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Amenability and weak amenability of l
1-algebrasof polynomial hypergroupsbyRupert Lasser (Neuherberg and Garhing)Abstrat. We investigate amenability and weak amenability of the l

1-algebra of poly-nomial hypergroups. We derive onditions for (weak) amenability adapted to polynomialhypergroups and show that these onditions are often not satis�ed. However, we proveamenability for the hypergroup indued by the Chebyshev polynomials of the �rst kind.1. Introdution. The L1-algebras of hypergroups show very distintiveproperties ompared with those of L1-algebras of groups. We will investigateamenability and weak amenability of the l1-algebra of polynomial hyper-groups. We will show that the l1-algebra is very seldom amenable or weaklyamenable, whereas for every Abelian group the L1-algebra is amenable. Tohave a referene we brie�y reall the basi fats on polynomial hypergroups.For more details and the proofs we refer to [6, 7℄.Let (Rn)n∈N0
be a polynomial sequene de�ned by a reurrene relation(1) R1(x) Rn(x) = anRn+1(x) + bnRn(x) + cRn−1(x)for n ∈ N and R0(x) = 1, R1(x) = (1/a0)(x − b0), where an > 0, bn ≥ 0 forall n ∈ N0, and cn > 0 for n ∈ N. We assume an + bn + cn = 1 for n ∈ N and

a0 + b0 = 1. It follows from this assumption that Rn(1) = 1 for all n ∈ N0.By the theorem of Favard there is a (unique) probability measure π on Rwith bounded support suh that (Rn)n∈N0
is orthogonal with respet to π,i.e. T

R
Rn(x)Rm(x) dπ(x) = (1/h(n))δn,m. The reurrene relation (1) is aspeial ase of the linearization formula(2) Rm(x)Rn(x) =

n+m∑

k=|n−m|

g(m, n; k)Rk(x),

for m, n ∈ N0. We suppose throughout that the oe�ients g(m, n; k) arenonnegative. There are many orthogonal polynomial systems whih have2000 Mathematis Subjet Classi�ation: Primary 43A62, 46H20; Seondary 43A07,46H25.Key words and phrases: hypergroups, weak amenability, amenability.[183℄ © Instytut Matematyzny PAN, 2007



184 R. Lasserthis property (see [2, 6, 7℄). We then de�ne a onvolution on N0 by(3) ω(m, n) =
n+m∑

k=|n−m|

g(m, n; k)δk,where δk is the point measure at k ∈ N0. With this onvolution, the in-volution ñ = n and the disrete topology the set of natural numbers N0is a ommutative hypergroup, alled the polynomial hypergroup indued by
(Rn)n∈N0

(see [6℄). The basi notations and tools of ommutative harmonianalysis are available. The Haar measure on the polynomial hypergroup N0is the ounting measure with weights h(n) = g(n, n; 0)−1 at n ∈ N0. Theysatisfy h(0) = 1, h(n + 1) = (an/cn+1)h(n), n ∈ N0. The translation of asequene β = (β(n))n∈N0
reads as

Tnβ(m) =

n+m∑

k=|n−m|

g(m, n; k)β(k),

and the onvolution of two sequenes f, g ∈ l1(h) is given as
f ∗ g =

∞∑

k=0

Tnf(k)g(k)h(k)

(l1(h) = {f = (f(n))n∈N0
:
∑∞

n=0 |f(n)|h(n) < ∞}). With this operation asmultipliation, and f∗(n) = f(n) as involution, the Banah spae l1(h) is aommutative Banah ∗-algebra with unit δ0. The hermitian dual spae N̂0of N0 (i.e. the hermitian struture spae of l1(h)) an be identi�ed with(4) {x ∈ R : |Rn(x)| ≤ 1 for all n ∈ N0}via the mapping x 7→ αx, αx(n) := Rn(x) (see [6℄). Hene we onsider N̂0 as aompat subset of R whih ontains 1 ∈ R (sine Rn(1) = 1). (We note thatin general there exist homomorphisms on l1(h) whih are not hermitian.)The support of the orthogonalization measure π is ontained in N̂0. TheFourier transform of f ∈ l1(h) is de�ned by
f̂(x) =

∞∑

k=0

f(k)Rk(x)h(k), x ∈ N̂0.

f̂ is a ontinuous bounded funtion on N̂0 and satis�es f̂ ∗ g = f̂ ĝ.2. Weak amenability. Let D : l1(h) → X be a ontinuous derivation,where X is a ommutative Banah l1(h)-bimodule (i.e. D is a ontinuouslinear operator suh that D(a ∗ b) = a · D(b) + b · D(a)). We denote themodule operation by a · x for a ∈ l1(h) and x ∈ X. Our main example will



Amenability of l
1-algebras of hypergroups 185be X = l∞ (the spae of all bounded sequenes) with a ·x = a∗x, the ationof l1(h) on l∞ by onvolution.De�ne εn(m) = (1/h(n))δn,m. Obviously εn ∈ l1(h), ‖εn‖1 = 1 and

ε1 ∗ εn = anεn+1 + bnεn + cnεn−1. De�ne reursively the sequene (κn)n∈N0in l1(h) by κ0 = 0, κ1 = ε0 and(5) κn+1 =
1

an
(εn + ε1 ∗ κn − bnκn − cnκn−1).Proposition 1. Let D : l1(h) → X be a derivation as above. Then(6) D(εn) = κn · D(ε1) for n ∈ N0.Proof. For n = 0 and n = 1 the identity (6) is easily heked. Suppose(6) is valid for k = n − 1, n. Then by the assumption

D(ε1 ∗ εn) = ε1 · D(εn) + εn · D(ε1) = (ε1 ∗ κn) · D(ε1) + εn · D(ε1)and
D(ε1 ∗ εn) = cnκn−1 · D(ε1) + bnκn · D(ε1) + anD(εn+1).It follows that

D(εn+1) =
1

an
(εn + ε1 ∗ κn − bnκn − cnκn−1) · D(ε1) = κn+1 · D(ε1).We will derive onditions su�ient to deide whether l1(h) is weaklyamenable or not. This means we have to determine when there exist nononzero ontinuous derivations D : l1(h) → l∞ (see [1℄).We onsider the Fourier transformation of κn+1. We have ε̂k(x) = Rk(x)and κ̂n+1(x) = a0R

′
n+1(x) for all x ∈ N̂0. The latter identity follows imme-diately by di�erentiating the three-term reurrene relation for Rn(x) andomparing it with (5) (see also [8℄). Sine R′

n+1(x) is a polynomial of de-gree n, we an write(7) a0R
′
n+1(x) =

n∑

k=0

dn,kRk(x).Applying the uniqueness theorem for the Fourier transformation yields(8) κn+1 =
n∑

k=0

dn,kεk.In partiular, κn+1(k) = dn,k/h(k) for k = 0, . . . , n.Theorem 1. Assume {‖κn‖∞ : n ∈ N0} is bounded. Then l1(h) is notweakly amenable.Proof. Put D(ε1) = ε0 ∈ l∞. Then κn∗D(ε1) = κn, and by Proposition 1we obtain ‖D(εn)‖∞ = ‖κn‖∞. By the assumptions ‖D(εn)‖∞ ≤ M for all
n ∈ N0. The linear extension of equation (6) is a bounded map on the linear



186 R. Lasserspan of {εn : n ∈ N0}. This linear span is dense in l1(h), and hene D anbe extended to a (nonzero) ontinuous derivation D : l1(h) → l∞.We apply Theorem 1 to the lass of polynomial hypergroups induedby the ultraspherial polynomials R
(α)
n (x), α ≥ −1/2. From [9, (7.32.5)℄ weobtain

(R(α)
n )′(x) =

n(n + 2α + 1)

2 + 2α
R

(α+1)
n−1 (x).Hene we an alulate κn+1(k) from the so-alled onnetion oe�ientswhih onnet R

(α+1)
n (x) with R

(α)
k (x). We write the ultraspherial polyno-mials R

(α)
n (x) as Gegenbauer polynomials C

(α+1/2)
n (x). In fat, by (4.5.1)and (4.1.6) of [5℄ we have

R(α)
n (x) =

n!

(2α + 1)n
C(α+1/2)

n (x).Applying formula (9.1.2) of [5℄ we obtain, for α > −1/2,
R(α+1)

n (x) =
n!

(2α + 3)n
C(α+3/2)

n (x)

=
n!

(2α + 3)n

[n/2]∑

k=0

α + 1/2 + n − 2k

α + 1/2
C

(α+1/2)
n−2k (x)

=
n!

(2α + 3)n

[n/2]∑

k=0

(α + 1/2 + n − 2k)(2α + 1)n−2k

(α + 1/2)(n − 2k)!
R

(α)
n−2k(x).Hene

(R
(α)
n+1)

′(x) =
(n + 1)(n + 2α + 2)n!

(α + 1/2)(2α + 3)n(2 + 2α)
(9)

·

[n/2]∑

k=0

(2α + 1)n−2k(α + 1/2 + n − 2k)

(n − 2k)!
R

(α)
n−2k(x)The Haar weights are h(n) = (2n + 2α + 1)(2α + 1)n/((2α + 1)n!).It is now straightforward to determine κn+1(k) for k = 0, 1, . . . , n from(7) and (9). For n = 2m it follows that

κ2m+1(k) = 0 if k = 1, 3, . . . , 2m − 1and(10) κ2m+1(2j) = d2m,2j
1

h(2j)
=

(2m + 1)(2m + 2α + 2)(2m)!

(2 + 2α)(2α + 3)2mfor j = 0, 1, 2, . . . , m.For n = 2m + 1 it follows that
κ2m+2(k) = 0 if k = 0, 2, 4, . . . , 2m
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(2m + 2)(2m + 2α + 3)(2m + 1)!

(2 + 2α)(2α + 3)2m+1for j = 0, 1, . . . , m. It is easy to hek that formulas (10) and (11) also holdfor the limit α = −1/2 in whih ase κ2m+1(2j) = 2m+1 and κ2m+2(2j+1) =
2m + 2.Corollary 1. For the polynomial hypergroup indued by the ultraspher-ial polynomials R

(α)
n (x) the Banah algebra l1(h) is not weakly amenablewhenever α ≥ 0.Proof. We know that every derivation D : l1(h) → l∞ satis�es D(εn) =

κn ∗ D(ε1). If we hoose D(ε1) = ε0, we obtain D(εn) = κn. By (10) and(11) the asymptoti behaviour of the gamma funtion yields
‖κn‖∞ =

n(n + 2α + 1)(n − 1)!

(2 + 2α)(2α + 3)n−1
= O(n−2α).If α ≥ 0 then {‖κn‖∞ : n ∈ N} is bounded, and hene l1(h) is not weaklyamenable.Remark. Corollary 1 improves a result of [8℄, where it is shown that

l1(h) is not weakly amenable if α ≥ 1/2, sine in that ase there existnonzero bounded point derivations on l1(h).Another onsequene of Proposition 1 is the following result.Theorem 2. The following onditions are equivalent :(i) l1(h) is weakly amenable.(ii) For every ϕ ∈ l∞, ϕ 6= 0, the set {‖κn ∗ϕ‖∞ : n ∈ N0} is unbounded.Proof. By Proposition 1 we know that eah derivation D : l1(h) → l∞satis�es D(εn) = κn ∗ ϕ, where ϕ = D(ε1). Moreover, if there is some
ϕ ∈ l∞, ϕ 6= 0, suh that {‖κn∗ϕ‖∞ : n ∈ N} is bounded, then the ontinuouslinear extension of D(εn) = κn ∗ ϕ de�nes a nonzero bounded derivation
D : l1(h) → l∞. In partiular, (i) and (ii) are equivalent.A sequene of elements σn ∈ l1(h) related to the κn is derived by theChristo�el�Darboux formula for Rn(x). In fat, we have(12) 1

anh(n)

n∑

k=0

R2
k(x)h(k) = a0R

′
n+1(x)Rn(x) − a0R

′
n(x)Rn+1(x)

for all x ∈ R and n ∈ N. De�ne σn ∈ l1(h), n ∈ N, by(13) σn = κn+1 ∗ εn − κn ∗ εn+1.



188 R. LasserBy (12) it follows that(14) σn =
1

anh(n)

n∑

k=0

εk ∗ εkh(k).Applying (14) we an easily show that l1(h) is weakly amenable if the poly-nomial hypergroup on N0 is indued by the Chebyshev polynomials Tn(x)of the �rst kind. Note that Tn(x) = cos(nt) for x = cos t, and moreover
Tn(x) = R

(−1/2)
n (x) belongs to the lass of ultraspherial polynomials with

α = −1/2.Corollary 2. For the polynomial hypergroup indued by the Chebyshevpolynomials Tn(x), the Banah algebra l1(h) is weakly amenable.Proof. For the polynomial hypergroup indued by Tn(x) we have
εm ∗ εn =

1

2
ε|n−m| +

1

2
εn+m,and h(0) = 1, h(n) = 2 for n ∈ N. Hene

σn =
1

anh(n)

n∑

k=0

εk ∗ εkh(k) = nε0 +

n∑

k=0

ε2kand for ϕ ∈ l∞ it follows that
σn ∗ ϕ = nϕ +

n∑

k=0

T2kϕ.Now suppose that l1(h) is not weakly amenable. By Theorem 2 there existssome ϕ ∈ l∞, ϕ 6= 0, suh that {‖κn ∗ ϕ‖∞ : n ∈ N} is bounded. Fromformula (13) it follows that {‖σn∗ϕ‖∞ : n ∈ N} is also bounded. Furthermore
κ2m+1 = (2m + 1)

∑m
k=0 ε2kh(2k) and hene

κ2m+1 ∗ ϕ = (2m + 1)
m∑

k=0

T2kϕh(2k).Sine {|κ2m+1∗ϕ(0)| : m ∈ N0} is bounded, it follows that |∑m
k=0 ϕ(2k)h(2k)|

→ 0 as m → ∞.Let sup{‖σn ∗ ϕ‖∞ : n ∈ N} = M < ∞. Then
M ≥ |σn ∗ ϕ(0)| =

∣∣∣∣nϕ(0) +
1

2
ϕ(0) +

1

2

m∑

k=0

ϕ(2k)h(2k)

∣∣∣∣

≥
2n + 1

2
|ϕ(0)| −

1

2

∣∣∣
n∑

k=0

ϕ(2k)h(2k)
∣∣∣,whih is only possible provided ϕ(0) = 0. Replaing ϕ above by Tjϕ it alsofollows that ϕ(j) = Tjϕ(0) has to be zero, whih is a ontradition.



Amenability of l
1-algebras of hypergroups 1893. Amenability. We follow the onstrution of [1℄ to prove that l1(h) isnot amenable whenever h(n) → ∞ as n → ∞. We point out that the Banahalgebra l1(h) is very di�erent from the Beurling algebra l1(ω) studied in [1℄.In partiular, the onvolution in l1(h) is rather involved.Given the polynomial hypergroup on N0 indued by (Rn(x))n∈N0

onsiderthe diret produt hypergroup N0 × N0 (see [2, 1.5.28℄). The Haar weightson N0 × N0 are given by H(m, n) = h(m)h(n). The spae of the hermitianharaters of l1(N0×N0, H) an be identi�ed with the ompat subset N̂0×N̂0of R2. The Fourier transform and the Fourier�Stieltjes transform of F ∈
l1(N0 × N0, H) and µ ∈ M(N0 × N0) are given by

F̂ (x, y) =
∞∑

m,n=0

F (m, n)Rm(x)Rn(y)h(n)h(m)and
µ̂(x, y) =

∞∑

m,n=0

Rm(x)Rn(y)µ(m, n),

respetively, for x, y ∈ N̂0. Both F̂ and µ̂ are ontinuous funtions on N̂0×N̂0.Obviously (1, 1) ∈ N̂0 × N̂0. We need the following auxiliary result.Lemma 1. x = 1 is not isolated in N̂0.Proof. supp π is a subset of N̂0. Hene we have to onsider two ases. If
1 ∈ suppπ, then 1 is not an isolated point of suppπ (see [7, Lemma (2.1)℄),and hene 1 is not isolated in N̂0. If 1 /∈ suppπ then 1 is not ontained inthe true interval I of orthogonality, whih ontains all the n simple zeroes of
Rn(x) (see [4℄). Sine Rn(1) = 1 the range of Rn(x) for x ∈ [max suppπ, 1]is ontained in [0, 1]. Hene [max suppπ, 1] ⊆ N̂0.For f ∈ l1(h) de�ne elements Uf and V f of l1(N0 × N0, H) by(15) Uf(m, n) =

{
f(m) for n = 0,

0 for n 6= 0,
V f(m, n) =

{
f(n) for m = 0,

0 for m 6= 0.The resulting mappings U and V are isometri isomorphisms from l1(h) into
l1(N0 × N0, H). In fat, T(m,n)Uf(k, l) = 0 if l 6= n and T(m,n)Uf(k, l) =
g(n, n; 0)Tmf(k) if l = n. Hene

Uf ∗ Ug(m, n) =
∞∑

k,l=0

Uf(k, l)T(m,n)Ug(k, l)h(k)h(l)

=
∞∑

k=0

Uf(k, n)Tmg(k)h(k) = U(f ∗ g)(m, n).Similarly one shows V f ∗V g = V (f ∗g). For the Fourier transform we obtain
Ûf(x, y) = f̂(x) and V̂ f(x, y) = f̂(y) for all x, y ∈ N̂0.



190 R. LasserTheorem 3. Suppose that h(n) → ∞ as n → ∞. Then l1(h) is notamenable.Proof. Let Y := c0(N0 × N0) = {y = y(m, n) : y(m, n) → 0 as (m, n) →
∞ in N0 × N0}. Then Y is a Banah spae with respet to the sup-norm.For f ∈ l1(h) and y ∈ Y set

f · y = Uf ∗ y =

∞∑

m,n=0

Uf(m, n)T(m,n)y h(m)h(n)(16)
=

∞∑

m=0

f(m)T(m,0)y h(m)and(17) y · f = V f ∗ y =
∞∑

n=0

f(n)T(0,n)y h(n).The spae Y is a Banah l1(h)-bimodule with respet to these operations.The dual Y ∗ is the Banah spae
Y ∗ = M(N0 × N0) =

{
µ = µ(m, n) : ‖µ‖ =

∞∑

m,n=0

|µ(m, n)| < ∞
}
.

The spae M(N0×N0) an be identi�ed with l1(N0×N0, H) via the mapping
λ 7→ λH, l1(N0 × N0, H) → M(N0 × N0). The duality is given by

〈y, λ〉 =

∞∑

m,n=0

y(m, n)λ(m, n)h(m)h(n).

The dual l1(h)-bimodule operations on l1(N0 × N0, H) are given by(18) f · λ = V a ∗ λ and λ · f = Ua ∗ λfor f ∈ l1(h) and λ ∈ l1(N0 × N0, H). Note that for y ∈ Y ,
〈y, λ · f〉 = 〈f · y, λ〉 = 〈Uf ∗ y, λ〉 = 〈y, Uf ∗ λ〉and
〈y, f · λ〉 = 〈y · f, λ〉 = 〈V f ∗ y, λ〉 = 〈y, V f ∗ λ〉.Let y0(n, m) = 1/h(n)h(m). Then y0 ∈ Y sine h(n) → ∞ as n → ∞.De�ne

X =
{
λ ∈ l1(N0 × N0, H) : 〈y0, λ〉 =

∞∑

m,n=0

λ(m, n) = 0
}
.

Then X is a weak ∗-losed subspae of l1(N0 × N0, H). Note that λ ∈ Xsays that the Fourier�Stieltjes transform λ̂(1, 1) of λ (seen as an element of
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M(N0×N0)) is zero at the point (1, 1). Moreover, X is an l1(h)-submodule of
l1(N0×N0, H). In fat, if λ ∈ X and f ∈ l1(h) then f ·λ = V f∗λ, λ·f = Uf∗λand

f̂ · λ(1, 1) = V̂ f(1, 1)λ̂(1, 1) = 0, λ̂ · f(1, 1) = Ûf(1, 1)λ̂(1, 1) = 0.By Proposition 1.3 of [1℄, X is a dual l1(h)-module.De�ne D : l1(h) → X by Df = Uf − V f. Obviously D maps into X,and D is linear and ontinuous. For f, g ∈ l1(h),

D(f ∗ g) = U(f ∗ g) − V (f ∗ g) = Uf ∗ Ug − V f ∗ V g

= (Uf − V f) ∗ Ug + V f ∗ (Ug − V g) = Ug ∗ Df + V f ∗ Dg

= f · Dg + g · Df,so that D is a derivation.Now suppose that l1(h) is amenable. Then D is an inner derivation, sothere is some λ ∈ X suh that Df = f · λ − λ · f for every f ∈ l1(h). TheFourier transformation gives, for (x, y) ∈ N̂0 × N̂0 and f ∈ l1(h),
f̂(x) − f̂(y) = Ûf(x, y) − V̂ f(x, y) = D̂f(x, y)

= V̂ f(x, y)λ̂(x, y) − Ûf(x, y)λ̂(x, y) = λ̂(x, y)(f̂(y) − f̂(x)).Given x, y ∈ N̂0, x 6= y, there exists f ∈ l1(h) suh that f̂(x) 6= f̂(y), and so
λ̂(x, y) = 1. By Lemma 1, this is a ontradition to λ̂(1, 1) = 0. Thus l1(h)is not amenable.Our aim now is to onstrut an approximate diagonal in l1(h) (see [3℄).So we want to onstrut a bounded sequene (FN (k, l))N∈N with FN ∈
l1(N0 × N0, H) suh that for f ∈ l1(h),(19) lim

N→∞
(f · FN − FN · f) = 0 and lim

N→∞
π(FN) = δ0,where

f · FN = Uf ∗ FN =

∞∑

m=0

f(m)T(m,0)FNh(m),

FN · f = V f ∗ FN =

∞∑

n=0

f(n)T(0,n)FNh(n)and
π(FN)(k) =

∞∑

n=0

T(k,0)FN (n, n)h(n).If suh a bounded sequene (FN )N∈N exists, then l1(h) is amenable (see [3℄).Lemma 2. Assume that for eah ε > 0 there exists G ∈ l1(N0 × N0, H)suh that
‖T(1,0)G − T(0,1)G‖1 < ε.



192 R. LasserThen for eah n ∈ N there exists a onstant γ = γ(n) > 0 suh that(20) ‖T(k,0)G − T(0,k)G‖1 < γ(n)εfor k = 0, . . . , n.Proof. By the reursion formula for Rn(x) we have, for n ≥ 1,
T(n+1,0) =

1

an
T(1,0) ◦ T(n,0) −

bn

an
T(n,0) −

cn

an
T(n−1,0)as well as

T(0,n+1) =
1

an
T(0,1) ◦ T(0,n) −

bn

an
T(0,n) −

cn

an
T(0,n−1).Now suppose that we have already found γ(n) suh that (20) holds true for

k = 0, . . . , n. (By assumption (20) is valid for n = 1.) Then
‖T(n+1,0)G − T(0,n+1)G‖1 ≤

1

an
‖T(1,0)T(n,0)G − T(0,1)T(0,n)G‖1

+
bn

an
‖T(n,0)G − T(0,n)G‖1 +

cn

an
‖T(n−1,0)G − T(0,n−1)G‖1,and

‖T(1,0)T(n,0)G− T(0,1)T(0,n)G‖1 ≤ ‖T(1,0)T(n,0)G − T(1,0)T(0,n)G‖1

+ ‖T(0,n)T(1,0)G − T(0,n)T(0,1)G‖1

≤ ‖T(n,0)G−T(0,n)G‖1 + ‖T(1,0)G− T(0,1)G‖1.Hene
‖T(n+1,0)G − T(0,n+1)G‖1 ≤

γ(n)

an
(2ε + bnε + cnε),and so we an hoose γ(n + 1) = (γ(n)/an)(2 + bn + cn).Lemma 3. Assume there is some M > 0 suh that for every ε > 0 and

n ∈ N there is some G = G(ε, n) ∈ l1(N0 ×N0, H) with ‖G‖1 ≤ M suh that
‖T(k,0)G − T(0,k)G‖1 < ε for k = 0, . . . , n.Then for eah ε > 0 and f ∈ l1(h) there is some F = F (ε, f) ∈ l1(N0×N0, H)with ‖F‖ ≤ M suh that

‖f · F − F · f‖1 < ε.Proof. Given f ∈ l1(h) hoose n ∈ N suh that ∑∞
m=n+1 |f(m)|h(m) <

ε/4M. Put f̃(m) = f(m) for m = 0, . . . , n and f̃(m) = 0 for m ≥ n + 1. Foreah of the funtions G we obtain
‖f · G − f̃ · G‖1 ≤ ‖f − f̃‖1‖G‖1 ≤

ε

4
, ‖G · f − G · f̃‖1 ≤

ε

4
.Let C := sup0≤m≤n |f(m)|h(m) and put F = G(ε/2C, n). Then

‖f · F − F · f‖1 ≤ ‖f̃ · F − F · f̃‖1 +
ε

2
≤ C‖T(k,0)F − T(0,k)F‖1 +

ε

2
< ε.
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1-algebras of hypergroups 193By Lemmas 2 and 3 we have the following su�ient ondition for theamenability of l1(h).Theorem 4. If there is a bounded sequene (FN )N∈N in l1(N0 × N0, H)suh that(i) for eah ε > 0 there exists N ∈ N suh that

‖T(1,0)FN − T(0,1)FN‖1 < ε,(ii) limN→∞
∑∞

n=0 T(m,0)FN (n, n)h(n) = δ0,m for eah m ∈ N0,then l1(h) is amenable.We apply Theorem 4 to show that l1(h) is amenable if the polynomialhypergroup N0 is indued by the Chebyshev polynomials Tn(x) of the �rstkind.Corollary 3. For the polynomial hypergroup indued by the Chebyshevpolynomials Tn(x), the Banah algebra l1(h) is amenable.Proof. We have to onstrut a bounded sequene (FN )N∈N with the prop-erties (i) and (ii) in Theorem 4. De�ne FN ∈ l1(N0 × N0, H) by
FN (k, l) =





1

2N + 1
if k = l ≤ N,

−1

(2N + 1)(2N − 2)
if k 6= l; k + l even; k, l ≤ N,

0 otherwise.We begin by alulating an upper bound for all FN , N ∈ N. Obviouslysumming along olumns we get
N∑

l=0

|FN (k, l)| ≤
2

2N + 1
for 0 ≤ k ≤ N.Hene

‖FN‖1 ≤
N∑

k,l=0

|FN (k, l)|h(k)h(l) ≤ 4
N∑

k,l=0

|FN (k, l)| ≤
8(N + 1)

2N + 1
≤ 6.

To hek ondition (i) we state that
T(1,0)FN (k, l) = T(0,1)FN (k, l) if 1 ≤ k, l ≤ N − 1.In fat, omparing the diret neighbours of entry (k, l) in its olumn and rowwe see immediately that

T(1,0)FN (k, l) =
1

2
FN (k − 1, l) +

1

2
FN (k + 1, l)

=
1

2
FN (k, l − 1) +

1

2
FN (k, l + 1) = T(0,1)FN (k, l)



194 R. Lasserwhenever 1 ≤ k, l ≤ N − 1. For row l = 0 we obtain, for 0 ≤ k ≤ N − 1,
k 6= 1,

T(1,0)FN (k, 0) − T(0,1)FN (k, 0) = 0,and
T(1,0)FN (1, 0) − T(0,1)FN (1, 0) =

1

2
FN (0, 0) +

1

2
FN (2, 0) − FN (1, 1)

=
−N

(2N + 1)(2N − 2)
.For N ≥ 2 we onsider olumn k = N. One again, omparing the neighboursalong the olumn and row we get

T(1,0)FN (N, N) − T(0,1)FN (N, N) =
1

2
FN (N − 1, N) −

1

2
FN (N, N − 1) = 0and

T(1,0)FN (N, N − 1) − T(0,1)FN (N, N − 1)

=
1

2
FN (N − 1, N − 1) −

1

2
FN (N, N − 2) −

1

2
FN (N, N)

=
1

2

1

(2N + 1)(2N − 2)
.For l = 0, . . . , N − 2 we have

T(1,0)FN (N, l) − T(0,1)FN (N, l)

=
1

2
FN (N − 1, l) −

1

2
FN (N, l − 1) −

1

2
FN (N, l + 1)

= ωN,l
1

2

1

(2N + 1)(2N − 2)
, where ωN,l =

1

2
(1 + (−1)N+l+1).Finally, for olumn k = N + 1 it follows that

T(1,0)FN (N + 1, N) − T(0,1)FN (N + 1, N) =
1

2
FN (N, N) =

1

2

1

2N + 1
,

T(1,0)FN (N + 1, N − 1) − T(0,1)FN (N + 1, N − 1) =
1

2
FN (N, N − 1) = 0.If l = 0, . . . , N − 2, then

T(1,0)FN (N + 1, l) − T(0,1)FN (N + 1, l) =
1

2
FN (N + 1, l)

= ωN,l
1

2

−1

(2N + 1)(2N − 2)
.Furthermore, we note the following symmetry. From FN (l, k) = FN (k, l) itfollows that

T(1,0)FN (k, l) − T(0,1)FN (k, l) = T(0,1)FN (l, k) − T(1,0)FN (l, k)

= −[T(1,0)FN (l, k) − T(0,1)FN (l, k)].
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1-algebras of hypergroups 195Summing up,

‖T(1,0)FN − T(0,1)FN‖1 ≤ 8
∑

0≤l≤k≤N+1

|T(1,0)FN (k, l) − T(0,1)FN (k, l)|

≤ 8

(
N

(2N + 1)(2N − 2)
+

1

2

N

(2N + 1)(2N − 2)
+

1

2

N

(2N + 1)(2N − 2)

)

=
16N

(2N + 1)(2N − 2)
.Seleting N large enough we see that
‖T(1,0)FN − T(0,1)FN‖1 < ε.It remains to verify (ii). We have

π(FN)(0) =
N∑

n=0

FN (n, n)h(n) = 1and π(FN)(2j − 1) = 0 for all j ∈ N. Furthermore,
π(FN )(2) = FN (2, 0) + (FN (1, 1) + FN (3, 1))

+
N−2∑

k=2

(FN (k − 2, k) + FN (k + 2, k))

+ FN (N − 3, N − 1) + FN (N − 2, N)

=
1

2N + 1
−

N−1∑

k=1

2

(2N + 1)(2N − 2)
= 0.For m = 2j, we assume that N > m. A straightforward ounting of therelevant entries in the FN (k, l) matrix shows that

π(FN )(2j) = FN (j, j) − 2(N − j)
1

(2N + 1)(2N − 2)
=

1

2N + 1
·

j − 1

N − 1
.Hene limN→∞ π(FN)(2j) = 0 for every j ∈ N, and so l1(h) is amenable.Remark.(i) That l1(h) is amenable for polynomial hypergroups indued by theChebyshev polynomials is already ontained in the thesis of S. Wol-fenstetter (1984) at the Tehnishe Universität Münhen [10℄. How-ever, this result was never published. Our onstrution of the

(FN )N∈N0
di�ers in some points from that of [10℄.(ii) Obviously amenability implies weak amenability, and hene Corol-lary 3 implies Corollary 2. However, the proof of Corollary 2 doesnot use the tensor produt of l1(h). Only κn, σn ∈ l1(h) are applied,whih might be useful for other polynomial hypergroups.



196 R. LasserReferenes[1℄ W. G. Bade, P. C. Curtis Jr. and H. G. Dales, Amenability and weak amenabilityfor Beurling and Lipshitz algebras, Pro. London Math. So. 55 (1987), 359�377.[2℄ W. R. Bloom and H. Heyer, Harmoni Analysis and Probability Measures on Hy-pergroups, de Gruyter, Berlin, 1995.[3℄ F. F. Bonsall and J. Dunan, Complete Normed Algebras, Springer, Berlin, 1973.[4℄ T. S. Chihara, An Introdution to Orthogonal Polynomials, Gordon and Breah,New York, 1978.[5℄ M. E. H. Ismail, Classial and Quantum Orthogonal Polynomials in One Variable,Cambridge Univ. Press, Cambridge, 2005.[6℄ R. Lasser, Orthogonal polynomials and hypergroups, Rend. Mat. 3 (1983), 185�209.[7℄ �, Orthogonal polynomials and hypergroups II�The symmetri ase, Trans. Amer.Math. So. 341 (1994), 749�770.[8℄ �, Point derivations on the l
1-algebra of polynomial hypergroups, preprint.[9℄ G. Szegö, Orthogonal Polynomials, Amer. Math. So., Providene, RI, 1959.[10℄ S. Wolfenstetter, Jaobi-Polynome und Bessel-Funktionen unter dem Gesihtspunktder harmonishen Analyse, PhD thesis, Tehnishe Univ. Münhen, 1984.GSF-National Researh Centerfor Environment and HealthInstitute of Biomathematis and BiometryIngolstädter Landstraÿe 185764 Neuherberg, GermanyE-mail: lasser�gsf.de

Centre of MathematisMunih University of Tehnology85748 Garhing, Germany
Reeived February 8, 2007Revised version June 23, 2007 (6102)


