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Weighted Fréchet spaces of holomorphic functions

by

Elke Wolf (Paderborn)

Abstract. This article deals with weighted Fréchet spaces of holomorphic functions
which are defined as countable intersections of weighted Banach spaces of type H

∞. We
characterize when these Fréchet spaces are Schwartz, Montel or reflexive. The quasinorma-
bility is also analyzed. In the latter case more restrictive assumptions are needed to obtain
a full characterization.

I. Introduction. This article deals with the weighted Fréchet spaces
HW (G) and HW0(G) of holomorphic functions. For an increasing sequence
W = (wn)n∈N of strictly positive continuous functions (weights) on an
open subset G of C

N we consider the projective limit of the Banach spaces
Hwn(G) :={f ∈ H(G) ; ‖f‖n :=supz∈Gwn(z)|f(z)| <∞} resp. H(wn)0(G)
:= {f ∈ H(G) ; wnf vanishes at ∞ on G}, n ∈ N. Under rather general
assumptions we give a characterization of being Schwartz, Montel and re-
flexive in terms of the sequence of weights (which are considered as growth
conditions in the sense of [13]) or in terms of their associated growth condi-
tions. Using the class W of weights on the unit disk which was introduced
by Bierstedt and Bonet [9] we get a necessary and sufficient condition for
the quasinormability of HW (G) resp. HW0(G).

In the case of Köthe echelon spaces these characterizations were obtained
by Köthe, Grothendieck, Dieudonné–Gomes, Bierstedt–Meise–Summers,
and Valdivia. For spaces of continuous functions the characterizations in
terms of the weights were obtained by Bierstedt, Meise and Summers (see
[14] and [15]). In this paper these questions are studied in the setting of
weighted spaces of holomorphic functions. In contrast to the case of con-
tinuous functions the so-called associated growth conditions mentioned by
Andersen and Duncan in [1] and studied thoroughly by Bierstedt, Bonet and
Taskinen in [13] are needed to get the characterizations. While we get results
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for being Schwartz, Montel and reflexive under rather mild assumptions, the
characterization of the quasinormability of HW (G) resp. HW0(G) requires
the restriction to the unit disk D as well as to the class W of radial weights
which was introduced by Bierstedt and Bonet (see [9]). This class provides
a suitable frame to decompose holomorphic functions in a certain sense.

This article is organized as follows. Section II gives the necessary nota-
tion and definitions. Section III studies weighted Fréchet spaces of holomor-
phic functions which are reflexive resp. Montel. We show that the algebraic
identity HW (G) = HW0(G) is equivalent to the reflexivity of HW0(G)
if W = (wn)n∈N is an increasing sequence of strictly positive continuous
functions on an open set G ⊂ C

N , N ≥ 1. Moreover we characterize in
terms of weights considered as growth conditions and associated growth
conditions when HW (G) is a Montel space. Here we use methods of Bier-
stedt and Bonet (see [11]). We finish this section with some remarks about
the Schwartz property of weighted Fréchet spaces of holomorphic functions.
A result of Bonet, Friz and Jordá [19] yields a characterization in terms of
the associated growth conditions under rather general conditions.

Section IV consists of two parts. The first part presents a necessary
condition for the quasinormability of HW (G) resp. HW0(G). In the second
part we prove that this condition is also sufficient when we restrict our
attention to the class W of radial weights on the unit disc. Under some
additional assumptions we show that HW0(G) is quasinormable if and only
if it satisfies condition (QNo) of Peris.

Acknowledgments. This article arises from a part of the author’s doc-
toral thesis which was supervised by Klaus D. Bierstedt and José Bonet. The
author thanks both of them for all their advice, helpful remarks and valuable
suggestions. The discussions with them have been particularly stimulating.

II. Notation. Our notation for locally convex spaces is standard; see for
example Jarchow [26], Köthe [27], Meise and Vogt [31] and Pérez Carreras
and Bonet [32]. For a locally convex space E, we denote by E∗ the space of
all linear functionals on E while E′ is the topological dual and E′

b the strong
dual. If E is a locally convex space, U0(E) and B(E) stand for the families of
all absolutely convex 0-neighborhoods and absolutely convex bounded sets
in E, respectively.

In what follows,G denotes an open subset of C
N ,N ≥ 1. The spaceH(G)

of all holomorphic functions on G will usually be endowed with the topology
co of uniform convergence on compact subsets of G. Let W = (wn)n∈N be
an increasing sequence of strictly positive continuous functions on G. For
every n ∈ N the spaces

Hwn(G) := {f ∈ H(G) ; ‖f‖n := sup
z∈G

wn(z)|f(z)| <∞},
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H(wn)0(G) := {f ∈ H(G) ; wnf vanishes at ∞ on G}

endowed with the norm ‖ · ‖n are Banach spaces. The weighted Fréchet
spaces of holomorphic functions are defined by

HW (G) := projnHwn(G), HW0(G) := projnH(wn)0(G).

For each n ∈ N, let Bn, resp. Bn,0, be the closed unit ball of Hwn(G), resp.
H(wn)0(G), and Cn := Bn ∩ HW (G), resp. Cn,0 := Bn,0 ∩ HW0(G). By
Bn, Bn,0, Cn, Cn,0 we denote the co-closures of the corresponding sets.
The sequence

(
1
nCn

)
n∈N

, resp.
(

1
nCn,0

)
n∈N

, constitutes a 0-neighborhood
base of HW (G), resp. HW0(G). Without loss of generality we may assume
that (Cn)n∈N, resp. (Cn,0)n∈N, is a 0-neighborhood base. Put

W := {w : G→ ]0,∞[ ;

w continuous on G, wnw is bounded on G for all n ∈ N},

and Cw := {f ∈ HW (G) ; |f | ≤ w on G}, Cw,0 := Cw ∩ HW0(G), w ∈
W . We write Cw and Cw,0 for the respective co-closures. Then (Cw)w∈W ,
resp. (Cw,0)w∈W , is a fundamental system of bounded subsets of HW (G),
resp. HW0(G). Each Cw is absolutely convex and co-compact. (See [7, Sec-
tion 3.A].)

Let v be a weight on G considered as a growth condition in the sense
of [13]. Its associated growth condition is defined by

ṽ(z) := sup{|g(z)| ; g ∈ H(G), |g| ≤ v}, z ∈ G.

A weight v on a balanced domain G ⊂ C
N , N ≥ 1, is said to be radial if

v(z) = v(λz) for every λ ∈ C such that |λ| = 1. On a balanced open subset
G of C

N , N ≥ 1, each f ∈ H(G) has a Taylor series representation about
zero,

f(z) =
∞∑

k=0

pk(z), z ∈ G,

where pk is a k-homogeneous polynomial (k = 0, 1, . . . ). The series converges
to f uniformly on each compact subset ofG. The Cesàro means of the partial
sums of the Taylor series of f are denoted by Sn(f) (n = 0, 1, . . . ); that is,

[Sn(f)](z) =
1

n+ 1

n∑

l=0

( l∑

k=0

pk(z)
)
, z ∈ G.

Each Sn(f) is a polynomial (of degree ≤ n) and Sn(f) → f uniformly on
every compact subset of G (f ∈ H(G) arbitrary).

Bierstedt, Bonet and Galbis (see [12]) used Cesàro means to show that
if W = (wn)n∈N is an increasing sequence of non-negative continuous and
radial functions on a balanced open set G ⊂ C

N , N ≥ 1, such that HW0(G)
contains the polynomials, then Bn,0 = Bn and Cn = Bn for every n ∈ N.
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Weighted Fréchet spaces of continuous functions are defined similarly on
locally compact spaces X. Bierstedt and Meise (see [14]) and Bastin (see
[2], [3]) characterized properties like Schwartz, Montel, quasinormable, dis-
tinguished and the density condition for these spaces. They gave conditions
in terms of the weights which, in a modified form, also play a role in this
article.

We now mention some examples of weighted Fréchet spaces of holomor-
phic functions which were studied in the literature.

(I) In [22] Epifanov considered a bounded convex domain G in C
N ,

N ≥ 1, a decreasing sequence (ϕn)n∈N of bounded non-negative convex
functions on G and defined the sequence W = (wn)n∈N by

wn(z) = e−ϕn(z), z ∈ G, n ∈ N.

He showed that under certain assumptions the strong dual of HW (G) is
topologically isomorphic to the inductive limit VH(CN ), where V = (vn)n∈N

is given by

vn(z) = e− sup{Re〈z,t〉−ϕn(t) ; t∈G}, z ∈ C
N , N ≥ 1.

For further information on weighted inductive limits of holomorphic func-
tions see e.g. [16] and [6].

(II) Let a plurisubharmonic function p : C
N → [0,∞) satisfy the con-

ditions log(1 + |z|2) = O(p(z)), p(z) = p(|z|) and p(2z) = O(p(z)). The
increasing sequence W = (wn)n∈N is defined by

wn(z) := e−p(z)/n, z ∈ G, n ∈ N.

The weighted Fréchet space HW (G) was considered by Berenstein, Chang
and Li in [4] and denoted by A0

p(G). Note that HW (G) is a Schwartz space.

They studied geometrical conditions on V := f−1(0), where f ∈ A0
p(C

N ), in
order that V is an interpolating variety for the corresponding ring. In case
G = C and p(z) = |z|̺, ̺ > 0, we obtain the Fréchet space of all entire
functions of order ̺ and of type 0.

(III) Weighted Fréchet spaces of holomorphic functions are used by Bonet
and Meise to consider (LF )-spaces in connection with ultradistributions of
Roumieu type (see [20]). These (LF )-spaces appear as the Fourier–Laplace
transform of spaces of ultradistributions of compact support. By [20] the
(LF )-spaces are nuclear and reflexive. The “steps” of the inductive limit
are given by the following Fréchet spaces. Let Ω be a non-empty open and
convex subset of R

N with 0 ∈ Ω, and (Kn)n∈N be a fundamental sequence

of convex and compact subsets of Ω such that 0 ∈ K
◦

1 and Kn ⊂ K
◦

n+1 for
every n ∈ N. The increasing sequences Wn = (wn,k)k∈N, n ∈ N, are defined
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by

wn,k(z) := exp

(
−hn(Im(z)) −

1

k
ω(z)

)
, z ∈ C

N , k ∈ N,

where hn is given by hn(x) := supy∈Kn
〈x, y〉, x ∈ R

N , n ∈ N, and ω denotes
a non-quasianalytic function. For further information on non-quasianalytic
functions we refer to [20].

III. Montel and reflexive spaces. To get the desired characterization
when HW0(G) is reflexive we need the following lemma.

Lemma 1. Consider a sequence (fj)j∈N ⊂ HW0(G). The following are

equivalent :

(a) fj → 0 with respect to σ(HW0(G), HW0(G)′).
(b) (fj)j∈N is bounded , and (fj)j∈N converges to 0 with respect to co.

The proof is standard (cf. [8], [17], [34]).

Corollary 2. On each bounded subset B of HW0(G), co is stronger

than the weak topology.

The proof follows directly from Lemma 1.

Theorem 3. Let Cw = Cw,0 for every w in a subset A of W such that

(Cw)w∈A is a fundamental system of bounded sets in HW (G). Then the

following assertions are equivalent :

(a) HW (G) = HW0(G).
(b) HW0(G) is reflexive.

Proof. (b)⇒(a). We fix f ∈ HW (G). There is w ∈ A with f ∈ Cw. Since
Cw = Cw,0, we can find a sequence (fj)j∈N ⊂ Cw,0 ⊂ HW0(G) with fj → f
with respect to co; thus, (fj)j∈N is relatively weakly compact by (b). We
can find a subsequence (fjk

)k∈N of (fj)j∈N which converges weakly to an
element g of HW0(G), hence pointwise to g. We conclude g = f ∈ HW0(G)
and finally HW (G) = HW0(G).

(a)⇒(b). We assume HW (G) = HW0(G). By definition we have to show
that each bounded subset B of HW0(G) is relatively weakly compact. There
is w ∈ A such that B ⊂ Cw,0. Since HW (G) = HW0(G) we have Cw = Cw,0,
and Cw,0 is co-compact. By Corollary 2 and Montel’s theorem B is weakly
relatively compact.

For a sequence W = (wn)n∈N with wn = wn+1 = w for every n ∈ N

we obtain a Banach space Hw(G). For spaces of this type the following is
known:

Theorem 4 (Bonet and Wolf [21]). Let G be an open subset of C
N ,

N ≥ 1, and let v be a strictly positive and continuous weight on G. Then



260 E. Wolf

the space Hv0(G) embeds almost isometrically into c0. In particular , if this

space is infinite-dimensional , then Hv0(G) and Hv(G) are not reflexive.

There are many examples of sequences W = (wn)n∈N such that Cw =
Cw,0 for every w ∈ A. See [12] and [24].

Remark 5 (Bierstedt, Bonet and Galbis [12, Proposition 1.2(c)]). Let
W = (wn)n∈N be an increasing sequence of strictly positive continuous and
radial functions on a balanced open set G ⊂ C

N , N ≥ 1. The Cw for w ∈W
radial form a basis of bounded sets in HW (G) and Cw = Cw ∩HW0(G) =
Cw,0 for every w ∈W radial.

Proposition 6 (Holtmanns [24, Proposition 4.2.8]). Let G = {z ∈ C ;
Im(z) > 0} and W = (wn)n∈N be an increasing sequence of strictly positive

continuous functions on G such that limIm(z)→0wn(z) = 0 and wn(z) ≤

wn(z + ip) for every 0 < p < 1 and every n ∈ N. Then Cw = Cw,0 for every

w ∈W .

In what follows we first study under which conditions HW (G) is Montel
and then the connection between Montel spaces and reflexive spaces. We
need the following lemma.

Lemma 7. The following assertions are equivalent :

(a) HW (G) is Montel.

(b) The topology τ of HW (G) and co coincide on each bounded subset

of HW (G).

Proof. (a)⇒(b). Let HW (G) be a Montel space. By definition each
bounded subset B ofHW (G) is τ -relatively compact. By [27, 3.2.(6)], τ coin-
cides with each weaker topology, so in particular with co. Hence (b) follows.

(b)⇒(a). We fix a bounded subset A of HW (G). Then there is w ∈ W
such that A ⊂ Cw and Cw is co-compact. Hence A is co-relatively compact
and by (b) relatively compact in HW (G). By definition this shows that
HW (G) is a Montel space.

Theorem 8. The following assertions are equivalent :

(a) HW (G) = HW0(G), and HW (G) is a Montel space.

(b) For every n ∈ N and every w ∈W , wn(w)∼ vanishes at ∞ on G.

Proof. (a)⇒(b). We assume that HW (G) is a Montel space and that
HW (G) = HW0(G). We fix n ∈ N and put A := {wn(z)δz ; z ∈ G}. Since
A is contained in C◦

n, A is equicontinuous in HW (G)′. It follows that

σ(HW (G)′, HW (G))|A = λ(HW (G)′, HW (G))|A,

where λ(HW (G)′, HW (G)) denotes the topology of uniform convergence on
compact subsets of HW (G).
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For fixed U ∈ U(HW (G)′, σ(HW (G)′, HW (G))) there is a finite set
(f1, . . . , fs) ⊂ HW (G) = HW0(G) such that

A∩ (f1, . . . , fs)
◦ ⊂ U ∩A.

We write V := (f1, . . . , fs)
◦ and because of HW (G) = HW0(G) we can find

K ⊂⊂ G with

wn(z)δz ∈ V for every z ∈ G \K.

We fix w ∈W and ε > 0. SinceHW (G) is Montel, Cw is compact inHW (G).
Hence for the λ(HW (G)′, HW (G))-0-neighborhood εC◦

w ⊂ HW (G)′ we can
find K ⊂⊂ G such that wn(z)δz ∈ εC◦

w for every z ∈ G \K, i.e. there exists
K ⊂⊂ G such that

ε ≥ wn(z) sup{|f(z)| ; f ∈ Cw} = wn(z)(w)∼(z)

for every z ∈ G \K. So (b) follows.

(b)⇒(a). In order to show HW (G) = HW0(G), we fix f ∈ HW (G). We
can find w ∈W with |f | ≤ (w)∼ on G. For fixed n ∈ N we obtain

wn|f | ≤ wn(w)∼ on G.

This together with assertion (b) implies that wn|f | vanishes at ∞ on G.
Hence f belongs to HW0(G) and HW (G) = HW0(G) as desired.

It remains to show that HW (G) is Montel. We fix w ∈W and claim that
HW (G) and (H(G), co) induce the same topology on Cw. Since (Cw)w∈W is
a fundamental system of bounded subsets of HW (G), Lemma 7 then implies
that HW (G) is a Montel space. We fix n ∈ N and ε > 0. By assumption
there is K ⊂⊂ G such that

wn(z)(w)∼(z) ≤ ε

for every z ∈ G \K. We put

U := {g ∈ HW (G) ; wn(z)|g(z)| ≤ ε for all z ∈ G}

and have to show that there is a 0-neighborhood V in (H(G), co) with

V ∩ Cw ⊂ U ∩ Cw.

We put V := {g ∈ H(G) ; |g(z)| ≤ ε/maxy∈K wn(y) for all z ∈ K} and fix
g ∈ V ∩ Cw. Thus, we obtain wn(z)|g(z)| ≤ maxy∈K wn(y)ε/maxy∈K wn(y)
= ε for z ∈ K. For z ∈ G \K we distinguish two cases. If (w)∼(z) > 0, we
get

wn(z)|g(z)| = wn(z)(w)∼(z)
|g(z)|

(w)∼(z)
≤ ε.

If we have (w)∼(z) = 0, this implies g(z) = 0 because g belongs to Cw. Then
wn(z)|g(z)| = 0 < ε. Thus g is in U ∩ Cw.
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Corollary 9. Let Cw = Cw,0 for every w ∈ A ⊂W such that (Cw)w∈A
is a fundamental system of bounded sets in HW (G). Then the following

assertions are equivalent :

(a) HW (G) is Montel.

(b) For every n ∈ N and every w ∈W , wn(w)∼ vanishes at ∞ on G.

Proposition 10. Let G be an open and connected subset of C such

that C
∗ \G has no one-point component. Then HW (G) = HW0(G) implies

condition (b) in Theorem 8.

Proof. Assume that condition (b) is not satisfied. There are w ∈ W ,
n ∈ N and a sequence (zk)k∈N ⊂ G which converges to z0 in the boundary
of G in C

∗ such that for every k ∈ N we have

(1) wn(zk)(w)∼(zk) ≥ ε.

By [13, Proposition 1.2(iv)] for every k ∈ N there is fk ∈ H(G) such that
|fk| ≤ w on G and |fk(zk)| = (w)∼(zk). Each fk is an element of HW (G).

Without loss of generality we may assume that z0 is contained in a
closed, connected set L ⊂ C

∗ \ G of more than one point. It is easy to see
that U := C

∗ \ L is conformally equivalent to D.
The sequence (zk)k∈N contains an H∞(U)-interpolating subsequence

which will also be denoted by (zk)k∈N. (See [23, p. 195].)
Then the proof of [35, III.E.4] yields the existence of a sequence of func-

tions (ϕj)j∈N ⊂ H∞(U) such that ϕj(zk) = δjk and
∑∞

j=1 |ϕj| ≤ M < ∞.

Put f :=
∑∞

k=1 ϕkfk. We have |f(z)| ≤
∑∞

k=1 |ϕk(z)fk(z)| ≤ Mw(z) for
every z ∈ G. Thus the series converges uniformly on compact subsets of G,
hence f ∈ H(G).

It remains to show that f belongs to HW (G) \HW0(G). First we prove
that f is an element of HW (G). For every z ∈ G and every m ∈ N, we have

wm(z)|f(z)| ≤ wm(z)

∞∑

k=1

|ϕk(z)| |fk(z)| ≤ wm(z)Mw(z) <∞.

On the other hand, |f(zj)| = |
∑∞

k=1 ϕk(zj)fk(zj)| = |fj(zj)| = (w)∼(zj) for
each j ∈ N. An application of (1) shows wn(zk)|f(zk)| = wn(zk)(w)∼(zk) ≥ ε
for every n ∈ N. So f 6∈ H(wn)0(G). This contradicts HW (G) = HW0(G).

Corollary 11. Let G ⊂ C be open and connected such that C
∗ \G has

no one-point component. Assume that Cw = Cw,0 for every w ∈ A. Then

the following assertions are equivalent :

(a) HW (G) = HW0(G).
(b) HW0(G) is reflexive.

(c) HW (G) is reflexive.

(d) For every n ∈ N and every w ∈W , wn(w)∼ vanishes at ∞ on G.



Weighted Fréchet spaces of holomorphic functions 263

(e) HW (G) is Montel.

(f) HW0(G) is Montel.

Proof. The equivalence of (a) and (b) is given by Theorem 3. By The-
orem 8 and Proposition 10 we deduce that (a) is equivalent to (d). Since
HW0(G) is a closed topological subspace of HW (G), (c) implies (b) by [26,
Proposition 11.4.5] and (e) yields (f) by [26, Proposition 11.5.4]. By Theo-
rem 8, (e) follows from (d). Since HW (G) and HW0(G) are Fréchet spaces
we obtain (e)⇒(c) and (f)⇒(b).

Remark 12. The following condition (M ′) was introduced by Bierstedt,
Meise and Summers in [16] for Köthe matrices and studied for sequences of
weights by Bierstedt and Meise in [14].

An increasing sequence W = (wn)n∈N of strictly positive continuous
functions on an open set G ⊂ C

N , N ≥ 1, is said to satisfy condition (M ′) if
for any n ∈ N and any subset Y of G which is not relatively compact there
is m = m(n, Y ) > n such that infy∈Y wn(y)/wm(y) = 0.

They showed that the algebraic equalityCW (G) = CW0(G) is equivalent
to (M ′) (see [14, Proposition 5.5]). It is an easy consequence that (M ′)
implies HW (G) = HW0(G). A simple computation shows that (M ′) is
satisfied if and only if the following holds: For every n ∈ N and every w ∈W ,
wnw vanishes at ∞ on G.

This remark shows that (b) in Theorem 8 differs from (M ′) exactly by
the use of an associated growth condition. We will show that this is really
a difference by constructing an example in which HW (G) = HW0(G), but
CW (G) 6= CW0(G). The idea for the construction of this example is taken
from [13]. First we need some auxiliary results.

The following condition (ND′) was introduced by Bierstedt and Meise
in [14]. It is well known that a sequence W of weights which has (ND′) does
not satisfy (M ′).

Remark 13. Let W = (wn)n∈N be an increasing sequence of strictly
positive continuous functions on an open set G ⊂ CN , N ≥ 1. Then W is
said to satisfy condition (ND′) if there are n ∈ N and a decreasing sequence
(Jk)k∈N such that for every k ≥ n we have

(i) infz∈Jk
wn(z)/wk(z) > 0,

(ii) there is l(k) > k with infz∈Jk
wn(z)/wl(k)(z) = 0.

Another condition which is needed is the following condition (S′) for an
increasing sequence W = (wn)n∈N of strictly positive continuous functions
on an open set G ⊂ C

N , N ≥ 1, which was studied by Bierstedt, Meise and
Summers in [15] in the setting of Köthe sequence spaces:

(S′) For every n ∈ N there is m > n such that wn/wm vanishes at ∞ on G.
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It is well known that (S′) implies (M ′). But the converse is not true
(see [15]).

Lemma 14. Let G1 be an open subset of C, and put G := G1 × C. Let

T = (tn)n∈N and U = (un)n∈N be increasing sequences of weights on G1

and C, respectively. Let 0 < p < 1, and assume that for each n ∈ N and

each z ∈ C, 1 ≤ un(z) ≤ (1 + |z|)p. Choose S = (sn)n∈N with sn(z) :=
un(z)/(1 + |z|)p, z ∈ C, and put W = (wn)n∈N, wn(z1, z2) = tn(z1)sn(z2)
for (z1, z2) ∈ G, n ∈ N. Then:

(a) Every f ∈ HW (G) is constant in the second coordinate z2, i.e. we

have f(z1, z2) = f(z1, z
′
2) for z2, z

′
2 ∈ C, z1 ∈ G1.

(b) HW (G) and HT (G1) are canonically isomorphic.

Proof. (a) We fix f ∈ HW (G). By definition there is M > 0 such that
wn(z1, z2)|f(z1, z2)| = tn(z1)sn(z2)|f(z1, z2)| ≤M for every (z1, z2) ∈ G. By
assumption we have 1/(1 + |z2|)

p ≤ sn(z2) ≤ 1 for every z2 ∈ C, hence we
obtain

|f(z1, z2)| ≤
M

tn(z1)

1

sn(z2)
≤

M

tn(z1)
(1 + |z2|)

p on G.

By Liouville’s theorem the claim follows (see [13, Lemma 2.2].

(b) Consider the maps

ψ : HW (G) → HT (G1), f 7→ (z1 7→ f(z1, 0))

ψ−1 : HT (G1) → HW (G), g 7→ ((z1, z2) 7→ g(z1)),

which obviously are topological isomorphisms.

Example 15. In Lemma 14 consider G1 = C and choose an increasing
sequence T = (tn)n∈N of weights tn on C such that tn(0) = 1 for every n ∈ N

and such that T has (S′). Hence HT (C) = HT0(C). For every increasing
sequence S = (sn)n∈N on C with lim|z|→∞ sn(z) = 0 for every n ∈ N and
such that S satisfies the assumptions of Lemma 14 we define W = (wn)n∈N

on C
2 = C × C as in Lemma 14. We claim HW (C2) = HW0(C

2). To show
this we have to distinguish two cases.

Case 1: We suppose |z1| → ∞ and fix f ∈ HW (C2) as well as n ∈ N.
By Lemma 14 we have HW (C2) ∼= HT (C). Since lim|z2|→∞ sn(z2) = 0 there
is M > 0 with |sn(z)| ≤ M for every z ∈ C. Fix ε > 0 and put ε′ := ε/M .
Since HT (C) = HT0(C), we can find K1 ⊂⊂ C such that, by the proof of
Lemma 14,

wn(z1, z2)|f(z1, z2)| = tn(z1)sn(z2)|f(z1, 0)| ≤Mtn(z1)|f(z1, 0)| ≤ ε′M = ε

for every z1 ∈ C \ K1 and every z2 ∈ C. Now, take K = K1 × {0} to get
wn(z1, z2)|f(z1, z2)| ≤ ε for every z = (z1, z2) ∈ C

2\K. Hence f ∈ HW0(C
2).
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Case 2: We assume |z2| → ∞ and fix f ∈ HW (C2) as well as n ∈ N. By
Lemma 14 we have HW (C2) ∼= HT (C) = HT0(C). Hence there is m > 0
with

wn(z1, z2)|f(z1, z2)| = tn(z1)|f(z1, 0)|sn(z2) ≤ msn(z2)

for every z = (z1, z2) ∈ C
2. Now we fix ε > 0 and put ε′ := ε/m. Since

lim|z2|→∞ sn(z2) = 0 we can find K2 ⊂⊂ C such that

wn(z1, z2)|f(z1, z2)| ≤ msn(z2) ≤ mε for all z1 ∈ C and z2 ∈ C \K2.

Take K = {0} ×K2 to get wn(z1, z2)|f(z1, z2)| ≤ ε for every z = (z1, z2) ∈
C

2 \K. Thus, f ∈ HW0(C
2).

Next we construct a sequence S = (sn)n∈N as above such that in addition
W = (wn)n∈N has (ND′), hence not (M ′). Therefore CW (G) 6= CW0(G)
(see [14, Proposition 5.5]).

For n ∈ N, n ≥ 3, and arbitrary k ∈ N0 let first un : R+ → R+ be given
on [2k, 2k + 2] by

un(r) :=

{
1 for r ∈ [2k, 2k + 2−n] and r ∈ [2k + 1, 2k + 2],

(1 + r)(n−1)/2n for r ∈ [2k + 3 · 2−(n+1), 2k + 1 − 2−(n+1)],

with un affine on [2k + 2−n, 2k + 3 · 2−(n+1)] and [2k + 1 − 2−(n+1), 2k + 1].
Distinguishing several cases it is elementary to verify that (un)n≥3 is an in-
creasing sequence. Now extend un radially, un(z) = un(|z|) for z ∈ C, n ∈ N,
to obtain an increasing sequence (un)n∈N on C for which the assumption of
Lemma 14 holds with p = 1/2.

At this point it suffices to show that W satisfies (ND′). For arbitrary
n ∈ N, take Jn = {(0, 2k + 2−m) ; k,m ≥ n} ⊂ C

2. Given n ≥ n0 := 3, for
any (0, 2k + 2−m) ∈ Jn we have

wn0
(0, 2k + 2−m) = tn0

(0)sn0
(2k + 2−m) =

1

(1 + 2k + 2−m)1/2
,

wn(0, 2k + 2−m) = tn(0)sn(2k + 2−m) =
1

(1 + 2k + 2−m)1/2

since m ≥ n; hence infJn
wn0

/wn = 1 > 0. But for ln := n+ 1, k ≥ n,

wn+1(0, 2k + 2−n) = tn+1(0)sn+1(2k + 2−n) =
(1 + 2k + 2−n)n/(2n+2)

(1 + 2k + 2−n)1/2
,

wn0
(0, 2k + 2−n)

wln(0, 2k + 2−n)
= (1 + 2k + 2−n)−n/(2n+2).

We obtain infJn
wn0

/wln ≤ (1 + 2k + 2−n)−n/(2n+2) → 0 (k → ∞), which
proves that W satisfies (ND′).

Now we are interested in the question when HW (G) is Schwartz.
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Proposition 16. Let Cn = Bn as well as Bn = Bn,0 for every n ∈ N.

The following are equivalent :

(a) HW (G) is a Schwartz space.

(b) For every n ∈ N there is m > n such that Hwm(G) →֒ Hwn(G) is

compact.

(c) For every n ∈ N there is m > n such that H(wm)0(G) →֒ H(wn)0(G)
is compact.

(d) For every n ∈ N there is m > n such that for every ε > 0 there is

K ⊂⊂ G with

wn(z) < εw̃m(z) for every z ∈ G \K.

Proof. The equivalence of (b), (c) and (d) follows from [19, Theorem 8].

(b)⇒(a). This is [25, Proposition 3.15.9].

(a)⇒(b). If HW (G) is a Schwartz space, for every n ∈ N there is m > n
such that for every ε > 0 we can find a finite set F ⊂ HW (G) with Cm ⊂
F + εCn. This implies

Cm ⊂ F + εCn ⊂ F + εBn.

Since εBn is co-compact and F is co-closed, from [25, Proposition 2.10.5] it
follows that F + εBn is co-closed. We get Bm = Cm ⊂ F + εBn and hence
(b) follows.

IV. The quasinormability of HW (G) resp. HW0(G). First we give
a necessary condition for the quasinormability of HW (G) resp. HW0(G).

Proposition 17. Let Cn = Bn for every n ∈ N and HW (G) be quasi-

normable. Then the following holds: For every n ∈ N there is m > n such

that for every α > 0 we can find w ∈W with

(2)

(
1

wm

)∼

≤ w +
α

wn
on G.

Proof. By definition, for every n ∈ N there is m > n such that for every
α > 0 there exists w ∈ W with Cm ⊂ Cw + αCn ⊂ Cw + αBn. Since Cw is
co-compact and αBn is co-closed, Cw + αBn is co-closed and we obtain

(3) Cm = Bm ⊂ Cw + αBn.

It is enough to show that (3) implies (2). For this we fix f ∈ H(G) with
|f | ≤ 1/wm on G. Then f is contained in Bm and hence in Cw +αBn by (3).
Thus f = g1 + g2 with g1 ∈ Cw and g2 ∈ αBn. We get |f | ≤ |g1| + |g2|
≤ w + α/wn on G. If we take the supremum over all f , we obtain (2).

Proposition 18. Inequality (2) implies the following condition: For ev-

ery n ∈ N there is m > n such that for every k > n and every µ > 0 there
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is ξ > 0 with

(4)

(
1

wm

)∼

≤
ξ

wk
+

µ

wn
on G.

Proof. First, we fix n ∈ N, select m > n as in (2) and fix k > n as well
as µ > 0. Applying (2) we obtain (1/wm)∼ ≤ w+µ/wn on G. By definition
we can find ξ > 0 such that w ≤ ξ/wk on G. This implies (1/wm)∼ ≤
w + µ/wn ≤ ξ/wk + µ/wn on G.

Proposition 19. Let Cw = Cw,0 for every w ∈ A ⊂ W such that

(Cw)w∈A is a fundamental system of bounded sets in HW (G). The following

are equivalent :

(a) HW (G) is quasinormable.

(b) HW0(G) is quasinormable.

Proof. By [7, Proposition 10], HW (G) and (HW0(G)′b)
′
b are topologi-

cally equal. A Fréchet space E is quasinormable if and only if the strong
bidual E′′ is quasinormable (see for example [10, Theorem 3]).

The following construction was introduced by Bierstedt and Bonet in [9].
Let W be a class of strictly positive continuous radial weights v on the unit
disc D which satisfy limr→1− v(r) = 0 and for which the restriction of v to
[0, 1) is non-increasing. We suppose that the class W is stable under finite
minima and under multiplication by positive scalars.

Next, we assume that there is a sequence Rn : H(D) → H(D), n ∈ N,
of linear operators which are continuous for the compact open topology
and such that the range of each Rn is a finite-dimensional subspace of the
polynomials. It is also assumed that RnRm = Rmin(n,m) for any n,m with
n 6= m and that for each polynomial p there is n such that Rnp = p, from
which it follows that Rmp = p for each m ≥ n. Moreover, we suppose that
there is c > 0 such that sup|z|=r |Rnp(z)| ≤ c sup|z|=r |p(z)| for all n, all
r ∈ (0, 1) and any polynomial p.

Finally, setting R0 := 0, and putting rn := 1 − 2−n, n ∈ N ∪ {0}, we
assume that the following conditions are satisfied by the class W :

(P1) There is C ≥ 1 such that, for each v ∈ W and for each polynomial p,

1

C
sup

n
( sup
|z|=rn

|(Rn+2 −Rn−1)p(z)|)v(rn)

≤ ‖p‖v ≤ C sup
n

( sup
|z|=rn

|(Rn+1 −Rn)p(z)|)v(rn).

(P2) For each v ∈ W there is D(v) ≥ 1 such that for each sequence
(pn)n∈N of polynomials of which only finitely many are non-zero,
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sup
z∈D

∣∣∣
∞∑

n=1

(Rn+1 −Rn)pn(z)
∣∣∣v(z) ≤ D(v) sup

k
( sup
|z|=rk

|pk(z)|)v(rk).

The main example for W will be the set of all strictly positive continuous
radial weights v on D which satisfy limr→1− v(r) = 0, are non-increasing on
[0, 1), and for which there are ε0 > 0 and k(0) ∈ N such that:

(L1) infk v(rk+1)/v(rk) ≥ ε0,
(L2) lim supk→∞ v(rk+k(0))/v(rk) < 1 − ε0.

In this case, Rn is the convolution with the de la Vallée Poussin kernel, i.e.
for a holomorphic function f on D, f(z) =

∑∞
k=0 akz

k, we have

Rnf(z) :=
2n∑

k=0

akz
k +

2n+1∑

k=2n+1

2n+1 − k

2n
akz

k.

Conditions (L1) and (L2) are a uniform version of the conditions intro-
duced by W. Lusky in [28], [29], and they also appear in the sequence space
representations for weighted (LB)-spaces given by Mattila, Saksman and
Taskinen [30]. Bierstedt and Bonet showed that (L1) and (L2) imply (P1)
and (P2) (see [9]).

The following lemma is well known. Nevertheless, we give the proof.

Lemma 20. Let E be a locally convex space and F a dense subspace of E.

Assume that F is quasinormable. Then E also is quasinormable.

Proof. We fix a 0-neighborhood base U in F . Since F is dense in E, a
0-neighborhood base of E is given by U := {U ; U ∈ U}. By [26, Proposition
10.7.1] the quasinormability of F implies that for every U ∈ U there is
V ⊂ U , V ∈ U , such that for every λ > 0 there is a bounded set B ⊂ F
with V ⊂ B+λU . We obtain V ⊂ B + λU ⊂ B+2λU . Since B is bounded,
E is quasinormable.

The converse of this lemma is not true. In [18] Bonet and Dierolf con-
structed examples of reflexive and quasinormable Fréchet spaces such that
there is a non-distinguished dense subspace.

Theorem 21. Let W = (wn)n∈N ⊂ W be an increasing sequence of

weights on D such that HW0(D) contains the polynomials. The following

are equivalent :

(a) HW0(D) is quasinormable.

(b) HW (D) is quasinormable.

(c) For every n ∈ N there is m > n such that for every k > n and every

ε > 0 there is λ > 0 with

Cm,0 ⊂ λCk,0 + εCn,0.
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(d) For every n ∈ N there is m > n such that for every k > n and every

µ > 0 there is ξ > 0 with
(

1

wm

)∼

≤
ξ

wk
+

µ

wn
on D.

(e) For every n ∈ N there is m > n such that for every α > 0 there is

w ∈W with (
1

wm

)∼

≤ w +
α

wn
on D.

Proof. (a)⇔(c). This is [31, Definition before Lemma 26.13].

(a)⇔(b). By Remark 5 we have Cw = Cw,0 for every w ∈ W radial.
Thus, we can apply Proposition 19 to obtain the desired equivalence.

(a)⇒(e). We have Bn = Bn,0 and Bn = Cn for every n ∈ N (see [12] as
mentioned above). Hence Proposition 17 implies (d).

(e)⇒(d) See the proof of Proposition 18.

(d)⇒(c). By [12] the polynomials are dense in HW0(D). Hence it is
enough to consider only polynomials. We fix n ∈ N, choose m > n as
in (d) and fix k > n and ε > 0. Now, we put µ := ε/(2c2 +D2)2C,
where c and C are the constants from (P1), and the condition before (P1),
and D2 = D(wn) in (P2). For µ, (d) yields ξ. We fix p ∈ P ∩ Cm,0.
Hence |p| ≤ 1/wm, or equivalently, |p| ≤ (1/wm)∼ on D. Condition (d)
implies (

1

wm

)∼

≤
ξ

wk
+

µ

wn
≤ max

(
2ξ

wk
,
2µ

wn

)
on D.

Now, we put u := min(wk/2ξ, wn/2µ). Then u belongs to the class W ,
and we have

|p| ≤

(
1

wm

)∼

≤ max

(
2ξ

wk
,
2µ

wn

)
=

1

u
.

Hence u|p| ≤ 1 on D. Put κ1 := 1/2ξ, κ2 := 1/2µ, u1 := wk, u2 := wn, i.e.
u = min(κ1u1, κ2u2).

We have p =
∑∞

n=0(Rn+1 −Rn)p = R1p+
∑∞

n=1(Rn+1 −Rn)p, and the
sum is finite. We first treat the term R1p.

By the condition before (P1) and the estimate on u|p|, we get

u(r1) sup
|z|=r1

|R1p(z)| ≤ cu(r1) sup
|z|=r1

|p(z)| ≤ c.

We select i ∈ {1, 2} with u(r1) = κiui(r1). From the second inequality
in (P1), applied to the polynomial R1p and u, and once more the condition
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before (P1), we conclude

sup
z∈D

ui(z)|R1p(z)| ≤ C sup
n
ui(rn)( sup

|z|=rn

|(Rn+1 −Rn)R1p(z)|)

= Cui(r1) sup
|z|=r1

|(R2 −R1)R1p(z)|

= C(κi)
−1u(r1) sup

|z|=r1

|(R2 −R1)R1p(z)|

≤ 2cC(κi)
−1u(r1) sup

|z|=r1

|R1p(z)| ≤ 2c2C(κi)
−1.

This implies R1p ∈ 4Cc2ξCk,0 or R1p ∈ 4Cc2µCn,0.
To treat the other term p − R1p =

∑∞
n=1(Rn+1 − Rn)p, we first apply

the first inequality in (P1) for u and the estimate for u|p| to get

(5) u(rn)( sup
|z|=rn

|(Rn+2 −Rn−1)p(z)|) ≤ C.

We can write N as a disjoint union J1 ∪ J2 such that

u(rj) =

{
κ1u1(rj) for j ∈ J1,

κ2u2(rj) for j ∈ J2.

Now, for i = 1, 2 put gi =
∑

n∈Ji
(Rn+1 − Rn)p, which is a polynomial;

clearly p − R1p = g1 + g2. We fix i ∈ {1, 2} and let pi
n := (Rn+2 − Rn−1)p

for n ∈ Ji and pi
n := 0 otherwise. The properties of the sequence (Rn)n∈N

imply

gi =
∑

n∈Ji

(Rn+1 −Rn)(Rn+2 −Rn−1)p =
∞∑

n=1

(Rn+1 −Rn)pi
n,

and all the sums are finite; hence

sup
z∈D

ui(z)|gi(z)| = sup
z∈D

ui(z)
∣∣∣

∞∑

n=1

(Rn+1 −Rn)pi
n

∣∣∣.

Since only a finite number of the pi
n are non-zero and all the weights belong

to the class W , we can apply (P2) and the estimate (5) to conclude

sup
z∈D

ui(z)|gi(z)| ≤ Di sup
n

( sup
|z|=rn

|pi
n(z)|)ui(rn) ≤ Di sup

n∈Ji

( sup
|z|=rn

|pi
n(z)|)ui(rn)

= Di sup
n∈Ji

( sup
|z|=rn

|(Rn+2 −Rn−1)p(z)|)ui(rn)

≤ Di(κi)
−1 sup

n∈Ji

( sup
|z|=rn

|(Rn+2 −Rn−1)p(z)|)u(rn)

≤ Di(κi)
−1C.

This yields g1 ∈ 2ξD1CCk,0 and g2 ∈ 2µD1CCn,0. Thus

p = R1p+ g1 + g2 ∈ (2c2 +D1)2ξCCk,0 + εCn,0.

Put λ := (2c2 +D1)2ξC to obtain the claim.
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The following condition was introduced by Peris in [33].

Definition 22. A locally convex space E is said to satisfy condition

(QNo) if for every U ∈ U there is V ∈ U such that for all ε > 0 we can find
P ∈ L(E,E) with

(i) P (V ) ∈ B(E),
(ii) (id − P )(V ) ∈ εU .

If a Fréchet space E is (QNo) then it is quasinormable (see [33]).

Lemma 23 (Peris [33]). Let E be a locally complete locally convex space

and F a dense subspace with (QNo). Then E also enjoys (QNo).

Proposition 24. Let W = (wn)n∈N ⊂ W be an increasing sequence

of weights on D such that the polynomials P are dense in HW0(D) and

V := {1/w ; w ∈W} is a subset of W. The following are equivalent :

(a) HW0(D) is quasinormable.

(b) HW0(D) is (QNo).

Proof. (b)⇒(a). This follows from the definition (see [33, remarks after
Definition 3.2]).

(a)⇒(b). This proof is analogous to that of Theorem 21. Using the same
notations we write Tip :=

∑∞
n=1(Rn+1 − Rn)pi

n for i ∈ {1, 2} and find that
T1p ∈ 2D1CCw,0 and T2p ∈ 2λD2CCn,0. Thus

p = R1p+ T1p+ T2p ∈ (2c2 +D1)2CCw,0 + 2D2CλCn,0

or

p = R1p+ T1p+ T2p ∈ 2D1CCw,0 + (2c2 +D2)2λCCn,0.

We distinguish the following cases:

Case 1: We assume u(r1) = κ1u1(r1). We define T : P → P by T (p) =
R1p+ T1p. Then

T (Cm,0 ∩ P) ⊂ (2c2 +D1)2C(Cw,0 ∩ P) ∈ B(P),

(I − T )(Cm,0 ∩ P) ⊂ 2D2Cλ(Cn,0 ∩ P) ⊂ ε(Cn,0 ∩ P).

Case 2: We suppose u(r1) = κ2u2(r1). We define T : P → P by T (p) =
T1p and get

T (Cm,0 ∩ P) ⊂ 2D1C(Cw,0 ∩ P) ∈ B(P),

(I − T )(Cm,0 ∩ P) ⊂ (2c2 +D2)2Cλ(Cn,0 ∩ P) ⊂ ε(Cn,0 ∩ P).

Thus, P and HW0(D) have (QNo).

We finish this article with an example of a sequence W = (wn)n∈N such
that V belongs to the class W .
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Proposition 25. Let W = (wn)n∈N be an increasing sequence of strictly

positive continuous functions on D. Assume that there are ε0 > 0 and k0 ∈ N

such that the following conditions are satisfied :

(L1) infk wn(rk+1)/wn(rk) ≥ ε0 for every n ∈ N.

(L2) There is k1 ∈ N with

wn(rk+k0
) < (1 − ε0)wn(rk)

for every k ≥ k1 and n ∈ N.

Then V ⊂ W.

Proof. We fix v ∈ W . There is w ∈ W with v ≤ w such that there is
a sequence (βn)n∈N of positive numbers such that for every r > 0 there is
k(r) ∈ N with

(6) (1/w)(z) =
1

min1≤n≤k(r) βn/wn(z)
= max

1≤n≤k(r)

1

βn
wn(z).

We have to show that there are ε2 > 0 and k2 ∈ N such that

(L1) infk
(1/w)(rk+1)
(1/w)(rk) ≥ ε2.

(L2) lim supk→∞
(1/w)(rk+k2

)

(1/w)(rk) < 1 − ε2.

We choose ε2 = ε0 and k2 = k0 and prove (L1). For a fixed k ∈ N it
remains to show

ε2(1/w)(rk) ≤ (1/w)(rk+1).

We select 0 < rk+1 < s < 1 and by (6) get

(1/w)(z) = max
1≤n≤k(s)

1

βn
wk(z)

for z ∈ D with |z| ≤ s. We distinguish the following cases:

(i) If (1/w)(rk) = (1/βj)wj(rk) and (1/w)(rk+1) = (1/βj)wj(rk+1),
then

ε2(1/w)(rk) =
ε2
βj
wj(rk) ≤

1

βj
wj(rk+1) = (1/w)(rk+1).

(ii) If (1/w)(rk) = (1/βj)wj(rk) and (1/w)(rk+1) = (1/βl)wl(rk+1), then

ε2(1/w)(rk) =
ε2
βj
wj(rk) ≤

1

βj
wj(rk+1) ≤

1

βl
wl(rk+1) = (1/w)(rk+1).

Thus infk
(1/w)(rk)

(1/w)(rk+k1
) ≥ ε2.

It remains to show (L2). As before we choose ε2 = ε0 and k2 = k0. We
have to prove that there is N0 ∈ N such that for every k ≥ N0,

(1/w)(rk+k2
) < (1 − ε2)(1/w)(rk).
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There is k1 ∈ N such that for every k ≥ k1 and for every n ∈ N we have

wn(rk+k2
) < (1 − ε2)wn(rk).

We fix k ≥ k1 and select 0 < k + k2 < s < 1. Hence, by (6),

(1/w)(z) = max
1≤n≤k(s)

1

βn
wn(z)

for every z ∈ D with |z| ≤ s. We put N0 := k1 and distinguish the following
cases:

(i) If (1/w)(rk+k2
) = (1/βj)wj(rk+k2

) and (1/w)(rk) = wj(rk), then

(1/w)(rk+k2
) =

1

βj
wj(rk+k2

) ≤ (1 − ε2)
1

βj
wj(rk) = (1 − ε2)(1/w)(rk).

(ii) If (1/w)(rk+k2
) = (1/βj)wj(rk) and (1/w)(rk) = (1/βl)wl(rk), then

(1/w)(rk+k2
) =

1

βj
wj(rk+k2

) ≤ (1 − ε2)
1

βj
wj(rk)

≤ (1 − ε2)
1

βl
wl(rk) = (1 − ε2)(1/w)(rk).

The claim follows.

The following is a special case of Bierstedt [5, Satz 3.5(1)].

Theorem 26 (Bierstedt [5, Satz 3.5(1)]). Let U1 = (u1,k)k∈N, U2 =
(u2,k)k∈N, . . . , Um = (um,k)k∈N be increasing sequences of strictly positive

continuous and radial functions on D. If

W :=
m⊗

i=1

Ui =
{ m⊗

i=1

ui,k ; k ∈ N

}
,

then

HW0(D
m) =

(⊗̃
ε

)m

i=1
(HUi)0(D).

Since the tensor product of two Fréchet spaces with (QNo) also satisfies
(QNo) (see Peris [33]) we get the following consequence.

Corollary 27. Let U1 =(u1,k)k∈N, U2 =(u2,k)k∈N, . . . , Um = (um,k)k∈N

be increasing sequences of strictly positive continuous and radial functions

on D such that each H(Ui)0(D) contains the polynomials. Then HW0(D
m) =

(
⊗̃

ε)
m
i=1H(Ui)0(D) satisfies (QNo) if and only if each H(Ui)0(D) has (QNo).
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