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On Lindenstrauss�Peªzy«ski spaesby
Jesús Castillo, Yolanda Moreno and Jesús Suárez (Badajoz)Abstrat. We onsider some stability aspets of the lassial problem of extensionof C(K)-valued operators. We introdue the lass LP of Banah spaes of Lindenstrauss�Peªzy«ski type as those suh that every operator from a subspae of c0 into them an beextended to c0. We show that all LP-spaes are of type L∞ but not onversely. Moreover,

L∞-spaes will be haraterized as those spaes E suh that E-valued operators from
w∗(l1, c0)-losed subspaes of l1 extend to l1. Regarding examples we will show that everyseparable L∞-spae is a quotient of two LP-spaes; also, L∞-spaes not ontaining c0are LP-spaes; the omplemented subspaes of C(K) and the separably injetive spaesare sublasses of the LP-spaes and we show that the former does not ontain the latter.Regarding stability properties, we prove that quotients of an LP-spae by a separablyinjetive spae and twisted sums of LP-spaes are LP-spaes.1. Introdution and preliminaries. In this work we shall be on-erned with some stability aspets of the lassial problem of extension of
C(K)-valued and L∞-valued operators. Let us desribe and motivate them.In a 1971 paper [26℄ Lindenstrauss and Peªzy«ski proved:Theorem 1. Let K be a ompat Hausdor� spae. Every C(K)-valuedoperator de�ned on a subspae of c0 admits an extension to the whole spae.The result remained isolated until 1989 when Johnson and Zippin ob-tained in [17℄ an extension to subspaes of c0(Γ ), and later in 1995, in [18℄,the analogous result for w(l1, c0)-losed subspaes of l1. Further proofs of theLindenstrauss�Peªzy«ski theorem have been provided by Zippin [34, 35℄.The paper [8℄ ontains a homologial approah to both results showing thatthey are in a sense dual to eah other.The general problem of extension of operators admits a natural formula-tion in homologial terms. We shall assume from the reader some familiarity2000 Mathematis Subjet Classi�ation: 46B20, 46M18, 46B25.Key words and phrases: extension of operators, exat sequene of Banah spaes,3-spae property, operator ideal.The researh of the �rst two authors has been supported in part by DGICYT projetMTM2004-02635. The work of the third author was supported in part by a Marie Curiegrant HPMT-GH-01-00286-04 at Karlsruhe University under the diretion of Prof. L. Weis.[213℄



214 J. M. F. Castillo et al.with the basi notions and onstrutions of the theory of exat sequenesof Banah spaes; the neessary bakground an be found in [9℄ and, opera-tively de�ned, below. We shall write 0 → Y
j
→ X

q
→ Z → 0 ≡ F to representan exat sequene of Banah spaes and operators, whih is a diagram wherethe kernel of eah operator oinides with the image of the preeding one.The open mapping theorem makes Y a subspae of X through the embed-ding j and Z the orresponding quotient spae through q. The reader anview F just as the name of the sequene; however, those familiar with thetheory of quasi-linear maps reated in [19, 22℄ an in fat onsider F as aquasi-linear map assoiated to the exat sequene.We shall onsider exat sequenes of Banah spaes modulo the naturalequivalene relation: two sequenes F and G are said to be equivalent if thereis a ommutative diagram

0 −−−−→ Y
j

−−−−→ X −−−−→ Z −−−−→ 0 ≡ F∥∥∥ T

y
∥∥∥

0 −−−−→ Y −−−−→ X ′ −−−−→ Z −−−−→ 0 ≡ GIn this ase we write F ≡ G. The spae of equivalene lasses of exatsequenes with Y as subspae and Z as quotient will be denoted Ext(Z, Y ).It is a vetor spae under some natural operations (see [13, III.2℄) and the 0element is the sequene 0 → Y → Y ⊕Z → Z → 0 with inlusion y 7→ (y, 0)and quotient map (y, z) 7→ z. We shall say that F is trivial or splits when
F ≡ 0. This means, in lassial terms, that j(Y ) is omplemented in X.Reall that a property P is said to be a 3-spae property if whenever onehas an exat sequene 0 → Y → X → Z → 0 in whih both Y and Z have
P then also X has P; see [9℄ for most of the available information about3-spae problems.The lower sequene in a diagram

0 −−−−→ Y
j

−−−−→ X
q

−−−−→ Z −−−−→ 0 ≡ F∥∥∥
x

xT

0 −−−−→ Y −−−−→ X ′ −−−−→ E −−−−→ 0is a alled a pull-bak sequene and is naturally denoted FT . The middlespae X ′ is alled the pull-bak of q and T . The sequene FT splits if andonly if T an be lifted to X through q. The lower sequene in a diagram
0 −−−−→ Y

j
−−−−→ X −−−−→ Z −−−−→ 0 ≡ F

T

y
yt

∥∥∥

0 −−−−→ E
i

−−−−→ X ′ −−−−→ Z −−−−→ 0



Lindenstrauss�Peªzy«ski spaes 215is alled the push-out sequene and is naturally denoted TF . The middlespae X ′ is alled the push-out of j and T . This spae has the universalproperty that given operators a : E → B and b : X → B suh that aT = bjthere exists a unique operator p : X ′ → B suh that pi = a and pt = b. Ex-tending an operator T : Y → E through j is the same as saying that TF istrivial. The lifting property of l1(Γ ) and the fat that every Banah spae Zadmits an exat sequene 0 → K(Z) → l1(Γ ) → Z → 0, alled a projetivepresentation of Z, imply that every exat sequene 0 → Y → X → Z → 0 isa push-out of a projetive presentation of Z. Hene Ext(Z, Y ) = 0 is equiva-lent to the statement �every operator K(Z) → Y an be extended to l1(Γ )�.That all operators Y → E an be extended to X through j admits aneven simpler formulation: the restrition operator j∗ : L(X,E) → L(Y,E) issurjetive. The following terminology is quite natural and will prove to bevery useful:Definition 1. Let A be a lass of Banah spaes. We say that an exatsequene 0 → Y
j
→ X → Z → 0 ≡ F is A-trivial (or that F A-splits) if forevery A ∈ A the restrition operator j∗ : L(X,A) → L(Y,A) is surjetive.We will also say that Y is A-omplemented in X.Sometimes the quantitative version of the previous notion will be used:given λ ≥ 1, the exat sequene F will be said to be (λ,A)-trivial if for every

A ∈ A every operator T : Y → A admits an extension T̂ : X → A suh that
‖T̂‖ ≤ λ‖T‖.This notion of A-triviality uni�es di�erent notions appearing in the lit-erature: (i) trivial sequenes, whih orrespond to A = all Banah spaes;(ii) Kalton's loally trivial, or loally split, sequenes (see [20℄), orrespond-ing to A = l∞(Gn), where Gn is a dense (in the Banah�Mazur distane)sequene of �nite-dimensional Banah spaes (see also [14℄); (iii) Zippin'salmost trivial sequenes (see [33�36℄), whih orrespond to the hoie A =
C(K)-spaes.In this work we are onerned with C(K)-trivial and L∞-trivial se-quenes. In Setion 2 we study the stability of C(K)-trivial sequenes byamalgams and duality. We �rst show that lp- and c0-amalgams of C(K)-trivial sequenes are C(K)-trivial. Conerning the stability of C(K)-trivialsequenes by duality, the Lindenstrauss�Peªzy«ski and Johnson�Zippin the-orems suggest that it ould be that the dual of a C(K)-trivial sequene is
C(K)-trivial sine the former implies that every exat sequene 0 → H →
X → S → 0 ≡ F with H a subspae of c0 and S separable is C(K)-trivial;and the latter yields (see [10℄) that its dual sequene F ∗ is C(K)-trivial.However, the situation overed by those two theorems proves to be quitepeuliar; we give examples at the end of Setion 2 to show that the dual andbidual sequenes of a C(K)-trivial sequene need not be C(K)-trivial.



216 J. M. F. Castillo et al.In Setion 3 our attention turns to those Banah spaes whih an playthe role of C(K)-spaes in the Lindenstrauss�Peªzy«ski theorem. We allsuh spaes Lindenstrauss�Peªzy«ski (LP, for short) spaes. Our motivationto introdue those spaes omes from [26, p. 234, remark 2℄ where Linden-strauss and Peªzy«ski assert that isometri L1-preduals an play the roleof C(K)-spaes regarding extension of operators from subspaes of c0. Aftershowing that every LP-spae is an L∞-spae we then fae the unavoidablequestion: Must every L∞-spae be an LP-spae? The answer is no, whihsolves Problem 6.15 of Zippin in [36℄. We shall show that the same ap-proah to the Johnson�Zippin theorem just provides a new haraterizationof L∞-spaes (see Proposition 3.1).As regards the problem of the identi�ation of LP-spaes, it is learthat omplemented subspaes of C(K)-spaes and separably injetive spaesare LP-spaes. On the way, we will give perhaps the �rst example of aseparably injetive spae that is not omplemented in any C(K)-spae. Theprevious examples do not exhaust the lass of LP-spaes: we shall show that
L∞-spaes not ontaining c0, the new exoti L∞-spaes onstruted in [7℄,quotients of LP-spaes by separably injetive subspaes and c0-vetor sumsof uniformly LP-spaes are LP-spaes.In Setion 4 we takle the 3-spae problem for the lass of LP-spaes,whih needs the development of a new method of proof and new harateri-zations of LP-spaes. Setion 5 ontains further remarks, examples and openproblems.

2. On the stability of C(K)-trivial sequenes by amalgams andduality. To study the stability of C(K)-trivial sequenes we need to knowtheir behavior with respet to the basi homologial pull-bak and push-outonstrutions.Proposition 2.1. Let A be a lass of Banah spaes.(1) A pull-bak sequene of an A-trivial sequene is A-trivial.(2) A push-out sequene of an A-trivial sequene is A-trivial.Proof. The �rst assertion is obvious. The seond is a onsequene of theuniversal property of the push-out onstrution.When, moreover, the push-out is obtained from a surjetive operator onehas:Lemma 1. Let A be a lass of Banah spaes. Consider the ompletedpush-out diagram of Banah spaes
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0 0
y

y

B = B
ya

yb

0 −−−−→ Y
j

−−−−→ X −−−−→ Z −−−−→ 0 ≡ F
yc

yd ‖

0 −−−−→ C −−−−→
i

D −−−−→ Z −−−−→ 0 ≡ G
y

y

0 0

||| |||

H V(i) V and G are A-trivial if and only if F and H are A-trivial.(ii) If F is A-trivial then G is A-trivial ; if V is A-trivial , H is A-trivial.Proof. The seond part of (ii) follows from Proposition 2.1(1). Let A ∈ Aand notie that from the diagram in the hypothesis we an onstrut theommutative diagram
x

x

L(B,A) = L(B,A)
xb∗

xa∗

0 −−−−→ L(Z,A) −−−−→ L(X,A)
j∗

−−−−→ L(Y,A) −−−−→

‖
xd∗

xc∗

0 −−−−→ L(Z,A) −−−−→ L(D,A)
i∗

−−−−→ L(C,A) −−−−→
x

x

0 0Now, the �rst part of (ii) an be easily obtained by diagram hasing while(i) follows by simply observing that the restrition operators b∗ and i∗ aresurjetive if and only if j∗ and a∗ are surjetive.
Remark. Peªzy«ski's Proposition 2.6 of [30℄ an be onsidered a rudi-mentary version of this priniple.



218 J. M. F. Castillo et al.The haraterization of C(K)-trivial extensions that Zippin formulatesand proves in [33℄ is espeially interesting for us.Lemma 2. A sequene 0 → Y
j
→ X → Z → 0 is (λ,C(K))-trivial if andonly if there is a w∗-ontinuous map ω : BY ∗ → λBX∗ suh that j∗ω = id.The map ω will be alled a λ-w∗-seletor for j∗. Zippin [34, 35℄ uses thisriterion to obtain di�erent proofs of the Lindenstrauss�Peªzy«ski theorem.It is inspired by the most natural possible situation: the sequene 0 → Y

δY→
C(BY ∗) → C(BY ∗)/Y → 0 ≡ ∁Y , in whih δY : Y → C(BY ∗) is the anon-ial embedding, is (1, C(K))-trivial; indeed, the map ω : BY ∗ → BC(BY ∗ )de�ned as ω(x∗)(f) = f(x∗) is a 1-w∗-seletor for δ∗Y . Let us remark thatevery C(K)-trivial sequene is a pull-bak of ∁Y and onversely.It will be useful to notie that some properties of the w∗-topology in lp,
1 ≤ p ≤ ∞, pass to lp-vetor sums of Banah spaes. Given an lp-sum lp(Xn)we denote by πj : lp(Xn) → Xj the natural projetions. It is straightforwardthat given a sequene (E∗

n)n of dual spaes, a bounded net (xα)α in lp(E∗
n),

1 ≤ p ≤ ∞, is w∗-null if and only if for eah j the net (πj(xα))α is w∗-null.Given a family of exat sequenes 0 → An → Bn → Cn → 0 ≡ Fn, weall 0 → lp(An) → lp(Bn) → lp(Cn) → 0 ≡ lp(Fn) the lp-amalgam of (Fn)n,for 1 ≤ p ≤ ∞. Analogously, the c0-amalgam of (Fn) will be denoted c0(Fn).One has:Proposition 2.2. The c0- and lp-amalgams of (λ,C(K))-trivial exatsequenes, 1 ≤ p <∞, are (λ,C(K))-trivial.Proof. For eah n, let ωn : BA∗

n
→ λBB∗

n
be a λ-w∗-seletor for j∗n. If wehave the lp-amalgam

0 → lp(An)
χ
→ lp(Bn) → lp(Cn) → 0 ≡ lp(Fn),it follows from the observation above that the map Ω : Blp∗(A∗

n) → λBlp∗(B∗

n)de�ned by Ω[(a∗n)] = [ωn(a∗n)] is a λ-w∗-seletor for χ∗.The situation for l∞-amalgams is entirely di�erent beause a subspae
X of l∞ an only be C(K)-omplemented if X enjoys both the Dunford�Pettis property (weakly ompat operators transform weakly ompat setsinto relatively ompat sets) and the Grothendiek property (all operatorswith separable range are weakly ompat): Indeed, if E is separable and
τ : X → E is an operator, then δEτ : X

τ
→ E

δE→ C(BE∗) should extendto an operator l∞ → C(BE∗); by the Grothendiek property of l∞ (see[12, Cor. 12, p. 156℄) this operator is weakly ompat, hene δEτ is weaklyompat, as also is τ . We have shown that X has the Grothendiek property.Sine l∞ has the Dunford�Pettis property, every weakly ompat operator
X → c0 must do the same, whih means that X also enjoys the Dunford�



Lindenstrauss�Peªzy«ski spaes 219Pettis property. In partiular, subspaes of l∞ suh as l∞(ln2 ), whih doesnot have the Dunford�Pettis property beause it ontains a omplementedopy of l2, provide sequenes 0 → l∞(ln2 ) → l∞ → Q → 0 that are not
C(K)-trivial. Therefore, the l∞-amalgam of the sequenes

0 → ln2 → lm(n)
∞ → lm(n)

∞ /ln2 → 0in whih the embeddings are (1+ε)-isometries annot be C(K)-trivial. Nev-ertheless, those sequenes are all ((1 + ε)2, C(K))-trivial by the existene ofthe Bartle�Graves ontinuous seletion.Later on we shall also show that the c0-amalgam of L∞-trivial sequenesis not neessarily L∞-trivial. Our onern now is to study the stability of
C(K)-trivial sequenes by duality. Let us start by observing that, for everysubspae H of c0 and every separable Banah spae S, the sequene 0 →
H → X → S → 0 ≡ F is C(K)-trivial as is its dual F ∗. That F is C(K)-trivial was observed by Lindenstrauss and Peªzy«ski in [26, Cor. 2℄. Theassertion about F ∗ (atually, that every exat sequene 0 → Y → X →
H∗ → 0 is C(K)-trivial for every subspae H of c0) diretly follows from theequality Ext(H∗, C(K)) = 0, whih is a onsequene of the Johnson�Zippintheorem. It is not true, in general, that the dual or bidual of a C(K)-trivialsequene is C(K)-trivial:
Examples. Consider the C(K)-trivial sequene 0 → l2

δ
→ C(Bl2) →

Q→ 0 ≡ F . We laim that the dual sequene 0 → Q∗ → L1
δ∗
→ l2 → 0 ≡ F ∗is not C(K)-trivial. Assume otherwise. Consider a projetive presentationof l2,

0 → K(l2) → l1 → l2 → 0 ≡ P.The spaeK(l2) is omplemented in its bidual (see [23℄). Hene Ext(L1,K(l2))
= 0 by the Lindenstrauss lifting priniple (see [25, 23℄, but also [5℄). Thus,the lower pull-bak sequene in the diagram

0 −−−−→ K(l2) −−−−→ l1 −−−−→ l2 −−−−→ 0 ≡ P
∥∥∥

x
xδ∗

0 −−−−→ K(l2) −−−−→ PB −−−−→ L1 −−−−→ 0 ≡ Pδ∗splits, and therefore the quotient map δ∗ : L1 → l2 an be lifted to l1. Inthis way, there is an operator φ suh that P ≡ φF ∗ (see [10℄) and P isa push-out of F ∗; by Lemma 2.1, it must also be C(K)-trivial. But if aprojetive presentation of l2 is C(K)-trivial then Ext(l2, C(K)) = 0, and itwas proved by Kalton in [21℄ (see also [7℄) that Ext(l2, C[0, 1]) 6= 0.The bidual sequene
0 → l2

δ∗∗
−→ C(Bl2)

∗∗ → Q∗∗ → 0 ≡ F ∗∗



220 J. M. F. Castillo et al.is also not C(K)-trivial: sine I = C(Bl2)
∗∗ is injetive, it has the Grothen-diek property (see [12, Cor. 12, p. 156℄) and thus every operator I → S intoa separable spae is weakly ompat. By the Dunford�Pettis property of I,weakly ompat operators on I transform weakly ompat sets onto normompat sets; thus, the anonial inlusion l2 → C(Bl2) annot be extendedto I. Another example is provided by sequenes having the form

0 → c0(An) → c0(l
m(n)
∞ ) → c0(Cn) → 0 ≡ F ;they have the property that F and F ∗ do C(K)-split although F ∗∗ does notneessarily C(K)-split.3. On Banah spaes of Lindenstrauss�Peªzy«ski type. Thereis an obvious di�erene between the Lindenstrauss�Peªzy«ski [26℄ and theJohnson�Zippin [18℄ theorems. While the former asserts that every sequene

0 → H → c0 → c0/H → 0 ≡ F is C(K)-trivial the latter establishes thatthe dual sequene F ∗ is L∞-trivial. Let us see that the lass L∞ annot beenlarged, obtaining in this way a new haraterization of L∞-spaes.Proposition 3.1. For a Banah spae E the following are equivalent :(1) E is an L∞-spae.(2) Every E-valued operator de�ned on a w(l1, c0)-losed subspae of l1an be extended to l1.Proof. Reall that w(l1, c0)-losed subspaes of l1 are preisely the or-thogonal omplements H⊥ to subspaes H of c0. So, as we said in Setion 1,(2) an be written as: Ext(H∗, E) = 0 for every subspae H of c0.General struture results of Johnson�Rosenthal and Zippin (see [28, 1.g.2and 2.d.1℄) imply that given a subspae H of c0 there exist sequenes (An)and (Bn) of �nite-dimensional spaes suh that there is an exat sequene
0 → c0(An) → H → c0(Bn) → 0. Therefore, there is an exat sequene
0 → l1(B

∗
n) → H∗ → l1(A

∗
n) → 0. A simple 3-spae argument (see [6℄ or [7,Cor. 1.2℄) then shows that Ext(H∗, E) = 0 is equivalent to Ext(l1(A

∗
n), E) =

0 = Ext(l1(B
∗
n), E). Therefore, (2) is equivalent to Ext(l1(Gn), E) = 0 forevery sequene (Gn) of �nite-dimensional spaes. It was already observed byJohnson [14℄ that a sequene 0 → Y → X → Z → 0 ≡ F loally splits if andonly if FT ≡ 0 for every operator T : l1(Gn) → Z withGn �nite-dimensional.Thus, every sequene 0 → E → X → Z → 0 loally splits and in partiularso does any sequene 0 → E → l∞(I) → Q → 0 ≡ G. Reall from [20℄ thatan exat sequene F loally splits if and only if F ∗∗ splits. Hene, the bidualsequene G∗∗ splits, E∗∗ must be omplemented in an L∞-spae, so it is an

L∞-spae and E must itself be an L∞-spae.Not entirely trivial is the observation that ondition (2) an be replaedby (2′) for every set Γ , every E-valued operator de�ned on a w(l1(Γ ), c0(Γ ))-



Lindenstrauss�Peªzy«ski spaes 221losed subspae of l1(Γ ) an be extended to l1(Γ ). The proof only requiresto take into onsideration the deomposition lemma of [17℄.The situation outlined for w∗(l1, c0)-losed subspaes of l1, together withLindenstrauss�Peªzy«ski's remark in [26℄ asserting that operators withranges being isometri preduals of L1 extend from subspaes of c0 to thewhole spae, suggest investigating how muh the lass of C(K)-spaes anbe enlarged in the Lindenstrauss�Peªzy«ski theorem.Definition 2. We shall say that a Banah spae E is a Lindenstrauss�Peªzy«ski spae, for short an LP-spae, if all operators from subspaes of
c0 into E an be extended to c0.We shall also need the quantitative version: when every operator T :
H → E admits an extension T̂ : c0 → E suh that ‖T̂‖ ≤ λ‖T‖ we shallsay that E is an LPλ-spae. It is not hard to see that every LP-spae is an
LPλ-spae for some λ.Lemma 3. An LPλ-spae is, for every ε > 0, an L∞,2λ+ε-spae.Proof. Let E be an LPλ-spae. Let T : Y → E be a ompat operatorfrom a subspae Y of a separable spae X. Shauder's theorem (T is ompatif and only if T ∗ is ompat) plus the haraterization of ompat sets inBanah spaes as subsets of the losed onvex hull of a norm null sequeneimmediately show that T fatorizes through some subspae i : H → c0as T = BA with A : Y → H and B : H → E. By de�nition, there is anextension B1 : c0 → E of B with ‖B1‖ ≤ λ‖B‖; moreover Sobzyk's theoremgives an extension A1 : X → c0 of iA with ‖A1‖ ≤ 2‖iA‖. The omposition
B1A1 : X → E extends T and satis�es ‖B1A1‖ ≤ 2λ‖T‖.Let us now show that �if E-valued ompat norm one operators an beextended with norm at most c then for every ε > 0, E is an L∞,c+ε-spae�.To this end, let τ : Y → E be any (ompat or not) norm one operator.Eah restrition τF : F → E of τ to a �nite-dimensional subspae F of Yis ompat and an therefore be extended to an operator TF : X → E withnorm at most c. De�ne the operator T : X → E∗∗ by

T (x) = w∗- lim
U(F )

TF (x)where U is a free ultra�lter on the set of �nite-dimensional subspaes of Yompatible with the natural ordering. This operator T has norm at most
c and extends τ : Y → E∗∗. In partiular, given an exat sequene 0 →
E → V → Q → 0, the anonial embedding δ : E → E∗∗ an be extendedto V with norm at most c. So E∗∗ is omplemented in V ∗∗ with norm c+ ε(beause of the priniple of loal re�exivity). Applying this to any embedding
0 → E → l∞(I) → Q → 0 one �nds that E∗∗ is an L∞,c+ε-spae, as alsois E.



222 J. M. F. Castillo et al.The above argument is modeled over Lindenstrauss' onstrution in [24℄.A diret appliation of Lindenstrauss' result is awkward: as the referee ofthe paper remarked, in his memoir, Lindenstrauss onsidered what he alls
Nλ-spaes, whih are spaes that are the losure of a direted union of �nite-dimensional λ-injetive spaes; today we know that an Nλ-spae is an L∞,β-spae, but we do not know how β depends on λ.The onverse fails: we show that not every L∞-spae is an LP-spae.This solves Zippin's Problem 6.15 in [36℄. The example (whih was skethedin [8℄) is based on the Bourgain�Pisier onstrution [3℄ whih shows that forevery separable Banah spae X there is an exat sequene

0 → X → L∞(X) → L∞(X)/X → 0 ≡ BPX ,in whih L∞(X) is a separable L∞-spae and L∞(X)/X has the Shurproperty (weakly onvergent sequenes are norm onvergent).Proposition 3.2. Let H be a subspae of c0 suh that c0/H is not iso-morphi to c0. Then L∞(H) is not an LP-spae. In fat , there exists anoperator H → L∞(H) whih does not extend to c0.Proof. Consider the sequene 0 → H
j
→ c0 → c0/H → 0 ≡ F . Let 0 →

H
i
→ L∞(H) → S → 0 ≡ BPH be a Bourgain�Pisier sequene assoiatedwith H. Assume that i extends to c0 through j, so that F is a pull-bak of

BPH . By Sobzyk's theorem [28, 2.f.5℄, BPH is a pull-bak of F . Applyingthe diagonal priniple [27, Thm. 2℄ one gets an isomorphism
L∞(H) ⊕ c0/H ≃ c0 ⊕ S.In partiular, c0/H is a omplemented subspae of c0⊕S. Sine S and c0 aretotally inomparable by the Shur property of S the deomposition theoremof Edelstein�Wojtaszzyk (see [28, Thm. 2..13℄) ensures that c0/H is iso-morphi to someA⊕B with A omplemented in c0 and B omplemented in S.Sine c0/H is a subspae of c0 [28, 2.f.6℄, B an only be �nite-dimensional,hene c0/H ≃ c0, ontrary to hypothesis.This example immediately implies

Example. The c0-amalgam of (µ,L∞)-trivial sequenes is not neessar-ily L∞-trivial.Proof. As already mentioned, given a subspae H of c0 there exist se-quenes (An) and (Bn) of �nite-dimensional spaes suh that there is anexat sequene 0 → c0(An) → H → c0(Bn) → 0. Clearly, the exat se-quenes 0 → An → l
m(n)
∞ → Cn → 0 are (λ,L∞,λ)-trivial. If all the amal-gams 0 → c0(An) → c0(l

m(n)
∞ ) → c0(Cn) → 0 were L∞-trivial then everysequene 0 → H → c0 → c0/H → 0 would also be L∞-trivial: indeed, there



Lindenstrauss�Peªzy«ski spaes 223would be a omplete push-out diagram
0 0
y

y

c0(An) = c0(An)
ya

yi

0 −−−−→ H
j

−−−−→ c0 −−−−→ c0/H −−−−→ 0 ≡ F
yb

yc ‖

0 −−−−→ c0(Bn) −−−−→
d

Z −−−−→ Z/c0(Bn) −−−−→ 0 ≡ bF
y

y

0 0

||| |||

V d Vto whih we apply Lemma 1(i): if V and bF are L∞-trivial then F is
L∞-trivial (whih we know it is not). It remains to hek that V and bFare L∞-trivial. The sequene V is L∞-trivial by our assumption and theLindenstrauss�Rosenthal theorem that asserts that c0 is automorphi (see[27, 10℄); i.e., there exists an isomorphism τ : c0 → c0 making the diagram

0 −−−−→ c0(An) −−−−→ c0 −−−−→ Z −−−−→ 0
∥∥∥

yτ

y

0 −−−−→ c0(Bn) −−−−→ c0(l
m(n)
∞ ) −−−−→ c0(l

m(n)
∞ /An) −−−−→ 0ommutative and therefore the two sequenes L∞-split simultaneously. Thesequene bF is L∞-trivial by essentially the same arguments taking intoaount that Z must be a subspae of c0.The problem of identifying LP-spaes is still far from being solved, andit atually gives rise to interesting questions. Observe that, in addition to

C(K)-spaes, it is lear that omplemented subspaes of C(K)-spaes andseparably injetive spaes are also LP-spaes. The reader might be surprisedby the distintion between the two, espeially regarding the fat that everyinjetive spae is omplemented in some C(K)-spae. Let us show that thetwo lasses are indeed distint.Proposition 3.3. There exists a separably injetive spae that is notomplemented in any C(K)-spae.



224 J. M. F. Castillo et al.Proof. Consider the pull-bak diagram
0 −−−−→ c0 −−−−→ l∞ −−−−→ l∞/c0 −−−−→ 0 ≡ I

∥∥∥
x

xλ·1

0 −−−−→ c0 −−−−→ P (λ) −−−−→ l∞/c0 −−−−→ 0 ≡ IλBenyamini shows in [1℄ that P (λ) is no less than λ−1 omplemented in any
C(K)-spae. Thus, the c0-amalgam of the family (In−1)

0 → c0(c0) → c0(P (n−1)) → c0(l∞/c0) → 0 ≡ c0(In−1)provides an exat sequene in whih both c0(c0) as well as c0(l∞/c0) are
C(K)-spaes. However, the spae c0(P (n−1)) annot be omplemented inany C(K)-spae. That c0 is separably injetive is preisely Sobzyk's theo-rem. That l∞/c0 is separably injetive is well known and follows from Propo-sition 4.3 below. It was shown in [15, 32℄ that when X is separably injetivethen c0(X) is separably injetive as well. Finally, separable injetivity is a3-spae property [6℄.There are other LP-spaes. As mentioned before, aording to [26, p. 234,Remark 2℄, isometri preduals of L1 are LP-spaes. So, it is quite naturalto ask whether the previous lasses (namely: omplemented subspaes of a
C(K)-spae, separably injetive spaes and isometri preduals of L1) exhaustthe LP-spaes. The answer is no.Proposition 3.4. Every L∞-spae not ontaining c0 is an LP-spae.Proof. Let X be a Banah spae. If T is a nonompat operator whosedomain is a subspae of c0 then T is an isomorphism onto a opy of c0; hene,when Y ontains no opy of c0 every operator H → Y must be ompat.Now Lindenstrauss' extension theorem for ompat operators [24℄ yields theresult.By a result of Johnson and Zippin [16℄ separable isometri L1-predualsare quotients of C[0, 1]. Observe that L∞-spaes not ontaining c0 annotbe quotients of C(K)-spaes (sine, by [29℄, every operator on a C(K)-spaeis either weakly ompat or an isomorphism onto a opy of c0). Conreteexamples of L∞-spaes not ontaining c0 an be obtained by applying theBourgain�Pisier onstrution 0 → X → L∞(X) → S → 0 to spaes Xwithout opies of c0 by a simple 3-spae argument (see [9, Thm. 3.2.e℄).New examples of LP-spaes an be obtained by showing that this lasshas the 3-spae property.4. The 3-spae problem for LP-spaes. The purpose of this setionis to show:Theorem 2. The lass of LP-spaes has the 3-spae property.



Lindenstrauss�Peªzy«ski spaes 225The proof is not simple and requires both a di�erent haraterization of
LP-spaes and a new method to obtain 3-spae properties. We assume fromthe reader some aquaintane with the theory of operator ideals as developedby Pietsh in [31℄. Reall that an operator ideal A is said to be surjetive (see[31, 4.7.9℄) if whenever Q is a quotient map and TQ ∈ A then T ∈ A; dually,the ideal A is injetive (see [31, 4.6.9℄) if whenever J is an into isomorphismand JT ∈ A then T ∈ A. Consider the operator ideal J0 of those operatorsthat fatorize through a subspae of c0. Reall that a funtor is alled exatwhen it transforms exat sequenes into exat sequenes.Proposition 4.1. A Banah spae E is an LP-spae if and only if thefuntor J0(·, E) is exat when ating on the ategory of separableBanah spaes.Proof. Let j : Y → X be an into isomorphism, and let T ∈ J0(Y,E).Write T = RS with S ∈ L(Y,H), R ∈ L(H,E) and let i : H → c0 be an intoisomorphism. The operator R an be extended to an operator R1 : c0 → Ethrough i sine E is an LP-spae; moreover Sobzyk's theorem allows oneto extend iS : Y → c0 to an operator S1 : X → c0 through j. The operator
R1S1 is an extension of T through j. The other impliation is immediate.The new method to obtain 3-spae properties is the following.Proposition 4.2. Let A be a surjetive and injetive operator ideal. Thelass of all Banah spaes E suh that the funtor A(·, E) is exat has the3-spae property.Proof. The surjetivity of A implies that given an exat sequene 0 →

Y
j
→ X

q
→ Z → 0 and a spae E the indued sequene

0 → A(Z,E)
q∗

→ A(X,E)
j∗

→ A(Y,E)is exat. Now, let
0 → A

i
→ B

p
→ C → 0be an exat sequene. By assumption, both A(·, A) and A(·, C) are exatfuntors and we need to prove that also A(·, B) is exat. To this end weonstrut the ommutative diagram

0 0 0y
y

y

0 −−→ A(Z,A)
q∗

−−→ A(X,A)
j∗

−−→ A(Y,A) −−→ A(Y,A)/j∗(A(X,A))

i∗

y i∗

y i∗

y
y

0 −−→ A(Z,B)
q∗

−−→ A(X,B)
j∗

−−→ A(Y,B) −−→ A(Y,B)/j∗(A(X,B))

p∗
y p∗

y p∗
y

y

0 −−→ A(Z,C)
q∗

−−→ A(X,C)
j∗

−−→ A(Y,C) −−→ A(Y,C)/j∗(A(X,C))



226 J. M. F. Castillo et al.The rows are exat by the surjetivity of U, while the olumns are also exatby injetivity of U. By hypothesis,
A(Y,A)/j∗(A(X,A)) = A(Y,C)/j∗(A(X,C)) = 0and the exatness of the fourth olumn implies that

A(Y,B)/j∗(A(X,B)) = 0,hene A(·, B) is exat.Sine the separability assumption of the previous haraterization of LP-spaes does not a�et the method of Proposition 4.2, the proof of Theorem2 will be omplete after showing:Lemma 1. The ideal J0 is injetive and surjetive.Proof. The injetivity is a diret onsequene of the de�nition. To showthe surjetivity, let τ : X → E be an operator whih fatorizes as τ = ϕ0ϕ1through a subspae H of c0 in a diagram
0 −−−−→ Y

j
−−−−→ X

p
−−−−→ Z −−−−→ 0

ϕ1

y

H

ϕ0

y

EAssume that τj = 0. One then has the ommutative diagram
0 −−−−→ Y

j
−−−−→ X

p
−−−−→ Z −−−−→ 0

y ϕ1

y ϕ̃1

y

0 −−−−→ kerϕ0 −−−−→ H −−−−→
P

H/kerϕ0 −−−−→ 0

ϕ0

y

EIt is lear that there exists an operator ϕ̃0 : H/kerϕ0 → E suh that
ϕ̃0P = ϕ0. It is then obvious that ϕ̃0ϕ̃1p = ϕ0ϕ1. Moreover the operator
ϕ̃0ϕ̃1 is in I0(Z,E) sine H/kerϕ0, as a quotient of a subspae of c0, is itselfa subspae of a quotient of c0, hene [28, 2.f.6℄ a subspae of c0.Theorem 2, in partiular, yields:Corollary 1. Every twisted sum of C(K)-spaes is an LP-spae.The paper [7℄ ontains most of the available information about how toonstrut twisted sums of C(K)-spaes. For instane, it is shown that for



Lindenstrauss�Peªzy«ski spaes 227every separable Banah spae X not ontaining l1 there exists an exatsequene
0 → C[0, 1]

i
→ Ω(X)

q
→ X → 0with stritly singular quotient map. Of ourse, the spae Ω(X) is not aquotient of a C(K)-spae. Using Theorem 4.7 of [7℄ one an obtain examplesof LP-spaes not ontaining l1 whih are not C(K)-spaes. We do not knowif there exist L∞-spaes not ontaining l1 whih are not LP-spaes.New nonseparable LP-spaes an be obtained through the following sta-bility result.Proposition 4.3. Every quotient of an LP-spae by a separably injetivespae is an LP-spae.Proof. Consider an exat sequene 0 → SI → LP

q
→ Q → 0 in whihthe middle term is a Lindenstrauss�Peªzy«ski spae and the subspae isseparably injetive. Let φ : H → Q be an operator from a subspae H of c0.Sine SI is separably injetive, Ext(H, SI) = 0. Hene Fφ splits and φ an belifted through q to an operator ψ : H → LP. This operator an be extendedto an operator Ψ : c0 → LP. The operator qΨ : c0 → Q is the desiredextension of φ.The same proof shows that the quotient of two separably injetive spaesis separably injetive. In partiular, l∞/c0 is separably injetive. However,the following example shows that the quotient of two LP-spaes is not ne-essarily an LP-spae.Proposition 4.4. Every separable L∞-spae is a quotient of two LP-spaes.Proof. Let X be a separable L∞-spae. Consider the following push-outdiagram:

0 0
y

y

0 −−−−→ K −−−−→ l1 −−−−→ X −−−−→ 0
y

y
∥∥∥

0 −−−−→ L∞(K) −−−−→ PO −−−−→ X −−−−→ 0
y

y

S S
y

y

0 0



228 J. M. F. Castillo et al.The push-out spae PO is an L∞-spae by a simple 3-spae argument (see[9, Thm. 3.3.b℄). Sine the Shur property is also a 3-spae property (see [9,6.1℄), both L∞(K) and PO are therefore L∞-spaes with the Shur property.Thus, they are both LP-spaes, while their quotient is X.Corollary 2. Every separable L∞-spae is a quotient of two L∞-spaeswith the Shur property.Therefore, the hoie X = L∞(H) of a separable L∞-spae that is not an
LP-spae, as the one onstruted in Proposition 3.2, shows that the quotientof two LP-spaes need not be an LP-spae, and similarly for the quotient oftwo L∞-spaes with the Shur property.5. Some open questions. We have already shown that the quotientof two LP-spaes is not neessarily an LP-spae. An espeially interestingase is:
Question 1. Is l∞/C[0, 1] an LP-spae?A variation of this question is:
Question 2. Must L∞-spaes whih are quotients of C[0, 1] be LP-spaes?As mentioned in the introdution, Johnson and Zippin proved in [17℄ thatevery extension 0 → H → c0(Γ ) → Z → 0 is C(K)-trivial. It would be nieto know if LP-spaes an play the role of C(K)-spaes in this result.
Question 3. Given a subspaeH of c0(Γ ), does every operatorH → LPhave an extension to c0(Γ )?Needless to say, the extension property one would like to get from LP-spaes is: every C(K)-trivial sequene is also LP-trivial. Unfortunately, thisdoes not hold.
Example. We already know that the Bourgain�Pisier spae L∞(l2) isan LP-spae. Consider then the sequenes

0 −−−−→ l2
δ2−−−−→ C(Bl2) −−−−→ Q −−−−→ 0 ≡ ∁l2∥∥∥

0 −−−−→ l2
j

−−−−→ L∞(l2) −−−−→ S −−−−→ 0 ≡ BPl2If j ould be extended to an operator J : C(Bl2) → L∞(l2) through δ2this would be a weakly ompat operator sine L∞(l2) does not ontain c0.Hene J would be ompletely ontinuous by the Dunford�Pettis property of
C(K)-spaes. It is therefore impossible that Jδ2 = j.



Lindenstrauss�Peªzy«ski spaes 229The method of proof developed in Proposition 4.2 is new. It is more-over lear that it an be applied to other injetive and surjetive operatorideals appearing in the literature. It is easy to hek that the following ide-als are injetive and surjetive (see also [31℄): L = all operators; F = �niterank operators; K = ompat operators; W = weakly ompat operators;
U = unonditionally summing operators; J2 = operators fatorable througha Hilbert spae. Let us introdue some notation: given an injetive and sur-jetive operator ideal U let E(U) be the lass of all Banah spaes E suhthat the funtor U(·, E) is exat. From Proposition 4.2 we have obtainedeasy proofs that the following lasses have the 3-spae property: E(L) =injetive spaes; applying the method only to separable spaes one obtainsthe lass of separably injetive spaes; E(K) = L∞-spaes (by [24℄); E(W)= L∞-spaes with the Shur property (shown in [2℄). The lasses E(U) and
E(J2) seem not to have been haraterized yet.A simple homologial duality argument yields:Proposition 5.1. Let A be an injetive and surjetive operator ideal.The lass of all Banah spaes E suh that the funtor A(E, ·) is exat hasthe 3-spae property.If we write ∃(A) for the previous lass determined by the ideal A thenthe only nontrivial ase identi�ed is ∃(K) = L1-spaes.
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