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Subspaces with a common complement in a Banach space

by

Dimosthenis Drivaliaris (Chios) and Nikos Yannakakis (Athens)

Abstract. We study the problem of the existence of a common algebraic complement
for a pair of closed subspaces of a Banach space. We prove the following two characteriza-
tions: (1) The pairs of subspaces of a Banach space with a common complement coincide
with those pairs which are isomorphic to a pair of graphs of bounded linear operators
between two other Banach spaces. (2) The pairs of subspaces of a Banach space X with a
common complement coincide with those pairs for which there exists an involution S on
X exchanging the two subspaces, such that I + S is bounded from below on their union.
Moreover, we show that, in a separable Hilbert space, the only pairs of subspaces with a
common complement are those which are either equivalently positioned or not completely
asymptotic to one another. We also obtain characterizations for the existence of a common
complement for subspaces with closed sum.

1. Introduction. In their recent paper [17] Lauzon and Treil raised
the following problem: Given two closed subspaces M and N of a Banach
space X, what conditions are necessary and sufficient for M and N to have
a common algebraic complement? Recall that we say that a closed subspace
K is an algebraic complement (from now on just complement) of M and
write

M ⊕ K = X

if

M ∩ K = {0} and M + K = X.

So what one is looking for are conditions equivalent to the existence of a
third closed subspace K of X, which we will call a common complement of
M and N in X, with

M ⊕ K = N ⊕ K = X.

It is well known that for a finite-dimensional Banach space X such a
subspace K exists if and only if M and N have equal dimensions. If we move
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to an infinite-dimensional Hilbert space things are much more complicated
and equality of dimensions and codimensions is necessary (in general in a
Banach space subspaces with a common complement are isomorphic), but no
longer sufficient; an easy way to see this is to let M and N have both infinite
dimensions and codimensions and N be a proper subspace of M . This should
come as no surprise, since the equality of dimensions and codimensions is
necessary and sufficient only if we are looking for something less, namely
not for an algebraic but for a topological common complement. Recall that
K is a topological complement of M in X if

M ∩ K = {0} and M + K = X.

If M and N have a common topological complement K, and PM , PN and
PK are the orthogonal projections on M , N and K respectively, then

PM ∧ PK = 0 = PN ∧ PK and PM ∨ PK = I = PN ∨ PK .

Pairs of projections with the property just described for PM and PN are
called perspective. The study of perspective projections goes back to Kaplan-
sky [16, Theorem 6.6]. Fillmore proved [12, Theorem 1] that two orthogonal
projections are perspective in the projection lattice of a von Neumann alge-
bra if and only if they are unitarily equivalent. A spatial interpretation of
Fillmore’s result gives us what we stated above: M and N have a common
topological complement if and only if they have equal dimensions and codi-
mensions. For further results on perspective projections we refer the reader
to [10, 15, 19].

A stronger (than the equality of dimensions and codimensions) condition
which could be a possible candidate for the characterization of the existence
of a common complement is the following:

(1.1) dim(M ⊖ (M ∩ N)) = dim(N ⊖ (M ∩ N)).

It turns out (see the example in [17, Section 4]) that (1.1) is also not suffi-
cient.

In [17, Theorem 0.1] Lauzon and Treil obtained the following character-
ization:

Theorem 1.1. Let M and N be two closed subspaces of a Hilbert space X,
and G be the restriction to M of the orthogonal projection PN . Then M and

N have a common complement if and only if

(1.2) dim(M ∩ N⊥) + dim(E((0, 1 − ε))(M))

= dim(M⊥ ∩ N) + dim(E((0, 1 − ε))(M))

for some ε > 0 (equivalently , for all sufficiently small ε > 0), where E(·) is

the spectral measure of the operator G∗G.
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A different proof of this result for a separable Hilbert space X was given
by Deng and Du in [6]. Related results, also for the separable case, using the
minimal number of segments required to connect two homotopic projections,
can be found in [13, Proposition 6.2 and Theorem 6.3].

Note that the above theorem implies that if two subspaces M and N of
a Hilbert space are, in the terminology of [4], equivalently positioned, i.e. if

(1.3) dim(M ∩ N⊥) = dim(M⊥ ∩ N),

then they have a common complement (as we will see in Example 4.9 the
converse is not true). This trivial observation allows us to settle the case
of finite-dimensional and finite-codimensional subspaces. If M and N are
finite-dimensional, then (1.3) holds if and only if dim(M) = dim(N) [4, p.
175]. Moreover M⊥ and N⊥ are equivalently positioned if and only if M and
N are. Hence for finite-dimensional or finite-codimensional subspaces of a
Hilbert space the existence of a common complement is equivalent to their
dimensions or codimensions being equal. We should add here that equiva-
lently positioned subspaces behave so well because there exists a symmetry
exchanging them (see [8, p. 389]), and a common complement is the orthog-
onal complement of its axis. This observation will play an important role in
Section 5.

If M and N have a common complement, but are not equivalently posi-
tioned, then condition (1.2) implies that the dimension of E((0, 1 − ε))(M)
is infinite. Using this observation we shall see that, at least for the separable
case, the existence of a common complement for two subspaces has to do
either with being in a “good relative position” or with both of them having
infinite-dimensional closed subspaces “away” from the other. The latter is
precisely the definition of subspaces not completely asymptotic to one an-
other (see Definition 3.1). Hence we can say that among the “not so nicely
positioned” subspaces (the non-equivalently positioned ones) the only pairs
that have a common complement, always in the separable case, are those
which are not completely asymptotic to one another. Concluding, it is in-
teresting to note that in Section 4 we will see that up to isomorphism all
subspaces with a common complement in a Hilbert space are equivalently
positioned.

Another characterization of subspaces of a Hilbert space with a common
complement is the following one by Longstaff and Panaia [18, Proposition 1]:

Theorem 1.2. Let M and N be subspaces of a Hilbert space X with

M + N = X and M ∩ N = {0}. Then the following are equivalent :

(1) M and N have a common complement in X.

(2) The pair {M, N} is similar to a pair of the form {Gr(T ), Gr(S)},
where T and S are operators on some Hilbert space X1.
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(3) The pair {M, N} is similar to a pair of subspaces in generic position

(see Section 4 for the definition).

Note that this characterization applies only to topologically complementary
subspaces and that, whereas the characterization of Lauzon and Treil con-
centrates on dimensions, this one focuses on the relative position of the pair.

Sufficient conditions for the existence of a common complement in a
Banach space, using notions of distance between subspaces, can be found
in the papers of Berkson [3, Theorem 5.2 and Corollary 5.7] and of Dirr,
Rakočević and Wimmer [7, Theorem 3.1].

Our main aim in this paper is to obtain characterizations for pairs (or
families) of subspaces with a common complement in a Banach space. More-
over we shall examine their implications in the Hilbert space setting and get
more information about the existence of a common complement there. We
should note that the tools used by Lauzon and Treil are not suitable for this
more general setting. On the other hand, the characterization of Longstaff
and Panaia and the discussion about equivalently positioned subspaces indi-
cate that it might be fruitful to treat our problem as one of relative position
of a pair of subspaces in a Banach space. We remind the reader that the
study of the relative position of subspaces of a Hilbert space was initiated
by Dixmier in [8] and has been going on ever since (see for example the
papers of Davis [4], Araki [1], Halmos [14], Davis and Kahan [5], Longstaff
and Panaia [18] and Enomoto and Watatani [11]).

Our paper is organized as follows: At the beginning of Section 2 we
present some simple facts about subspaces with a common complement.
We believe that this discussion reveals some of the problems that may oc-
cur when we study the existence of a common complement in the Banach
space setting. As we have already said, if two subspaces have a common
complement, then they are isomorphic, whereas the converse is not true.
We conclude that section with a condition on the isomorphism taking one
subspace to the other which characterizes subspaces with a common com-
plement among the isomorphic ones.

In Section 3 we discuss the relation between the existence of a common
complement for two subspaces and their sum being closed or them being
completely asymptotic. To this end we first deal with the case of a separa-
ble Hilbert space. Using the results of Lauzon and Treil we show that M and
N have a common complement if and only if they are either equivalently
positioned or not completely asymptotic to one another. An immediate con-
sequence is that, in a separable Hilbert space, two subspaces M and N with
closed sum have a common complement if and only if the equality of dimen-
sions (1.1) holds. Applying our results from Section 2, we extend this last
result to arbitrary Banach spaces.
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In Section 4 we extend characterizations of pairs of subspaces in vari-
ous relative positions as those isomorphic to pairs of graphs of operators
with certain properties, due to Araki [1], Halmos [14], Papadakis [20] and
Longstaff and Panaia [18], to pairs of subspaces with a common complement.
We characterize pairs (or families) of closed subspaces of a Banach space X
that have a common complement as those which are isomorphic to pairs (or
families) of graphs of bounded linear operators between two Banach spaces
X1 and X2. An interesting consequence is that, up to isomorphism, all pairs
of subspaces of a Hilbert space with a common complement are equivalently
positioned. We conclude by characterizing pairs {M, N} of subspaces of a
Hilbert space for which M⊥ is a common complement.

In the final section we extend results of Dixmier [8] and Davis [4], char-
acterizing pairs of subspaces in various relative positions via the existence of
certain kinds of symmetries interchanging them, to pairs of subspaces with a
common complement. We show that for two subspaces M and N of a Banach
space X with M + N = X, having a common complement is equivalent to
the existence of an involution S on X (i.e. a bounded linear operator with
S2 = I) which exchanges M and N , such that I + S is bounded from below
on their union.

2. Preliminaries and first results. We start by clarifying some nota-
tional matters. All the results of the paper are true for both real and complex
Banach and Hilbert spaces. Throughout the paper all subspaces are consid-
ered to be closed. We will call an operator U : X1 → X2 an isomorphism if
it is an injective bounded linear operator with closed range.

Let M and N be subspaces of a Banach space. We will denote the pair
of those two subspaces with no order specified by {M, N}. If X1 and X2

are Banach spaces and {M1, N1} and {M2, N2} are pairs of subspaces of
X1 and X2 respectively we will say that the pairs {M1, N1} and {M2, N2}
are isomorphic (resp. isometrically isomorphic) if there exists a surjective
isomorphism (resp. isometric onto isomorphism) taking one pair to the other.
If X1 and X2 are Hilbert spaces we will use the terms similar and unitarily

equivalent instead of isomorphic and isometrically isomorphic.

If M and K are complementary we will denote the projection onto M
parallel to K by PM‖K . If M is a subspace of a Hilbert space X we will
denote the orthogonal projection onto M by PM . Moreover, if X is a Hilbert
space, M a subspace of X, and L a subspace of M , then we will denote the
orthogonal complement of L in M by M ⊖ L.

We now describe some simple properties of subspaces with a common
complement.



146 D. Drivaliaris and N. Yannakakis

Proposition 2.1. Let X be a Banach space, M and N be subspaces

of X, and Y be a complemented subspace of X containing both M and N .

Then the following are equivalent :

(1) M and N have a common complement in X.

(2) M and N have a common complement in Y .

Proof. If K is a common complement of M and N in X, then it is easy
to see that Y ∩ K is a common complement of M and N in Y . On the
other hand, if K is a common complement of M and N in Y and Z is a
complement of Y in X, then K ⊕ Z is a common complement of M and N
in X.

Remark 2.2. The direction (1)⇒(2) is true even if Y is not comple-
mented in X, whereas (2)⇒(1) is not in general true if Y is not comple-
mented in X, since M and N may be non-complemented subspaces of X
and have a common complement in some non-complemented subspace Y
containing both of them.

A straightforward corollary of Proposition 2.1 is that if M and N are
finite-dimensional subspaces of a Banach space X, then M and N have
a common complement in X if and only if dim(M) = dim(N) (just take
Y = M + N and apply the result for the finite-dimensional case).

We will later see that some results on the existence of a common comple-
ment hold if we assume that the subspaces have dense sum. In those cases
the following corollary, which is a Banach space version of [17, Proposition
1.5], is useful.

Corollary 2.3. Let X be a Banach space, and M and N be subspaces

of X with M + N complemented in X. Then M and N have a common

complement in X if and only if they have a common complement in M + N .

In the following two propositions we describe what happens with the
existence of a common complement if we “remove” a common part from M
and N .

Proposition 2.4. Let X be a Banach space, M and N be subspaces

of X, and L be a subspace of both M and N which is complemented in X.

If P : X → X is a bounded projection with P (X) = L, then the following

are equivalent :

(1) M and N have a common complement in X.

(2) (I − P )(M) and (I − P )(N) have a common complement in X.

(3) (I − P )(M) and (I − P )(N) have a common complement in

(I − P )(X).

Proof. If K is a common complement of M and N in X, then L ⊕ K is
a common complement of (I − P )(M) and (I − P )(N) in X and so we get
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(1)⇒(2). (2)⇒(3) follows from Proposition 2.1. For (3)⇒(1) observe that if
K is a common complement of (I − P )(M) and (I − P )(N) in (I − P )(X),
then K is also a common complement of M and N in X.

If the subspace L is just complemented in M and N , then we get the
following.

Proposition 2.5. Let X be a Banach space, and M, N and L be sub-

spaces of X such that L is complemented in both M and N . If M = L⊕M1

and N = L ⊕ N1, then the following are equivalent :

(1) M and N have a common complement in X.

(2) M1 and N1 have a common complement in X in which L is comple-

mented.

Proof. If K is a common complement of M and N in X, then L ⊕ K
is a common complement of M1 and N1 in X in which L is complemented.
On the other hand, if K = L ⊕ K ′ is a common complement of M1 and N1

in X in which L is complemented, then K ′ is a common complement of M
and N .

Remark 2.6. The direction (2)⇒(1) is not in general true if we omit
“in which L is complemented” in (2), since in that case L may be a non-
complemented subspace of X.

In general it is not true that if M and N have a common complement,
then their intersection is a complemented subspace of X. If it is, we get the
following immediate corollary of Proposition 2.4.

Corollary 2.7. Let X be a Banach space, and M and N be subspaces

of X such that M ∩ N is complemented in X. If P : X → X is a bounded

projection with P (X) = M ∩N , then M and N have a common complement

in X if and only if (I −P )(M) and (I −P )(N) have a common complement

in (I − P )(X).

Combining Corollaries 2.3 and 2.7 we see that if M and N are subspaces
of a Banach space X such that M + N and M ∩N are complemented in X
and P is a bounded projection onto M ∩N , then M and N have a common
complement in X if and only if M1 = (I−P )(M) and N1 = (I−P )(N) have
a common complement in (I −P )(M + N) = M1 + N1. This is quite useful
since we end up with two subspaces with dense sum and trivial intersection.
In particular when we study the existence of a common complement in a
Hilbert space we may assume that we are talking about subspaces with
dense sum and trivial intersection.

It is straightforward to see that the existence of a common complement
is preserved under isomorphisms.
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Proposition 2.8. Let X1 and X2 be Banach spaces, M and N be sub-

spaces of X1, and U : X1 → X2 be an isomorphism. Then M and N have a

common complement in X1 if and only if U(M) and U(N) have a common

complement in U(X1).

Moreover, the existence of a common complement is also preserved under
taking annihilators.

Proposition 2.9. Let X be a Banach space, and M and N be subspaces

of X.

(1) If M and N have a common complement in X, then M⊥ and N⊥

have a common complement in X∗.

(2) If X is reflexive and M⊥ and N⊥ have a common complement in X∗,
then M and N have a common complement in X.

We should note that (2) is not in general true if X is not reflexive since
in this case M and N may not even be complemented.

Combining this proposition with what we said after Remark 2.2 we infer
that if X is a reflexive Banach space and M and N are finite codimensional
subspaces of X, then M and N have a common complement in X if and
only if codim(M) = codim(N).

The existence of a common topological complement is a transitive rela-
tion [12, Corollary, p. 386]. On the other hand, the relation of being equiv-
alently positioned is not transitive [4, p. 175]. The example from [4] can
also be used to show that the existence of a common complement is not
transitive. Let X = l2(Z), {en |n ∈ Z} be the standard orthonormal basis
of X, and

M = span{en |n ≥ 0}, N = span{en |n ≤ −1}, L = span{en |n ≥ 1}.
Then

dim(M ∩ N⊥) = dim(M⊥ ∩ N),

dim(N ∩ L⊥) = dim(N⊥ ∩ L),

and thus M and N have a common complement, and also N and L have
a common complement. On the other hand, since L is a proper subspace
of M , M and L do not have a common complement.

We now move to the next part of this section. Lauzon and Treil proved
in [17, Proposition 1.3] that if M and N are subspaces of a Banach space X,
then they have a common complement in X if and only if there exists a
bounded projection P : X → X with P (X) = N such that P |M : M → N
is a surjective isomorphism. It is obvious that this leads to the following
corollary.

Corollary 2.10. If M and N have a common complement in X, then

M and N are isomorphic.
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Combining Corollary 2.10 with the simple properties of subspaces with a
common complement we find that if two subspaces have a common comple-
ment, then some other related subspaces are also isomorphic (for example,
if M and N have a common complement, then their annihilators are isomor-
phic). In particular, combining Corollaries 2.7 and 2.10 we get the following:

Corollary 2.11. Let X be a Banach space, let M and N be subspaces

of X such that M ∩ N is complemented in X, and let P : X → X be

a bounded projection with P (X) = M ∩ N . If M and N have a common

complement in X, then (I − P )(M) and (I − P )(N) are isomorphic.

For Hilbert spaces, this implies, by taking P = PM∩N , the result of [17,
Corollary 1.4]: Let X be a Hilbert space, and M and N be subspaces of X.
If M and N have a common complement in X, then

dim(M ⊖ (M ∩ N)) = dim(N ⊖ (M ∩ N)).

As we mentioned in the introduction, the converses of Corollaries 2.10
and 2.11 are not true.

In the following proposition we give a condition on the isomorphism
between two isomorphic subspaces of a Banach space equivalent to them
having a common complement in the closure of their sum. This result will
be used in the following section where we discuss the existence of a common
complement for subspaces with closed sum.

Proposition 2.12. Let X be a Banach space, and M and N be sub-

spaces of X. Then the following are equivalent :

(1) M and N have a common complement in M + N .

(2) There exists a surjective isomorphism U : M → N , with U |M∩N =
IM∩N , and C ≥ 1 such that

‖Ux + y‖ ≤ C‖x + y‖ for all x ∈ M and y ∈ N.

Proof. (1)⇒(2): Since M and N have a common complement in M + N ,
by [17, Proposition 1.3] there exists a bounded projection

P : M + N → M + N

with P (M + N) = N such that P |M : M → N is a surjective isomorphism.
Let U = P |M . If x ∈ M ∩ N , then obviously Ux = P |Mx = x and thus
U |M∩N = IM∩N . Moreover, if x ∈ M and y ∈ N , then

‖Ux + y‖ = ‖P |Mx + y‖ = ‖P (x + y)‖ ≤ ‖P‖ ‖x + y‖.
Hence, for C = ‖P‖ ≥ 1, we have

‖Ux + y‖ ≤ C‖x + y‖ for all x ∈ M and y ∈ N.

(2)⇒(1): Define P : M + N → N by

P (x + y) = Ux + y for all x ∈ M and y ∈ N.
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To see that P is well-defined let x1, x2 ∈ M and y1, y2 ∈ N with x1 + y1 =
x2 + y2. Then

x1 − x2 = y2 − y1 ∈ M ∩ N.

Therefore, since U |M∩N = IM∩N ,

Ux1 − Ux2 = y2 − y1

and hence

P (x1 + y1) = Ux1 + y1 = Ux2 + y2 = P (x2 + y2).

Since U is an isomorphism onto N , P is a projection onto N . Moreover, if
x ∈ M and y ∈ N , then

‖P (x + y)‖ = ‖Ux + y‖ ≤ C‖x + y‖
and thus P is bounded. Extending P by continuity to the whole of M + N
we get a bounded projection P̂ : M + N → M + N with P̂ (M + N) = N .

Since P̂ |M = P |M = U, P̂ |M is an isomorphism. Therefore, by [17, Propo-
sition 1.3], M and N have a common complement in M + N .

Note that the existence of an isomorphism like the one described above
does not in general imply the existence of a common complement of M
and N in the whole of X.

3. Subspaces with closed sum. One of the main complications in
infinite dimensions is that the sum of two subspaces may not be closed. In
general, subspaces with a common complement need not have a closed sum.
To see that, let X = l2(N), {en |n ∈ N} be the standard orthonormal basis
of X, and

M = span{e2n−1 |n ≥ 1}, N = span

{√
n − 1

n
e2n−1 +

√
1

n
e2n

∣∣∣∣ n ≥ 1

}
.

Then
M ∩ N⊥ = {0} = M⊥ ∩ N

and thus, by Theorem 1.1, M and N have a common complement, but
M +N is not closed. In this section we will discuss the connections between
the existence of a common complement for two subspaces and their sum
being closed.

We start with a theorem that shows that in a separable Hilbert space
two subspaces have a common complement if and only if they are either
equivalently positioned or “do not behave very bad with respect to their
sum being closed”. To make the last phrase precise we need the notion of
completely asymptotic subspaces which is due to Dixmier [9, p. 23].

Definition 3.1. Let X be a separable Hilbert space, and M and N be
subspaces of X. We will say that M is completely asymptotic to N if for any
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infinite-dimensional subspace M1 of M which is disjoint from N , M1 + N is
not closed. Moreover, we will say that M and N are completely asymptotic
if they are completely asymptotic to one another.

Remark 3.2. By [9, Theorem 1.4] two subspaces M and N are not
completely asymptotic to one another if and only if both (I − PM )(N) and
(I − PN )(M) contain an infinite-dimensional subspace.

We can now state the theorem that we described above.

Theorem 3.3. Let X be a separable Hilbert space, and M and N be

subspaces of X. Then M and N have a common complement if and only if

they are either equivalently positioned or not completely asymptotic to one

another.

For the proof we will need the following definition and theorem which
are due to Lauzon and Treil.

Definition 3.4 ([17, p. 510]). Let X be a Hilbert space.

• The upper linear codimension of a subset K of X is defined as

inf{codim(L) |L is a linear subspace of K}.
• If M and N are subspaces of X and ε > 0 then we define the cone

K ε

M = {x ∈ M | dist(x, N) ≤ ε‖x‖}.
Theorem 3.5 ([17, Theorem 5.1]). The subspaces M and N of a Hilbert

space X have a common complement if and only if for some small ε > 0 the

upper linear codimensions of the cones K ε

M
in M and K ε

N
in N coincide.

As Lauzon and Treil note, the equality of upper linear codimensions in
this theorem can be thought of as an ε-analogue of the equality of dimensions
(1.1). Now we can give the proof of Theorem 3.3.

Proof of Theorem 3.3. Assume that M and N have a common comple-
ment and are not equivalently positioned. As we have already mentioned in
the introduction, condition (1.2) then implies that

dim(E((0, 1 − ε))(M)) = ∞,

and this in turn implies that the operator I−G∗G : M → M is not compact
(see [17, Remark 0.5]). But

I − G∗G = PM (I − PN )|M
and hence (I − PN )|M is not compact. This implies that (I − PN )(M) con-
tains an infinite-dimensional closed subspace and therefore by Remark 3.2
the subspace M is not completely asymptotic to N . By observing that the
restriction (I−G∗G)|M is not compact if and only if (I−GG∗)|N is not com-
pact (see [17, p. 502]), we deduce that N is also not completely asymptotic
to M and hence the required result follows.
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Conversely, if M and N are equivalently positioned we are done by (1.2).
If this is not the case then M and N are not completely asymptotic to one
another and thus there exists an infinite-dimensional subspace M1 of M
disjoint from N with M1 + N closed. Hence there exists ε1 > 0 such that

(3.1) M1 ∩ Kε1

M
= {0}.

It follows from (3.1), using [21, Lemma 5.12], that Kε1

M
does not contain a

finite-codimensional subspace of M , and thus the upper linear codimension
of Kε1

M
in M is infinite. Similarly, we can find ε2 > 0 such that the upper

linear codimension of Kε2

N
in N is infinite. Choosing ε = min{ε1, ε2} we see

that the upper linear codimensions of Kε

M
in M and of Kε

N
in N coincide,

since the space is separable, and hence, by Theorem 3.5, M and N have a
common complement.

Remark 3.6. An immediate corollary of the previous theorem is that
in a separable Hilbert space, if two subspaces have closed sum, then the
existence of a common complement is a matter of dimensions. More precisely,
let X be a separable Hilbert space, and M and N be subspaces of X such
that M + N is closed. Then M and N have a common complement in X if
and only if

dim(M ⊖ (M ∩ N)) = dim(N ⊖ (M ∩ N)).

We will now extend the result of the above remark to Banach spaces. To
do that we will use Proposition 2.12. It turns out again that for subspaces
with closed sum everything works more or less as in the finite-dimensional
case.

Proposition 3.7. Let X be a Banach space, and M and N be subspaces

of X such that M + N is closed and M ∩ N = {0}. Then M and N have a

common complement in M ⊕ N if and only if they are isomorphic.

Proof. Suppose that M and N are isomorphic and let U : M → N be
a surjective isomorphism. Since M + N is closed and M ∩ N = {0}, there
exists c ≥ 1 such that

‖x‖ + ‖y‖ ≤ c‖x + y‖ for all x ∈ M and y ∈ N.

For C = cmax{‖U‖, 1} ≥ 1 we have

‖Ux + y‖ ≤ C‖x + y‖ for all x ∈ M and y ∈ N.

Thus, by Proposition 2.12, M and N have a common complement in M + N
= M ⊕ N . The other direction follows immediately from Corollary 2.10.

Remark 3.8. The result of Proposition 3.7 is not true if M ∩N 6= {0}.
To see that, let X be a Banach space, M be a subspace of X, and N be
a proper subspace of M which is isomorphic to M . Then M + N = M is
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closed, M and N are isomorphic, M ∩N = N 6= {0}, and M and N do not
have a common complement.

Combining Proposition 3.7 with Corollaries 2.3, 2.7 and 2.11 we get the
following:

Corollary 3.9. Let X be a Banach space, and M and N be subspaces

of X such that M +N and M ∩N are complemented in X. If P : X → X is

a bounded projection with P (X) = M ∩ N , then M and N have a common

complement in X if and only if (I −P )(M) and (I −P )(N) are isomorphic.

In particular, for Hilbert spaces we have the following generalization of
Remark 3.6. The separability of X is no longer necessary.

Corollary 3.10. Let X be a Hilbert space, and M and N be subspaces

of X such that M +N is closed. Then M and N have a common complement

in X if and only if

dim(M ⊖ (M ∩ N)) = dim(N ⊖ (M ∩ N)).

Remark 3.11. In [17, Proposition 2.2] Lauzon and Treil proved that if
‖PN |M‖ < 1 and dim(M ⊖ (M ∩ N)) = dim(N ⊖ (M ∩ N)), then M and
N have a common complement. This follows immediately from the above
corollary, since ‖PN |M‖ < 1 implies that M + N is closed (the converse is
not in general true).

Even though the existence of a common complement does not imply
that the subspaces are not completely asymptotic to one another, subspaces
with a common complement share a similar property: If two subspaces M
and N of a Hilbert space have a common complement then for any infinite-
dimensional subspace of M , with infinite codimension in M , we can find
an infinite-dimensional subspace of N , with infinite codimension in N , such
that those two subspaces have a closed sum.

Proposition 3.12. Let X be a Hilbert space, and M and N be subspaces

of X. If M and N have a common complement in X, then, for each sub-

space M1 of M with dim(M1) = codimM (M1) = ∞, there exists a subspace

N1 of N with dim(N1) = codimN (N1) = ∞ such that M1 + N1 is closed.

Proof. Since M and N have a common complement in X, by Proposition
2.12 there exist a surjective isomorphism U : N → M and C ≥ 1 such that

(3.2) ‖Ux + y‖ ≤ C‖x + y‖ for all x ∈ N and y ∈ M.

Let M1 be a subspace of M with

dim(M1) = codimM (M1) = ∞
and let M2 = M⊥

1 . Since M1 ⊥ M2,

(3.3) ‖y + z‖ ≥ 1√
2

(‖y‖ + ‖z‖) for all y ∈ M1 and z ∈ M2.
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Let N1 = U−1(M2). Then N1 is a subspace of N with

dim(N1) = dim(M2) = ∞ and codimN (N1) = dim(M1) = ∞.

From inequalities (3.2), (3.3) and the fact that U is an isomorphism we
conclude that for C ′ = (1/

√
2C) min{1/‖U−1‖, 1}, we have

‖x + y‖ ≥ C ′(‖x‖ + ‖y‖) for all x ∈ N1 and y ∈ M1,

and thus M1 + N1 is closed.

Remark 3.13. Note that the above construction depends heavily on the
fact that codimM (M1) = ∞. If this is not the case then we cannot get a
nontrivial conclusion (take for example M1 = M).

4. A characterization via graphs. An idea which is widely used in
the study of the relative position of a pair of subspaces is to represent it as a
pair {Gr(T ), Gr(S)} of graphs of bounded or unbounded linear operators T
and S. The properties of those operators characterize the relative position
of the pair. This idea goes back to Halmos [14]. The characterization of
topologically complementary subspaces of Theorem 1.2 is such a result. We
shall use this approach to characterize pairs of subspaces with a common
complement.

Recall the following characterizations of pairs of subspaces of a Hilbert
space which are in generic position; the equivalence of (1) and (2) is [14,
Theorem 3] and of (1) and (3) is [14, Theorem 1] (see also [1, Lemma 4.1]).
If {M, N} is a pair of subspaces in a Hilbert space X, then the following are
equivalent:

(1) The pair {M, N} is in generic position, i.e.

M ∩ N = M ∩ N⊥ = M⊥ ∩ N = M⊥ ∩ N⊥ = {0}.
(2) There exist a Hilbert space X1 and a positive injective contraction

T : X1 → X1 with I − T injective such that {M, N} is unitarily
equivalent to {Gr(−T ), Gr(T )}.

(3) There exist a Hilbert space Y1 and an injective densely defined closed
linear operator S : D(S) → Y1 with dense range such that {M, N}
is unitarily equivalent to {Y1 ⊕ {0}, Gr(S)}.

Note that (1)⇔(2) even if T is not a contraction. This equivalence has been
extended by Longstaff and Panaia [18, p. 3022] as follows (this result was
previously stated without proof in [20, p. 1158]): If {M, N} is a pair of
subspaces in a Hilbert space X, then the following are equivalent:

(1) The pair {M, N} is in generalized generic position, i.e.

M ∩ N = M⊥ ∩ N⊥ = {0} and dim(M ∩ N⊥) = dim(M⊥ ∩ N).
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(2) There exist a Hilbert space X1 and a positive injective contraction
T : X1 → X1 such that the pair {M, N} is unitarily equivalent to
{Gr(−T ), Gr(T )}.

Again we note that (1)⇔(2) even if T is not a contraction.
In the proposition that follows we extend the above results to obtain

characterizations of subspaces in position p′ (see the definition below) and
of equivalently positioned subspaces via graphs, which we will use later.

Proposition 4.1. Let X be a Hilbert space and {M, N} be a pair of

subspaces of X. Then the following hold :

(1) The following are equivalent :

(a) The pair {M, N} is in position p′, i.e.

M ∩ N⊥ = M⊥ ∩ N = {0}.
(b) There exist Hilbert spaces X1, X2 and a contraction

T : X1 → X2

with I − T ∗T injective such that {M, N} is unitarily equivalent

to {Gr(−T ), Gr(T )}.
(c) There exist Hilbert spaces Y1 and Y2 and a densely defined closed

linear operator S : D(S) → Y2 such that {M, N} is unitarily

equivalent to {Y1 ⊕ {0}, Gr(S)}.
(2) The following are equivalent :

(a) The pair {M, N} is equivalently positioned.

(b) There exist Hilbert spaces X1 and X2 and a contraction

T : X1 → X2

such that {M, N} is unitarily equivalent to {Gr(−T ), Gr(T )}.
Proof. (1) (a)⇒(b): Let

M1 = M ⊖ (M ∩ N) and N1 = N ⊖ (M ∩ N).

It is easy to see that, since {M, N} is in position p′, {M1, N1} is in generic
position in M1 + N1. Thus, by the first of Halmos’ results mentioned above,
there exist a Hilbert space Z and a positive injective contraction A : Z → Z
with I − A injective such that the pair {M1, N1} is unitarily equivalent to
{Gr(−A), Gr(A)} via an isometry V from M1 + N1 onto Z ⊕ Z.

Let X1 = Z ⊕ (M ∩ N), X2 = Z ⊕ (M + N)⊥, T : X1 → X2 with

T ((z, y)) = (Az, 0) for all z ∈ Z and y ∈ M ∩ N,

and U : X → X1 ⊕ X2, with

Ux = ((P1V P
M1+N1

x, PM∩Nx), (P2V P
M1+N1

x, P(M+N)⊥x))

for all x ∈ X, where P1 and P2 are the projections from Z ⊕Z onto the first
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and second component respectively. It is easy to see that T is a contraction
with I − T ∗T injective and that U is an isometry onto X1 ⊕ X2 taking
{M, N} to {Gr(−T ), Gr(T )}.

(b)⇒(a): A straightforward calculation shows that

(4.1)
Gr(−T ) ∩ Gr(T )⊥ = Gr(−T |Ker(I−T ∗T )),

Gr(−T )⊥ ∩ Gr(T ) = Gr(T |Ker(I−T ∗T )).

Since Ker(I − T ∗T ) = {0},
Gr(−T ) ∩ Gr(T )⊥ = {0} = Gr(−T )⊥ ∩ Gr(T )

and so {Gr(−T ), Gr(T )} is in position p′. Since position p′ is preserved under
unitary equivalence, the pair {M, N} is also in position p′.

(a)⇒(c): This follows from the second of Halmos’ results mentioned
above in exactly the same manner as (a)⇒(b).

(c)⇒(a): Since S is densely defined and closed, so is S∗ : D(S∗) → Y1.
Thus

(Y1 ⊕ {0}) ∩ Gr(S)⊥ = (Y1 ⊕ {0}) ∩ Gr(−S∗) = {0},
(Y1 ⊕ {0})⊥ ∩ Gr(S) = ({0} ⊕ Y2) ∩ Gr(S) = {0}.

(2) (a)⇒(b): This follows from the above-mentioned characterization of
subspaces in generalized generic position due to Longstaff and Panaia in
exactly the same manner as (a)⇒(b) in (1).

(b)⇒(a): By (4.1),

dim(Gr(−T ) ∩ Gr(T )⊥) = dim(Ker(I − T ∗T )) = dim(Gr(−T )⊥ ∩ Gr(T ))

and thus the pair {Gr(−T ), Gr(T )} is equivalently positioned. Hence so is
{M, N}, being unitarily equivalent to {Gr(−T ), Gr(T )}.

As before, the equivalence of (a) and (b) in both (1) and (2) holds even
if T is not a contraction.

We now move to the characterization via graphs of pairs of subspaces
of a Banach space which have a common complement. As we already said,
two subspaces of a Banach space have a common complement if and only if
there exists a bounded projection onto one of them, the restriction of which
to the other is a surjective isomorphism. The following form of that result,
which specifies the projection, can be found in [7, Lemma 2.1(a)].

Lemma 4.2. Let X be a Banach space, and M , N and K be subspaces

of X. The following are equivalent :

(1) K is a common complement of M and N in X.

(2) X = M ⊕ K and PM‖K |N : N → M is a surjective isomorphism.

Moreover , if things are as above, then

(PM‖K |N )−1 = PN‖K |M .
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Our main result for this section is the following:

Theorem 4.3. Let X be a Banach space, and M and N be subspaces

of X. Then the following are equivalent :

(1) M and N have a common complement in X.

(2) There exist Banach spaces X1, X2 and bounded linear operators

T, S : X1 → X2 such that {M, N} is isomorphic to {Gr(T ), Gr(S)}.
Proof. (1)⇒(2): Let K be a common complement of M and N in X,

and let K ′ be a complement of K in X. Then

X = M ⊕ K = N ⊕ K = K ′ ⊕ K

and thus K is a common complement of M and K ′ and of N and K ′. If
P = PK′‖K then, by Lemma 4.2, the operators

G1 = P |M : M → K ′ and G2 = P |N : N → K ′

are surjective isomorphisms. Let X1 = K ′, X2 = K and define T : X1 → X2

by

Tx = G−1
1 x − x for all x ∈ K ′,

and S : X1 → X2 by

Sx = G−1
2 x − x for all x ∈ K ′.

Also let U : X → X1 ⊕ X2 with

Ux = (Px, (I − P )x) for all x ∈ X.

By Lemma 4.2, G−1
1 = PM‖K |K′ . Thus, for all x ∈ K ′,

Tx = G−1
1 x − x = PM‖K |K′x − x = −PK‖M |K′x

and therefore T is a well-defined bounded linear operator. Similarly, S is a
well-defined bounded linear operator. Since X = K ′ ⊕ K, U is a surjective
isomorphism. We will show that U(M) = Gr(T ). To this end let x ∈ M .
Then

Ux = (Px, (I − P )x) = (G1x, x − G1x) = (G1x, G−1
1 G1x − G1x)

= (G1x, TG1x) ∈ Gr(T ).

On the other hand, if (x, Tx) ∈ Gr(T ), then, since G1 is a surjective isomor-
phism, there exists y ∈ M such that G1y = x and hence

(x, Tx) = (G1y, TG1y) = (G1y, G−1
1 G1y − G1y)

= (G1y, y − G1y) = (Py, (I − P )y) ∈ U(M).

Thus U(M) = Gr(T ). Similarly we can prove that U(N) = Gr(S). Therefore
the pair {M, N} is isomorphic to {Gr(T ), Gr(S)}.
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(2)⇒(1): It is easy to see that {0} ⊕ X2 is a common complement of
Gr(T ) and Gr(S) in X1⊕X2. Therefore, by Proposition 2.8, M and N have
a common complement in X.

Remark 4.4. It is obvious that the equivalence of (1) and (2) still holds
if we replace the pair of subspaces with a family of subspaces.

If X is a Hilbert space, then in the proof of (1)⇒(2) of Theorem 4.3 we
can take K ′ = K⊥. In that case U is an isometry and so we get the following
improvement of Theorem 1.2.

Corollary 4.5. Let X be a Hilbert space, and M and N be subspaces

of X. Then the following are equivalent :

(1) M and N have a common complement in X.

(2) There exist Hilbert spaces X1, X2 and bounded linear operators T, S :
X1→X2 such that {M, N} is unitarily equivalent to {Gr(T ), Gr(S)}.

Remark 4.6. If we replace “unitarily equivalent” with “similar” in (2)
of the above corollary, then we can prove the result by combining (1)⇔(2) of
Theorem 1.2 and the comments following Corollary 2.7. In a similar manner
using (1)⇔(3) of Theorem 1.2 we get the following characterization. Let X
be a Hilbert space, M and N be subspaces of X, and M1 = M ⊖ (M ∩ N),
N1 = N ⊖ (M ∩ N). Then the following are equivalent:

(1) M and N have a common complement in X.
(2) The pair {M1, N1} in M1 + N1 is similar to a pair of subspaces in

generic position.

If in the proof of (1)⇒(2) of Theorem 4.3 we take K ′ = M we find
that {M, N} is isomorphic to {X1 ⊕ {0}, Gr(S)}. Moreover, the latter is
isomorphic to {Gr(−S/2), Gr(S/2)} via the isomorphism

[
IX1

0

−S/2 IX2

]
: X1 ⊕ X2 → X1 ⊕ X2.

Thus we get two more conditions equivalent to the existence of a common
complement.

Corollary 4.7. Let X be a Banach space, and M and N be subspaces

of X. Then the following are equivalent :

(1) M and N have a common complement in X.

(2) There exist Banach spaces X1, X2 and a bounded linear operator

S : X1 → X2 such that {M, N} is isomorphic to {X1 ⊕{0}, Gr(S)}.
(3) There exist Banach spaces Y1, Y2 and a bounded linear operator

T : Y1 → Y2 such that {M, N} is isomorphic to {Gr(−T ), Gr(T )}.
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It is easy to see that a pair {M, N} of subspaces of a Hilbert space X
is in position p′ if and only if M⊥ is a common topological complement of
M and N in X (or equivalently N⊥ is a common topological complement
of M and N in X). In the following corollary we characterize pairs {M, N}
of subspaces of a Hilbert space X for which M⊥ is a common complement
(or equivalently N⊥ is a common complement). This characterization can
be thought of as an analogue of Proposition 4.1(1).

Corollary 4.8. Let X be a Hilbert space, M and N be subspaces of X.

Then the following are equivalent :

(1) M⊥ is a common complement of M and N in X.

(2) There exist Hilbert spaces X1, X2 and an injective bounded linear

operator T : X1 → X2 with I −T ∗T injective and I −TT ∗ onto such

that {M, N} is unitarily equivalent to {Gr(−T ), Gr(T )}.
(3) There exist Hilbert spaces Y1, Y2 and a bounded linear operator S :

Y1→Y2 such that {M, N} is unitarily equivalent to {Y1⊕{0}, Gr(S)}.
Proof. (1)⇒(2): From (a)⇒(b) of Proposition 4.1(1), there exist Hilbert

spaces X1, X2 and an injective bounded linear operator T : X1 → X2 with
I−T ∗T injective such that{M, N} is unitarily equivalent to{Gr(−T ), Gr(T )}.
Moreover, Gr(−T )⊥ = Gr(T ∗) must be a common complement of Gr(−T )
and Gr(T ). In particular, we must have

Gr(T ) + Gr(T ∗) = X1 ⊕ X2.

A straightforward calculation shows that

(4.2) Gr(T ) + Gr(T ∗) = Gr(T ) ⊕ ({0} ⊕ R(I − TT ∗))

and hence I − TT ∗ is onto.

(2)⇒(1): As in the proof of (b)⇒(a) of Proposition 4.1(1) using (4.2).

(1)⇒(3): Take K = M⊥ and K ′ = M in the proof of (1)⇒(2) in Theo-
rem 4.3.

(3)⇒(1): This is straightforward since

(Y1 ⊕ {0})⊥ ⊕ Gr(S) = ({0} ⊕ Y2) ⊕ Gr(S) = Y1 ⊕ Y2.

We already mentioned in the introduction that an immediate conse-
quence of Theorem 1.1 is that a pair of equivalently positioned subspaces
always has a common complement (note that this can also be proved by
combining Theorem 4.3 and Proposition 4.1(2)). Moreover, in finite dimen-
sions all pairs with a common complement are of this kind. The following
example shows that this is not the case in infinite-dimensions.

Example 4.9. Let X = l2(N), {en |n ∈ N} be the standard orthonormal
basis of X, and
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fn =
1

2
e2n−1 −

√
3

2
e2n, n ≥ 1,

gn =
1

2
e2n−1 +

√
3

2
e2n, n ≥ 1, and g0 = e0,

M = span{fn |n ≥ 1} and N = span{gn |n ∈ N}. Then

dim(M ∩ N⊥) = 0 6= 1 = dim(M⊥ ∩ N).

On the other hand, dimM = dimN , M ∩ N = {0} and M + N is closed.
Hence, by Corollary 3.10, M and N have a common complement in X.

Nevertheless, up to isomorphism, all pairs with a common complement
are equivalently positioned:

Proposition 4.10. Let X be a Hilbert space, and M and N be subspaces

of X. Then the following are equivalent :

(1) M and N have a common complement in X.

(2) There exists a Hilbert space X1 and a pair {M1, N1} of equivalently

positioned subspaces of X1 such that {M, N} is similar to {M1, N1}.
Proof. This follows from (1)⇔(3) of Corollary 4.7 andProposition 4.1(2).

Remark 4.11. We can also prove the above proposition using the char-
acterization at the end of Remark 4.6.

5. A characterization via involutions. Another way to study the
relative position of a pair {M, N} of subspaces is to find an operator with
“nice geometric properties” which exchanges M and N . This idea can be
traced back to Dixmier’s work in [8]. We recall that if X is a Hilbert space,
then we say that a linear operator S : X → X is a symmetry if S is
unitary and S2 = I. We remind the reader some characterizations of relative
positions via symmetries which either can be found in [8, Section II1] and
[4, Theorem 4.1] or are straightforward corollaries of the results contained
there (for generalizations of some of those results to an algebraic context see
[15, Corollary 1], [2, Theorem 3] and [19, Theorem 1.1]).

Let X be a Hilbert space, and M and N be subspaces of X. Then the
following hold:

(1) If {M, N} is in generic position, then there exists a unique symmetry
S : X → X with 〈Sx, x〉 > 0 for all x ∈ M\{0} such that S(M) = N .

(2) {M, N} is in position p′ and M⊥ ∩ N⊥ = {0} if and only if there
exists a unique symmetry S : X → X with 〈Sx, x〉 > 0 for all
x ∈ M \ {0} such that S(M) = N .

(3) {M, N} is in position p′ if and only if there exists a symmetry
S : X → X with 〈Sx, x〉 > 0 for all x ∈ M\{0} such that S(M) = N .
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(4) {M, N} is equivalently positioned if and only if there exists a sym-
metry S : X → X such that S(M) = N . Moreover, S can be chosen
so that 〈Sx, x〉 ≥ 0 for all x ∈ M .

Note that S(M) = N immediately implies that S(N) = M and that all the
positivity conditions also hold for the elements of N .

Since for a Hilbert space the existence of a symmetry exchanging two
subspaces is equivalent to them being equivalently positioned, and subspaces
with a common complement need not be equivalently positioned, symmetries
are not well suited for our problem. Moreover, since we want to work in
Banach spaces, we must “translate” the positivity conditions. It is easy to
see that 〈Sx, x〉 ≥ 0 for all x ∈ M if and only if ‖x + Sx‖ ≥

√
2 ‖x‖ for all

x ∈ M . We start by recalling the definition of an involution, since involutions
will replace symmetries in our characterization.

Definition 5.1. Let X be a Banach space and S : X → X be a bounded
linear operator. We will say that S is an involution if S2 = I. If S is also an
isometry, then we will say that S is a symmetry.

We can now prove our result.

Theorem 5.2. Let X be a Banach space, and M and N be subspaces

of X with M + N = X. Then the following are equivalent :

(1) M and N have a common complement in X.

(2) There exist an involution S : X → X and C > 0 with

‖x + Sx‖ ≥ C‖x‖ for all x ∈ M

such that S(M) = N .

Proof. (1)⇒(2): Since M and N have a common complement in X, by
Corollary 4.7 there exist Banach spaces Y1, Y2 and a bounded linear operator
T : Y1 → Y2 such that {M, N} is isomorphic, via a surjective isomorphism
U : X → Y1 ⊕ Y2, to {Gr(−T ), Gr(T )}. In the rest of the proof consider
Y1 ⊕ Y2 equipped with the 1-norm. Let S1 : Y1 ⊕ Y2 → Y1 ⊕ Y2 with

S1((x1, x2)) = (x1,−x2) for all (x1, x2) ∈ Y1 ⊕ Y2.

Obviously S1 is a symmetry that exchanges Gr(−T ) and Gr(T ). Moreover,

‖(x1,−Tx1) + S1((x1,−Tx1))‖ = ‖(2x1, 0)‖ ≥ 2

1 + ‖T‖ ‖(x1,−Tx1)‖

for all (x1,−Tx2) ∈ Gr(−T ). Hence if S = U−1S1U and

C =
2

‖U‖ ‖U−1‖(1 + ‖T‖) ,

then S is an involution such that S(M) = N with

‖x + Sx‖ ≥ C‖x‖ for all x ∈ M .
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(2)⇒(1): Since S is an involution, if

K ′ = {x ∈ X | Sx = x} and K = {x ∈ X | Sx = −x},
then it is well-known that

X = K ⊕ K ′ and P = PK′‖K =
1

2
(I + S).

We shall prove that K is a common complement of M and K ′. By Lemma
4.2, it is enough to show that P |M : M → K ′ is an isomorphism onto K ′.
To this end let x ∈ M . Then

‖P |Mx‖ =
1

2
‖x + Sx‖ ≥ C

2
‖x‖

and thus P |M is injective with closed range. On the other hand, by hypoth-
esis, M + N is dense in X and thus P (M + N) is dense in K ′. Hence the
set

{x + Sx | x ∈ M + N}
is also dense in K ′. But if x ∈ M + N then, since S(M) = N , there exist
z, w ∈ M such that x = z + Sw. Then

x + Sx = z + Sw + S(z + Sw) = (z + w) + S(z + w),

which implies that

{x + Sx | x ∈ M + N} = {y + Sy | y ∈ M}.
Therefore the set {y + Sy | y ∈ M} is also dense in K ′. Since that set
coincides with the range of P |M , the latter is a dense and closed subspace
of K ′ and so P |M is a surjective isomorphism. Similarly, since S(M) = N
and ‖x + Sx‖ ≥ C‖x‖ for all x ∈ M immediately imply that S(N) = M
and ‖x + Sx‖ ≥ C‖x‖ for all x ∈ N , we can show that K is a common
complement of N and K ′. Therefore M and N have a common complement
in X.

Remark 5.3. Recall that a bounded linear operator S : X → X on a
Banach space X is called accretive if for every x ∈ X, there exists x∗ ∈ X∗

such that 〈x∗, x〉 = ‖x∗‖2 = ‖x‖2 and 〈x∗, Sx〉 ≥ 0, where 〈·, ·〉 is the
duality product between X∗ and X. It is easy to see that if S is accretive,
then ‖x + Sx‖ ≥ ‖x‖ for all x ∈ X. Thus a particular class of pairs of
subspaces of a Banach space which have a common complement consists of
those pairs interchanged by an involution accretive on their union. It would
be interesting to characterize this class and its subclass for which S is a
symmetry, the members of which are a Banach space version of equivalently
positioned subspaces.

We finish with a characterization of pairs {M, N} of subspaces of a
Hilbert space for which M⊥ is a common complement.
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Proposition 5.4. Let X be a Hilbert space, and M and N be subspaces

of X. Then the following are equivalent :

(1) M⊥ is a common complement of M and N in X.

(2) There exists a symmetry S : X → X and C < 1 with 〈Sx, x〉 > 0 for

all x ∈ M \{0} and |〈Sx, y〉| < C‖x‖ ‖y‖ for all x ∈ M and y ∈ M⊥

such that S(M) = N .

Proof. By (4) at the beginning of this section, M⊥ ∩ N = {0} and
M⊥ + N is dense if and only if there exists a symmetry S : X → X with
〈Sx, x〉 > 0 for all x ∈ M \ {0} such that S(M) = N . The result follows
immediately since M⊥+N = M⊥+S(M) is closed if and only if there exists
C < 1 such that

|〈Sx, y〉| < C‖Sx‖ ‖y‖ = C‖x‖ ‖y‖ for all x ∈ M and y ∈ M⊥.
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