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Contractive homomorphisms of
measure algebras and Fourier algebras

by

Ross Stokke (Winnipeg)

Abstract. We show that the dual version of our factorization [J. Funct. Anal. 261
(2011)] of contractive homomorphisms ϕ : L1(F ) → M(G) between group/measure alge-
bras fails to hold in the dual, Fourier/Fourier–Stieltjes algebra, setting. We characterize
the contractive w∗-w∗ continuous homomorphisms between measure algebras and (re-
duced) Fourier–Stieltjes algebras. We consider the problem of describing all contractive
homomorphisms ϕ : L1(F ) → L1(G).

1. Introduction. Let F and G be locally compact groups. The convo-
lution “homomorphism problem” in abstract harmonic analysis asks for a
description of all bounded homomorphisms between group and measure alge-
bras, L1(F ) and M(G) (and related convolution algebras); the dual version
of the homomorphism problem asks for a description of all homomorphisms
between Fourier and Fourier–Stieltjes algebras, A(F ) and B(G). For some
details regarding the history of the problem, the reader is referred to [3],
[16], [8], [10], [11], [17] and the references therein. In general, both versions
of the problem remain open.

Let LUC(F ) denote the C∗-algebra of left uniformly continuous func-
tions on F and give the dual Banach space LUC(F )∗ its left Arens product.
Then LUC(F )∗ contains M(F ), and therefore L1(F ), as a Banach subal-
gebra through the embedding

ΘF : M(F ) ↪→ LUC(F )∗, 〈ΘF (µ), f〉 =
�
f dµ.

For any map θ : Y ⊂ F → G and a function f on G, jθ(f) is defined on
F by putting jθf = f ◦ θ on Y and jθf = 0 off Y . When θ : F → G is a
continuous homomorphism, jθ maps C0(G), the continuous functions on F
that vanish at infinity, into LUC(F ). The dual map j∗θ : LUC(F )∗ →M(G)
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is a weak∗ continuous contractive Banach algebra homomorphism mapping
the point mass δx to δθ(x). The restriction of j∗θ to both M(F ) and L1(F ) is
also denoted j∗θ .

For α ∈ F̂ 1, i.e. for α a continuous character on F , let Mα : C0(F ) →
C0(F ) : f 7→ fα and let Aα = M∗α; then Aα is an isometric algebra auto-
morphism of M(F ) and, by restriction, of L1(F ). Let T denote the circle
group and let H be a locally compact group. Then θH denotes the pro-
jection homomorphism mapping T × H onto H, and αT is the projection
character mapping T×H onto T. If K is a compact normal subgroup of H
with normalized Haar measure mK—often viewed as an element of M(H)—
define SK : C0(H) → C0(H/K) by SKf(xK) =

	
K f(xk) dmK(k). Then

S∗K : M(H/K) ↪→ M(H) is an isometric algebra isomorphism that embeds
L1(H/K) into L1(H) and satisfies S∗K(δxK) = δx ∗mK . We refer the reader
to [17] for additional information regarding these “basic” homomorphisms
and any additional notation that we have not defined here.

In [17], the author showed that there are contractive homomorphisms
ϕ : L1(F ) → M(G) which fail to have the Cohen factorization which holds
in the abelian case, and which was shown by Pham [15] to extend in a way
that characterizes the contractive homomorphisms ϕ : A(F ) → B(G). The
following alternative factorization was established:

Theorem 1.1. Let ϕ : L1(F ) → M(G) be a mapping. The following
statements are equivalent:

(i) ϕ is a contractive homomorphism;
(ii) there is a closed subgroup H of G, a compact normal subgroup Ω0

of T×H and a continuous homomorphism θ : F → T×H/Ω0 such
that ϕ = j∗ιH ◦ j

∗
θH
◦AαT ◦ S∗Ω0

◦ j∗θ . That is, ϕ factors as

(1.1)

L1(F )

j∗θ
��

ϕ //M(G)

M(T×H/Ω0) �
� S
∗
Ω0 //M(T×H)

AαT //M(T×H)
j∗θH //M(H)

?�
j∗ιH

OO

Remark 1.2. 1. Suppose that ϕ : M(F )→M(G) has the factorization
(1.1) with j∗θ : M(F )→M(T×H/Ω0); this is the unique so-w∗ continuous
extension of ϕ on L1(F ) to M(F ) (see [8] or [17]), where so denotes the strict
topology on M(F ) taken with respect to the ideal L1(F ). Then we can take
H equal to the support subgroup of {ϕ(δx) : x ∈ F}; Ω0 = Ωρ = {(ρ(k), k) :
k ∈ K} where ϕ(δeF ) = ρmK with K a compact normal subgroup of H

and ρ ∈ K̂1 such that ker ρ is normal in H and K/ker ρ lies in the centre of
H/ker ρ; and θ(x) = φ−1(ϕ(δx)) where φ : T×H/Ωρ → ΓT×H = {αδx∗ρmK :
(α, x) ∈ T×H} is the natural topological isomorphism (see [17, Theorems 5.7
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and 5.11 and Corollary 4.3]). In this case we will say that the factorization
(1.1) is in canonical form.

2. If we define θH,G : T×H → G by θH,G(α, h) = h, then the factorization
(1.1) may be written as ϕ = j∗θH,G ◦AαT ◦ S∗Ω0

◦ j∗θ [17, Remark 5.12].

In Section 2, we will characterize precisely when the dual version of
the factorization (1.1) can be used to describe a contractive homomor-
phism ϕ : A(F ) → B(G). In (unfortunate) perfect duality with the Cohen
factorization—which was shown in [17] to fail for group algebras—we will
show that the dual version of the factorization (1.1) often cannot be used
to describe all contractive homomorphisms in the Fourier algebra setting.

Even when F and G are abelian, there is no known characterization
of all homomorphisms ϕ : M(F ) → M(G). When F is amenable, descrip-
tions of all so-w∗ continuous (respectively w∗-w∗ continuous) completely
bounded homomorphisms ϕ : B(F ) → B(G) were obtained in [12]: ϕ = jα
for some piecewise affine continuous (open) map α : Y ⊆ G → F , where
Y lies in the open coset ring of G. For further definitions and details, the
reader is referred to [10]–[12]. Recently, Hung Le Pham proved that every
contractive homomorphism ϕ : A(F ) → B(G) has a Cohen factorization
ϕ = lr ◦ s ◦ jθ1 ◦ lu:

A(F )
lu−→ A(F )

jθ1−−→ B(G1)
s
↪→B(G)

lr−→ B(G)(1.2)

where lru(s) = u(rs); θ : G1 → F is a continuous homomorphism, or antiho-
momorphism, defined on an open subgroup G1 of G; and s : B(G1) ↪→ B(G)
is given by s(u)(h) = u(h) if h ∈ G1, and s(u)(h) = 0 otherwise [15, Theo-
rem 5.1].

In Section 3, we will apply Pham’s theorem and a modification of the
quoted theorem from [12] to obtain a description of the so-w∗ and w∗-w∗

continuous contractive homomorphisms ϕ : Br(F )→ B(G). Here, Br(F ) is
the reduced Fourier–Stieltjes algebra of F , which we identify with the dual
of C∗r (F ), the C∗-subalgebra of the bounded operators on L2(F ) generated
by the convolution operators λ(f)ξ = f ∗ ξ, f ∈ L1(F ), ξ ∈ L2(F ); see [6]
and [1] for details. By replacing L1(F ) by M(F ) in Theorem 1.1, one ob-
tains a characterization of the so-w∗ continuous contractive homomorphisms
ϕ : M(F )→M(G) [17, Corollary 6.1]. In Section 3, we will also character-
ize the w∗-w∗ continuous contractive homomorphisms ϕ : M(F ) → M(G):
such maps have the factorization (1.1) with θ a continuous proper homomor-
phism. In special cases, the contractive homomorphisms ϕ : L1(F )→ L1(G)
have been described [8], [13], [17] but in general the problem remains open.
In Section 4, we discuss this problem.

To avoid trivial cases, all algebra homomorphisms are assumed to be
nonzero.
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2. The dual form of the factorization (1.1). Observe that when Ωρ
is normal in T × G, one can replace H by G in the factorization (1.1) and
drop the term j∗ιH . Using the Fourier and Fourier–Stieltjes transforms, one
can also check that when F and G are abelian, the precise dual form of the
factorization

L1(F )
j∗θ−→M(T×G/Ω0)

S∗Ωρ−−→M(T×G)
AαT−−→M(T×G)

j∗θG−−→M(G)

is given by

A(F )
jθ−→ B(G0)

s−→ B(Z×G)
l(−1,eG)−−−−−→ B(Z×G)

jιG−−→ B(G)(2.1)

where G0 is an open subgroup of Z × G, θ : G0 → F is a continuous
homomorphism, and ιG : G → Z × G : x 7→ (0, x). It was natural to
ask if every contractive homomorphism ϕ : L1(F ) → M(G) has a Cohen
factorization [13], [17], and it is similarly natural to ask if every contractive
homomorphism ϕ : A(F ) → B(G) has the factorization (2.1) where θ is
either a homomorphism or an anti-homomorphism. In this section we shall
characterize exactly when this is the case.

Lemma 2.1. Let G1 be a subset of G, r ∈ G, u ∈ F , θ1 : G1 → F .

(i) G0 = {(n, rnt) : n ∈ Z, t ∈ G1} is a subgroup of Z × G if and only
if G1 is a subgroup of G and rG1r

−1 = G1.
(ii) Suppose that G0 is a subgroup of Z×G and define

θ : G0 → F : (n, rnt) 7→ u−nθ1(t) [(n, rnt) 7→ uθ1(t)u−n−1].

Then θ is an [anti-]homomorphism if and only if θ1 is an [anti-]
homomorphism and for each t ∈ G1,

θ1(r±1tr∓1) = u∓1θ1(t)u±1 [θ1(r±1tr∓1) = u±1θ1(t)u∓1].

Proof. (i) Suppose that G0 is a subgroup of Z × G. As (0, t) ∈ G0 if
and only if t ∈ G1, we see that G1 is a subgroup of G. For t ∈ G1,
(0, rtr−1) = (1, rt)(−1, r−1) ∈ G0, so rG1r

−1 ⊆ G1. Similarly, r−1G1r ⊆ G1,
so rG1r

−1 = G1. Conversely, suppose that G1 is a subgroup of G and
rG1r

−1 = G1. For (m, rms) and (n, rnt) in G0, we have (m, rms)−1 =
(−m, r−m(rms−1r−m)) ∈ G0 and (m, rms)(n, rnt) = (m+n, rm+n(r−nsrn)t)
∈ G0. Hence, G0 is a subgroup of Z×G.

(ii) Suppose that G0 is a subgroup of Z × G and that θ(n, rnt) =
uθ1(t)u−n−1 is an anti-homomorphism of G0 into F . For s, t ∈ G1,

θ1(st) = u−1θ(0, st)u = u−1θ((0, s)(0, t))u

= u−1θ(0, t)uu−1θ(0, s)u = θ1(t)θ1(s).
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Note in particular that θ1(eG) = eF . Hence,

θ1(rtr−1) = u−1θ(0, rtr−1)u = u−1θ((1, rt)(−1, r−1))u

= u−1θ(−1, r−1)θ(1, rt)u = u−1uθ1(eG)u0uθ1(t)u−2u = uθ1(t)u−1.

Similarly, θ1(r−1tr) = u−1θ((−1, r−1t)(1, r))u = u−1θ1(t)u. Conversely, sup-
pose that θ1 is an anti-homomorphism and θ1(r±1tr∓1) = u±1θ1(t)u∓1 for
each t ∈ G1. Then for (m, rms) and (n, rnt) in G0,

θ((m, rms)(n, rnt)) = θ(m+ n, rm+n(r−nsrn)t)) = uθ1((r−nsrn)t)u−m−n−1

= uθ1(t)u−nθ1(s)unu−m−n−1 = uθ1(t)u−n−1uθ1(s)u−m−1

= θ(n, rnt)θ(m, rms).

Thus, θ is an anti-homomorphism. One similarly proves the homomorphism
case.

Theorem 2.2. Let ϕ : A(F ) → B(G) be a contractive homomorphism.
The following statements are equivalent:

(i) there is an open subgroup G0 of Z ×G and a continuous [anti-]ho-
momorphism θ : G0 → F such that ϕ = jιG ◦ l(−1,eG) ◦ s ◦ jθ—see
(2.1);

(ii) ϕ has a Cohen factorization ϕ = lr ◦ s ◦ jθ1 ◦ lu—see (1.2)—for
some open subgroup G1 of G, a continuous [anti-]homomorphism
θ1 : G1 → F , some r ∈ G and u ∈ F such that rG1r

−1 = G1 and
θ1(r±1tr∓1) = u∓1θ1(t)u±1 [θ1(r±1tr∓1) = u±1θ1(t)u∓1].

Moreover, when (i) holds, every Cohen factorization satisfies the conditions
of (ii), and we necessarily have G0 = {(n, rnt) : n ∈ Z, t ∈ G1} and
θ : G0 → F : (n, rnt) 7→ u−nθ1(t) [uθ1(t)u−n−1].

Proof. Suppose that ϕ has the factorization ϕ = jιG ◦ l(−1,eG) ◦ s ◦ jθ
described in statement (i). By [15, Theorem 5.1], ϕ also has a Cohen factor-
ization ϕ = lr◦s◦jθ1 ◦lu for some open subgroup G1 of G, a continuous [anti-
]homomorphism θ1 : G1 → F and some r ∈ G, u ∈ F . Statement (ii) will
follow from Lemma 2.1 if we can show that G0 = {(n, rnt) : n ∈ Z, t ∈ G1}
and θ(n, rnt) = u−nθ1(t) [θ(n, rnt) = uθ1(t)u−n−1]. For v ∈ A(F ) and x ∈ G,
the two factorizations of ϕ give

ϕ(v)(x) =

{
v(uθ1(rx)) if x ∈ r−1G1

0 if x ∈ G \ r−1G1

(2.2)

=

{
v(θ(−1, x)) if (−1, x) ∈ G0

0 if (−1, x) ∈ Z×G \G0.

As A(F ) vanishes at no point of F , we obtain r−1G1 ={x∈G : (−1, x)∈G0}.
Hence, (−1, r−1)∈G0 so (−1, r−1)−n=(n, rn) ∈ G0 (n ∈ Z). For any n ∈ Z,
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we obtain

{n} × rnG1 = (n+ 1, rn+1) · ({−1} × r−1G1)

= (n+ 1, rn+1) · (G0 ∩ ({−1} ×G))

= (n+ 1, rn+1)G0 ∩ (n+ 1, rn+1)({−1} ×G) = G0 ∩ ({n} ×G)

so

G0 =
⋃
n∈Z

G0 ∩ ({n} ×G) = {(n, rnt) : n ∈ Z, t ∈ G1}

as needed.

As A(F ) separates points of F , (2.2) gives θ(−1, r−1t)=uθ1(t) (t∈G1).
Hence, θ(−1, r−1) = u because θ1 is an [anti-]homomorphism, and θ(n, rn)
= u−n because θ is an [anti-]homomorphism. In the case that θ is an anti-
homomorphism,

θ(n, rnt) = θ((n+ 1, rn+1)(−1, r−1t)) = θ(−1, r−1t)θ(n+ 1, rn+1)

= uθ1(t)u−n−1

as claimed. When θ is a homomorphism, one similarly obtains θ(n, rnt) =
u−nθ1(t).

Conversely, suppose that ϕ has Cohen factorization ϕ = lr ◦ s ◦ jθ1 ◦ lu
with r, u, and θ : G1 → F as in (ii). By Lemma 2.1, G0 = {(n, rnt) :
n ∈ Z, t ∈ G1} is an open subgroup of Z × G and θ : G0 → F : (n, rnt) 7→
u−nθ1(t) [uθ1(t)u−n−1] is an—obviously continuous—[anti-]homomorphism.
The calculations giving (2.2) show that ϕ = jιG ◦ l(−1,eG) ◦ s ◦ jθ.

Corollary 2.3. If G contains a nonnormal open subgroup, then for any
locally compact group F , there is a contractive homomorphism ϕ : A(F )→
B(G) that fails to have a factorization of the form (2.1).

Proof. Let G1 be be a nonnormal open subgroup of G, and choose r ∈ G
such that rG1r

−1 6= G1. Let θ1 : G1 → F be any homomorphism (for
example, the trivial one) and let ϕ = lr ◦ s ◦ jθ1 . By Theorem 2.2, ϕ does
not have a factorization of the form (2.1).

Proposition 2.4. For i = 1, 2, let Gi be an open subgroup of G, θi :
Gi → F a homomorphism or an anti-homomorphism, ri ∈ G, ui ∈ F .

(i) ϕ = lri ◦ si ◦ jθi ◦ lui : A(F ) → B(G) (i = 1, 2) if and only if θ1 is
an [anti-]homomorphism and

(2.3) G1 = G2, r2r
−1
1 ∈ G1, θ1(r2r

−1
1 ) = u−1

2 u1,

θ1 = θ2 [θ1(t) = u−1
1 u2θ2(t)u−1

2 u1].

(ii) If (2.3) holds and lr1 ◦s◦ jθ1 ◦ lu1 satisfies the conditions of Theorem
2.2(ii), then so does lr2 ◦ s ◦ jθ2 ◦ lu2.
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Proof. For v ∈ A(F ) and x ∈ G,

ϕ(v)(x) =

{
v(uiθi(rix)) if x ∈ r−1

i Gi

0 if x ∈ G \ r−1
i Gi

(i = 1, 2).

As in the proof of Theorem 2.2, the separation properties of A(F ) give
r−1

1 G1 = r−1
2 G2. Hence, r2r

−1
1 ∈ G1, G2 = r2(r−1

2 G2) = r2(r−1
1 G1) = G1,

and u1θ1(r1x) = u2θ2(r2x) (x ∈ r−1
i Gi). For t ∈ G1, one obtains

θ1(t) = u−1
1 u2θ2(r2r

−1
1 t) = u−1

1 u2θ2(r2r
−1
1 )θ2(t)

when θ2 is a homomorphism, and θ1(t) = u−1
1 u2θ2(t)θ2(r2r

−1
1 ) when θ2 is

an anti-homomorphism. As θ1(eG) = θ2(eG) = eF , the forward implication
of (i) follows. Conversely, supposing that condition (2.3) is satisfied, it suf-
fices to show that u1θ1(r1x) = u2θ2(r2x) for x ∈ r−1

1 G1 = r−1
2 G2. Assuming

that θ1 is an anti-homomorphism—the homomorphism case is similar—for
x ∈ r−1

1 G1,

u−1
1 u2θ2(r2x) = (u−1

1 u2θ2(r2x)u−1
2 u1)u−1

1 u2 = θ1(r2x)(θ1(r2r
−1
1 ))−1

= θ1((r2r
−1
1 )−1r2x) = θ1(r1x).

This proves (i). Statement (ii) follows immediately from Theorem 2.2, al-
though it can also be verified directly.

For a subset T of A(F ), let h(T ) = {x ∈ F : u(x) = 0 for all u ∈ T } be
the hull of T and let s(T ) = F \ h(T ). Observe that if ϕ = lr ◦ s ◦ jθ1 ◦ lu :

A(F ) → B(G), then h(kerϕ) = uθ1(G1) and s(Imϕ) = r−1G1. Hence, if
ϕ is any contractive homomorphism, then Fϕ := h(kerϕ)−1h(kerϕ) is a
closed subgroup of F and Gϕ := s(Imϕ)−1s(Imϕ) is an open subgroup
of G. Assuming that ϕ has the Cohen factorization described above, ϕb =
lr ◦ s ◦ jθ1 ◦ lu : B(F )→ B(G) is called the canonical extension of ϕ in [12].

Corollary 2.5. Let ϕ : A(F )→ B(G) be a contractive homomorphism.

(i) If s(Imϕ) has nonempty intersection with the commutant, G′ϕ, of
Gϕ and h(kerϕ) is contained in F ′ϕ, then ϕ has a factorization of
the form (2.1).

(ii) If s(Imϕ) is a subgroup of G (for example, when G is connected or
when ϕb(1F ) is positive definite) and Fϕ is contained in the centre
of F (for example when F is abelian), then ϕ has a factorization of
the form (2.1).

Proof. Assume that ϕ has Cohen factorization ϕ = lr◦s◦jθ1◦lu where θ1 :

G1 → F , so s(Imϕ) = r−1G1, Gϕ = G1 and h(kerϕ) = uθ1(G1) ⊂ θ1(G1)′.
Choose r2 ∈ rG1 ∩ G′1 and let u2 = uθ1(rr−1

2 ). Observe that because u
and u2 belong to θ1(G1)′, we have u−1

2 uθ1(t)u−1u2 = θ1(t), so regardless of
whether θ1 is a homomorphism or anti-homomorphism, ϕ = lr2◦s◦jθ1◦lu2 by
Proposition 2.4. It is obvious that this factorization satisfies the conditions of
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Theorem 2.2(ii). The validity of most of statement (ii) should be clear. Note
that if ϕb(1F ) = 1r−1G1

is positive definite, then s(Imϕ) = r−1G1 = G1 by
[11, Theorem 2.1].

3. Weak∗-continuous homomorphisms. In this section we will char-
acterize the w∗-w∗ continuous contractive homomorphisms on (reduced)
Fourier–Stieltjes algebras and on measure algebras. The so-topologies on
Br(F ) and M(F ) refer to the strict topologies on these algebras taken with
respect to the ideals A(F ) and L1(F ), respectively.

Lemma 3.1. Let ϕ : A(F ) → B(G) be a homomorphism. Then there is
an open subset Y of G and a continuous mapping α : Y → F such that
ϕ = jα. If Y is also closed, then jα : Br(F )→ B(G) is the unique extension
of ϕ to Br(F ) that is so-w∗ continuous on bounded subsets of Br(F ).

Remark 3.2. 1. When A(F ) has a bounded approximate identity, i.e.
when F is amenable, this can be seen to follow from [12, Theorem 5.6]—or [5,
Theorem 4.2]—and the proof of [12, Corollary 5.8]. In this case, the extension
is so-w∗ continuous on Br(F ) = B(F ). The fact that every contractive
homomorphism ϕ : A(F )→ B(G) extends to B(F ) is [15, Corollary 5.6].

2. We believe that Y is always closed, but were unfortunately not able
to show this.

3. If u ∈ Br(G) is positive definite, then the proof of [1, Proposition
2.22] gives a bounded net (ui) of positive definite functions in A(F ) that
converges uniformly to u on compact subsets of F . Hence, ui → u so by
[14, Theorem 3.2]. By considering the Jordan decomposition of an arbitrary
u ∈ Br(F ), one obtains a bounded net (ui) in A(F ) such that ui → u so.
The uniqueness part of the above lemma follows, and this also shows that
A(F ) is so-dense in Br(F ).

Proof of Lemma 3.1. As noted by Pham [15], because B(G) is semi-
simple, ϕ is automatically continuous by [4, Theorem 2.3.3]. The existence
of Y and α is a consequence of the fact that the Gelfand spectrum of A(F )
is F ; see for example the first paragraph of the proof of [11, Theorem 3.7].
Assume now that Y is also closed. Let u ∈ Br(F ) and let (ui) be a bounded
net in A(F ) such that ui → u so. By passing to a subnet if necessary, we
may assume that (jαui) has a w∗-limit, v, in B(G). Take f ∈ C00(G) with
compact support K. Regularity of A(F ) and the inequality ‖ ·‖B(F ) ≥ ‖·‖∞
give uniform convergence of (ui) to u on the compact set α(Y ∩K). Hence,

|〈jαui − jαu, f〉L∞-L1 | ≤
�

Y ∩K
|jαui − jαu|(x)|f(x)| dx→ 0.(3.1)

As (jαui) is bounded in L∞(G), jαui → jαu weak∗ in L∞(G). Also, jαui → v
weak∗ in L∞(G), so by continuity of both jαu and v, jαu = v ∈ B(G). Thus,
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jα mapsBr(F ) intoB(G) and once again jα is necessarily bounded. It follows
from this, the density of C00(G) in C∗(G) and the calculation (3.1) that jα
is so-w∗ continuous on bounded subsets of Br(F ).

Theorem 3.3. Let ϕ : Br(F ) → B(G) be a mapping. The following
statements are equivalent:

(i) ϕ is a contractive homomorphism that is so-w∗ continuous on bound-
ed subsets of Br(F ) (w∗-w∗ continuous on Br(F ));

(ii) ϕ has a Cohen factorization

(3.2) Br(F )
lu−→ Br(F )

jθ−→ B(G1)
s
↪→ B(G)

lr−→ B(G)

for some continuous (open) homomorphism or anti-homomorphism,
θ, mapping an open subgroup G1 of G into F .

Proof. Assuming statement (i), ϕ|A(F ) is a contractive homomorphism,
and therefore has a factorization (1.2) where θ = θ1 : G1 → F is a continu-
ous homomorphism or anti-homomorphism; equivalently, ϕ|A(F ) = jα where

Y = r−1G1 and α : Y → F is given by α(y) = uθ(ry) [15, Theorem 5.1]. Note
that w∗ ⊆ so, so in both cases ϕ = jα by Lemma 3.1. Suppose that ϕ = jα is
w∗-w∗ continuous. Suppose first that θ is a homomorphism. One can check
that the proofs of Proposition 4.3 and Lemma 2.3 of [12] remain valid when
B(F ) is replaced by Br(F ). (Indeed, in the proof of [12, Lemma 4.2] one
can replace the universal representation ω with the left regular representa-
tion, λ. To modify the proof of [12, Proposition 4.3], note that in §5 of [2],
the authors actually proved that if the restriction map Φr : Br(G)→ B(G1)
is w∗-w∗ continuous, then G1 is an open subgroup of G—this is stronger
than [2, Theorem 5.1]. To see this, note that just as Lemma 5.2 of [2] holds,
if Φr is w∗-w∗ continuous, then the map Ψr : C∗(G1) → C∗r (M(G)), as de-
fined on page 2292 of [2], maps C∗(G1) into C∗r (G). By [2, Theorem 5.4], this
implies that G1 is open.) Thus, θ is an open mapping in this case. Finally,
suppose that θ is an anti-homomorphism. Then θ̌ : G1 → F : x 7→ θ(x)−1 is
a homomorphism, and ϕ factors as

Br(F )
lu−→ Br(F )

·̌−→ Br(F )
jθ̌−→ B(G1)

s
↪→ B(G)

lr−→ B(G)

where ǔ(x) = u(x−1), a w∗-w∗ homeomorphism of Br(F ). As ϕ is w∗-w∗

continuous on Br(F ), so is ϕ ◦ lu−1 ◦ ·̌ = lr ◦ s ◦ jθ̌. By the previous case, θ̌ is
an open map, and therefore θ is also an open map.

Conversely, suppose that ϕ has the factorization (3.2) and consider the
case when θ is an open anti-homomorphism. By [12, Proposition 3.4], lr◦s◦jθ̌
is w∗-w∗ continuous on B(F ) and therefore on Br(F ). Hence, ϕ = lr ◦ s ◦
jθ̌ ◦ ·̌ ◦ lu is w∗-w∗ continuous on Br(F ).
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Throughout the remainder of this section, we consider an arbitrary con-
tractive homomorphism ϕ : L1(F ) → M(G) and its so-w∗ continuous ex-
tension ϕ = ϕm : M(F )→M(G) (also denoted ϕ).

Theorem 3.4. Let ϕ : M(F ) → M(G) be a mapping. Then ϕ is a
w∗-w∗ continuous contractive homomorphism if and only if there is a closed
subgroup H of G, a compact normal subgroup Ω0 of T×H and a continuous
proper homomorphism θ : F → T × H/Ω0 such that ϕ = j∗ιH ◦ j

∗
θH
◦ AαT ◦

S∗Ω0
◦ j∗θ :

M(F )

j∗θ
��

ϕ //M(G)

M(T×H/Ω0) �
� S
∗
Ω0 //M(T×H)

AαT //M(T×H)
j∗θH //M(H)

?�
j∗ιH

OO

Proof. As the projection map θH : T × H → H is proper, the back-
wards implication follows from Propositions 5.1 and 5.3 in [17]. Conversely,
suppose that ϕ : M(F )→M(G) is w∗-w∗ continuous. Then ϕ is so-w∗ con-
tinuous, so by [17, Corollary 6.1 and Theorem 5.11], ϕ has the factorization
illustrated above with Ω0 = Ωρ = {(ρ(k), k) : k ∈ K} for some compact

normal subgroup K of H, ρ ∈ K̂1, and θ a continuous homomorphism. Let
ϕ∗ : C0(G) → C0(F ) be the predual map of ϕ. Then the diagram below
commutes:

C0(G)

jι
��

ϕ∗ // C0(F ) �
� // E(F )

C0(H)
jθH // C0(T×H)

MαT // C0(T×H)
SΩρ // C0(T×H/Ωρ)

jθ

OO

To see this, it suffices to note that the dual maps of both the top line of the
diagram and jθ ◦ SΩρ ◦MαT ◦ jθH ◦ jι are w∗-w∗ continuous extensions of
ϕ to E(F )∗, and are therefore equal. Supposing (towards a contradiction)
that θ is not proper, we can choose a compact subset L of T ×H/Ωρ such
that θ−1(L) is not a compact subset of F .

For γ ∈ C0(G), put fγ = (SΩρ ◦MαT ◦ jθH ◦ jι)(γ). Then for (α, x)Ωρ ∈
T×H/Ωρ—writing ΛH = MαT ◦ jθH—we have

fγ((α, x)Ωρ) = SΩρ ◦ ΛH(γ|H)((α, x)Ωρ) = 〈mΩρ , l(α,x)ΛH(γ|H)〉M-C0(T×H)

= α〈mΩρ , ΛH(lx(γ|H))〉M-C0(T×H)

= α〈Λ∗H(mΩρ), lx(γ|H)〉M-C0(H)

= α〈ρmK , lx(γ|H)〉M-C0(H)

(∗)
= α

�

K

γ(xk)ρ(k) dmK(k),

where in the penultimate line we have used [17, Proposition 5.9].
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Let P denote the collection of all finite products of functions in {fγ , fγ :
γ ∈ C0(G)}, and let A be the collection of all finite sums of functions
in P. Observe that A is a self-adjoint subalgebra of C0(T × H/Ωρ), and
it is easy to see that A vanishes at no point of T × H/Ωρ. Suppose that
(α, x)Ωρ 6= (β, y)Ωρ, so (αβ, x−1y) /∈ {(ρ(k), k) : k ∈ K}. If x−1y /∈ K, take

γ ∈ C0(G) such that γ(xk) = ρ(k) (k ∈ K) and γ|yK = 0; then (∗) gives
fγ((α, x)Ωρ) = α 6= 0 = fγ((β, y)Ωρ). Otherwise, y = xk0 for some k0 ∈ K
such that βρ(k0) 6= α. Choosing γ ∈ C0(G) such that γ(xk) = ρ(k) (k ∈ K),
we get

fγ((β, y)Ωρ) = β
�

K

γ(xk0k)ρ(k) dmK(k) = βρ(k0)
�

K

γ(xk)ρ(k) dmK(k)

= βρ(k0) 6= α = fγ((α, x)Ωρ).

By the Stone–Weierstrass Theorem, A is uniformly dense in C0(T ×
H/Ωρ), so we can find g ∈ A such that |g(x)| > 1 (x ∈ L). Writing g as
g = g1 + · · ·+ gn with each gj ∈ P, we obtain

1 < |g(x)| ≤ |g1(x)|+ · · ·+ |gn(x)| (x ∈ L),

so

L =
n⋃
j=1

Lj where Lj = |gj |−1[1/n,∞) ∩ L.

As θ−1(L) =
⋃
j θ
−1(Lj) is not compact, θ−1(Lj0) is not compact for some j0;

put L0 = Lj0 , g0 = gj0 . As θ−1(L0) is closed but not compact, and |jθ(g0(x))|
= |g0(θ(x))| ≥ 1/n (x ∈ θ−1(L0)), it follows that jθg0 /∈ C0(F ). Be-
cause g0 ∈ P, there are functions γ1, . . . , γm in C0(G) such that g0 =
fγ1 · · · fγkfγk+1

· · · fγm . Hence, jθg0 = jθfγ1 · · · jθfγkjθfγk+1
· · · jθfγm does not

belong to the ideal C0(F ) in E(F ). It follows—in particular—that ϕ∗(γ1) =
(jθ◦SΩρ ◦MαT ◦jθH ◦jι)(γ1) = jθ(fγ1) /∈ C0(F ). This contradiction completes
the proof.

In the above, were it true that {fγ : γ ∈ C0(G)} = C0(T ×H/Ωρ), the
proof of Theorem 3.4 would, like the proof of the following proposition, be
quite easy. This, however, is usually not the case. We recall from Example
5.4 of [17] that not every w∗-w∗ continuous contractive homomorphism ϕ :
M(F )→M(G) has a Cohen factorization.

Proposition 3.5. Suppose that ϕ : M(F ) → M(G) has a Cohen fac-
torization ϕ = j∗ι ◦Aρ ◦ S∗K ◦ j∗θ ◦Aα,

M(F )
Aα−−→M(F )

j∗θ−→M(H/K)
S∗K
↪→M(H)

Aρ−−→M(H)
j∗ι
↪→M(G).(3.3)

Then ϕ is w∗-w∗ continuous if and only if θ : F → H/K is a proper map-
ping.
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Proof. If ϕ is w∗-w∗ continuous, then so is ϕ◦Aα, so we may assume that
α ≡ 1. The predual map ϕ∗ : C0(G)→ C0(F ) factors as ϕ∗ = jθ◦SK◦Mρ◦jι.
As SK ◦Mρ ◦ jι maps C0(G) onto C0(H/K), jθ maps C0(H/K) into C0(F ),
and hence θ is proper. The converse follows from [17, Propositions 5.1 and
5.3].

We now fix some notation that will be used throughout the remainder
of this paper: Let ϕ : M(F )→M(G) have the factorization (1.1),

ϕ = j∗θH ◦AαT ◦ S
∗
Ωρ ◦ j

∗
θ ,

in canonical form (see Remark 1.2). We wish to consider ϕ in relation to the
associated homomorphism

ϕ+ = j∗θH ◦ S
∗
Ωρ ◦ j

∗
θ .

As in the proof of [17, Corollary 5.8], we consider the continuous homomor-
phisms

pK : T×H/Ωρ → H/K : (α, h)Ωρ 7→ hK and θK = pK ◦ θ : F → H/K.

Although ϕ and ϕ+ are closely related, ϕ+ has a very simple factorization.

Proposition 3.6. The homomorphism ϕ+ : M(F )→M(G) is positive
with ϕ+(δeF ) = mK and Cohen factorization ϕ+ = S∗K ◦ j∗θK ,

M(F )
j∗θK−−→M(H/K)

S∗K
↪→M(H) ↪→M(G).

Proof. For x ∈ F , let θ(x) = (αx, hx)Ωρ, so θK(x) = hxK. Observe that
γ : K → Ωρ, γ(k) = (ρ(k), k), is a topological isomorphism, so j∗γ : M(K)→
M(Ωρ) maps mK to mΩρ . It follows that

ϕ+(δx) = j∗θH ◦ S
∗
Ωρ ◦ j

∗
θ (δx) = j∗θH (δ(αx,hx) ∗mΩρ)

= δhx ∗ j∗θH (j∗γmK) = δhx ∗ (jθH◦γ)∗mK = δhx ∗mK = S∗K ◦ j∗θK (δx).

By so-w∗ continuity of both maps, ϕ+ = S∗K ◦ j∗θK .

Corollary 3.7. Let ϕ : M(F ) → M(G) be a contractive homomor-
phism. The following statements are equivalent:

(i) ϕ is w∗-w∗ continuous;
(ii) ϕ+ is w∗-w∗ continuous;

(iii) θK : F → H/K is a proper mapping.

Proof. The equivalence of (ii) and (iii) follows from Propositions 3.5
and 3.6. Moreover, it is not difficult to show that pK : T ×H/Ωρ → H/K
is a proper mapping and from this that one of θ and θK = pK ◦ θ is proper
exactly when the other is. Thus, (i) and (ii) are equivalent by Theorem 3.4.

We remark that the implication (i)⇒(iii) in the above corollary is not,
without the aid of Theorem 3.4, obvious to us.
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4. Contractive homomorphisms of group algebras. An open prob-
lem is to characterize all (contractive) homomorphisms ϕ : L1(F )→ L1(G).
Some special cases are dealt with in [8], [13] and [17]. We begin our dis-
cussion of this problem with the following result which is very closely re-
lated to Theorem 2 and Corollary 3 of [13]. This short proof is independent
of [13].

Proposition 4.1. Suppose that ϕ : L1(F ) → M(G) has a Cohen fac-
torization ϕ = j∗ιH ◦Aρ ◦S

∗
K ◦j∗θ ◦Aα. Then ϕ maps L1(F ) into L1(G) if and

only if H is an open subgroup of G and θ : F → H/K is an open mapping.

Proof. Suppose that ϕ maps L1(F ) into L1(G). As the support of any
measure in j∗ιH (M(H)) is contained in H and we are assuming—as always—
that ϕ is nonzero, H must have positive Haar measure in G, whence H is
open in G [7, Corollary III.12.5]. Hence, mH = mG|H and the map µ 7→
µ|H : M(G) → M(H)—where µ|H(E) = µ(E), E ⊆ H—maps L1(G) into
L1(H). As (j∗ιHµ)|H = µ we can conclude that j∗ιH maps M(H)\L1(H) into

M(G) \ L1(G). Hence, Aρ ◦ S∗K ◦ j∗θ ◦Aα maps L1(F ) into L1(H) and thus,

clearly, S∗K ◦j∗θ maps L1(F ) into L1(H). Let qK : H → H/K be the quotient
map. Then SK◦jqK = idC0(H/K) and qK is an open mapping so S∗Kµ ∈ L1(H)

implies that µ = j∗qKS
∗
Kµ ∈ L1(H/K). Hence, j∗θ maps L1(F ) into L1(H/K),

so by [17, Proposition 5.1], θ is an open mapping. The converse follows from
[17, Proposition 5.1] and the well-known fact that S∗K maps L1(H/K) into
L1(H); indeed, one can readily show that S∗Kf = f ◦ qK ∈ L1(H) whenever
f ∈ L1(H/K).

In light of Theorem 3.4 and Propositions 3.5 and 4.1, it seems natural
to wonder if ϕ : L1(F )→M(G) with a factorization (1.1) maps into L1(G)
exactly when θ : F → T × H/Ωρ is an open mapping and H is an open
subgroup of G. Indeed, it is clear from [17, Proposition 5.1] that the second
condition is sufficient for ϕ to map L1(F ) into L1(G). However, the converse
implication is false.

Example 4.2. (a) Let F be a discrete group, θ0 ∈ F̂ 1, H a compact

group. Take K = H and ρ ∈ K̂1 the trivial character. Then Ωρ = {1} ×H
and θ : F → T×H/Ωρ : x 7→ (θ0(x), eH)Ωρ is a continuous homomorphism.
Let ϕ = j∗θH ◦AαT ◦ S∗Ωρ ◦ j

∗
θ : L1(F )→M(H); see (1.1). For x ∈ F ,

ϕ(δx) = j∗θH ◦AαT(δ(θ0(x),eH) ∗mΩρ) = θ0(x)mK = θ0(x)mH ∈ L1(H)

because of [17, Proposition 5.9]. It is easy to see from this that ϕ = j∗θH ◦
AαT ◦S∗Ωρ ◦j

∗
θ is precisely the canonical factorization of ϕ. As F is discrete it

also follows that ϕ maps L1(F ) = `1(F ) into L1(H). Note however that θ :
F → T×H/Ωρ ∼= T is not open. On the other hand, θK : F → H/K = H/H
is—trivially—an open map. (In this case, by Corollary 5.8 of [17], ϕ has a



148 R. Stokke

Cohen factorization involving jθK , so θK had to be open by Proposition 4.1,
or by Proposition 4.4 below.)

(b) Let F = SU2(C), K = Z2, the centre of F , and ρ : K → T : t 7→ t.
Then ϕ : M(F )→M(F ) : µ 7→ µ∗ρmK does not have a Cohen factorization
[17, Example 5.4]. The support subgroup of {ϕ(δx) : x ∈ F} is F , Ωρ =
{(ρ(k), k) : k ∈ K}, and θ : F → T×F/Ωρ : x 7→ (1, x)Ωρ (see Remark 1.2).
If U is an open subset of F , then q−1

Ωρ
(θ(U)) = ({1} × U) ∪ ({−1} × −U)

which is not necessarily open in T × F ; here qΩρ : T × F → T × H/Ωρ.
Hence, θ is not an open mapping, even though ϕ maps L1(F ) into L1(F ).
Note however that θK : F → F/K : x 7→ xK is an open mapping.

It is not difficult to show that θK is an open mapping whenever θ is. As
the above examples show, the converse implication is false.

Proposition 4.3. Let ϕ : L1(F ) → M(G) be a contractive homomor-
phism with the factorization (1.1) in canonical form. Consider the following
statements:

(i) ϕ maps L1(F ) into L1(G);
(ii) ϕ+ maps L1(F ) into L1(G);

(iii) θK : F → H/K is an open mapping and H is an open subgroup
of G.

Then (i)⇐(ii)⇔(iii). The implication (i)⇒(iii) holds when either F is dis-
crete or ρ extends to a continuous character on H.

Proof. The equivalence of statements (ii) and (iii) is a consequence of
Propositions 3.6 and 4.1. Suppose that (ii) holds and let f ∈ L1(F ); assume
without loss of generality that f ≥ 0. Then µ = S∗Ωρ ◦ j

∗
θ (f) ∈ M(T ×H),

µ ≥ 0 and ϕ+(f) = j∗θH,Gµ� mG (see Remark 1.2). Note that

|j∗θH,G(αT · µ)| ≤ j∗θH,G |αT · µ| = j∗θH,G |µ| = j∗θH,G(µ);

this can be verified by using—for example—[9, (14.4) and (14.5)]. Hence,
ϕ(f) = j∗θH,G(αT · µ) � mG as well. That is, ϕ(f) ∈ L1(G), as needed.

When ρ ∈ K̂1 extends to ρH ∈ Ĥ1, ϕ has a Cohen factorization of the form
ϕ = j∗ιH ◦AρH ◦ S

∗
K ◦ j∗θK ◦Aα by the proof of [17, Corollary 5.8]. Hence, (i)

implies (iii) in this case by Proposition 4.1. That (i) implies (iii) when F is
discrete follows from Proposition 4.4 below.

Proposition 4.4. Let ϕ : M(F )→M(G) be an so-w∗ continuous con-
tractive homomorphism with the factorization (1.1) in canonical form. The
following statements are equivalent:

(i) ϕ maps `1(F ) into L1(G);
(ii) K is open in G;
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(iii) θK : Fd → H/K is an open mapping and H is an open subgroup
of G.

Proof. Suppose that ϕ(δeF ) = ρmK ∈ L1(G) and mG(K) = 0. If θ(x) =
(αx, hx)Ωρ, then ϕ(δx) = αxδhx ∗ ρmK is zero in L1(F ) for each x ∈ F .
By [17, Lemma 1.1], ϕ is the zero homomorphism in contradiction to our
blanket assumption that all homomorphisms are nonzero. Hence, if (i) holds,
then mG(K) > 0 and hence (ii) holds. The implication (ii)⇒(iii) is clear.
Observe that the restriction of ϕ to `1(F ) = M(Fd) = L1(Fd) also has the
canonical form factorization (1.1)—see Remark 1.2—so by Proposition 4.3,
statement (iii) implies (i).

We conclude with a question: Does the implication (i)⇒(iii) of Proposi-
tion 4.3 hold in general?
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