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Painlevé null sets, dimension and compact embedding
of weighted holomorphic spaces

by

Alexander V. Abanin and
Pham Trong Tien (Rostov-na-Donu and Vladikavkaz)

Abstract. We obtain, in terms of associated weights, natural criteria for compact em-
bedding of weighted Banach spaces of holomorphic functions on a wide class of domains in
the complex plane. Our study is based on a complete characterization of finite-dimensional
weighted spaces and canonical weights for them. In particular, we show that for a domain
whose complement is not a Painlevé null set each nontrivial space of holomorphic functions
with O-growth condition is infinite-dimensional.

1. Introduction. For a domain (i.e., an open connected set) G in C,
H(G) denotes the space of all holomorphic functions on G equipped with
the compact-open topology co. Let w : G→ R be a continuous and strictly
positive function on G, here called a weight. Define the following weighted
spaces of holomorphic functions:

Hw(G) :=

{
f ∈ H(G) : ‖f‖w := sup

z∈G

|f(z)|
w(z)

<∞
}
,

Hw0(G) :=

{
f ∈ H(G) :

f(z)

w(z)
vanishes at infinity on G

}
,

endowed with the norm ‖ · ‖w. As usual, we say that a function g vanishes
at infinity on G if for every ε > 0 there exists a compact subset K of G such
that |g(z)| < ε for all z ∈ G \K.

The best known space of the first type is the space H∞(G) of all holo-
morphic bounded functions in G (see, e.g., [Gar], [H]). Spaces of the above
two types arise in the growth theory of holomorphic functions, Fourier anal-
ysis, convolution and partial differential equations, etc. Therefore they were
studied intensively in different directions in many papers (see, for instance,
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[AD], [BB], [BS], [BDL], [BDLT], [BFJ], [BV], [BW], [L], [RS]). In [BBT] a
systematic study of these spaces and some properties of inductive spectra
composed from them was undertaken. It should be noted that in some of
the above mentioned papers functions of several variables were considered.

One of the most important problems relating to Hw(G) and Hw0(G) is
to characterize properties of these spaces and operators in them in terms
of the relevant weights. As is well known, for general weights this may be
impossible, but there is a chance to do this by using associated weights
which contain exact and complete information on the holomorphic functions
estimated by w. We now recall the notion of associated weights and some
facts about them.

Let Bw(G) denote the unit ball in Hw(G). Following Bierstedt–Bonet–
Taskinen [BBT], the function

w̃(z) := sup{|f(z)| : f ∈ Bw(G)}, z ∈ G,
is called the associated weight (with w). Note that log w̃ is a subharmonic
function on G, w̃ ≤ w on G, and Hw̃(G) = Hw(G) isometrically. Thus,
when considering spaces of holomorphic functions with O-growth conditions
we can use associated weights only. But so far nobody knows a complete
description of associated weights. Moreover, even for a concrete weighted
Banach space it might be a difficult problem to evaluate the associated
weight. For these reasons it is more convenient to use the notion of canonical
weight, which we now recall (see, e.g., [AT]).

We say that a weight w1 is dominated by a weight w2 (w1 ≺ w2) on
G if there is C > 0 such that w1(z) ≤ Cw2(z) for all z ∈ G. If w1 ≺ w2

and w2 ≺ w1, then w1 and w2 are called equivalent (w1 ∼ w2). Obviously,
Hw1(G) ↪→ Hw2(G) whenever w1 ≺ w2 (here and below, ↪→ denotes a con-
tinuous embedding), and Hw1(G) = Hw2(G) whenever w1 ∼ w2. A weight
w is called canonical if w ∼ w̃. It is clear that for every weight w on G we
have a whole family w(G) of canonical weights containing as a subclass all
functions Cw̃, C > 0. Note that for any w ∈ w(G),

Hw(G) = Hw(G) and
1

C
‖f‖w ≤ ‖f‖w ≤ C‖f‖w, f ∈ H(G),

with some constant C ≥ 1 depending only on w.

Although associated, as well as canonical, weights w̃ carry the whole and
exact information on Hw(G), they rarely provide answers in a complete and
simple form. In the present paper we develop a new, elementary, approach
to this, which we illustrate on the problem of compact embedding of one
space Hw1(G) into another Hw2(G). Everybody knows that the condition

w1(z)

w2(z)
vanishes at infinity on G
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is sufficient for compact embedding of Hw1(G) into Hw2(G), while the con-
verse is not true in general even if we replace w1 by the associated weight w̃1.
Our main idea is that the “wild” spaces, for which the converse fails, are
mostly finite-dimensional. Thus, in Section 2 we undertake a detailed study
of finite-dimensional weighted spaces and obtain several criteria for them.
Starting from these criteria, in the next section we give the following answer
to the problem of compact embedding.

Theorem 1.1. Let G be either the whole complex plane or a domain
in C whose complement has no one-point component, and let w1, w2 be
weights on G such that Hw1(G) ⊂ Hw2(G). Suppose that Hw1(G) is infinite-
dimensional whenever G = C, and nontrivial in the other case. Then the
inclusion of Hw1(G) into Hw2(G) is compact if and only if

w̃1(z)

w2(z)
vanishes at infinity on G.(1.1)

Note that the restrictions on G are essential in this theorem. To show
this, we construct several examples. In Section 4 we give some applications
of the above theorem. All our results can be trivially reformulated for open
sets in C.

2. Finite-dimensional weighted spaces. In this section we give a
characterization of finite-dimensional spaces and answer the following ques-
tions: 1) what canonical weights define such spaces? 2) for which domains in
C is there at least one finite-dimensional weighted space? In what follows,
G denotes a domain in C; C∗ is the extended complex plane and Gc := C∗\G
the complement of G; K b G means that K is a compact set in G; for a
continuous function f on a compact set K, ‖f‖K := maxz∈K |f(z)|. Let us
agree to consider the trivial space as a space of dimension zero. We start
with the following simple functional criterion.

Proposition 2.1. The following assertions are equivalent:

(i) Hw(G) has a finite dimension.
(ii) co induces on Hw(G) its original normed topology.
(iii) ∃K b G ∃A > 0 : ‖f‖w ≤ A‖f‖K , ∀f ∈ Hw(G).

Proof. Obviously, (ii)⇔(iii).
(i)⇒(ii), since there is a unique separated locally convex topology on a

finite-dimensional linear space.
Let now (ii) hold. Note that the unit ball Bw(G) of Hw(G) is always a

compact set in (H(G), co). By (ii), Bw(G) is compact in Hw(G), too. This
implies that Hw(G) is finite-dimensional, so (i) holds.

The next theorem gives a complete description of a finite-dimensional
weighted space structure. We denote by n(f) the number of zeros of a
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nontrivial function f ∈ H(G) counted with multiplicities. Throughout the
present paper we keep this agreement to count zeros with their multiplicities.
Clearly, n(f) is a nonnegative integer or +∞.

Theorem 2.2. The following assertions are equivalent:

(i) Hw(G) has dimension p ∈ N.
(ii) Hw(G) = span{zkf0(z) : 0 ≤ k ≤ p− 1}, where f0 is a holomorphic

function in G having no zeros in G.
(iii) n(g) ≤ p − 1 for every nontrivial function g ∈ Hw(G) and there is

a function f ∈ Hw(G) with n(f) = p− 1.

Proof. Obviously, (ii) implies (i) and (iii).

To continue the proof, we need the following simple lemma.

Lemma 2.3. Let R(z) = P (z)/Q(z) be a rational function, where degP
≤ degQ and the polynomials P and Q have no common zeros. If Q(z) 6= 0
for z ∈ ∂G and a function f in Hw(G) or Hw0(G) is such that fR ∈ H(G),
then fR ∈ Hw(G) or fR ∈ Hw0(G), respectively.

Proof. Since Q(z) 6= 0 for z ∈ ∂G and degP ≤ degQ, there exists a
compact set K in G such that R has no singularities in G \ intK and

sup
z∈G\K

|R(z)| =: A <∞.(2.1)

Then for every f ∈ Hw(G) with fR ∈ H(G) we have

sup
z∈K

|f(z)R(z)|
w(z)

<∞

and

sup
z∈G\K

|f(z)R(z)|
w(z)

≤ A sup
z∈G\K

|f(z)|
w(z)

≤ A‖f‖w.

Hence, fR ∈ Hw(G) whenever fR ∈ H(G) and f ∈ Hw(G). If, additionally,
f/w vanishes at infinity on G, then so does fR/w in view of (2.1).

Now we continue the proof of the theorem. Consider a nontrivial func-
tion g ∈ Hw(G) and suppose that it has zeros z1, . . . , zn with multiplicities
s1, . . . , sn (g may have other zeros). Then, by Lemma 2.3, the functions

gk,m(z) :=
g(z)

(z − zk)m+1
(1 ≤ k ≤ n; 0 ≤ m ≤ sk − 1)

are in Hw(G). Put g0,0(z) := g(z) and s0 := 1. It is easy to see that the
system {gk,m : 0 ≤ k ≤ n, 0 ≤ m ≤ sk − 1} is linearly independent. Thus,
(i) implies that

q := max{n(g) : g is a nontrivial function in Hw(G)} ≤ p− 1.
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It remains to check that if q <∞, then Hw(G) = span{zkf0(z) : 0 ≤ k ≤ q},
where f0 is a holomorphic function in G having no zeros in G. Indeed, in
this case (i)⇒(iii)⇒(ii).

So, let q < ∞. Choose a function f ∈ Hw(G) with n(f) = q. It has the
form f(z) = P0(z)f0(z), where P0 is a polynomial of degree q and f0 ∈ H(G)
has no zeros in G. Fixing a ∈ G, we can assume that f0(a) = 1. Similarly,
every nontrivial function g ∈ Hw(G) has the form g = Qg0, where Q is a
polynomial with degQ ≤ q and g0 ∈ H(G) has no zeros in G and g0(a) = 1.
Consider the function

h(z) := P (z)f0(z)− g0(z),

where the polynomial P of degree ≤ q is uniquely defined by the following
recurrence relation:

P (a) = 1, P (k)(a) = g
(k)
0 (a)−

k−1∑
j=0

CjkP
(j)(a)f

(k−j)
0 (a) (1 ≤ k ≤ q).

By Lemma 2.3, g0 and Pf0 are in Hw(G). Then the function h belongs to
Hw(G) and n(h) ≥ q + 1, since z = a is a zero of h of multiplicity ≥ q + 1.
Hence, by the definition of q, we have h ≡ 0. Since g0 has no zeros, it follows
that P (z) ≡ 1 and g0 = f0. This completes the proof.

Remark 2.4. From Theorem 2.2(ii) it follows that each nontrivial finite-
dimensional weighted space Hw(G) is generated by some function f0 ∈ H(G)
having no zeros. Moreover, from the proof of this theorem we see that for
a given space this function is uniquely defined by the condition f0(a) = 1,
where a is some fixed point in G.

From Theorem 2.2 and Lemma 2.3 we immediately deduce the following
description of infinite-dimensional weighted spaces Hw(G).

Corollary 2.5. A space Hw(G) is infinite-dimensional if and only if
for every k ∈ N there exists a nontrivial function f ∈ Hw(G) with n(f) ≥ k.
The latter trivially holds when there exists a nontrivial function f ∈ Hw(G)
having a countable (infinite) set of zeros. Additionally, every finite family
a1, . . . , an of points in G consists of zeros (not necessarily all) of orders
k1, . . . , kn of some nontrivial function in Hw(G).

Remark 2.6. From Corollary 2.5 and Lemma 2.3 it follows that each
infinite-dimensional weighted space Hw(G) either contains a nontrivial func-
tion with a countable set of zeros or for every n ∈ N0 there always exists a
function f ∈ Hw(G) with exactly n zeros.

Theorem 2.2 gives a description of finite-dimensional spaces Hw(G) un-
der the assumption that they exist. As follows from [BDL, Corollary 2], for
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the unit disk D := {z : |z| < 1} each nontrivial weighted space Hw(D) con-
tains a subspace isomorphic to l∞, and consequently is infinite-dimensional.
Below we obtain a complete characterization of those domains G in C that
admit nontrivial finite-dimensional spaces Hw(G). Moreover, we describe a
form of canonical weights for such spaces.

Recall (see, e.g., [Gam]) that a compact set K in C is called a Painlevé
null set if every bounded holomorphic function on C \K is a constant. We
will also use the same definition for unbounded closed subsets E in C.

Theorem 2.7.

(1) If the complement Gc := C∗ \G is not a Painlevé null set, then each
nontrivial space Hw(G) is infinite-dimensional.

(2) If Gc is a Painlevé null set, then there exist nontrivial finite-di-
mensional spaces Hw(G). In this case, the space is p-dimensional
if and only if it can be given by a canonical weight having the form
(1 + |z|)p−1|f0(z)|, where f0 is some holomorphic function in G hav-
ing no zeros.

Proof. (1) Suppose that Hw(G) is nontrivial and Gc is not a Painlevé
null set. Then there are a nontrivial function f ∈ Hw(G) and a bounded
function h ∈ H(G) which is not a constant. Consider the nontrivial functions
gk(z) := f(z)(h(z)− h(z0))

k, where z0 is an arbitrary fixed point in G and
k ∈ N. They are in Hw(G) and n(gk) ≥ k for every k ∈ N. From this and
Corollary 2.5 it follows that Hw(G) is infinite-dimensional.

(2) Let now Gc be a Painlevé null set. Consider a weight w of the form
(1 + |z|)p−1|f0(z)|, where f0 is a holomorphic function in G without zeros.
It is clear that each function of the form Pf0, with P being a polynomial of
degree ≤ p− 1, belongs to Hw(G).

To prove that Hw(G) is p-dimensional, it is enough to check, by Theo-
rem 2.2(iii), that n(f) ≤ p−1 for every nontrivial f ∈ Hw(G). Suppose that
f ∈ Hw(G) has at least p zeros z1, . . . , zp (with possibly zk = z` for some
k 6= `). Then, similarly to the proof of Lemma 2.3, the function

g(z) :=
f(z)

(z − z1) . . . (z − zp)f0(z)

is holomorphic and bounded in G. Moreover, g satisfies the estimate

|g(z)| ≤ ‖f‖w
(1 + |z|)p−1

|z − z1| . . . |z − zp|
, z ∈ G \ {z1, . . . , zp}.

Since Gc is a Painlevé null set, this implies that g is trivial, and consequently
f is trivial too. Thus, Hw(G) is p-dimensional.
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Let now Hw(G) be p-dimensional, where w is some general weight. Then,
by Theorem 2.2(ii),

(2.2) Hw(G) = span{zkf0(z) : 0 ≤ k ≤ p− 1},
where f0 is some function in Hw(G) having no zeros. Since Gc is a Painlevé
null set, it has no interior points. Using a continuity argument, we then
deduce from (2.2) that (1 + |z|)p−1|f0(z)| is a canonical weight for Hw(G).
This completes the proof.

In connection with Theorem 2.7 and some of our further results, note that
X. Tolsa has recently given a complete description of Painlevé null sets (see
[T, Theorem 1.3]). Next, by L. Ahlfors [A], a compact set K is a Painlevé
null set if and only if its analytic capacity γ(K) is zero, where γ(K) :=
sup |f ′(∞)|, the supremum being taken over all holomorphic functions f in
C \ K with |f(z)| ≤ 1 for all z ∈ C \ K. Obviously, an unbounded closed
subset E in C is a Painlevé null set if and only if

γ

({
1

z − a
: z ∈ E

}
∪ {0}

)
= 0,

where a is an arbitrary point from C \E. Thus, the reader can easily refor-
mulate Theorem 2.7 in terms of analytic capacity.

Tolsa’s description of Painlevé null sets is too complicated to be used
here, so we state several evident consequences of Theorem 2.7 based on
some classical facts on Painlevé null sets.

Corollary 2.8. Let Gc have at least one component containing more
than one point. Then every nontrivial space Hw(G) is infinite-dimensional.

Proof. Follows immediately from Theorem 2.7 and the well-known fact
(see, e.g., [Gam, p. 198]) that no compact set having a component with more
than one point is a Painlevé null set.

In other words, Corollary 2.8 states that if G admits nontrivial finite-
dimensional weighted spaces, then Gc is totally disconnected.

For some domains G with Gc being a Painlevé null set, the structure
of finite-dimensional weighted spaces and their canonical weights can be
refined. The proofs of the two corollaries below are elementary and we omit
them.

Corollary 2.9. Functions of the form f0(z) = eu(z), where u is an en-
tire function, generate finite-dimensional weighted spaces of entire functions.
Canonical weights for these spaces have the representation (1 + |z|)p−1eh(z)
with some harmonic function h in the complex plane and p ∈ N.

Corollary 2.10. Let G = C \ {a1, . . . , an} and suppose a function
f0 ∈ H(G) defines a finite-dimensional weighted space Hw(G) (see Theo-
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rem 2.2(ii)). If f0 has a pole at ak of order sk (k = 1, . . . , n), then

f0(z) =
eu(z)

(z − a1)s1 . . . (z − an)sn
, u ∈ H(C),

and a canonical weight for Hw(G) has the form

(1 + |z|)p−1eh(z)

|z − a1|s1 . . . |z − an|sn
,

where h is some harmonic function in C.

It is clear that if Hw(G) is finite-dimensional, then so is Hw0(G) (in this
case the latter space may be trivial). The next theorem gives a complete
answer to the question about the dimension of weighted spaces Hw0(G).

Theorem 2.11.

(1) Suppose that Gc is not a Painlevé null set. Then Hw0(G) is either
trivial or infinite-dimensional.

(2) Let Gc be a Painlevé null set. Then the following statements hold:

(a) If Gc is finite and Hw(G) is infinite-dimensional, then Hw0(G)
is infinite-dimensional too.

(b) If Gc \ {∞} consists of n ∈ N0 points, Hw(G) is p-dimensional
and w is a canonical weight, then Hw0(G) is (p − n − 1)+-
dimensional (here x+ := max(x, 0)).

(c) If Gc contains infinitely many points and Hw(G) is finite-dimen-
sional, then Hw0(G) is trivial.

(d) If Gc contains infinitely many points and Hw(G) is infinite-
dimensional, then Hw0(G) may be trivial, finite- or infinite-
dimensional.

Proof. (1) Suppose that Hw0(G) contains a nontrivial function f . As in
the proof of Theorem 2.7(1), take a bounded function h ∈ H(G) which is
not a constant. It is easy to see that the sequence (fhk)∞k=1 is contained in
Hw0(G) and linearly independent.

(2) (a) Let G = C \ {z1, . . . , zn} or G = C (then we put n = 0). Denote
Πn(z) := (z − z1) . . . (z − zn) for n ≥ 1, and Π0(z) ≡ 1. Take a ∈ G. By
Corollary 2.5, for each fixed k ∈ N there is a nontrivial fk ∈ Hw(G) having
at z = a a zero of order n+ k. Then, by Lemma 2.3, the functions

gk,j(z) :=
fk(z)

(z − a)n+j
Πn(z), j = 1, . . . , k,

are in Hw(G). Since

|gk,j(z)|
w(z)

≤ ‖fk‖w
|Πn(z)|
|z − a|n+j

, z ∈ G \ {a},
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these functions vanish at infinity on G (j = 1, . . . , k). It is easy to see that for
each k ∈ N the functions gk,j(z), j = 1, . . . , k, form a linearly independent
system. Hence, Hw0(G) is infinite-dimensional.

(b) and (c) follow immediately from the structure of finite-dimensional
spacesHw(G) and their canonical weights given in Theorems 2.2(ii) and 2.7(2).

(d) We should give examples showing that Hw0(G) can be trivial, finite-
or infinite-dimensional, although the corresponding spaces Hw(G) are all
infinite-dimensional. To do this, consider G = C\{z1, z2, . . .}, where |zn+1| >
|zn| + 2. Denote Un := {z : |z − zn| < 1} and U :=

⋃∞
n=1 Un. Consider the

following weight on G:

w1(z) :=

{
1/|z − zn|, z ∈ Un for some n ∈ N,

1, z /∈ U .

The space Hw1(G) contains the functions fn(z) := 1/(z − zn) which form a
linearly independent system. Hence, it is infinite-dimensional. On the other
hand, every function f ∈ Hw10(G) has removable singularities at zn (n ∈ N)
and at infinity. Therefore f is constant, and

f(∞) = lim
z→∞, z /∈U

f(z)

w1(z)
= 0

implies that f ≡ 0. Thus, Hw10(G) is trivial.

Arguing as above, we see that, for the weight w2(z) := (1 + |z|)pw1(z),
Hw2(G) is infinite-dimensional and Hw20(G) consists of all polynomials of
degree ≤ p− 1 and therefore is p-dimensional.

Finally, for the weight w3(z) := e|z|w1(z), Hw30(G) contains all polyno-
mials and hence infinite-dimensional.

Remark 2.12. (1) In connection with statement (1) of Theorem 2.11 we
note the following. For Gc not being a Painlevé null set, the weighted space
H∞(G) (= Hw(G) with w(z) ≡ 1) is infinite-dimensional, while the corre-
sponding space Hw0(G) is trivial in view of the maximum principle. Thus,
there exist infinite-dimensional spaces Hw(G) for which the corresponding
spaces Hw0(G) are trivial.

(2) We use the example from [BBT]. For the weight w(z) = (1+|z|)p−1+α
(p ∈ N, 0 < α < 1), Hw0(C) and Hw(C) both coincide with the family of all
polynomials of degree ≤ p− 1 and have dimension p. But for the canonical
weight w(z) = (1 + |z|)p−1, dimHw(C) = p, while dimHw0(C) = p − 1.
Consequently, statement (2)(b) of Theorem 2.11 is always true only for
canonical weights.

3. Compact embeddings. In what follows, w1 and w2 are weights
on G. As is well known and mentioned above, if (1.1) holds, then Hw1(G) ⊂
Hw2(G) and the inclusion is compact. From the standard example (see, e.g.,
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[BBT, p. 149]) concerning finite-dimensional spaces of entire functions it
follows that the converse is not true in the class of all weights. The following
criterion was actually obtained in [BBT, Theorem 2.1(a)].

Theorem 3.1. For the inclusion Hw1(G) ⊂ Hw2(G) to be compact it
is necessary and sufficient that for every ε > 0 there exists a continuous
function ϕ with compact support in G such that

(min(w1, 1/ϕ))∼ ≤ εw2 on G.

It is clear that this result is rather complicated to apply because of
using functions with compact support. From Bonet–Friz–Jorda [BFJ, The-
orem 8] it follows that the natural equivalence between compact embed-
ding of Hw1(G) into Hw2(G) and (1.1) holds if we assume additionally

that Bw10(G)
co

= Bw1(G). Here Bw10(G) and Bw1(G) are the unit balls
in Hw10(G) and Hw1(G), respectively.

In this section we prove Theorem 1.1 containing, for some domains, a
natural criterion for compact embedding of weighted spaces without addi-
tional assumptions. Furthermore, we construct some examples showing that
our restrictions on domains cannot be weakened. We start with two simple
results stated here for the reader’s convenience.

Proposition 3.2 ([BFJ, Proposition 5]). Let w1, w2 be some weights
on G. The following conditions are equivalent:

(i) Hw1(G) ⊂ Hw2(G),
(ii) Hw1(G) ↪→ Hw2(G),
(iii) w̃1 ≺ w2,
(iv) w̃1 ≺ w̃2.

Proposition 3.3. The following statements are equivalent:

(i) Hw1(G) ⊂ Hw2(G) and the inclusion is compact.
(ii) There exist a compact set K in G and a positive constant A such

that

‖f‖w2 ≤ A‖f‖K , ∀f ∈ Hw1(G).

Proof. We use the method in the proof of [BBT, Theorem 2.1(a)]. Since
the normed topology in Hw2(G) is finer than the topology of pointwise
convergence, (i) holds if and only if the unit ball Bw1(G) is compact in
Hw2(G). Moreover, Montel’s theorem implies that Bw1(G) is a compact in
(H(G), co). Hence, for Bw1(G) to be compact in Hw2(G) it is necessary and
sufficient that the normed topology ‖·‖w2 and co coincide on Bw1(G), which
is equivalent to (ii).

From Proposition 3.2 one can easily obtain the following criterion for
compact embedding of a finite-dimensional weighted space.
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Proposition 3.4. Let Hw1(G) be finite-dimensional. For the inclusion
Hw1(G) ⊂ Hw2(G) to be compact it is necessary and sufficient that w̃1 ≺ w2.

Corollary 3.5. Let Hw1(G) be finite-dimensional and w1 canonical (by
Theorem 2.7(ii), w1 is equivalent to (1 + |z|)p|f0(z)| with some p ∈ N0 and
holomorphic function f0 in G without zeros). For the inclusion Hw1(G) ⊂
Hw2(G) to be compact it is necessary and sufficient that w1 ≺ w2.

Remark 3.6. In the necessity part of Proposition 3.4 the associated
weight w̃1 cannot be replaced by w1; also, the assumption in Corollary 3.5
that w1 is canonical cannot be weakened. To see this, it is enough to use
the example from [BBT]: G = C, w1(z) = (1 + |z|)p+α, w2(z) = (1 + |z|)p,
where p ∈ N and 0 < α < 1.

To prove Theorem 1.1 for entire functions, we need the following auxiliary
statement of independent interest.

Proposition 3.7. Suppose Hw(C) is infinite-dimensional. Then Hw0(C)
is dense in Hw(C) in the co topology.

Proof. Fix f ∈ Hw(C) \ Hw0(C). We divide the argument into several
steps.

Case 1. Suppose f has infinitely many zeros zn (n = 1, 2, . . .). Put
fn(z) := znf(z)/(zn − z). Clearly, fn ∈ Hw0(C) for all n ∈ N. Given R > 0,
for all |z| ≤ R and |zn| > R, we have

|f(z)− fn(z)| = |f(z)| |z|
|zn − z|

≤ ‖f‖R
R

|zn| −R
,

where ‖f‖R := max{|f(z)| : |z| ≤ R}. It follows that fn converges to f
uniformly on |z| ≤ R. Hence, fn → f in (H(C), co).

Case 2. Suppose f has a finite number of zeros in C, say p (0 ≤ p <∞).
Then it has the form f(z) = P (z)eu(z), where P is a polynomial of degree p
and u is an entire function. The further proof is divided into two subcases
covering all possible situations (see Remark 2.6).

Subcase 2a. Suppose that Hw(C) contains a function g with exactly
p+ 1 zeros z1, . . . , zp+1. Then g(z) = Q(z)ev(z), where Q is a polynomial of
degree p+1 and v is an entire function. As follows from Lemma 2.3 (we have

already used this observation above), Q̃(z)ev(z) ∈ Hw(C) for any polynomial

Q̃ with deg Q̃ ≤ p + 1. Moreover, Q̃(z)ev(z) ∈ Hw0(C) for deg Q̃ ≤ p. Since
f /∈ Hw0(C), this implies that the entire function v − u is not a constant.
By Picard’s theorem, this function takes all values of C except at most one.
Thus, there exists n0 such that for every n ≥ n0 there is zn ∈ C with
v(zn) − u(zn) = n. Clearly, zn → ∞ as n → ∞. Note that the function

g1(z) := P (z)ev(z) is in Hw(C) (and in Hw0(C)), and the entire function
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eu(z) − e−n+v(z) vanishes at z = zn (n ≥ n0). Hence, the function

f(z)− e−ng1(z) = P (z)(eu(z) − e−n+v(z))

is in Hw(C) and vanishes at zn. Therefore, the function

fn(z) :=
zn(f(z)− e−ng1(z))

zn − z
belongs to Hw0(C). Furthermore, for fixed R > 0, for all |z| ≤ R and
|zn| > R, we have

|f(z)− fn(z)| =
∣∣∣∣f(z)− znf(z)

zn − z
+ e−n

zng1(z)

zn − z

∣∣∣∣
≤ |f(z)| |z|

|zn| − |z|
+ |g1(z)|

e−n|zn|
|zn| − |z|

≤ ‖f‖R
R

|zn| −R
+ ‖g1‖R

e−n|zn|
|zn| −R

.

This yields fn → f in (H(C), co).

Subcase 2b. Suppose Hw(C) contains a nontrivial function g having
infinitely many zeros (zn)∞n=1. Take a ∈ C with g(a) 6= 0 and put

λ :=
(a− z1) . . . (a− zp+1)

g(a)
eu(a).

Consider the functions

g1(z) := λ
g(z)

(z − z1) . . . (z − zp+1)
,

g2(z) := P (z)g1(z), h(z) := P (z)(eu(z) − g1(z)).

It is clear that g1, g2 ∈ Hw0(C) and f = g2 + h. In addition, h has at least
p+ 1 zeros (at the zeros of P and at z = a).

If h has a finite number of zeros, then Hw(C) contains a function with
exactly p+ 1 zeros (as above, this is a consequence of Lemma 2.3). But this
situation has already been considered in Subcase 2a.

If h has infinitely many zeros, by Case 1, there is a sequence (hn)∞n=1

consisting of functions from Hw0(C) such that hn → h in (H(C), co). Then
the functions g2+hn are contained in Hw0(C) and g2+hn → f in (H(C), co).
This completes the proof.

Propositions 3.3 and 3.7 imply immediately the next statement playing
a crucial role in the proof of our main theorem for entire functions.

Lemma 3.8. Suppose Hw1(C) is infinite-dimensional. If Hw1(C) ⊂
Hw2(C) and the inclusion is compact, then Hw10(C) is dense in Hw1(C)
with respect to the norm ‖ · ‖w2.
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Theorem 3.9. Suppose Hw1(C) is infinite-dimensional. For the inclu-
sion Hw1(C) ⊂ Hw2(C) to be compact it is necessary and sufficient that

lim
z→∞

w̃1(z)

w2(z)
= 0.(3.1)

Proof. Suppose that Hw1(C) ⊂ Hw2(C) is compact. By Proposition 3.2,
there is C > 0 such that

w̃1(z) ≤ Cw2(z) for all z ∈ C.(3.2)

Fix any ε > 0. Since the inclusion Hw1(C) ⊂ Hw2(C) is compact, we can
find a finite ε-covering (f1, . . . , fn) of the unit ball Bw̃1

(C) in Hw2(C). Next,
by Lemma 3.8, for every fk there exists fk0 in Hw̃10(C) such that

‖fk − fk0‖w2 ≤ ε, 1 ≤ k ≤ n.(3.3)

From (3.2) we have fk0 ∈ Hw20(C) (1 ≤ k ≤ n). Hence, there exists a
compact set K in C so that

|fk0(z)|
w2(z)

≤ ε for all z /∈ K and k = 1, . . . , n.(3.4)

Let now f be an arbitrary function from Bw̃1
(C). Find fk from the ε-

covering so that ‖f − fk‖w2 ≤ ε. Then, applying (3.3) and (3.4), for z /∈ K,
we get

|f(z)|
w2(z)

≤ |f(z)− fk(z)|
w2(z)

+
|fk(z)− fk0(z)|

w2(z)
+
|fk0(z)|
w2(z)

≤ 3ε.

Consequently, w̃1(z)/w2(z) ≤ 3ε whenever z /∈ K, and this completes the
proof.

Corollary 3.10. Suppose Hw1(C) is infinite-dimensional and w1 is
canonical. For the inclusion Hw1(C) ⊂ Hw2(C) to be compact it is neces-
sary and sufficient that

lim
z→∞

w1(z)

w2(z)
= 0.

Remark 3.11. As above for finite-dimensional spaces, the use of the
associated weight w̃1 in condition (3.1) of Theorem 3.9, as well as of a
canonical weight w1 in Corollary 3.10, is essential.

To see this, consider the following example.

Example 3.12. Take an increasing sequence (rn)∞n=1 of positive numbers
so that r1 > 2 and rn+1 > 4nrn (n ≥ 1) and choose a constant σ with

σ > log 2 and
e2σ − 1

2σ
log

e2σ − 1

4eσ
+ 1 < 0.
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Then construct a function θ : R→ [0;∞) in the following way. Put

• θ(x) := ex for x ∈ (−∞, log r1] and x ∈ [log rn + 2σ, log rn+1];
• θ(x) is linear on [log rn, log rn + σ] and [log rn + σ, log rn + 2σ] with

θ(log rn) = rn, θ(log rn + σ) = 2eσrn, θ(log rn + 2σ) = e2σrn.

Using the inequality σ > log 2, we easily deduce that θ is an increasing
continuous function on R and θ(x) ≥ ex for all x ∈ R.

Set w1(z) := eθ(log |z|), w2(z) := e2|z| (z ∈ C). We show that the space
Hw1(C) is infinite-dimensional and the inclusion Hw1(C) ⊂ Hw2(C) is com-
pact.

Since θ(x) ≥ ex on R, w1(z) ≥ e|z| on C. Therefore, the functions
fλ(z) := eλz (λ ∈ C, |λ| = 1) are in Hw1(C). In particular, this space is
infinite-dimensional.

By [BBT, Observation 1.5], the associated weight w̃1 is radial and

w̃1(z) = max{Mf (z) : f ∈ Bw1(C)},
where Mf (z) := max{|f(λz)| : |λ| = 1}. Consequently,

w̃1(z) ≥ max{Mfλ(z) : |λ| = 1} = e|z|, ∀z ∈ C,
or, what is the same, er ≤ w̃1(r) on [0,∞). Hence, w̃1(r) = er for r ∈
[e2σrn, rn+1] and n ∈ N. From this it follows that γ(x) − logw2(e

x) = −ex
on the intervals [log rn + 2σ, log rn+1], where γ(x) := log w̃1(e

x), x ∈ R.
Moreover, since γ(x) is an increasing convex function on R (see, e.g., [BBT,
p. 142]), for x ∈ [log rn, log rn + 2σ],

γ(x)− logw2(e
x) ≤ e2σrn − rn

2σ
(x− log rn) + rn − 2ex

= rn

(
e2σ − 1

2σ
(x− log rn) + 1− 2ex−log rn

)
.

Consider the function

g(t) :=
e2σ − 1

2σ
t+ 1− 2et, t ∈ [0, 2σ].

It is easy to see that

M := max
x∈[0,2σ]

g(t) = g

(
log

e2σ − 1

4σ

)
=
e2σ − 1

2σ
log

e2σ − 1

4eσ
+ 1.

Hence, γ(x) − logw2(e
x) ≤ Mrn on [log rn, log rn + 2σ]. Note that M < 0,

because of the choice of σ. Then γ(x)− logw2(e
x)→ −∞ as x→ +∞, and

consequently

lim
z→∞

w̃1(z)

w2(z)
= 0.

By Theorem 3.9, this implies that the inclusion Hw1(C) ⊂ Hw2(C) is com-
pact.
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On the other hand,

w1(e
(log rn+σ))

w2(e(log rn+σ))
=
eθ(log rn+σ)

w2(eσrn)
= 1, ∀n ≥ 1,

which gives

lim sup
z→∞

w1(z)

w2(z)
≥ 1.

Now we consider the case when G is a domain in C whose complement
has no one-point component. By Corollary 2.8, in this case each nontrivial
weighted space Hw(G) is infinite-dimensional.

Theorem 3.13. Let G 6= C be a domain in C whose complement has
no one-point component and suppose Hw1(G) is nontrivial. For the inclu-
sion Hw1(G) ⊂ Hw2(G) to be compact it is necessary and sufficient that
condition (1.1) holds.

Proof. We will use some ideas of Bonet–Domański–Lindström (see [BDL,
proof of Theorem 1]). Assume that the inclusion Hw1(G) ⊂ Hw2(G) is com-
pact but (1.1) does not hold. Then there is a sequence (zn)∞n=1 in G so
that

w̃1(zn)

w2(zn)
≥ c > 0 (n = 1, 2, . . .).

Without loss of generaligty we will assume that zn → z0 ∈ ∂G ∪ {∞}.
Let L denote the component of Gc containing z0. Since L contains more
than one point, by Riemann’s mapping theorem, the domain D := C∗ \ L
is conformally equivalent to the unit disk D := {z : |z| < 1}. From [H,
p. 204, Corollary] it then follows that there is a subsequence (znk)∞k=1 which
is interpolating for H∞(D). Using [W, Theorem III. E. 4], we can find a
sequence (hk)

∞
k=1 in H∞(D) so that

hj(znk) =

{
1, k = j,

0, k 6= j
and, for some M > 0,

∞∑
k=1

|hk(z)| ≤M, ∀z ∈ D.

Next, by [BBT, Property 1.2(iv)], for each k ∈ N there is a function fk ∈
Bw1(G) with |fk(znk)| = w̃1(znk). Define gk := fkhk for k ∈ N. Clearly,
gk ∈ Hw1(G) for all k ≥ 1, and gk tends to 0 in (H(G), co). Applying
Proposition 3.3, we derive that gk tends to 0 with respect to the norm ‖·‖w2 .
On the other hand, for every k ≥ 1,

‖gk‖w2 = sup
z∈G

|gk(z)|
w2(z)

≥ |gk(znk)|
w2(znk)

=
|fk(znk)|
w2(znk)

=
w̃1(znk)

w2(znk)
≥ c > 0.

This contradiction completes the proof.
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Corollary 3.14. Let G 6= C be a domain in C whose complement has
no one-point component and suppose Hw1(G) is nontrivial and the weight
w1 is canonical. Then for the inclusion Hw1(G) ⊂ Hw2(G) to be compact it
is necessary and sufficient that w1/w2 vanishes at infinity on G.

The assumption that the complement of G in C∗ has no one-point com-
ponent is essential in Theorem 3.13 and Corollary 3.14. Indeed, consider the
following example (see also the example in Bonet–Vogt [BV, p. 95]).

Example 3.15. Let G = D \ {0} (as above, D denotes the unit disk
in C). Consider the weights

w1(z) =
1

|z|(1− |z|)
and w2(z) =

1

|z|(1− |z|)2
, z ∈ G.

It is easy to see that wk is a canonical weight for Hwk(G) and each function
from Hwk(G) has either a removable singularity or a simple pole at z = 0
(k = 1, 2). This implies that the operator Φ : f(z) 7→ zf(z) is an isomor-
phism between Hwk(G) and Hvk(D), where vk(z) = 1/(1− |z|)k (k = 1, 2).
Since v1/v2 vanishes at infinity on D, the inclusion Hv1(D) ⊂ Hv2(D) is com-
pact. Thus, the inclusion Hw1(G) ⊂ Hw2(G) is compact, too. On the other
hand, limz→0w1(z)/w2(z) = 1.

Finally, note that Theorem 3.13 and Corollary 3.14 might fail if we use a
general type weight w1 in (1.1) or a noncanonical weight in Corollary 3.14.
To see this, it is enough to consider the following example. In this case the
explanation is similar to the one in Example 3.12, so we omit it.

Example 3.16. Let G = D. Take a constant σ ∈ (
√

2−1, 1/2) and an in-

creasing sequence (rn)∞n=1 of positive numbers such that (rn)σ
2
< rn+1 < 1,

n ≥ 1. Then construct a function θ : (−∞, 0] → [0,+∞) in the following
way. Put

• θ(x) := −1/x for x ∈ (−∞, log r1] and x ∈ [σ2 log rn, log rn+1], n ≥ 1;
• θ(x) is linear on [log rn, σ log rn] and [σ log rn, σ

2 log rn] with

θ(log rn) =− 1

log rn
, θ(σ log rn) =− 2

σ log rn
, θ(σ2 log rn) =− 1

σ2 log rn
.

Then, for the weights on D given by

w1(z) := eθ(log |z|) and w2(z) := e−2/log |z|,

we have

lim sup
|z|→1−

w1(z)

w2(z)
> 0,

in spite that the inclusion Hw1(G) ⊂ Hw2(G) is compact.

To end this section, note that our results, Theorem 3.9 and Corol-
lary 3.10, on compact embedding of spaces of entire functions cannot be
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extended automatically to functions of several variables. To see this, it is
enough to consider the following canonical weights:

w1(z) := e|z1|, w2(z) := (1 + |z1|)e|z1|, z = (z1, z2) ∈ C2.

4. Some applications. In this section we demonstrate that the re-
sults obtained above may be used to refine some known answers to several
problems.

By J. Bonet and E. Wolf [BW, Corollary 2], the spaces Hw(G) and
Hw0(G) are not reflexive whenever Hw0(G) is infinite-dimensional. Using
this, we have the following consequence of Theorem 2.11.

Proposition 4.1. Suppose one of the following conditions holds:

(a) Gc is not a Painlevé null set and Hw0(G) is nontrivial.
(b) Gc is finite and Hw(G) is infinite-dimensional.

Then Hw(G) and Hw0(G) are both nonreflexive.

Remark 4.2. In view of Theorem 2.7(2), one can reformulate asser-
tion (b) of Proposition 4.1 in the following way:

Suppose Gc is finite. A nontrivial space Hw(G) is reflexive if and only
if it can be defined by a weight of the form (1 + |z|)p−1|f0(z)|, where p ∈ N
and f0 is some function in H(G) having no zeros.

Let now V = (vn)n∈N be an increasing sequence of weights on a do-
main G. Define the space VH(G) := indnHvn(G), endowed with the nat-
ural inductive limit topology. Note that VH(G) is regular (i.e., each of its
bounded sets is contained and bounded in some Hvn(G)) and complete. Put

V = V (V) :=

{
v weight on G : sup

z∈G

vn(z)

v(z)
<∞, ∀n

}
;

HV (G) :=

{
f ∈ H(G) : ‖f‖v = sup

z∈G

|f(z)|
v(z)

<∞, ∀v ∈ V
}
.

As is known,HV (G) and VH(G) coincide as sets and have the same bounded

sets. The space HV (G) is called the projective hull of VH(G).
In [BBT, Theorem 2.1(a), (b)] criteria were obtained for the space

VH(G) to be (DFS) and, respectively, for HV (G) to be semi-Montel.
But these criteria seem very complicated to use. In this connection, Bonet
and Vogt [BV, Theorem 3] improved [BBT, Theorem 2.1(a)] under the

additional assumption that
⋃∞
n=1Hvn0(G) =

⋃∞
n=1Hṽn0(G). They proved

that in this case the space VH(G) is (DFS) if and only if the sequence
(ṽn)∞n=1 of associated weights satisfies condition (S): for each n there is
m > n such that ṽn/ṽm vanishes at infinity on G. In the case of radial
weights the above assumption can be removed for the unit disk (see [BBT,
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Proposition 3.5]) or simplified for balanced domains (see [BV, Corollary 6]).
Also, Bierstedt and Bonet [BB, Theorem 15] gave, under some additional
conditions, a characterization of the semi-Montel property of HV (G), which
is simpler than [BBT, Theorem 2.1(b)]. Applying our results from the pre-
vious sections, we obtain the following new criteria in this direction.

Theorem 4.3. Let G be either the whole complex plane C or a domain
in C whose complement has no one-point component. The space VH(G) is
(DFS) if and only if at least one of the following conditions holds:

(i) VH(G) is finite-dimensional.
(ii) VH(G) is infinite-dimensional, while all Hvn(G) are finite-dimen-

sional.
(iii) Some space Hvn(G) is infinite-dimensional and

∀n ∈ N ∃m > n : ṽn(z)/vm(z) vanishes at infinity on G.

Proof. Immediate from Proposition 3.4 and Theorems 3.9 and 3.13.

To prove a similar criterion establishing that the space HV (G) is semi-
Montel, we need the next lemma.

Lemma 4.4. The space HV (G) is semi-Montel if and only if for all
n ∈ N and v ∈ V the inclusions Hvn(G) ⊂ Hv(G) are compact.

Proof. The above mentioned properties of HV (G) and VH(G) imply
that HV (G) is semi-Montel if and only if for every n ∈ N the unit ball Bn of
Hvn(G) is compact in HV (G). This is equivalent to HV (G) and co defining
the same topology on Bn for every n ∈ N, i.e.,

∀n ∈ N ∀v ∈ V ∃K b G ∃C > 0 : ‖f‖v ≤ C‖f‖K , ∀f ∈ Hvn(G).

Thus, by Proposition 3.3, HV (G) is semi-Montel if and only if for every
n ∈ N and v ∈ V the inclusion Hvn(G) ⊂ Hv(G) is compact.

Theorem 4.5. Let G be either the whole complex plane C or a domain
in C whose complement has no one-point component. The space HV (G) is
semi-Montel if and only if at least one of the following conditions holds:

(i) VH(G) is finite-dimensional.
(ii) VH(G) is infinite-dimensional, while all Hvn(G) are finite-dimen-

sional.
(iii) Some space Hvn(G) is infinite-dimensional and

ṽn(z)/v(z) vanishes at infinity on G for all n ∈ N and v ∈ V .
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[BDLT] J. Bonet, P. Domański, M. Lindström, and J. Taskinen, Composition operators
between weighted Banach spaces of analytic functions, J. Austral. Math. Soc. 64
(1998), 101–118.

[BFJ] J. Bonet, M. Friz, and E. Jorda, Composition operators between weighted induc-
tive limits of spaces of holomorphic functions, Publ. Math. Debrecen 67 (2005),
333–348.

[BV] J. Bonet and D. Vogt, Weighted spaces of holomorphic functions and sequence
spaces, Note Mat. 17 (1997), 87–97.

[BW] J. Bonet and E. Wolf, A note on weighted Banach spaces of holomorphic func-
tions, Arch. Math. (Basel) 81 (2003), 650–654.

[Gam] T. W. Gamelin, Uniform Algebras, Prentice-Hall, 1969.
[Gar] J. B. Garnett, Bounded Analytic Functions, Academic Press, 1981.
[H] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood

Cliffs, NJ, 1967.
[L] W. Lusky, On the isomorphism classes of weighted spaces of harmonic and holo-

morphic functions, Studia Math. 160 (2006), 19–45.
[RS] L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic

functions, J. Austral. Math. Soc. 11 (1970), 276–280.
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