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A remark on separate holomorphy
by

MAREK JARNICKI (Krakéw) and PETER PrLUG (Oldenburg)

Abstract. Let X be a Riemann domain over C* x C!. If X is a domain of holomorphy
with respect to a family F C O(X), then there exists a pluripolar set P C C* such that
every slice X, of X with a ¢ P is a region of holomorphy with respect to the family

{flx. : feF}

1. Introduction: Riemann regions of holomorphy. Let (X, p) be
a Riemann region over C", i.e. X is an n-dimensional complex manifold
and p: X — C" is a locally biholomorphic mapping (see [Jar-Pfl 2000] for
details). If X is connected, then (X,p) is said to be a Riemann domain.
We say that two Riemann regions (X, p) and (Y, q) over C" are isomorphic
(written (X, p)~(Y,q)) if there exists a biholomorphic mapping ¢: X —Y
such that g o ¢ = p. Throughout, isomorphic Riemann regions will be iden-
tified.

We say that an open set U C X is univalent (schlicht) if p|y is injective.
Note that X is univalent iff (X, p) ~ (£2,idy,), where (2 is an open set in C".

Let f € O(X). For any o € Z} (Z4 stands for the set of non-negative
integers) and z¢ € X, let D®f(xg) denote the a-partial derivative of f at g,

D® f(z0) := D*(f o (plvr) ") (p(x0)),

where U is an open univalent neighborhood of x¢p and D® on the right hand
side means the standard a-partial derivative operator in C". Let T}, f denote
the Taylor series of f at xg, i.e. the formal power series

1
> 1 DO f(zo)(z = p(20))”, 2 € C"
a€Z’ ’
For zyp € X and 0 < r < oo let Px(xp,7) denote an open univalent

neighborhood of zp such that p(Px(xo,7)) = P(p(xo),r) = the polydisc
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with center at p(x¢) and radius r. Let dx(xg) denote the maximal r such
that Px (zo,r) exists. Put Px(xg) := Px (20, dx (x0)).

For f € O(X) and zg € X, let d(Ty, f) denote the radius of convergence
of Ty f, i.e.

d(Ty, f) := sup{r > 0 : the series T, f is convergent in P(p(x¢),r)}.

Obviously, d(Ty, f) > dx(xo) and f(z) = Ty, f(p(z)), * € Px(x0). Notice
that

1 1 1/v
= limsup < max  — |D°‘f(a:0)\> .

d(Txo f) V—00 a€Zl |a|=v al
From now on we assume that all Riemann regions considered are count-
able at infinity.
Let ) # F C O(X). We say that (X, p) is an F-region of existence if

dx(x) =inf{d(T,f): f e F}, =zeX.

We say that an F-region of existence (X, p) is an F-region of holomorphy
if F weakly separates points in X, i.e. for any 2/, 2" € X with 2/ # z” and
p(z") = p(z”), there exists an f € F such that Ty f # T,n f (as formal power
series).

REMARK 1.1 (Properties of regions of holomorphy). (a) Let (X,p) be
an F-region of holomorphy and let U C X be a univalent domain for which
there exists a domain V' D p(U) such that for every f € F there exists a
function Fy € O(V) such that Fy = f o (p|y)~" on p(U). Then there exists
a univalent domain W D U with p(W) = V.

Indeed, we only need to observe that we may always assume that (X, p) is
realized as an open subset of the sheaf of F-germs of holomorphic functions
(cf. [Jar-Pfl 2000, proof of Theorem 1.8.4]) and, consequently, we may put

W= A{l(D, (Ff)er)lz : 2 €V}

(cf. [Jar-Pfl 2000, Example 1.6.6]).
(b) ([Jar-Pfl 2000, Proposition 1.8.10]) Let A C X be a dense subset
such that A = p~!(p(A)). Then the following conditions are equivalent:

(i) (X,p) is an F-region of holomorphy;

(i) dx(z) = inf{d(Tf) : f € F}, x € A, and for any 2/,2" € A
with o’ # z” and p(2’) = p(z”), there exists an f € F such that
Ty f 7£ Ty f.

(c) If (X,p) is an F-region of holomorphy, then there exists a finite or
countable subfamily Fy C F such that (X, p) is an Fp-region of holomorphy.
Indeed, we may assume that X is connected. The case where (X,p) ~
(C™,idcn) is trivial. Thus assume that dx(z) < oo, x € X. Let A C X be
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a countable dense subset such that A = p~1(p(4)). By (b), for any z € A
and r > dx(x) there exists an f;, € F such that d(T,f,,) < r, and for
o', x" € A with 2/ # 2" and p(2’) = p(z”), there exists an fy ,» € F such
that T for o % Tpn fI/J//. Now, we may take

f() = {fm,r X E A, @ >5Tr > dx(x)}
U {fz’,x” : 56/7 RS A, ' 7& xllv p(m/) = p(.T//)}.

2. Main results: separate holomorphy. Let (X,p) be a Riemann
domain over C"* = C* x C!,

p=(u,v): X - CFxCl

Put D := p(X), Dy, := u(X), D' :=v(X). For a € Dy, define X, := u~1(a),

Pa = v|x,. Similarly, for b € D!, put X° :=v=1(b), p* := u xs.

REMARK 2.1. For every a € Dy, (X,,p,) is a Riemann region over C!,
countable at infinity.

Let ) # F C O(X). For a € Dy, define f, := f|x,, Fa :={fa: fEF} C
O(X,), and analogously, fb = flxbs Fb.= {fb :feFtcC (’)(Xb)7 be D
The main result of the paper is the following

THEOREM 2.2.

(a) Let O # F C O(X) and assume that (X,p) is an F-domain of
holomorphy. Then there exists a pluripolar set S, C Dy such that
for every a € Dy \ Sk, (Xa,Pa) is an Fg-region of holomorphy.

(b) Assume that (X, p) ~ (D,idp), where D C C* x C! is a fat domain

(i.e. D = int D) and there exist sets Sy, C Dy, S' C D! such that:

e int S, =0, int S = 0,
e for any a € Dy \ Sk, Dy is an F4-region of holomorphy,
e for any b € D'\ S, D is an FP-region of holomorphy.

Then D is an F-domain of holomorphy.

Proof. (a) By Remark 1.1(c), we may assume that F is finite or count-
able.

STEP 1. There exists a pluripolar set P C Dy such that for any a €
Dy \ P, (X4, pa) is an Fo-region of existence.

Define Ry y(7) := d(Tx fu(z)), f € F, b€ D!, z € X°. Recall that

1 1 1
= lim sup ( max — — ]D(O’ﬂ)f(x)o , we X

Rf,b('r) V—00 ﬂEZl_F:Mﬂ:U B'
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Obviously, Ry p(z) > dx (), x € X°. By the Cauchy inequalities, we get

SUPP y (z0,r) |f|
rlBl ’

0 <r<dx(zo), z € Px(xo,7/2), B € Zﬁr.

%ﬂD@mf@NS

Consequently, the function —log (Ryp)« (where , denotes the lower semicon-
tinuous regularization on X?) is plurisubharmonic on X°. Put

Pf7b = ’LL({I‘ S Xb : (Rf,b)*(ﬂf) < Rf,b(x)}) C Dy..
It is known that Py is pluripolar (cf. [Jar-Pfl 2000, Theorem 2.1.41(b)]).
Put
Ry := inf R Ry = inf (Ryp)s.
b= Inf Rpp, Ry ]}gf( 1)
Observe that —log (Rp), is plurisubharmonic on X°. Put
Py = u({x € X": (Ry).(x) < Ry(x)}) C Dy

The set P, is also pluripolar (cf. [Jar-Pfl 2000, Theorem 2.1.41(a)]). Now let
B C D' be a dense countable set. Define
P = ( U PfJ,) U ( U Pb) C Dy.
feF,beB beB

Then P is pluripolar.

Take an a € Dy \ P and suppose that X, is not an F,-region of existence.
Then there exist a point g € X, and a number r > dx,(zp) such that
b:=v(xo) € B and Rp(zp) > r. Since a ¢ P, we have

(ﬁb)*(w‘o) = Eb(xo) = (Rﬁb)* = inf Rf’b = Rb(xo) > r.
feF

inf
feF
In particular, there exists 0 < ¢ < dx(zq) such that (Rp).(z) > r for
x € Pxv(xp). Since

~

Ro() = inf Rpy(x) > inf (Rpa)a(@) = Rofa) > (Ro)a(@),

we conclude that Ry(z) > r for x € Pyu(xg). Put U := Px(z0,¢). Hence, by
the classical Hartogs lemma, for every f € F, the function fo(p|y)~! extends
holomorphically to V' := P(a,e) x P(b,r). Since (X,p) is an F-domain of
holomorphy, by Remark 1.1(a), there exists a univalent domain W C X,
U C W, such that p(W) = V. In particular, dx,(z¢) > r, a contradiction.

STEP 2. There exists a pluripolar set P C Dy such that for any a €
Dy \ P the family F, weakly separates points in X,.

Take a € Dy, o', 2" € X, with 2’ # 2" and pe(2’) = pa(2”) =: b. Since F
weakly separates points in X, there exists an f € F such that T,/ f # Tpn f.
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Put 7 := min{d(T, f), d(T, f)} and let
Py gz = ﬂ {zePla,r): Ty f(z,w) =T f(z,w)}.

weP(b,r)

Then P,z »» & P(a,r) is an analytic subset. For any z € P(a,r) \ Py 2
we have T,/ f(z,-) # Ty f(2,-) on P(b,r).

Take a countable dense set A C Dy. For any a € A let B, C X, be a
countable dense subset such that p, ! (ps(B,)) = Ba. Then

P = U Pzz,m’,x”
a€A,z' 2" €B,
a'#a", pa(a’)=pa(a")
is a pluripolar set.

Fix ag € Dy \ P, z(, z( € Xq, with () # z{) and pg,(z() = pao(%) =: by.
Put r := min{dx(z(), dx(x()}. Let a € ANP(ap,r/2) and z',2" € B, be
such that 2’ € Px(z(,7/2), 2" € Px(xg,r/2) and p,(z') = pa( 7). Since
ap ¢ P, we conclude that T,/ f(ag,-) # Ty f(ag,-) on P(by,r/2). Conse-
quently, T,s f(ao, ") # Ty f(ao,) on P(bg,r/2), which implies that T, fa,
# ngfGO'

(b) Suppose there exist 29 = (ap, bg) € G and r > dp(xg) =: ¢ such that
d(Ty, f) > r for f € F. Then d(Tp, fo) > r for any f € F and a € P(ag, ro).
Consequently, (P(ag,r9) \ Sg) x P(by,r) C D. Since int S, = () and D is fat,
we conclude that P(ag,r0) x P(bg,r) C D. Now, we see that d(T,,f°) > r
for any f € F and b € P(bg, ). Consequently, P(ag,r) x (P(by, )\ SY) C D.
Hence P(ag,r) x P(bg,r) C D, a contradiction. m

REMARK 2.3. The following natural question arises from the discussion
above: is it possible to sharpen Theorem 2.2(a) so that the exceptional
set there is even a countable union of locally analytic sets? The following
example will show that the answer is, in general, negative.

Let C1 C D (the unit disc) be a compact polar set which is uncountable
(take, for example, an appropriate Cantor set). Define C' := C1 U Co, where
Cy := DN Q2 Then C is polar and a countable union of compact sets.

Using Example 2 from [Ter 1972], we find a function f : DxD — C with
the following properties:

e f(-,w)e OD) for all w € D,
o f(z,-) € OD) for all z € C,
e f is unbounded near some point (z9,0) € D x D.

Using the corollary to Lemma 8 of [Ter 1972], we conclude that there is
a non-empty domain V' CC D such that flpxy € O x V). Set F =
{flpxv,9g|lpxv}, where g € O(D x D) is chosen in such a way that D x D is
the existence domain of g. Denote by (D', p) the F-envelope of holomorphy
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of Dx V. Then p(D’) C D x D. Moreover, using the fact that C' is dense in D
one sees that D’ is univalent. Indeed, let us take a sequence G; = G; x G C
DxD, j=1,...,N,of bidiscs, G;NG,+1 # 0, and functions f; € O(G;), j =
1,...,N,suchthat Gy CDx V, f1 = f’Gl, and fj|GjﬂGj+1 = fj+1‘gjmgj+1,
j=1,...,N — 1. We claim that then fy = f|g,, which implies that D’ is
univalent. By induction we may assume that f; = f|g, for a j < N. Then
for any point a € C' NG’ NG’ | we have two holomorphic functions f(a,)
and fjt+1(a,-) on GY,4. They coincide on G N G7,,, and so on G7 ;. Now
fixabe G7,,. Then f(-,b) and fj41(+,b) are holomorphic in G’ ; and they
coincide on CNG’ NG, 1; hence they are equal on G, 1, i.e. flg; , = fj+1.
Set D := p(D’). Then D is an F-domain of holomorphy, where

F={g:=glp,f = flp}.

~

Observe that for any a € C, the functions f(a,-),g(a,-) extend to the whole
of D.

Fix R' < R € (0,1) such that V' cC P(0, R'). Suppose that there is an
ap € C with {ap} x P(0, R) C D. Then there is a small open neighborhood
U C D of ap such that U x P(0, R') C D. In view of the Hartogs lemma we
conclude that f is holomorphic on D x P(0, R’), in particular a holomorphic
extension of f|pxy, and therefore bounded near (zg,0), a contradiction.
Thus, the singular set S; for D must contain C.

REMARK 2.4. Observe that Theorem 2.2(b) need not be true if D is
not fat. For example, let D := D%\ {(0,0)} c C?, F := O(D). By the
Hartogs extension theorem, any function from F extends holomorphically
to D?. Thus D is not an F-domain of holomorphy. Observe that for any
a € D\ {0}, D, =D and F, = O(D). Similarly, for any b € D\ {0}, D’ =D
and F* = O(D).

3. Applications: separately holomorphic functions. Directly from
Theorem 2.2 we get the following useful corollary.

COROLLARY 3.1. Let D C CF x C! be a domain, let ) # F C O(D)
and let A C prex(D). Assume that for any a € A we are given a domain
G(a) D Dg in C* such that:

o for any f € F, the function f(a,-) extends to an fac€ O(G(a)),

o the domain G(a) is an {fq : f € F}-domain of holomorphy.

Let (X, p) be the F-envelope of holomorphy of D. Then there exists a pluripo-
lar set P C A such that for every a € A\ P we have (Xq, pa) =~ (G(a),idg(q))-

Recall a version of the cross theorem for separately holomorphic func-
tions with pluripolar singularities (cf. [Jar-Pfl 2003, Main Theorem)]).
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THEOREM 3.2. Let D C C¥, G  C! be domains of holomorphy and let
A C D, B C G be locally pluriregular sets (1). Consider the cross

X =X(A,B;D,G) := (Ax G)N (D x B)
and let
X =X(A4,B;D,G) :={(z,w) e DX G : wa,p(2) +wpa(w) <1},

where wa p and wp g are generalized relative extremal functions. Let M C X
be a relatively closed set (*) such that:

o for every a € A the fiber My, :={w € G : (a,w) € M} is pluripolar,
e for every b € B the fiber M® := {z € D : (z,b) € M} is pluripolar.

Let F = Os(X \ M) denote the set of all functions separately holomorphic
on X \ M, i.e. of those functions f : X \ M — C for which:

e for everya € A, f(a,-) € O(G\ M,),
o for everybec A, f(-,b) € O(D\ M?).

Then there exists a relatively closed pluripolar set S C X such that:

e SNX CM, R R R
o for every f € F there exists an f € O(X \ S) with f = f on X \ M,
e X\ Sisan{f:fe€F}-domain of holomorphy.

In the proof presented in [Jar-Pfl 2003] the assumption that M is rela-
tively closed in X played an important role. Observe that from the point of
view of the formulation of the above theorem, we only need to assume that
all the fibers M, and M? are relatively closed. Corollary 3.1 permits us to
clarify this problem in certain cases.

LEMMA 3.3. Let D ¢ CF, Gy ¢ G c C! be domains of holomorphy
and let A C D. Assume that for every a € A we are given a relatively
closed pluripolar set M (a) C G. Let F denote the set of all functions f €
O(D x Gy) such that for every a € A, the function f(a,-) extends to an

fa € O(G \ M(a)). Assume that for every a € A the set M(a) is singular
with respect to the family {fs : f € F} (3). Then there exists a pluripolar

(*) A non-empty set A is said to be locally pluriregular if for any a € A, the set A is
locally pluriregular at a, i.e. for any open neighborhood U of a we have hjny (a) = 0,
where hanu,u denotes the relative extremal function of ANU in U. For an arbitrary set A
define A* := {a € A : A is locally pluriregular at a}. It is known that the set Z := A\ A*
is pluripolar. In particular, if A is non-pluripolar, then A\ Z is locally pluriregular.

(?) That is, M is closed in X.

(3) Recall that a relatively closed pluripolar set M C G is said to be singular with
respect to a family ) # G C O(G \ M) if there is no point a € M which has an open
neighborhood U C G such that every function from G extends holomorphically to U
(cf. [Jar-Pfl 2000, §3.4]).
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set P C A such that if we put Ag := A\ P, then the set
M(Ag) := | {a} x M(a)

a€Ag
is relatively closed in Ay X G.

Proof. First observe that every function from O(G) may be regarded as
an element of F, which implies that for every a € A the domain G(a) :=
G\ M(a)is a {fa : f € F}-domain of holomorphy.

Let (X, p) be the F-envelope of holomorphy of D x Gy. Since D and G
are domains of holomorphy, we may assume that p(X) C D x G.

By Corollary 3.1, there exists a pluripolar set P C A such that for every
a € Ag := A\ P we have (Xq,pa) =~ (G(a),idg(q))- Thus p is injective on the
set B :=p~ (49 x G) and p(B) = Uaea la} x Gla) = (Ao x G) \ M(Ay).
Hence p(B) = p(X) N (Ap x G) and, consequently, p(B) is relatively open
in A() XG. m

Consequently, we get the following generalization of Theorem 3.2.

THEOREM 3.4. Let Dy C D C Ck, Gy ¢ G c C! be domains of holo-
morphy and let A C Do, B C Gy be non-pluripolar sets. Let M C X :=
X(A, B; D, G) be such that:

e for every a € A the fiber M, is a closed pluripolar subset of G,
o for every b € B the fiber M® is a closed pluripolar subset of D.

Let F denote the set of all functions f € O(Dg x Gg) such that:

o for every a € A the function f(a,-) extends holomorphically to G\ M,,
e for every b € A the function f(-,b) extends holomorphically to D\ M.

Then there exist:

e pluripolar sets P C A, Q C B such that the sets Ay := A\ P and
By := B\ Q are locally pluriregular,
e a relatively closed pluripolar set S C Xo := X(Ay, Bo; D, G)

such that:

o SQX(A(),B[);D,G) Cc M,
o for every f € F there exists an f € O(Xo\ S) with f = f on Dy x Gy,
e Xo\ Sisan{f:feF}-domain of holomorphy.

REMARK 3.5. More general versions of the cross theorem (also for N-fold
crosses) will be discussed in our forthcoming paper.
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