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Disjoint hypercyclic operators

by

Luis Bernal-González (Sevilla)

Abstract. We introduce the concept of disjoint hypercyclic operators. These are
operators performing the approximation of any given vectors with a common subsequence
of iterates applied on a common vector. The notion is extended to sequences of operators,
and applied to composition operators and differential operators on spaces of analytic
functions.

1. Introduction. In the last 25 years there have been important ad-
vances in the research of hypercyclicity, from several points of view. Roughly
speaking, hypercyclicity means existence of a dense orbit. In this paper, we
are concerned with the existence of a common vector with dense orbit for
several operators, such that approximation of any fixed vectors is also si-
multaneously performed by using a common subsequence. This will be for-
malized later. Although we have been inspired by an interesting work about
universal Taylor series due to Costakis and Vlachou [20], the path of re-
search opened in the current paper is, as far as we know, new. Below, we fix
some related notation and terminology to be used in the present article. For
a good account of concepts, results and history concerning hypercyclicity,
the reader is referred to the surveys [26], [28] and [15].

By N, N0, R, C, D, B(a, r), B(a, r) (a ∈ C, r > 0) we denote, respec-
tively, the set of positive integers, the set N∪{0}, the real line, the complex
plane, the open unit disk {z ∈ C : |z| < 1}, the open disk with center a
and radius r, and the corresponding closed disk. Assume that X and Y are
two (Hausdorff) topological vector spaces over K = R or C. Then L(X,Y )
will stand for the space of all continuous linear mappings T : X → Y . In
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particular, if X = Y , then L(X) := L(X,X) = {operators on X}. If (Tn)
is a sequence in L(X,Y ), then (Tn) is said to be hypercyclic whenever there
exists a vector x ∈ X—called a hypercyclic vector for (Tn)—whose orbit
{Tnx : n ∈ N} under (Tn) is dense in Y (so Y is necessarily separable).
We denote by HC((Tn)) the set of hypercyclic vectors for (Tn). An operator
T ∈ L(X) is said to be hypercyclic provided that the sequence (Tn) of iter-
ates of T is hypercyclic. In this case the set HC(T ) := HC((Tn)) is called
the set of hypercyclic vectors for T . If HC((Tn)) is dense in X, then (Tn) is
said to be densely hypercyclic. Finally, recall that an F-space is a completely
metrizable topological vector space.

Assume that X, Y, Z are separable F-spaces, and that Sn : X → Y and
Tn : X → Z (n ∈ N) are densely hypercyclic sequences. Since HC((Sn)),
HC((Tn)) are dense Gδ subsets of X, it follows that HC((Sn))∩HC((Tn)) is
also dense, so nonempty. Hence there is a common hypercyclic vector x ∈ X.
So, for any given vectors y ∈ Y, z ∈ Z, there are sequences {n1 < n2 < · · · }
and {m1 < m2 < · · · } in N such that Snj

x → y and Tmj
x → z as j → ∞.

Now, we pose the following question (a similar conclusion as above can be
obtained and a similar question can be posed for single hypercyclic operators
on X, just by considering the sequences of their iterates):

Under what conditions on (Sn) and (Tn) can one guarantee
the existence of a vector x ∈ X such that, for any given y ∈ Y
and z ∈ Z, there is one sequence {n1 < n2 < · · · } ⊂ N such
that Snj

x→ y and Tnj
x→ z (j → ∞)?

Motivated by the last question, the new concepts of jointly hypercyclic
operators and of disjoint hypercyclic sequences of continuous linear map-
pings are introduced in Section 2. Also, two workable sufficient conditions
for disjoint hypercyclicity will be provided in the setting of F-spaces (see Sec-
tion 4). Before this, we introduce in Section 3 two new notions: supermixing
operators and sequences of operators controlled by seminorms. Finally, in
Section 5, the disjoint hyperciclity conditions will be applied on spaces of
analytic functions to identify finite sets of sequences of either infinite order
differential operators or composition operators that are disjoint hypercyclic.

2. Disjoint hypercyclic operators. Let us define the new concept
that is the subject of this paper.

Definition 2.1. Let p ∈ N and X,Y1, . . . , Yp be topological vector
spaces. Assume that, for each j ∈ {1, . . . , p}, Tj,n : X → Yj (n ∈ N)
is a sequence of continuous linear mappings. We say that the sequences
(T1,n), . . . , (Tp,n) are disjoint hypercyclic if the sequence [T1,n, . . . , Tp,n] :
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X → Y1 × · · · × Yp (n ∈ N) defined as

[T1,n, . . . , Tp,n]x = (T1,nx, . . . , Tp,nx) (x ∈ X)

is hypercyclic, where Y1 × · · ·×Yp is assumed to be endowed with the prod-
uct topology. We say that the sequences (T1,n), . . . , (Tp,n) are densely dis-

joint hypercyclic if the sequence ([T1,n, . . . , Tp,n]) is densely hypercyclic. If
T1, . . . , Tp ∈ L(X) then T1, . . . , Tp are said to be disjoint hypercyclic (densely

disjoint hypercyclic, resp.) provided that the sequences (Tn
1 ), . . . , (Tn

p ) are
disjoint hypercyclic (densely disjoint hypercyclic, resp.).

Remarks 2.1. 1. Clearly, the disjoint hypercyclicity of (T1,n), . . . , (Tp,n)
remains unaltered under a change of order (Tσ(1),n), . . . , (Tσ(p),n). Also, triv-
ially, it implies the hypercyclicity of each sequence (Tj,n) (j = 1, . . . , p).

2. Let X,Y, Z be separable F-spaces. According to [26], being densely
hypercyclic is equivalent to being topologically transitive, in the sense of
Birkhoff. Thus, saying that two sequences (Sn) ⊂ L(X,Y ), (Tn) ⊂ L(X,Z)
are densely disjoint hypercyclic is the same as saying that if U, V,W are
nonempty open subsets of X,Y, Z, respectively, there exists an n (equiva-
lently, there exist infinitely many n) such that U ∩ S−1

n (V ) ∩ T−1
n (W ) 6= ∅.

3. The mere hypercyclicity of two sequences (Sn), (Tn) does not imply
their disjoint hypercyclicity: take (Tn) hypercyclic and (Sn) := (Tn).

4. The reader should be warned not to confuse the disjoint hypercyclicity
of (T1,n), . . . , (Tp,n) with the hypercyclicity of the sequence

T1,n ⊕ · · · ⊕ Tp,n : (x1, . . . , xp) ∈ Xp 7→ (T1,nx1, . . . , Tp,nxp) ∈ Y1 × · · · × Yp.

Disjoint hypercyclicity implies the hypercyclicity of the last sequence, but
the converse is false.

5. It is well known that (Tn) is densely hypercyclic as soon as T is hyper-
cyclic. But, in principle, nothing guarantees the dense hypercyclicity of the
sequence ([Sn, Tn]) if S, T are disjoint hypercyclic operators. Therefore we
pose the problem of whether there exist disjoint hypercyclic operators S, T
such that ([Sn, Tn]) is not densely disjoint hypercyclic. For this reason, we
have been forced in Definition 2.1 to define the dense disjoint hypercyclicity
for several single operators, which would be superfluous for one operator.

6. In spite of the last remark, we have found a situation where the answer
to the problem just posed is affirmative. It is inspired by [24, Section 4] and
[28, Section 2]. Recall that if T is a hypercyclic operator on a topological
vector space X, then HC(T ) contains, except for zero, a dense linear sub-
manifold (in the terminology of [2], HC(T ) is algebraically generic in X); see
[10], [17], [30] and [41]. In this order of ideas, we give the following state-
ment, which can be easily proved just by taking into account (see [41]) that
P (T ) has dense range if T is hypercyclic and P is a nonzero polynomial with



116 L. Bernal-González

coefficients in K: Suppose that T1, . . . , Tp are disjoint hypercyclic operators
on a topological vector space X. Assume also that there is i ∈ {1, . . . , p}
such that every Tj commutes with Ti. Then the sequence ([Tn

1 , . . . , T
n
p ]) is

densely hypercyclic. Even more, HC(([Tn
1 , . . . , T

n
p ])) is algebraically generic

in X.

3. Control by seminorms and supermixing operators. In order
to isolate the properties that will be needed, we introduce two concepts
concerning operators defined on Fréchet spaces. Recall that an F-space
X is called a Fréchet space whenever X is locally convex. The family of
continuous seminorms on such a space X will be denoted by SN(X). If
p ∈ SN(X), then we define a p-open set of X as a union of open p-balls
{x ∈ X : p(x− α) < ε} (α ∈ X, ε > 0).

Definition 3.1. Let X, Y be Fréchet spaces, and (Tn) be a sequence in
L(X,Y ). We say that (Tn) is controlled by seminorms, or that it is SN-

controlled , if for every q ∈ SN(Y ) there are p ∈ SN(X) and constants
Cn ∈ (0,∞) (n ∈ N) such that q(Tnx) ≤ Cnp(x) for all x ∈ X and all
n ∈ N. Equivalently, for every q ∈ SN(X) there is p ∈ SN(X) such that
T−1

n (V ) is a p-open set in X for each q-open set V in Y and each n ∈ N.

Remark 3.1. The point in the above definition is that p depends on q,
but not on n. Observe that if (Tn) is equicontinuous then (Tn) is SN-
controlled (with a common constant Cn = C for all n). Between Banach
spaces X and Y , any sequence (Tn) ⊂ L(X,Y ) is SN-controlled. Hence the
SN-control is only of interest for nonnormable Fréchet spaces.

Before giving some examples, let us fix some additional notation. By a
domain we mean a nonempty connected open subset G ⊂ C. Then H(G)
denotes the Fréchet space of holomorphic functions in G endowed with the
topology of uniform convergence on compacta. It is known that H(G) is
separable and nonnormable. If G = C, then we obtain in particular the
space E = H(C) of entire functions.

Let Φ(z) =
∑∞

n=0 anz
n ∈ E . Then Φ is said to be of exponential type

(the set of these functions will be denoted by Exp) provided that there
are positive constants A, B such that |Φ(z)| ≤ A exp(B|z|) for all z ∈ C.
Consider its associated formal linear (in general, infinite order) differential
operator Φ(D) =

∑∞
n=0 anD

n defined as Φ(D)f =
∑∞

n=0 anf
(n) (f ∈ E).

Then Φ(D) is a well-defined operator on E . Moreover, an operator T ∈ L(E)
commutes with translations (that is, T ◦ τa = τa ◦ T for all a ∈ C, where
(τaf)(z) := f(z+a) for z ∈ C and f ∈ E) if and only if it commutes with the
derivative operator D (Df := f ′), and if and only if there exists Φ ∈ Exp
such that T = Φ(D) (see [23, Section 5]). Note that D and the translations
τa are special cases (take Φ(z) ≡ z and Φ(z) ≡ eaz, resp.).
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Assume that Φ is an entire function of subexponential type, that is, for
given ε > 0 there is a constant A > 0 such that |Φ(z)| ≤ A exp(ε|z|) for
all z ∈ C (so, in particular, Φ ∈ Exp); equivalently, limn→∞(n!|an|)

1/n = 0
(see [14]). Suppose that G is any domain in C. Then Φ(D) is an operator
on H(G), not only on E (see [3]).

Examples 3.2.

1. Suppose that G is a domain in C. If (Φn) is any sequence of entire
functions of subexponential type, then the sequence (Tn) := (Φn(D)) is
SN-controlled in H(G). To see this, take a sequence of compact sets (Kk)
such that G =

⋃∞
k=1Kk, Kk ⊂ K◦

k+1 (k ∈ N) (A◦ denotes the interior
of a subset A ⊂ C) and the boundary ∂Kk of each Kk is the union of
finitely many rectifiable Jordan curves, which can be assumed to be oriented
counterclockwise. It is even possible to construct (Kk) so that, for every k,
each bounded connected component of C \ Kk (i.e., each “hole” of Kk)
contains some bounded connected component of C \ G (see [19] and [37]).
The increasing sequence P := (pk) of seminorms given by

pk(f) := sup{|f(z)| : z ∈ Kk} (k ∈ N, f ∈ H(G))

defines the topology of H(G). Fix a seminorm q ∈ SN(H(G)). Then there
are ε > 0 and k ∈ N such that q(f) ≤ εpk(f) for all f ∈ H(G). Let
Φn(z) =

∑∞
j=0 aj,nz

j (z ∈ C, n ∈ N). Since (j!|aj,n|)
1/j → 0 (j → ∞),

there is a constant An > 0 such that j!|aj,n| ≤ Anε
j
1 (j ∈ N0), where

ε1 := (1/2)dist(Kk, ∂Kk+1). Let p := pk+1 and

Cn :=
εAn length(∂Kk+1)

dist(Kk, ∂Kk+1)
(n ∈ N).

Fix f ∈ H(G). Then the Cauchy integral formula for derivatives shows that,
for every z ∈ Kk,

|Tnf(z)| =
∣∣∣
∞∑

j=0

aj,nf
(j)(z)

∣∣∣ =

∣∣∣∣
∞∑

j=0

aj,n j!

2πi

L
∂Kk+1

f(t)

(t− z)j+1
dt

∣∣∣∣

≤
∞∑

j=0

Anε
j
1

2π

supt∈∂Kk+1
|f(t)| length(∂Kk+1)

(dist(Kk, ∂Kk+1))j+1

≤
An length(∂Kk+1) supw∈Kk+1

|f(w)|

2 dist(Kk, ∂Kk+1)

∞∑

j=0

(
1

2

)j

=
An length(∂Kk+1)

dist(Kk, ∂Kk+1)
pk+1(f) =

Cn

ε
p(f).

Therefore, q(Tnf) ≤ εpk(Tnf) ≤ ε sup{|Tnf(z)| : z ∈ Kk} ≤ Cnp(f), as
desired.
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2. However, if the Φn are merely of exponential type, then the sequence
(Φn(D)) (⊂ L(E)) is not always SN-controlled. For instance, the sequence
(τn) of translations (case Φn(z) = enz) is never SN-controlled. Indeed, let
q := p1 and fix p ∈ SN(E) and Cn > 0 (n ∈ N), where pn(f) := sup{|f(z)| :
|z| ≤ n}. We wish to find a function F ∈ E and a positive integer N such
that q(τNF ) > CNp(F ). Since p is continuous, there exist n ∈ N and ε > 0
satisfying {f ∈ E : p(f) < 1} ⊃ {f ∈ E : pn(f) < ε}. Since the balls B(0, n)
and B(n+ 2, 1) are disjoint, we can apply Runge’s approximation theorem
(see [22]) to obtain a polynomial F (so F ∈ E) such that |F (z) − 0| < ε
on B(0, n) and |f(z) − (Cn+2 + 1)| < 1 on B(n + 2, 1). Therefore p(f) < 1
and q(τn+2F ) > Cn+2. Hence, for N := n+ 2, we get q(τNF ) > CNp(F ), as
required.

The second new concept that will be introduced has to do with the
“improvement of quality” of the hypercyclicity. First, let us recall a number
of related notions. Assume thatX, Y are separable F-spaces and that (Tn) ⊂
L(X,Y ). Then (Tn) is said to be weakly mixing whenever the sequence

Tn ⊕ Tn : (x, y) ∈ X2 7→ (Tnx, Tny) ∈ Y 2 (n ∈ N)

is hypercyclic. The sequence (Tn) is called mixing if given a pair U, V of
nonempty open subsets of X, there is an N ∈ N such that Tn(U) ∩ V 6= ∅
for every n ≥ N . If (Tn) is mixing, then it is weakly mixing, which in turn
implies that (Tn) is densely hypercyclic. For sharper relations among these
three concepts, see [23], [11], [26], [15], [7], [5], [35], [4] and [25].

Now, we present a property that is a kind of mixing property depending
only on the “shape” of the neighborhood. The concept is suggested by the
notion of “Runge-transitive operators” introduced by Bonilla and Grosse-
Erdmann in [16]. Observe that if X, Y are two Fréchet spaces and (Tn) ⊂
L(X,Y ), then (Tn) is mixing if and only if, given p ∈ SN(X), q ∈ SN(Y ),
a p-open set U in X and a q-open set V in Y , there is N = N(U, V ) ∈ N

such that Tn(U)∩V 6= ∅ for every n ≥ N . Compare this with the definition
below, which introduces a concept stronger than mixing.

Definition 3.2. If X and Y are Fréchet spaces and (Tn) ⊂ L(X,Y ),
then we say that (Tn) is supermixing if, given p ∈ SN(X) and q ∈ SN(Y ),
there exists N = N(p, q) ∈ N such that Tn(U) ∩ V 6= ∅ for every p-open
set U in X, every q-open set V in Y and every n ≥ N . An operator T ∈
L(X) is said to be supermixing whenever the sequence (Tn) of its iterates
is supermixing.

Examples 3.3. 1. If X is a Banach space, then no sequence (Tn) ⊂
L(X) can be supermixing. Indeed, supermixing in the Banach space case
means that, for some N , the set TN (U)∩V is nonempty for every pair U, V
of nonempty open sets, which is clearly impossible.
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2. Each translation operator τa (a ∈ C\{0}) is supermixing on E . Indeed,
let (pk) be the sequence of seminorms pk(z) = sup{|f(z)| : |z| ≤ k} and fix
p, q ∈ SN(E). Then there exist k ∈ N and δ > 0 such that {f : p(f) < 1}
∩{f : q(f) < 1} ⊃ {f : pk(f) < δ}. Choose N > 2k/|a|, and fix an n ≥ N , a
p-open set U and a q-open set V . Then there are α, β ∈ E and ε > 0 with U ⊃
{f : pk(f−α) < ε} and V ⊃ {f : pk(f−β) < ε}. By Runge’s approximation
theorem applied to α, β on the compact set B(0, k)∪B(na, k), there exists a
polynomial P such that |P (z)−α(z)| < ε on B(0, k) and |P (z)−β(z−na)|
< ε on B(na, k). Then pk(P −α) < ε and |P (z+na)−β(z)| < ε on B(0, k),
so pk(τ

n
a P − β) < ε. Hence P ∈ U ∩ (τn

a )−1(V ), which finishes the proof.
This example will be generalized later (see Section 5).

3. It is easy to check that the backward shift operator B(xk) = (xk+1) on
the Fréchet space ω = K

N of all scalar sequences (endowed with the product
topology) is supermixing. Just use the denseness of the sequences having
only finitely many nonzero entries, and take into account that, for every
p ∈ SN(ω), there are k ∈ N and ε > 0 such that {x = (xj) ∈ ω : p(x) < 1}
⊃ {x ∈ ω : supj≤k |xj | < ε}.

4. Two criteria for disjoint hypercyclicity. We are now ready to
state the first of our main results.

Theorem 4.1. Let X, Y and Z be three separable Fréchet spaces. As-

sume that (Sn) ⊂ L(X,Y ) and (Tn) ⊂ L(X,Z). Suppose that the following

conditions are satisfied :

(a) (Sn) is densely hypercyclic.

(b) (Sn) is SN-controlled.

(c) (Tn) is supermixing.

Then (Sn) and (Tn) are densely disjoint hypercyclic.

Proof. We will use Remark 2.1.2. Fix nonempty open subsets U, V,W
of X,Y, Z, respectively. Then there are seminorms p ∈ SN(X), q ∈ SN(Y ),
r ∈ SN(Z) as well as a p-open set U0, a q-open set V0 and an r-open set
W0 satisfying U ⊃ U0, V ⊃ V0, W ⊃ W0. Since (Sn) is SN-controlled,
there is p̃ ∈ SN(X) such that S−1

n (V0) is a p̃-open set for all n ∈ N. If
p0 := max{p, p̃}, then p0 ∈ SN(X) and each of the sets U0, S

−1
n (V0) is

p0-open in X, hence so also is their intersection U0 ∩ S−1
n (V0), for every

n ∈ N. Since (Tn) is supermixing, there is N = N(p0, r) ∈ N such that
A ∩ T−1

n (W0) 6= ∅ for every n ≥ N and every nonempty p0-open set A
in X. Finally, by the dense hypercyclicity of (Tn), there is n0 ≥ N such that
U0 ∩ S−1

n0
(V0) 6= ∅. Hence we can take A := U0 ∩ S−1

n0
(V0). It follows that

U0 ∩ S
−1
n0

(V0) ∩ T
−1
n0

(W0) 6= ∅. Consequently, U ∩ S−1
n0

(V ) ∩ T−1
n0

(W ) 6= ∅, as
required.
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Remark 4.2. As a consequence, ifX is a Fréchet space and S, T ∈ L(X)
are such that S is hypercyclic, the sequence (Sn) is SN-controlled and T is
supermixing, then S and T are densely disjoint hypercyclic.

The second criterion has to do with the Godefroy–Shapiro idea that an
operator can be hypercyclic if it possesses a good supply of eigenvectors.
This is the core of the proof of their theorem that an operator Φ(D) is hy-
percyclic (see [23, Section 5] and Section 5 below). Their idea was developed
and formalized by the author in [6] to obtain hypercyclic sequences of dif-
ferential operators. Now we extend Theorem 7 of [6] (see also [9]) to obtain
a sufficient condition for disjoint hypercyclicity. Recall that, in a topological
vector space, a subset is said to be total whenever its linear span is dense.
If T is an operator and e is an eigenvector, then we denote by λ(T, e) its
corresponding eigenvalue.

Theorem 4.3. Let T1, . . . , Tp be operators on a separable F-space X.

Assume that there are p+1 total subsets D0, D1, . . . , Dp of X satisfying the

following properties for all j ∈ {1, . . . , p}:

(a) Each vector e ∈ D0 ∪D1 ∪ · · · ∪Dp is an eigenvector of Tj .

(b) |λ(Tj , e)| < 1 for all e ∈ D0.

(c) |λ(Tj , e)| > 1 for all e ∈ Dj.

(d) |λ(Tj , e)| < |λ(Ti, e)| for all e ∈ Di and all i ∈ {1, . . . , p} \ {j}.

Then the sequence ([Tn
1 , . . . , T

n
p ]) is mixing. In particular , the operators

T1, . . . , Tp are densely disjoint hypercyclic.

Proof. First, note that λ(Sn, e) = (λ(S, e))n (n ∈ N) whenever e is
an eigenvector of the operator S. If A ⊂ X denote by s(A) the linear
span of A. In view of the Birkhoff transitivity theorem—applied to the
sequence Tn = [Tn

1 , . . . , T
n
p ] : X → Xp (n ∈ N)—it should be proved that,

given nonempty open subsets U, V1, . . . , Vp in X, there is N ∈ N such that
Tn

j (U) ∩ Vj 6= ∅ for all j = 1, . . . , p and all n ≥ N . Due to the denseness
of s(D0), s(D1), . . . , s(Dp) in X, it is enough to prove that, given p+ 1 vec-
tors uj ∈ s(Dj) (j = 0, . . . , p), there is a sequence (xn) ⊂ X such that, as
n→ ∞,

(1) xn → u0 and Tn
j xn → uj (j = 1, . . . , p).

For fixed vectors uj (j = 0, 1, . . . , p) as above, there are respective finite
sets Fj = {ej,1, . . . , ej,m(j)} ⊂ Dj and scalars cj,1, . . . , cj,m(j) such that

uj =

m(j)∑

l=1

cj,lej,l.
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By hypotheses (a)–(c), for every j ∈ {1, . . . , p},

λ(Tn
j , e0,l) = (λ(Tj , e0,l))

n → 0 as n→ ∞ (l = 1, . . . ,m(0)),(2)

λ(Tn
j , ej,l) = (λ(Tj , ej,l))

n → ∞ as n→ ∞ (l = 1, . . . ,m(j)).(3)

From condition (d) we obtain, for i, j ∈ {1, . . . , p} with i 6= j,

(4)
λ(Tn

j , ei,l)

λ(Tn
i , ei,l)

=

(
λ(Tj , ei,l)

λ(Ti, ei,l)

)n

→ 0 as n→ ∞ (l = 1, . . . ,m(i)).

Now, for each n ∈ N, we define the vector

xn = u0 +

p∑

i=1

m(i)∑

l=1

ci,l
λ(Tn

i , ei,l)
ei,l.

By (3), ci,l/λ(Tn
i , ei,l) → 0 (n → ∞) for every i = 1, . . . , p and every

l = 1, . . . ,m(i), so xn → u0. The first part of (1) has been proved. Finally,
for each j = 1, . . . , p, we deduce from (2) and (4) that, as n→ ∞,

Tn
j xn = Tn

j

(
u0 +

p∑

i=1

m(i)∑

l=1

ci,l
λ(Tn

i , ei,l)
ei,l

)

=

m(0)∑

l=1

c0,lT
n
j e0,l +

p∑

i=1

m(i)∑

l=1

ci,l
λ(Tn

i , ei,l)
Tn

j ei,l

=

m(0)∑

l=1

c0,lλ(Tn
j , e0,l)e0,l +

p∑

i=1

m(i)∑

l=1

ci,l
λ(Tn

i , ei,l)
λ(Tn

j , ei,l)ei,l

=

m(0)∑

l=1

c0,lλ(Tn
j , e0,l)e0,l +

m(j)∑

l=1

cj,l ej,l

+
∑

i∈{1,...,p}\{j}

m(i)∑

l=1

ci,l
λ(Tn

i , ei,l)
λ(Tn

j , ei,l)ei,l

→ 0 +

m(j)∑

l=1

cj,lej,l + 0 = uj .

This is the second part of (1), concluding the proof.

As in [6] and [9], there is a generalization of the last theorem to the case
of sequences of operators (T1,n), . . . , (Tp,n). This is left as an exercise for the
interested reader.

5. Examples of disjoint hypercyclic operators. In this section, we
furnish a number of examples of disjoint hypercyclic operators or sequences
of operators. This will be done either directly or by applying Theorems 4.1
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and 4.3. We will consider composition operators and differential operators
on spaces of analytic functions.

We recall that by Birkhoff’s theorem [13] and MacLane’s theorem [33],
respectively, each nontrivial translation operator τa and the derivative oper-
atorD are hypercyclic on E . Moreover, as a link between D and τa, Godefroy
and Shapiro [23] proved that Φ(D) is hypercyclic on E for any nonconstant
entire function Φ ∈ Exp.

Let us start with a simple result concerning composition operators. If
G ⊂ C is a domain and ϕ : G → G is a holomorphic selfmap, then the
composition operator Cϕ ∈ L(H(G)) generated by ϕ is defined as Cϕf =
f ◦ ϕ. We denote by Aut(G) the group of its automorphisms, that is, of
its bijective holomorphic selfmaps. Recall that a domain G is called simply
connected whenever C∞ \ G is connected, where C∞ = C ∪ {∞} is the
extended plane.

Theorem 5.1. Assume that G is a simply connected domain, m ∈ N,
and (ϕj,n) ⊂ Aut (G) (j = 1, . . . ,m). Suppose that these sequences “leave

compacta separately”, that is, for every compact subset K ⊂ G, there is N =
N(K) ∈ N such that , for each n ≥ N , the sets K, ϕ1,n(K), . . . , ϕm,n(K) are

pairwise disjoint. Then the sequence [Cϕ1,n
, . . . , Cϕm,n ] : H(G) → (H(G))m

(n ∈ N) is supermixing. In particular , the sequences (Cϕ1,n
), . . . , (Cϕm,n) are

densely disjoint hypercyclic.

Proof. Let p ∈ SN(H(G)) and q ∈ SN((H(G))m). Since G is simply
connected, one can find a compact set K ⊂ G without holes and a δ > 0
such that {f : p(f) < 1} ⊃ {f : supK |f | < δ} and {F = (f1, . . . , fm) :
q(F ) < 1} ⊃ {F : supK |fj| < δ (j = 1, . . . ,m)}. Let N = N(K) be the
natural number furnished by the “leaving” hypothesis. Fix n ≥ N . Fix also a
nonempty p-open set U ⊂ H(G) and a nonempty q-open set V ⊂ (H(G))m.
Then we derive the existence of functions α, β1, . . . , βm ∈ H(G) and of a
number ε > 0 such that U ⊃ {f ∈ H(G) : |f(z) − α(z)| < ε for all
z ∈ K} and V ⊃ {F ∈ (H(G))m : |fj(z) − βj(z)| < ε for all z ∈ K
and all j = 1, . . . ,m}. Since each ϕj,n is an automorphism, the compact
set ϕj,n(K) has no holes. Hence the disjoint union K ∪ ϕ1,n(K) ∪ · · · ∪
ϕm,n(K) is a compact set without holes. Therefore, Runge’s theorem yields
a polynomial f (so f ∈ H(G)) such that |f(z) − α(z)| < ε on K and
|f(z)−βj(ϕ

−1
j,n(z))| < ε on ϕj,n(K) (j = 1, . . . ,m). The last set of inequalities

is equivalent to |(Cϕj,n
f)(z) − βj(z)| < ε on K (j = 1, . . . ,m). Therefore

f ∈ U and [Cϕ1,n
, . . . , Cϕm,n ]f ∈ V . Hence [Cϕ1,n

, . . . , Cϕm,n ](U)∩V 6= ∅, as
required.

Remarks 5.2. 1. The “leaving” condition of Theorem 5.1 is fulfilled if
the sequences (ϕj,n) tend uniformly on compacta in G—in the sense of the
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chordal distance—to m distinct points of ∂G, the boundary of G in C∞.
This is not at all necessary (see Proposition 5.5).

2. In the case m = 1, the supermixing conclusion of Theorem 5.1 still
holds just on assuming that G is a domain of C which is not isomorphic

to the punctured plane C \ {0}. That is, if (ϕn) ⊂ Aut(G) and ϕn → ∂G
compactly, then the sequence (Cϕn) is supermixing. Indeed, by adapting
the proof of Lemma 2.12 in [8] from the so-called “run-away” sequences
of automorphisms to our (ϕn) (the lemma dealt with domains of infinite
connectivity; its conclusion is evident for simply connected domains, while
for domains with finite connectivity ≥ 3 or isomorphic to an annulus or to
D \ {0}, its conclusion is trivial because there is no sequence of automor-
phisms tending to ∂G; in the case of finite connectivity ≥ 3, this is so by
Heins’ theorem [29]), we find that if K is a compact subset of G such that
each hole of K contains some hole of G, then there is N = N(K) ∈ N such
that, for all n ≥ N , we have K∩ϕn(K) = ∅ and K∪ϕn(K) is a compact set
each of whose holes contains at least one hole of G. This yields, via Runge’s
theorem and similarly to the final part of the proof of Theorem 5.1, a rational
function f with poles outside G (so f ∈ H(G)) such that |f(z) − α(z)| < ε
on K and |f(z) − β(ϕ−1

n (z))| < ε on ϕn(K), for any preassigned ε > 0 and
α, β ∈ H(G). This completes the proof.

Next, we turn our attention to differential operators. In the following
statement, which concerns operators Φ(D) onH(G), we may suppose merely
that Φ ∈ Exp if G is the whole plane C. In addition, the statement has a
multi-dimensional version—with the same proof except for small changes
of notation—if the expression “simply connected domain” is replaced by
“Runge domain” (i.e., a domain in C

N such that the set of polynomials is
dense in H(G); see [31] or [32, Chap. 5] for properties and characterizations).
In the definition of entire function of exponential or subexponential type, one
should interpret the modulus |z| of a point z = (z1, . . . , zN ) as its euclidean
norm (|z1|

2 + · · · + |zN |2)1/2.

Theorem 5.3. Assume that G is a simply connected domain of C and

that Φ1, . . . , Φp are entire functions of subexponential type. Assume also that

there are p+ 1 points z0, z1, . . . , zp ∈ C such that :

(a) max{|Φj(z0)| : j = 1, . . . , p} < 1.
(b) max{1, |Φj(zi)| : j ∈ {1, . . . , p} \ {i}} < |Φi(zi)| for all i = 1, . . . , p.

Then the operators Φ1(D), . . . , Φp(D) are densely disjoint hypercyclic on

H(G).

Proof. For a ∈ C and A ⊂ C, set ea(z) := exp(az) and M(A) := {ea :
a ∈ A}. If A is a nonempty open set, then M(A) is total in H(G) (see
for instance [23, Section 5] or [9, Lemma 2.3]). Observe that Φ(D)ea =
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Φ(a)ea for all a ∈ C and all Φ ∈ Exp, so ea is an eigenvector of Φ(D) with
eigenvalue Φ(a). By the continuity of the functions |Φj |, there are nonempty
open subsets Uj ⊂ C such that, for every j ∈ {1, . . . , p}, one has |Φj(z)| < 1
on U0, |Φj(z)| > 1 on Uj , and |Φi(z)| > |Φj(z)| on Ui whenever i 6= j. Thus,
it suffices to apply Theorem 4.3 to Tj := Φj(D) and Dj := M(Uj).

Examples 5.4. 1. Approximation by Birkhoff-universal functions and
MacLane-universal functions can be simultaneously performed with the
same functions and with the same approximating iterates. In other words,
the operators τ1 and D are disjoint hypercyclic on E . Indeed, τ1 = Φ1(D)
and D = Φ2(D), where Φ1(z) := ez and Φ2(z) := z. Then just apply The-
orem 5.3 with p = 2, z0 = −1/2, z1 = 1 and z2 = −1. This result can also
be derived from Example 3.2.1, Theorem 4.1 and Remark 4.2, because τ1 is
supermixing, D is hypercyclic and (Dn) is SN-controlled.

2. Of course, one can mix Theorems 5.1 and 5.3 to obtain (with the help
of Theorem 4.1) more examples of disjoint hypercyclic operators.

The final part of this section is devoted to several examples (in the cases
G = C or D) of disjoint hypercyclic sequences of composition operators, via
an application of Theorem 5.1.

Recall that the members of Aut(C) are the similarities z 7→ az + b
(a, b ∈ C, a 6= 0), while Aut(D) consists of the Möbius transformations
of the form z 7→ k z−a

1−az (|a| < 1 = |k|). As a generalization of Birkhoff’s
theorem and of Seidel–Walsh’s theorem (the latter is the D-version of the
Birkhoff theorem, see [39]), it is known that if (ϕn(z) := anz+bn) ∈ Aut(C)
((ϕn(z) := kn

z−an

1−anz ) ∈ Aut (D), resp.) then (Cϕn) is hypercyclic on E (on
H(D), resp.) if and only if supn∈N min{|bn|, |bn/an|} = +∞ (supn∈N |an| = 1,
resp.). Moreover, if ϕ(z) := az + b ∈ Aut (C), then Cϕ is hypercyclic on
E if and only if ϕ is a translation, that is, a = 1 and b 6= 0. And if
ϕ(z) := eiθ z−a

1−az ∈ Aut(D), then Cϕ is hypercyclic on H(D) if and only
if ϕ has no fixed point in D, or equivalently, if and only if |a| ≥ |sin(θ/2)|
and a 6= 0 (for this and extensions, see [8], [18] and [40]). In particular, every
“non-Euclidean translation” ϕ(z) := z ∗ a = z+a

1+az (a ∈ D \ {0}) generates a
hypercyclic composition operator on H(D).

Proposition 5.5.

(A) If b1, . . . , bp are pairwise different nonzero complex numbers, then

the translation operators τb1 , . . . , τbp
are densely disjoint hypercyclic

on the space E.

(B) Assume that ϕj,n(z) := aj,nz + bj,n (j = 1, . . . , p; n ∈ N) are auto-

morphisms of C satisfying , for every j ∈ {1, . . . , p}, the following

properties:
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(a) lim
n→∞

|bj,n| = ∞ = lim
n→∞

∣∣∣∣
bj,n
aj,n

∣∣∣∣.

(b) lim
n→∞

|bi,n − bj,n|

|ai,n| + |aj,n|
= ∞ for every i ∈ {1, . . . , p} \ {j}.

Then the sequence [Cϕ1,n
, . . . , Cϕp,n ] : E → Ep (n ∈ N) is supermixing. In

particular , the sequences (Cϕ1,n
), . . . , (Cϕp,n) are densely disjoint hypercyclic

on E.

Proof. Observe that (A) follows from (B) applied to aj,n := 1, bj,n :=
nbj . Therefore, it suffices to demonstrate (B). For this, fix a compact set
K ⊂ C. Choose r > 0 such that K ⊂ B(0, r) =: B. By hypothesis, there is
a positive integer N such that, for every j ∈ {1, . . . , p} and every n ≥ N ,
we have |bj,n| > 2r, |bj,n/aj,n| > 2r, and |bi,n − bj,n| > |ai,n|r+ |aj,n|r for all
i ∈ {1, . . . , p} \ {j}. Then, if n ≥ N , the p balls B(bj,n, |aj,n|r) = ϕj,n(B)
are pairwise disjoint. Furthermore, we have

|ϕj,n(z)| = |bj,n|

∣∣∣∣1 +
aj,nz

bj,n

∣∣∣∣ ≥ |bj,n|

(
1 −

∣∣∣∣
aj,nz

bj,n

∣∣∣∣
)
> 2r

(
1 −

r

2r

)
= r

for all z ∈ B, all j ∈ {1, . . . , p} and all n ≥ N . Then B ∩ ϕn,j(B) = ∅ for
all j and all n ≥ N . Since K ⊂ B, we infer that, for each n ≥ N , the sets
K,ϕ1,n(K), . . . , ϕp,n(K) are pairwise disjoint. The conclusion follows from
Theorem 5.1.

If a ∈ C, then we denote by a∗ the point symmetric to a with respect to
the unit circle ∂D, that is, a∗ = 1/a.

Proposition 5.6.

(A) If a1, . . . , ap are pairwise different points in D and ϕj(z) := z ∗ aj

(j = 1, . . . , p) are their respective non-Euclidean translations, then

the composition operators Cϕ1
, . . . , Cϕp are densely disjoint hyper-

cyclic.

(B) Suppose that {ϕj,n : j ∈ {1, . . . , p}, n ∈ N} ⊂ Aut(D). Assume also

that , for each j ∈ {1, . . . , p}, the following properties are satisfied :

(a) lim
n→∞

|ϕj,n(0)| = 1.

(b) lim
n→∞

∣∣∣∣
ϕi,n(0) − ϕj,n(0)

ϕi,n(0) − (ϕj,n(0))∗

∣∣∣∣ = 1 for all i ∈ {1, . . . , p} \ {j}.

Then the sequences (Cϕ1,n
), . . . , (Cϕp,n) are densely disjoint hyper-

cyclic.

Proof. Assuming that (B) is proved, let us demonstrate (A). Let ϕ be a
non-Euclidean translation ϕ(z) = z ∗ a with a = reiθ, where r ∈ (0, 1) and
θ ∈ [0, 2π). Define α as the simplest Möbius transformation sending 1,−1
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to 0,∞, respectively, and β as the rotation of angle θ, that is,

α(z) =
z − 1

z + 1
and β(z) = eiθz.

Then α−1(z) = (1 + z)/(1 − z) and β−1(z) = e−iθz. If ψ is defined as ψ =
α−1 ◦ β−1 ◦ ϕ ◦ β ◦ α, then an easy calculation shows that ψ is the dilation
ψ = r0z, where r0 = (1 + r)/(1 − r) (> 1). Let ϕn, ψn denote the nth
iterate of ϕ, ψ, respectively. Since ϕ = β ◦ α ◦ ψ ◦ α−1 ◦ β−1, one obtains
ϕn = β ◦ α ◦ ψn ◦ α−1 ◦ β−1. But ψn(z) = rn

0 z, whence

ϕn(0) = β(α(ψn(1))) = eiθ r
n
0 − 1

rn
0 + 1

.

Note that, as n→ ∞, we get ϕn(0) → eiθ, so |ϕn(0)| → 1.

Consequently, according to (B), it is enough to prove that, if ϕ(z) :=
z ∗ a, Φ(z) := z ∗ b are two non-Euclidean translations (with a = reiθ 6=
ReiΘ = b, 0 < r ≤ R < 1 and θ,Θ ∈ [0, 2π)) and ϕn, Φn denote their
respective iterates, then

An :=

∣∣∣∣
ϕn(0) − Φn(0)

ϕn(0) − (Φn(0))∗

∣∣∣∣ → 1 as n→ ∞.

At this point, we distinguish two cases. If θ 6= Θ, then

An →

∣∣∣∣
eiθ − eiΘ

eiθ − (eiΘ)−1

∣∣∣∣ = 1.

Finally, if θ = Θ, then r < R. We set

r0 :=
1 + r

1 − r
and R0 :=

1 +R

1 −R
,

so that R0 > r0 > 1. Then

An =

∣∣∣∣∣∣

rn
0
−1

rn
0
+1 −

Rn
0
−1

Rn
0
+1

rn
0
−1

rn
0
+1 −

Rn
0
+1

Rn
0
−1

∣∣∣∣∣∣
=
Rn

0 − 1

Rn
0 + 1

(R0/r0)
n − 1

(R0/r0)n + 1
→ 1 · 1 = 1,

and we are done.

Next, we prove (B). For each pair (j, n), we can write

ϕj,n(z) = kj,n
z − aj,n

1 − aj,nz

for certain numbers aj,n, kj,n satisfying |aj,n| < 1 = |kj,n|. Then ϕj,n(0) =
−kj,naj,n and |ϕj,n(0)| = |aj,n|. Fix a compact set K ⊂ D. Choose a ball

B = B(0, r) with r ∈ (0, 1) and K ⊂ B. As |ϕj,n(0)| → 1 (n→ ∞) for all j,

we can find N1 ∈ N such that |aj,n| > (2r− r2)1/2 for all j ∈ {1, . . . , p} and
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all n ≥ N1. Therefore, if z ∈ B and j, n are as before, we get

|ϕj,n(z)| =

∣∣∣∣
z − aj,n

1 − aj,nz

∣∣∣∣ =
1

|aj,n|

∣∣∣∣
|aj,n|

2 − aj,nz

1 − aj,nz

∣∣∣∣ =
1

|aj,n|

∣∣∣∣1 +
|aj,n|

2 − 1

1 − aj,nz

∣∣∣∣

≥ 1 −
1 − |aj,n|

2

|1 − aj,nz|
≥ 1 −

1 − |aj,n|
2

1 − |z|
≥ 1 −

1 + r2 − 2r

1 − r
= r.

Hence B ∩ ϕj,n(B) = ∅, so K ∩ ϕj,n(K) = ∅ (n ≥ N1, j ∈ {1, . . . , p}).
According to Theorem 5.1, and since K ⊂ B, it is enough to show the
existence of a positive integer N ≥ N1 such that ϕi,n(B) ∩ ϕj,n(B) = ∅ for
all i, j with i 6= j and all n ≥ N .

For this, consider the hyperbolic distance ̺ on D (see [21]), given by

̺(z, w) = tanh−1

∣∣∣∣
z − w

1 − zw

∣∣∣∣ (z, w ∈ D).

Since ̺ is invariant under automorphisms, we deduce from the triangle in-
equality that, for z, w ∈ B, n ∈ N and i, j ∈ {1, . . . , p},

̺(ϕi,n(z), ϕj,n(w))

≥ ̺(ϕi,n(0), ϕj,n(0)) − ̺(ϕi,n(z), ϕi,n(0)) − ̺(ϕj,n(w), ϕj,n(0))

= ̺(ϕi,n(0), ϕj,n(0)) − ̺(z, 0) − ̺(w, 0) ≥ ̺(ϕi,n(0), ϕj,n(0)) − 2 tanh−1 r.

Since (a) and (b) hold and limx→1− tanh−1 x = ∞, for every pair i, j with
i 6= j we obtain

lim
n→∞

̺(ϕi,n(0), ϕj,n(0)) = lim
n→∞

tanh−1

∣∣∣∣
ϕi,n(0) − ϕj,n(0)

1 − ϕi,n(0)ϕj,n(0)

∣∣∣∣

= lim
n→∞

tanh−1

(
1

|ϕj,n(0)|

∣∣∣∣
ϕi,n(0) − ϕj,n(0)

ϕi,n(0) − (ϕj,n(0))∗

∣∣∣∣
)

= lim
n→∞

tanh−1

∣∣∣∣
ϕi,n(0) − ϕj,n(0)

ϕi,n(0) − (ϕj,n(0))∗

∣∣∣∣ = ∞.

Hence limn→∞ ̺(ϕi,n(0), ϕj,n(0)) = ∞, so there exist N ∈ N (we can choose
N ≥ N1) such that ̺(ϕi,n(0), ϕj,n(0)) > 2 tanh−1 r for all n ≥ N and all
i, j with i 6= j. Consequently, ̺(ϕi,n(z), ϕj,n(w)) > 0 for such i, j, n and all
z, w ∈ B. But this implies ϕi,n(B) ∩ ϕj,n(B) = ∅, as required.

We finish this paper by providing an example of disjoint hypercyclic
operators in the setting of Banach spaces. In 1969, S. Rolewicz [36] gave
the first example of a hypercyclic operator on a Banach space. Namely,
he proved that if c ∈ K has modulus > 1 and B is the backward shift
on any of the spaces lp (= the space of scalar sequences x = (xj) with
‖x‖ := (

∑∞
j=1 |xj |

p) < ∞) (1 ≤ p < ∞) or c0 (= the space of scalar
sequences x = (xj) tending to 0, endowed with the norm ‖x‖ := supj≥1 |xj|),
then the operator cB is hypercyclic. In 1995, H. Salas [38] improved this
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result by showing that, if a = (aj) is a bounded sequence of nonzero scalars,
then the weighted backward shift operator Ta defined on lp or c0 as

Tax = (aj+1xj+1) for x = (xj)

is hypercyclic if and only if the sequence {An :=
∏n

j=1 aj}n≥1 of partial
products of the weights is unbounded. Extensions of Salas’ result can be
found for example in [11], [27] and [34]. Since every power of a hypercyclic
operator is also hypercyclic (even with the same hypercyclic vectors, see [1]),
it follows that, if a is as above, then Tm

a is hypercyclic for every m ∈ N. In
fact, we have the following statement.

Proposition 5.7. Let X be c0 or lp (1 ≤ p < ∞), and let m ∈ N.

Assume that a = (aj) is a bounded sequence of nonzero scalars such that

(5) sup{min{|An|, |A2n|, . . . , |Amn|}} = ∞.

Then the operators Ta, T
2
a , . . . , T

m
a are densely disjoint hypercyclic on X.

Proof. The proof will be given when m = 2 and X = lp, the general
case being similar. If T := Ta, then it must be proved that the sequence
([Tn, T 2n]) is densely disjoint hypercyclic. From the Birkhoff transitivity
theorem it is enough to find dense subsets D0, D1, D2 of X such that, for
x ∈ D0, y ∈ D1 and z ∈ D2, there are a sequence {n1 < n2 < · · · } ⊂ N and
a sequence (xk) ⊂ X satisfying:

(i) Tnkx→ 0 and T 2nkx→ 0 as k → ∞.

(ii) xk → 0, Tnkxk → y and T 2nkxk → z as k → ∞.

We choose D0 = D1 = D2 := D, where D is the set of sequences with
finitely many nonzero entries. Given x ∈ D, there is n0 ∈ N such that
Tnx = 0 for every n ≥ n0, so condition (i) is trivially satisfied for any (nk).
Now, fix y = (y1, . . . , yq, 0, 0, 0, . . . ) and z = (z1, . . . , zr, 0, 0, 0, . . . ) in D.
Without loss of generality, we may suppose that q = r. By (5), there is a
sequence {m1 < m2 < · · · } ⊂ N such that Amk

→ ∞ and A2mk
→ ∞. We

can assume that m1 > 2q (so mk − q > q for all k). For k ∈ N, define nk ∈ N

and xk ∈ X by nk := mk − q and

xk := (0, . . . , 0, A1A
−1
nk+1y1, A2A

−1
nk+2y2, . . . , AqA

−1
nk+qyq, 0, . . . , 0,

A1A
−1
n2k+1z1, A2A

−1
n2k+2z2, . . . , AqA

−1
n2k+qzq, 0, 0, 0, . . . )

where there are nk zeros as starting entries and nk − q zeros immediately
after AqA

−1
nk+qyq. Observe that, by construction, T 2nkxk = z → z (k → ∞).

So part of (ii) has been shown. Hence, it remains to prove that xk → 0 and
Tnkxk → y. Fix j ∈ {1, . . . , q}. By hypothesis, there is M ∈ (0,∞) such
that |al| ≤M for all l. Therefore

|AjA
−1
nk+j | ≤M j |A−1

mk−q+j| ≤M j |A−1
mk

|M q−j = M q|A−1
mk

|
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and, analogously, |AjA
−1
2nk+j | ≤M2q|A−1

2mk
|. Consequently,

‖xk‖
p ≤ (M q|A−1

mk
|)p

q∑

j=1

|yj|
p + (M2q|A−1

2mk
|)p

q∑

j=1

|zj |
p → 0

and

‖Tnkxk − y‖p = |(A1A
−1
nk+1z1, . . . , AqA

−1
nk+qzq, 0, 0, 0, . . . )|

p

≤ (M q|A−1
mk

|)p
q∑

j=1

|zj|
p → 0.

But this shows that xk → 0 and Tnkxk → y, as required.

Final questions. 1. If T is a hypercyclic operator, are T, T 2 always
disjoint hypercyclic?

2. Is there any Banach space example where Theorem 4.3 can be applied?

3. Are finitely many composition operators generated by nonelliptic
(= without fixed points in D) automorphisms ϕ of D disjoint hypercyclic?
Is this true for the Hardy space Hp(D), or even for other Banach spaces
X ⊂ H(D) where Cϕ is a well-defined operator?
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