBC}

and if, furthermore, the SOSC is satisfied, then

dimB FC = max{dimB F∅,dimBC}.

We will prove Theorem 2.9 in Section 3.5. We obtain the following (per-
haps surprising) corollary in a very special case.

Corollary 2.10. If dimBC = 0 and I satisfies the SOSC, then

dimB FC = max{dimB F∅,dimBC} = dimB F∅ = s.

Proof. This follows immediately from Theorem 2.9 since Lemma 2.7(iv)
gives that pt(C) = 0 for all t > 0.

The following proposition yields the existence of compact sets with the
extremal behaviour described in Theorems 2.8–2.9. In particular, Proposi-
tion 2.11(ii) combined with Theorem 2.8 gives a negative answer to Ques-
tion 1.2.

Proposition 2.11. Let X = [0, 1]d for some d ∈ N.

(i) For all 0 < b < t < B ≤ d, there exists a compact set C ⊆ X such
that dimBC = b < B = dimBC and pt(C) = 0 for all t ≥ b.

(ii) For all 0 < b < B ≤ d, there exists a compact set C ⊆ X such that
dimBC = b < B = dimBC and

pt(C) =
b

t

d− t
d− b

for all t ∈ (b, B). In particular, such a C shows that the upper bound
in Lemma 2.7(vi) is sharp.

We will prove Proposition 2.11 in Section 3.6. Although we specialise to
the case where X is the unit cube, the result applies in much more general
situations. However, as we only require them to provide examples, we omit
any further technical details.

The case where the condensation set is constructed as in Proposition
2.11(ii) is of interest. Not only does it provide a negative answer to Question
1.2 but we also obtain an explicit (non-trivial) formula for pt(C). We obtain
the following corollary in this situation.

Corollary 2.12. Let X = [0, 1]d, let I = {S1, . . . , SN} be an IFS of
similarities on X and fix a non-empty compact set C ⊂ [0, 1]d such that

pt(C) =
dimBC

t

d− t
d− dimBC
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for all t ∈ (dimBC,dimBC). Furthermore assume that I together with C
satisfies the COSC. Then

dimBC

t

d− t
d− dimBC

(t− s) + s

≤ dimB FC ≤ max

{
t, s+ dimBC

d− t
d− dimBC

}
for all t ∈ (dimBC,dimBC).

Write L(t) and U(t) for the lower and upper bounds for dimB FC given
in the above corollary. We will now provide a plot of these as functions
of t in two typical situations. Of course the best lower and upper bound for
dimB FC are really the supremum and infimum of L(t) and U(t) respectively.
In both cases we let X = [0, 1]5. For the plot on the left, we let dimBC = 1,
s = 1.5 and dimBC = 4.5. For the plot on the right, we let dimBC = s = 1
and dimBC = 2. In the first case the trivial bounds from Corollary 2.6 have
been improved from [1.5, 4.5] to [1.756, 2.2] and in the second case the trivial
bounds have been improved from [1, 2] to [1.375, 1.8].

Fig. 3. Two graphs showing the upper and lower bounds on the lower box dimension
of FC . U(t) and L(t) are plotted as solid lines and the trivial bounds from Corollary 2.6
are plotted as dashed lines. We can clearly see a significant improvement on the trivial
bounds and in both cases dimB FC > max{dimB F∅, dimB C}.

We will present one final corollary which summarises the ‘bad behaviour’
of the lower box dimension of inhomogeneous self-similar sets.

Corollary 2.13. Regardless of separation conditions, the lower box di-
mension of FC is not in general given by a function of the numbers:

dimBC, dimBC, dimHC, dimPC, dimB F∅ and s.
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This is in stark contrast to the situation for the countably stable dimensions
and the upper box dimension.

Proof. This follows from the results in this section.

3. Proofs

3.1. Preliminary results and notation. Fix an IFS I = {S1, . . . , SN}
where each Si is a similarity and fix a compact condensation set C ⊆ X.
Write I = {1, . . . , N}, Lmin = mini∈I Lip(Si) and Lmax = maxi∈I Lip(Si).
Let

I∗ =
⋃
k∈N
Ik

denote the set of all finite words over I. For i = (i1, . . . , ik) ∈ I∗, write
Si = Si1 ◦ · · · ◦ Sik , let i− = (i1, . . . , ik−1) and write |i| = k to denote the
length of the string i. For δ ∈ (0, 1], define a δ-stopping, I(δ), by

I(δ) = {i ∈ I∗ : Lip(Si) < δ ≤ Lip(Si−)},

where we assume for convenience that Lip(Sω) = 1, where ω is the empty
word.

Lemma 3.1. For all δ ∈ (0, 1], we have

δ−s ≤ |I(δ)| ≤ L−sminδ
−s.

Proof. Repeated application of Hutchinson’s formula (4) gives∑
i∈I(δ)

Lip(Si)
s = 1,

from which we deduce

(6) 1 =
∑

i∈I(δ)

Lip(Si)
s ≥

∑
i∈I(δ)

(δLmin)s = |I(δ)|(δLmin)s

and

(7) 1 =
∑

i∈I(δ)

Lip(Si)
s ≤

∑
i∈I(δ)

δs = |I(δ)|δs.

The desired upper and lower bounds now follow from (6) and (7) respec-
tively.

Lemma 3.2. For all t > s we have∑
i∈I∗

Lip(Si)
t = bt <∞

for some constant bt depending only on t.
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Proof. This is a standard fact but we include the simple proof for com-
pleteness and to define the constant bt. Since t>s we have

∑
i∈I Lip(Si)

t<1.
It follows that∑

i∈I∗
Lip(Si)

t =
∞∑
k=1

∑
i∈Ik

Lip(Si)
t =

∞∑
k=1

(∑
i∈I

Lip(Si)
t
)k

<∞,

which proves the lemma with bt =
∑∞

k=1(
∑

i∈I Lip(Si)
t)k.

Lemma 3.3. For all δ ∈ (0, 1), we have

|{i ∈ I∗ : δ ≤ Lip(Si)}| ≤
log δ

logLmax
δ−s.

Proof. Let δ ∈ (0, 1) and suppose i ∈ I∗ is such that δ ≤ Lip(Si). It

follows that δ ≤ L|i|max and hence

(8) |i| ≤ log δ

logLmax
.

Repeatedly applying Hutchinson’s formula (4) gives

log δ

logLmax
≥

∑
l∈N:

l≤ log δ
logLmax

1 ≥
∑
l∈N:

l≤ log δ
logLmax

∑
i∈Il

Lip(Si)
s ≥

∑
l∈N:

l≤ log δ
logLmax

∑
i∈Il:

δ≤Lip(Si)

Lip(Si)
s

≥
∑
l∈N:

l≤ log δ
logLmax

∑
i∈Il:

δ≤Lip(Si)

δs = |{i ∈ I∗ : δ ≤ Lip(Si)}|δs

by (8), which proves the result.

3.2. Proof of Lemma 2.7

Proof of Lemma 2.7(i). This follows immediately from the definition of
pt,δ(C) and the fact that the set

{p ∈ [0, 1] : Nδp(C) ≥ δ−pt}
is never empty as it always contains the point 0.

Proof of Lemma 2.7(ii). It is clear that pt(C) is decreasing in t. If t <
dimBC, then there exists δ0 ∈ (0, 1] such that for all δ < δ0 we have

Nδ(C) ≥ δ−t,
which implies that if δ < δ0, then pt,δ(C) = 1, which completes the proof.
The proof that if t > dimBC, then pt(C) = 0 is similar and omitted.

Proof of Lemma 2.7(iii). Let t > 0 and δ ∈ (0, 1] and without loss of
generality assume that pt,δ(C) > 0. By the definition of pt,δ(C) we may
choose arbitrarily small ε ∈ (0, pt,δ(C)) such that

(9) N
δ
pt,δ(C)−ε(C) ≥ δ−(pt,δ(C)−ε)t.
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It follows that

N
δ
pt,δ(C)(C) ≥ N

δ
pt,δ(C)−ε(C) ≥ δ−(pt,δ(C)−ε)t = δ−pt,δ(C)tδεt,

and letting ε→ 0 through values satisfying (9) proves the result.

Proof of Lemma 2.7(iv). Let t > dimBC and ε ∈ (0, t−dimBC). By the
definition of lower box dimension, there exists arbitrarily small δ > 0 such
that

Nδ(C) ≤ δ−(dimB C+ε).

Fix such a δ ∈ (0, 1) and note that since Nδ(C) increases as δ decreases,

δ−pt,δ(C)t ≤ N
δ
pt,δ(C)(C) ≤ Nδ(C) ≤ δ−(dimB C+ε).

Taking logs and dividing by −t log δ yields

pt,δ(C) ≤ dimBC + ε

t
,

and since we can find arbitrarily small δ satisfying the above inequality, the
desired upper bound follows.

Proof of Lemma 2.7(v). Let dimBC < s < t < dimBC. It follows from
Lemma 2.7(iv) that ps(C) < 1 and so we may choose ε ∈ (0, 1 − ps(C)].
Consequently, there exists δ ∈ (0, ε) such that ps,δ(C) < ps(C)+ε ≤ 1. This
implies that

Nδps(C)+ε(C) < δ−(ps(C)+ε)s.

Using this, Lemma 2.7(iii), and the fact that Nδ(C) increases as δ decreases,
we have

δ−pt,δ(C)t ≤ N
δ
pt,δ(C)(C) ≤ Nδps(C)+ε(C) < δ−(ps(C)+ε)s.

Taking logs and dividing by −t log δ yields

pt,δ(C) ≤ s

t
(ps(C) + ε)

and since we can find arbitrarily small δ satisfying the above inequality, the
desired upper bound follows.

Proof of Lemma 2.7(vi). Let t ∈ (dimBC,dimBC) and ε ∈ (0, t −
dimBC). Following the argument used in the proof of Lemma 2.7(iv), we
can find arbitrarily small δ ∈ (0, 1) such that

(10) Nδ(C) ≤ δ−(dimB C+ε) and pt,δ(C) ≤ dimBC + ε

t
≤ 1.

Fix such a δ. Since X is Ahlfors regular, it follows that there exists constants
K ≥ 1 and ρ ∈ (0, 1] such that any ball of radius δ < ρ can be covered by
fewer than

(11) K

(
δ

δ0

)dimBX



Inhomogeneous self-similar sets 147

balls of radius δ0 ≤ δ < ρ. Let

(12) m = max

{
1,

logK

(dimBX − t) log δ
+

dimBX − dimBC − ε
dimBX − t

}
.

Let δ′ = δq ∈ (δm, δ) for some q ∈ (1,m). A simple calculation combining
(10)–(12) yields

Nδ′(C) = Nδq(C) ≤ K
(
δ

δq

)dimBX

Nδ(C) ≤ K
(
δ

δq

)dimBX

δ−(dimB C+ε)

< δ−qt = (δ′)−t.

Note that if m = 1, then this is vacuously true, but indeed m > 1 for
sufficiently small ε and δ. It follows that

Nδ′(C) < (δ′)−t

for all δ′ ∈ (δm, δ)∪ [δ, δpt,δ(C)) = (δm, δpt,δ(C)). This, combined with the fact
that

N
(δm)

pt,δ(C)/m(C) = N
δ
pt,δ(C)(C) ≥ δ−pt,δ(C)t = (δm)−(pt,δ(C)/m)t

by the definition of pt,δ(C), yields pt,δm(C) = pt,δ(C)/m. Hence

pt,δm(C) =
pt,δ(C)

m

≤ dimBC + ε

t

(
logK

(dimBX − t) log δ
+

dimBX − dimBC − ε
dimBX − t

)−1
by (10), (12). Letting δ → 0 through values satisfying (10) yields

pt(C) ≤ dimBC + ε

t

dimBX − t
dimBX − dimBC − ε

,

and finally letting ε→ 0 we have

pt(C) ≤ dimBC

t

dimBX − t
dimBX − dimBC

as required.

3.3. Proof of Theorem 2.1. By monotonicity of upper box dimension,
we have max{dimB F∅,dimBC} ≤ dimB FC . We will now prove the other
inequality. Since upper box dimension is finitely stable, it suffices to show
that

dimBO ≤ max{s, dimBC}.
Let t > max{s,dimBC}. It follows from the definition of upper box dimen-
sion that there exists a constant ct > 0 such that

(13) Nδ(C) ≤ ctδ−t
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for all δ ∈ (0, 1]. Also note that since X is compact, the number of balls of
radius 1 required to cover X is a finite constant N1(X). Let δ ∈ (0, 1]. We
have

Nδ(O) = Nδ

(
C ∪

⋃
i∈I∗

Si(C)
)

≤
∑
i∈I∗:

δ≤Lip(Si)

Nδ(Si(C)) +Nδ

( ⋃
i∈I∗:

δ>Lip(Si)

Si(C)
)

+Nδ(C)

≤
∑
i∈I∗:

δ≤Lip(Si)

Nδ/Lip(Si)(C) +Nδ

( ⋃
i∈I(δ)

Si(X)
)

+Nδ(C)

≤
∑
i∈I∗:

δ≤Lip(Si)

ct(δ/Lip(Si))
−t +

∑
i∈I(δ)

Nδ/Lip(Si)(X) + ctδ
−t by (13)

≤ ctδ−t
∑
i∈I∗:

δ≤Lip(Si)

Lip(Si)
t +N1(X)|I(δ)|+ ctδ

−t

≤ ctδ−t
∑
i∈I∗

Lip(Si)
t +N1(X)L−sminδ

−s + ctδ
−t by Lemma 3.1

≤ (ctbt +N1(X)L−smin + ct)δ
−t by Lemma 3.2,

from which it follows that dimB FC = dimBO ≤ t, and since t can be chosen
arbitrarily close to max{s, dimBC}, we have proved the theorem.

3.4. Proof of Theorem 2.8. Suppose (X, d) is Ahlfors regular and I,
together with C, satisfies the COSC. We begin with two simple technical
lemmas.

Lemma 3.4. Let a, b > 0, let {Ui} be a collection of disjoint open subsets
of X and suppose that each Ui contains a ball of radius ar and is contained
in a ball of radius br. Then any ball of radius r intersects no more than

λ2
(

1 + 2b

a

)dimHX

of the closures {U i}.

This is a trivial modification of a standard result in Euclidean space (see
[F4, Lemma 9.2]), but for completeness we include the simple proof.

Proof. For each i let Bi denote the ball of radius ar contained in Ui
and note that these balls are pairwise disjoint. Fix x ∈ X and suppose
B(x, r) ∩ U i 6= ∅ for some i. It follows that U i ⊆ B(x, (1 + 2b)r). Suppose
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the number of i such that B(x, r) ∩ U i 6= ∅ is equal to N . Then

N
1

λ
(ar)dimHX ≤

∑
i:B(x,r)∩U i 6=∅

HdimHX(Bi) ≤ HdimHX(B(x, (1 + 2b)r))

≤ λ((1 + 2b)r)dimHX

and solving for N proves the lemma.

Lemma 3.5. Let δ ∈ (0, 1] and i, j ∈ I(δ) with i 6= j. Writing U for the
open set used in the COSC, we have

Si(U) ∩ Sj(U) = ∅.
Proof. This is a simple consequence of the COSC (in fact the OSC is

enough) and the fact that neither i nor j is a subword of the other.

Proof of Theorem 2.8. If 0 ≤ t ≤ max{s, dimBC}, then the result is
clearly true (and not an improvement on Corollary 2.6) so assume that
t > max{s, dimBC} and let ε ∈ (0, 1]. Choose δ0 ∈ (0, 1] such that for all
δ ∈ (0, δ0] we have pt,δ(C) ≥ pt(C)−ε. Fix δ ∈ (0, δ0] and finally, to simplify
notation, write pt,δ = pt,δ(C) and pt = pt(C). We will now consider two
cases.

Case 1: δ1−pt,δL−1min ≤ 1. Let U be the open set used for the COSC and
choose a, b > 0 such that U contains a ball of radius a and is contained in a
ball of radius b. It follows that for each i ∈ I(δ1−pt,δL−1min) the image Si(U)
is an open set which contains a ball of radius aδ1−pt,δ and is contained in
a ball of radius bL−1minδ

1−pt,δ . Furthermore, it follows from Lemma 3.5 that
the sets

{Si(U) : i ∈ I(δ1−pt,δL−1min)}
are pairwise disjoint. Since, for each i ∈ I(δ1−pt,δL−1min), we have Si(C) ⊆
Si(U), it follows from Lemma 3.4 that any ball of radius δ1−pt,δ , and hence
any set of diameter δ, can intersect no more than

κ := λ2
(

1 + 2bL−1min

a

)dimHX

of the sets

{Si(C) : i ∈ I(δ1−pt,δL−1min)}.
Hence

Nδ(O) = Nδ

(
C ∪

⋃
i∈I∗

Si(C)
)
≥ κ−1

∑
i∈I(δ1−pt,δL−1

min)

Nδ(Si(C))

= κ−1
∑

i∈I(δ1−pt,δL−1
min)

Nδ/Lip(Si)(C) ≥ κ−1
∑

i∈I(δ1−pt,δL−1
min)

Nδ
pt,δ (C)
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≥ κ−1δ−tpt,δ |I(δ1−pt,δL−1min)| by Lemma 2.7(iii)

≥ κ−1δ−tpt,δ(δ1−pt,δL−1min)−s by Lemma 3.1

= κ−1Lsminδ
−(pt,δt+(1−pt,δ)s) ≥ κ−1Lsminδ

−((pt−ε)t+(1−(pt−ε))s),

from which it follows that dimB FC = dimBO ≥ (pt − ε)t+ (1− (pt − ε))s.

Case 2: δ1−pt,δL−1min > 1. Note that our assumption implies that 1 ≥
δ−(1−pt,δ)sLsmin. It follows that

Nδ(O) ≥ Nδ
pt,δ (C) ≥ δ−pt,δt ≥ δ−(1−pt,δ)sLsminδ

−pt,δt

≥ Lsminδ
−((pt−ε)t+(1−(pt−ε))s),

from which it follows that dimBO ≥ (pt − ε)t+ (1− (pt − ε))s.

Combining Cases 1–2 and letting ε tend to zero proves the theorem.

3.5. Proof of Theorem 2.9. We begin with a simple technical lemma.

Lemma 3.6. Let t ≥ 0. If pt(C) < 1, then for all ε ∈ (0, 1−pt(C)), there
exists δ ∈ (0, ε) such that

pt(C)− ε < pt,δ(C) < pt(C) + ε,

and for all δ0 ∈ [δ, δpt(C)] we have

Nδ0(C) ≤ δ−t0 .

Proof. Since pt(C) < 1, it follows that for all ε ∈ (0, 1 − pt(C)) there
exists δ ∈ (0, ε) such that pt(C) − ε < pt,δ(C) < pt(C) + ε < 1. By the

definition of pt,δ(C) this implies that for all δ0 ∈ [δ, δpt(C)+ε] we have

Nδ0(C) ≤ δ−t0 .

Proof of Theorem 2.9. Let t > max{s, dimBC}. By Lemma 2.7(iv), we
have pt(C) ≤ dimBC/t < 1 and so by Lemma 3.6, for all ε ∈ (0, 1− pt(C)),
there exists δ ∈ (0, ε) such that

(14) pt(C)− ε < pt,δ(C) < pt(C) + ε

and for all δ0 ∈ [δ, δpt(C)] we have

(15) Nδ0(C) ≤ δ−t0 .

Fix ε ∈ (0, 1 − pt(C)) and choose δ ∈ (0, ε) satisfying (14), (15). Write
pt,δ = pt,δ(C) and pt = pt(C). We have
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Nδ(O) = Nδ

(
C ∪

⋃
i∈I∗

Si(C)
)

≤
∑
i∈I∗:

δ
1−pt,δ−ε≤Lip(Si)<1

Nδ(Si(C)) +
∑
i∈I∗:

δ≤Lip(Si)<δ1−pt,δ−ε

Nδ(Si(C))

+Nδ

( ⋃
i∈I∗:

Lip(Si)<δ

Si(C)
)

+Nδ(C)

≤
∑
i∈I∗:

δ
1−pt,δ−ε≤Lip(Si)<1

Nδ/Lip(Si)(C) +
∑
i∈I∗:

δ≤Lip(Si)<δ1−pt,δ−ε

Nδ/Lip(Si)(C)

+Nδ

( ⋃
i∈I(δ)

Si(X)
)

+Nδ(C)

≤
∑
i∈I∗:

δ
1−pt,δ−ε≤Lip(Si)<1

(δ/Lip(Si))
−t +

∑
i∈I∗:

δ≤Lip(Si)<δ1−pt,δ−ε

N
δ
pt,δ+ε(C)

+
∑

i∈I(δ)

Nδ/Lip(Si)(X) + δ−t by (14), (15)

≤ δ−t
∑
i∈I∗:

δ
1−pt,δ−ε≤Lip(Si)<1

Lip(Si)
t +

∑
i∈I∗:

δ≤Lip(Si)<δ1−pt,δ−ε

δ−(pt,δ+ε)t

+N1(X)|I(δ)|+ δ−t by (14), (15)

≤ δ−t
∑
i∈I∗

Lip(Si)
t + |{i ∈ I∗ : δ ≤ Lip(Si)}|δ−(pt,δ+ε)t

+N1(X)δ−s + δ−t by Lemma 3.1

≤ (bt +N1(X) + 1)δ−t +
log δ

logLmax
δ−sδ−(pt,δ+ε)t by Lemmas 3.2, 3.3

≤ (bt +N1(X) + 1)δ−t +
log δ

logLmax
δ−(s+(pt+2ε)t),

from which it follows that dimB FC = dimBO ≤ max{t, s + (pt + 2ε)t}
and letting ε tend to zero yields the desired upper bound. Note that we
do not obtain an upper bound for the upper box dimension here as we
only find a sequence of δs tending to zero for which the above estimate
holds.

3.6. Proof of Proposition 2.11. Let X = [0, 1]d for some d ∈ N and
let 0 < b < B ≤ d. We will first describe a general way of constructing sets
C ⊆ [0, 1]d which gives us the required control over the oscillations of the
function Nδ(C).
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For k ∈ N, let Qk be the set of closed 2−k × · · · × 2−k cubes formed
by imposing a 2−k grid on [0, 1]d orientated at the origin. For each k select
a subset of these cubes and call their union Qk. We assume that [0, 1]d ⊇
Q1 ⊇ Q2 ⊇ · · · , and that if a cube is chosen at the kth step, then at least
one subcube is chosen at the (k + 1)th stage. Finally, we set C =

⋂
k∈NQk.

Let M2−k(C) denote the number of cubes in Qk which intersect C. We will
only choose cubes at the kth level in two different ways:

Method 1. At the (k + 1)th stage we choose precisely one cube from
each kth level cube.

Method 2. At the (k + 1)th stage we choose all subcubes from within
each kth level cube.

For δ ∈ (0, 1), let k(δ) = max{k ∈ N∪ 0 : δ ≤ 2−k}. It is easy to see that

3−dM2−k(δ)(C) ≤ Nδ(C) ≤M2−(k(δ)+1+d)(C).

Also, for all k ∈ N,

M2−k(C) ≤M2−(k+1)(C) ≤ 2dM2−k(C)

and these bounds are tight, since if at the (k+ 1)th stage we use Method 1,
then we attain the left hand bound, and if at the (k + 1)th stage we use
Method 2, then we attain the right hand bound.

Fig. 4. The first four steps in the construction of a compact set C ⊂ [0, 1]2 using Method
2, 1, 2, 1 respectively.

Proof of Proposition 2.11(i). The key to constructing a compact set
C ⊆ X with pt(C) = 0 for all t ≥ b is to force Nδ(C) to be strictly smaller
than δ−b for increasingly long periods of time as δ → 0. Let N (2, k) denote
the number of times we use Method 2 in the first k steps in the construction
of C and let

N (2) = lim inf
k→∞

N (2, k)

k
and N (2) = lim sup

k→∞

N (2, k)

k
.

Observe that

M2−k(C) = 2dN (2,k)
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and hence

(16) dimBC = dN (2) and dimBC = dN (2).

Also observe that if δ > 0 is such that N (2, k(δ) + d+ 1) < bk(δ)/d, then

(17) Nδ(C) ≤M2−(k(δ)+1+d)(C) = 2dN (2,k(δ)+d+1) < 2bk(δ) ≤ δ−b.
It is clear that we may alternate between Method 1 and 2 when constructing
C in such a way as to ensure that

N (2) = B/d, N (2) = b/d

and for infinitely many k0 ∈ N we have, for all k = k0, . . . , k
2
0,

N (2, k + d+ 1) < bk/d.

It follows from (16) and (17) that such a compact set C has the desired prop-
erties. To show that pt(C) = 0 for all t ≥ b it suffices to prove that pb(C) = 0
since pt(C) is decreasing in t (Lemma 2.7(ii)). To see that pb(C) = 0 observe
that if δ > 0 is such that k(δ) = k20 for a k0 as described above, then

Nδ′(C) < (δ′)−b

for all δ′ ∈ [δ, 2−k0 ] by (17). Hence,

(2−k
2
0)pb,δ(C) ≥ δpb,δ(C) ≥ 2−k0 ,

which yields pb,δ(C) ≤ 1/k0 and letting k0 tend to infinity (and thus δ tend
to zero) proves that pb(C) = 0.

Proof of Proposition 2.11(ii). The key to constructing a compact set
C ⊆ X with

pt(C) =
b

t

d− t
d− b

for all t ∈ (b, B) is to force Nδ(C) to oscillate as fast as possible as δ → 0.
We alternate between choosing cubes according to Methods 1 and 2 as fast
as we can, making sure that the lower box dimension is b and the upper
box dimension is B. Unfortunately, there is a bound on how quickly we can
do this (seen in Lemma 2.7(vi)). We construct C in the following way. Use
Method 1 from step 1 until k1 where k1 ∈ N is the first time that

M2−k1 (C) ≤ 2k1b,

then change to Method 2 from step k1 + 1 until k2 > k1 where k2 ∈ N is the
next occasion where

M2−k2 (C) ≥ 3d2B2k2B,

then change back to Method 1. Repeat this process as k →∞ to obtain an
infinite increasing sequence {kn}n∈N where

(18) M2−k2n−1 (C) ≤ 2k2n−1b
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and

(19) M2−k2n (C) ≥ 3d2k2nB

for each n ∈ N. Furthermore, it is clear that

2−b2kb ≤M2−k(C) ≤ 3d2d2kB

for all k ∈ N and it follows from this and (18), (19) that b = dimBC <
dimBC = B. Let t ∈ (b, B) and observe that

pt(C) ≤ b

t

d− t
d− b

by Lemma 2.7(vi).

We will now show the opposite inequality. For each k2n above, let k2n be
the largest integer less than or equal to Bt−1k2n and let k2n be the smallest
integer greater than or equal to (d−B)(d− t)−1k2n. It follows that for each
n ∈ N we have

N
2−k2n

(C) ≥ 3−dM
2−k2n

(C) ≥ 3−dM2−k2n (C) ≥ 3−d3d2k2nB

≥ 2k2nt = (2−k2n)−t

and

N
2
−k2n (C) ≥ 3−dM

2
−k2n (C) ≥ 3−d2(k2n−k2n)dM2−k2n (C)

≥ 3−d2(k2n−k2n)d3d2k2nB ≥ (2−k2n)−t.

Clearly for δ ∈ (2−k2n , 2−k2n) we have Nδ(C) ≥ δ−t. This implies that,

asymptotically, pt,δ(C) cannot be smaller than in the case where δ=2
−k2(n+1)

and, writing p = p
t,2
−k2(n+1) (C),

2
−k2(n+1)p = 2−k2n ,

i.e. if p = k2n/k2(n+1). This yields

pt(C) ≥ lim inf
n→∞

k2n
k2(n+1)

(20)

≥ lim inf
n→∞

k2n
k2(n+1)

(B/t− 1/k2n)

((d−B)/(d− t) + 1/k2(n+1))

≥ B

t

d− t
d−B

lim inf
n→∞

k2n
k2(n+1)

.

Fix n ∈ N and observe that

2(k2(n+1)−k2n+1)d2k2n+1b−b ≤ 2(k2(n+1)−k2n+1)dM2−k2n+1 (C) ≤M
2
−k2(n+1) (C)

≤ 3d2d2k2(n+1)B ≤ 23d+k2(n+1)B,
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from which it follows that

(k2(n+1) − k2n+1)d+ k2n+1b− b ≤ 3d+ k2(n+1)B

and hence

(21)
k2n+1

k2(n+1)
≥ d−B

d− b
− b+ 3d

k2(n+1)(d− b)
.

Also we have

2−b2(k2n+1−1)b ≤M
2−(k2n+1−1)(C) = M2−k2n (C) ≤ 3d2d2k2nB ≤ 23d+k2nB,

which implies that

(k2n+1 − 1)b− b ≤ 3d+ k2nB

and hence

(22)
k2n
k2n+1

≥ b

B
− 2b+ 3d

k2n+1B
.

It follows from (21)–(22) that

pt(C) ≥ B

t

d− t
d−B

lim inf
n→∞

k2n
k2(n+1)

≥ B

t

d− t
d−B

b

B

d−B
d− b

=
b

t

d− t
d− b

,

which is the desired lower bound and completes the proof.

Acknowledgements. The author was supported by an EPSRC Doc-
toral Training Grant.

References

[B1] M. F. Barnsley, Fractals Everywhere, Academic Press, Boston, 1988.
[B2] M. F. Barnsley, Superfractals, Cambridge Univ. Press, Cambridge, 2006.
[BD] M. F. Barnsley and S. Demko, Iterated function systems and the global construc-

tion of fractals, Proc. Roy. Soc. London Ser. A 399 (1985), 243–275.
[F1] K. J. Falconer, The Hausdorff dimension of self-affine fractals, Math. Proc. Cam-

bridge Philos. Soc. 103 (1988), 339–350.
[F2] K. J. Falconer, Dimensions and measures of quasi self-similar sets, Proc. Amer.

Math. Soc. 106 (1989), 543–554.
[F3] K. J. Falconer, Techniques in Fractal Geometry, Wiley, Chichester, 1997.
[F4] K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications,

2nd ed., Wiley, Chichester, 2003.
[H] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981),

713–747.
[OSn] L. Olsen and N. Snigireva, Lq spectra and Rényi dimensions of in-homogeneous
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