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Amenability and weak amenability of /!-algebras
of polynomial hypergroups

by

RUPERT LASSER (Neuherberg and Garching)

Abstract. We investigate amenability and weak amenability of the I!-algebra of poly-
nomial hypergroups. We derive conditions for (weak) amenability adapted to polynomial
hypergroups and show that these conditions are often not satisfied. However, we prove
amenability for the hypergroup induced by the Chebyshev polynomials of the first kind.

1. Introduction. The L!-algebras of hypergroups show very distinctive
properties compared with those of L'-algebras of groups. We will investigate
amenability and weak amenability of the I!-algebra of polynomial hyper-
groups. We will show that the !-algebra is very seldom amenable or weakly
amenable, whereas for every Abelian group the L'-algebra is amenable. To
have a reference we briefly recall the basic facts on polynomial hypergroups.
For more details and the proofs we refer to [6, 7].

Let (Ry)nen, be a polynomial sequence defined by a recurrence relation
(1) Ri(z) Rp(x) = apRyy1(z) + by Rp(x) + cRp—1(2)
for n € N and Ryo(z) =1, Ri(x) = (1/ag)(x — by), where a,, > 0, b, > 0 for
all n € Ny, and ¢, > 0 for n € N. We assume a,, + b, + ¢, = 1 for n € N and
ag + bp = 1. It follows from this assumption that R, (1) = 1 for all n € Ny.
By the theorem of Favard there is a (unique) probability measure m on R
with bounded support such that (R, )nen, is orthogonal with respect to m,
i.e. {z Rn(2) Ry (x) dn(x) = (1/h(n))dpn,m. The recurrence relation (1) is a
special case of the linearization formula

n+m
(2) Ro(@)Ra(x) = > g(m,n;k)Ry(x),
k=|n—m|
for m,n € Nyg. We suppose throughout that the coefficients g(m,n; k) are
nonnegative. There are many orthogonal polynomial systems which have
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this property (see [2, 6, 7]). We then define a convolution on Ny by
n+m
3) wmm)= 3 gm,ni K)o,
k=|n—m|

where 0 is the point measure at k£ € Ny. With this convolution, the in-
volution 7 = n and the discrete topology the set of natural numbers Ny
is a commutative hypergroup, called the polynomial hypergroup induced by
(Rn)nen, (see [6]). The basic notations and tools of commutative harmonic
analysis are available. The Haar measure on the polynomial hypergroup Ny
is the counting measure with weights h(n) = g(n,n;0)~! at n € Ny. They
satisfy h(0) = 1, h(n + 1) = (an/cnt1)h(n), n € Ng. The translation of a
sequence = (3(n))nen, reads as

n-+m

Tnﬂ(m) = Z g(mv n; k)ﬂ(k)’

k=|n—m)|

and the convolution of two sequences f,g € I'(h) is given as
Frg=>_ Tuf(k)g(k)h(k)
k=0

(IL(R) = {f = (f(n))neny : >oneyg | f(n)|h(n) < co}). With this operation as
multiplication, and f*(n) = f(n) as involution, the Banach space I'(h) is a

commutative Banach x-algebra with unit dy. The hermitian dual space Ny
of Ny (i.e. the hermitian structure space of I'(h)) can be identified with

(4) {z € R:|Ry(x)] <1forall n € No}

via the mapping = — g, ag(n) := Ry (z) (see [6]). Hence we consider Ny as a
compact subset of R which contains 1 € R (since R, (1) = 1). (We note that
in general there exist homomorphisms on ['(h) which are not hermitian.)

The support of the orthogonalization measure 7 is contained in I§T0. The
Fourier transform of f € I1(h) is defined by

o
flx) =) f(k)Ri(x)h(k), x € No.
k=0
fis a continuous bounded function on N[) and satisfies f/@ = f’g\
2. Weak amenability. Let D :['(h) — X be a continuous derivation,
where X is a commutative Banach ['(h)-bimodule (i.e. D is a continuous

linear operator such that D(a xb) = a - D(b) + b- D(a)). We denote the
module operation by a - z for a € I1(h) and z € X. Our main example will
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be X = [ (the space of all bounded sequences) with a-x = a*x, the action
of I*(h) on [*® by convolution.

Define €,(m) = (1/h(n))8nm. Obviously e, € I1(h), |len]i = 1 and
€1 % Ep = ApEnt1 + bnen + cnen—1. Define recursively the sequence (kp)nen,
in I'(h) by kg = 0, k1 = €¢ and
(5) Kl = ai (en + €1 % K — bpkp — Cnkn—1)-

n

PROPOSITION 1. Let D : 1*(h) — X be a derivation as above. Then
(6) D(ep) = kp - D(e1)  for n € Np.

Proof. For n = 0 and n = 1 the identity (6) is easily checked. Suppose
(6) is valid for £ = n — 1, n. Then by the assumption

D(eyxen) =¢e1-D(ey) +en - D(e1) = (1% kn) - D(e1) + €p - D(e1)
and
D(e1 *ep) = cpkin—1 - D(e1) + bpky - D(e1) + anD(ent1).
It follows that
1
D(ept1) = . (en + €1 % Ky — bpkp — Cnkin—1) - D(€1) = kpy1 - D(e1). =
n

We will derive conditions sufficient to decide whether I*(h) is weakly
amenable or not. This means we have to determine when there exist no
nonzero continuous derivations D : [*(h) — [*° (see [1]).

We consider the Fourier transformation of x,,11. We have &;(x) = Ry(x)
and Kpy1(z) = aoR), () for all z € No. The latter identity follows imme-
diately by differentiating the three-term recurrence relation for R, (z) and
comparing it with (5) (see also [8]). Since R; ,(z) is a polynomial of de-
gree n, we can write

n
(7) ao Ry 41 (x) = ) dn e Ri(2).
k=0
Applying the uniqueness theorem for the Fourier transformation yields

n
(8) Fnt1 = Y dn k-
k=0

In particular, Ky 41(k) = dpi/h(k) for k=0,...,n.

THEOREM 1. Assume {||kn|loo : 7 € No} is bounded. Then I'(h) is not
weakly amenable.

Proof. Put D(g1) = ¢ € I°°. Then k,xD(e1) = Ky, and by Proposition 1
we obtain ||D(ep)|lco = ||knlloo- By the assumptions ||D(ey,)|lcc < M for all

n € Ny. The linear extension of equation (6) is a bounded map on the linear
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span of {&,, : n € Ng}. This linear span is dense in [!(h), and hence D can
be extended to a (nonzero) continuous derivation D : ['(h) — [*°. =

We apply Theorem 1 to the class of polynomial hypergroups induced
by the ultraspherical polynomials R (), « > —1/2. From [9, (7.32.5)] we
obtain 204 1)
=2t D) g ),

Hence we can calculate k,y1(k) from the so-called connection coefficients
which connect R(aJrl)( ) with R(a)( ). We write the ultraspherical polyno-

mials R )(x) as Gegenbauer polynomials C(a+1/2)( ). In fact, by (4.5.1)
and (4.1.6) of [5] we have

() n_! (ah1/2)
Applying formula (9.1.2) of [5] we obtaun7 for a > —1/2,
(a+1) () — ”_’ (0+3/2)
| [n/2} _
_ n! Za—f—l/Q—l—n QkC(a_H/g)( )
(200 + 3)n = a+1/2 n—2k
_ n! [n/2] (a+1/24+n—2k)2a+1),_2 R@ (z)
(2004 3)n &= (a+1/2)(n — 2k)! n2kA
Hence
@ v, (n+1)(n+2a+2)n!
O R @) = ST %) 50 5 30,2 £ 20)
L @+ Dpopla+1/2+n—2k) o
2 (n— 2k)! By ()
k=0
The Haar weights are h(n) = (2n +2a+ 1)(2a + 1), /((2a + l)n')
It is now straightforward to determine r,11(k) for £ = 0,1,...,n from

(7) and (9). For n = 2m it follows that
H2m+1(k?):0 ifk:1,3,..‘,2m—1
and

for =0,1,2,...,m
For n = 2m + 1 it follows that

Komio(k) =0 ifk=0,2,4,...,2m
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and
(2m+2)(2m +2a + 3)(2m + 1)!
2+ 20) (20 + B)am s
for j =0,1,...,m. It is easy to check that formulas (10) and (11) also hold

for the limit @« = —1/2 in which case k2, +1(27) = 2m+1 and Ko, 42(25+1) =
2m + 2.

(11) Foma(2j +1) =

COROLLARY 1. For the polynomial hypergroup induced by the ultraspher-

ical polynomials R,(la)(x) the Banach algebra I'(h) is not weakly amenable

whenever o > 0.

Proof. We know that every derivation D : [1(h) — [ satisfies D(g,,) =
kn * D(g1). If we choose D(g1) = g, we obtain D(e,) = k. By (10) and
(11) the asymptotic behaviour of the gamma function yields
n(n+2a+1)(n—1)!

(24 2a)(2ac+ 3)p—1

If @ > 0 then {[|fn]loo : m € N} is bounded, and hence I!(h) is not weakly
amenable. m

= O(n~2).

[Knlloo =

REMARK. Corollary 1 improves a result of [8], where it is shown that
I*(h) is not weakly amenable if @ > 1/2, since in that case there exist
nonzero bounded point derivations on I*(h).

Another consequence of Proposition 1 is the following result.
THEOREM 2. The following conditions are equivalent:

(i) 11(h) is weakly amenable.
(ii) For every ¢ € 1°, ¢ # 0, the set {||kn*¢|lco : n € No} is unbounded.

Proof. By Proposition 1 we know that each derivation D : I'(h) — [*®
satisfies D(e,) = kyn * ¢, where ¢ = D(e1). Moreover, if there is some
© €17, # 0, such that {||k,*¢||c : » € N} is bounded, then the continuous
linear extension of D(e,) = Ky, * ¢ defines a nonzero bounded derivation
D :1'(h) — [*°. In particular, (i) and (ii) are equivalent. m

A sequence of elements o,, € I*(h) related to the x, is derived by the
Christoffel-Darboux formula for R, (x). In fact, we have

n

12 > RR@)h) = 0010 (0) 00l (1) o )

for all x € R and n € N. Define o, € I'(h), n € N, by

(13) On = Knt1 % En — Kn * Eptl-
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By (12) it follows that

(14)

Applying (14) we can easily show that [!(h) is weakly amenable if the poly-
nomial hypergroup on Ny is induced by the Chebyshev polynomials T;,(x)
of the first kind. Note that T,,(z) = cos(nt) for x = cost, and moreover

T.(x) = Ry 2)(56) belongs to the class of ultraspherical polynomials with
a=-1/2.

COROLLARY 2. For the polynomial hypergroup induced by the Chebyshev
polynomials T, (), the Banach algebra I'(h) is weakly amenable.

Proof. For the polynomial hypergroup induced by 7T),(x) we have

Em *Ep = 6|n m| + = 5n+ma

and h(0) =1, h(n) =2 for n € N. Hence

and for ¢ € [*° it follows that

n
onxp=np+ Y Topp.
k=0
Now suppose that I!(h) is not weakly amenable. By Theorem 2 there exists
some ¢ € [, ¢ # 0, such that {||kn * ¢|lcc : n € N} is bounded. From
formula (13) it follows that {||o,*p||eo : n € N} is also bounded. Furthermore
Kom41 = (2m + 1) > 1" g e2xh(2k) and hence

Kom+1 % @ = (2m + 1) Z Torp h(2k).
k=0
Since {|r2m+1%¢(0)| : m € No} is bounded, it follows that |y ;" , ¢(2k)h(2k)|
— 0 as m — oo.
Let sup{||on * ¢||oc : m € N} = M < 0o. Then

M = |on x 0(0)] =

06l0) + 5 9(0) + 3 3 P(HR)
k=0

1
”+ \——‘Zcka Qk(

which is only possible provided ¢(0) = 0. Replacing ¢ above by T} it also
follows that ¢(j) = T;¢(0) has to be zero, which is a contradiction. m



Amenability of I'-algebras of hypergroups 189

3. Amenability. We follow the construction of [1] to prove that I'(h) is
not amenable whenever h(n) — oo as n — oo. We point out that the Banach
algebra ['(h) is very different from the Beurling algebra {!(w) studied in [1].
In particular, the convolution in I!(h) is rather involved.

Given the polynomial hypergroup on Ny induced by (R;,(x))nen, consider
the direct product hypergroup Ny x Ny (see [2, 1.5.28]). The Haar weights
on Ny x Ny are given by H(m,n) = h(m)h(n). The space of the hermitian
characters of [1(Ng xNg, H) can be identified with the compact subset IQTO XI/\\IO
of R%. The Fourier transform and the Fourier-Stieltjes transform of F €
IY(Ng x No, H) and pu € M(Np x Np) are given by

o0
F(z,y) = Y F(m,n)Ru(x)Ra(y)h(n)h(m)
m,n=0
and
o0
Al y) =D Rm(@)Ba(y)p(m,n),
m,n=0
respectively, for z,y € NQ; Both F and 11 are continuous functions on No X Ng.
Obviously (1,1) € Ny x Ny. We need the following auxiliary result.
LEMMA 1. z =1 s not isolated in ﬁo.

Proof. supp 7 is a subset of NO. Hence we have to consider two cases. If
1 € supp, then 1 is not an isolated point of supp 7 (see [7, Lemma (2.1)]),
and hence 1 is not isolated in No. If 1 ¢ supp7 then 1 is not contained in
the true interval I of orthogonality, which contains all the n simple zeroes of
R, (z) (see [4]). Since R, (1) = 1 the range of R, (z) for z € [maxsupp, 1]
is contained in [0, 1]. Hence [maxsuppm, 1] C No. m

For f € I*(h) define elements U f and V f of I*(Ng x No, H) by

_ [ f(m) forn =0, _ [ f(n) form =0,
(15) Uf(m,n)—{o for 1 % 0, Vf(m,n)—{o for m % 0.

The resulting mappings U and V' are isometric isomorphisms from /! (h) into
I*(Ng x No, H). In fact, TinmUf(k,1) = 0if I # n and T, U f(k,1) =
g(n,n;0)T,, f(k) if | = n. Hence

k,1=0

= Uf(k,n)Tng(k)h(k) = U(f * g)(m,n).
k=0

Similarly one shows V f Vg = V(f*g). For the Fourier transform we obtain
Uf(x,y) = f(z) and V f(z,y) = f(y) for all z,y € Np.
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THEOREM 3. Suppose that h(n) — oo as n — oo. Then I'(h) is not
amenable.

Proof. Let Y := ¢y(Ng x Ng) = {y = y(m,n) : y(m,n) — 0 as (m,n) —
oo in Ny x No}. Then Y is a Banach space with respect to the sup-norm.
For f € I*(h) and y € Y set

(16) fry=Ufsy= Y Uf(m,n)Tmnyh(m)h(n)
m,n=0
= > f(m)T 0y h(m)
m=0
and
(17) y-f= Vf*y—Zf T(o.nyy h(n).

The space Y is a Banach ll(h)—blmodule with respect to these operations.
The dual Y* is the Banach space

Y* = M(No x No) = {1 = u(m,n)  lu]] = Z!umn|<00}

m,n=0

The space M (Ng x Ng) can be identified with I*(Ng x Ng, H) via the mapping
A AH, I'(Ng x Ng, H) — M(Ng x Np). The duality is given by

{y: X =Y ylm,n)A(m, n)h(m)h(n).

m,n=0

The dual ! (h)-bimodule operations on I*(Ny x Ng, H) are given by
(18) f-A=VaxX and X -f=Uax\
for f € I'(h) and \ € I}(Ng x N, H). Note that for y € Y,

WA F) =y =Uf*y,A) =y UfxA)
and

(o f - N =y f;0) =VFxy,A) =, VA
Let yo(n,m) = 1/h(n)h(m). Then yo € Y since h(n) — co as n — oo.

Define

X = {x e (No x No, H) : {yo, Z)\mn—O}

Then X is a weak *-closed subspace of I'(Ng x Ng, H). Note that A € X
says that the Fourier—Stieltjes transform A(1,1) of A (seen as an element of
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M (Np xNp)) is zero at the point (1,1). Moreover, X is an [*(h)-submodule of
I'(NoxNog, H). In fact, if A\ € X and f € I1(h) then f-A = VX, \-f = Uf*\
and
FALL) = VLD =0,  X-f(1,1) = Uf(1,1)A(1,1) = 0.
By Proposition 1.3 of [1], X is a dual /! (h)-module.
Define D : I'(h) — X by Df = Uf — V f. Obviously D maps into X,
and D is linear and continuous. For f,g € I'(h),
D(fxg)=U(f*g)=V(fxg)=UfxUg=Vf=Vyg
=Uf-VH)xUg+Vf*xUg—Vg)=UgxDf+Vfx*Dg
=f-Dg+g-Df,
so that D is a derivation.
Now suppose that I!(h) is amenable. Then D is an inner derivation, so
there is some A € X such that Df = f- X\ — \- f for every f € I*(h). The
Fourier transformation gives, for (r,y) € Ng x Ny and f € I1(h),

f(@) = fly) = Uf(@.,y) = Vf(z,y) = Df(x,y)
= Vi@, 9)May) = Uf @, 9)A.y) = Ma,9)(Fy) - fl2)).
Given z,y € No, x # y, there exists f € I*(h) such that J?( ) # ( ), and so
)\(3: y) = 1. By Lemma 1, this is a contradiction to )\( 1) = 0. Thus I*(h)
is not amenable. m

Our aim now is to construct an approximate diagonal in I(h) (see [3]).
So we want to construct a bounded sequence (Fy(k,l))nen with Fy €
I'(Ng x No, H) such that for f € I*(h),

(19) A}im (f-FN—Fn-f)=0 and hm m(Fn) = do,

N—oo

where

f FN—Uf*FN—Zf Tim,0)Fnh(m),

Fy-f=Vf*Fy= Z f(n)To.m Frh(n)
n=0
and -
m(Fx)(k) =Y Tgo0)Fn(n,n)h(n).
n=0
If such a bounded sequence (Fy)nen exists, then [1(h) is amenable (see [3]).
LEMMA 2. Assume that for each ¢ > 0 there exists G € I1(Ny x No, H)
such that
1T1,0)G = Tio,)Gll1 <e.
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Then for each n € N there exists a constant v = y(n) > 0 such that

(20) 1Tx,00G — To,x)Gll1 < v(n)e
fork=0,... n.
Proof. By the recursion formula for R,(z) we have, for n > 1,
1 bn, Cn,
Tint10) = - T1,0)© Tino) — @ Tino) — . Tin-1,0)
as well as
1 by, Cn,
T, = —T T, — —T - —T .
(0,n+1) P (0,1) © £(0,n) P (0,n) n (0,n—1)

Now suppose that we have already found ~(n) such that (20) holds true for
k=0,...,n. (By assumption (20) is valid for n = 1.) Then

1
1Ttn+1,00G — T(0,n+1)Gll1 < a_HT(I,O)T(n,O)G =TT (0, Gl

+ PTG = TomGlh + 21T 109G ~ T G,
and
171,00 T(n,00G — T(0,1)T(0,m)Gll1 < 1T(1,0)T(n,0)G — T(1,0)T(0,0) G 1
+ 1 T0,m)T(1,00G — Ti0,m L0,y Gl
<N Tn,0)G = T, Gl + 1T(1,00G — Tio,1) G-

Hence
v(n)
Gnp

and so we can choose y(n+ 1) = (v(n)/an)(2+ by, +¢,). »

LEMMA 3. Assume there is some M > 0 such that for every e > 0 and
n € N there is some G = G(e,n) € I'(Ng x No, H) with ||G||1 < M such that

1T0,00G — Tio4)Glli <& fork=0,...,n.
Then for eache > 0 and f € I'(h) there is some F = F(e, f) € I'(NgxNg, H)
with ||F|| < M such that
If-F—F-flh<e.
Proof. Given f € I*(h) choose n € N such that > 0o . |f(m)|h(m) <
e/4M. Put f(m) = f(m) form =0,...,n and f(m) = 0 for m > n+ 1. For
each of the functions G we obtain

= - £ x £
If-G=F-Glh<If-flhlCh <5, 6 f-G-fl<=.
Let C := supg<,,<y, |f(m)|h(m) and put F' = G(¢/2C,n). Then

1T(n41,00G — T(0,n4+1)Gll1 <

(25 + bnE + Cm?),

~ ~ 13 (3
”f'F—F'leS||f'F—F'f||1+§§C||T(k,0)F—T(o,k)F||1+§<€- .
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By Lemmas 2 and 3 we have the following sufficient condition for the
amenability of I1(h).

THEOREM 4. If there is a bounded sequence (Fn)nen in I1(Ng x No, H)
such that

(i) for each € > 0 there exists N € N such that
1T,00FN — Tio,1)Fnll <,
(ii) limpy oo Z;L.O:O T(mp)FN(n, n)h(n) = 50,m for each m € Ny,
then I (h) is amenable.

We apply Theorem 4 to show that ['(h) is amenable if the polynomial
hypergroup Ny is induced by the Chebyshev polynomials T,,(z) of the first
kind.

COROLLARY 3. For the polynomial hypergroup induced by the Chebyshev
polynomials T, (x), the Banach algebra I'(h) is amenable.

Proof. We have to construct a bounded sequence (Fy)nyen with the prop-
erties (i) and (ii) in Theorem 4. Define Fyy € I}(Ny x No, H) by

1
ifk=1<N
9N +1 ifk=l<N,
Frn(k,1) = ~1 ,
fk#1Lk+1even; k,1<N
GNT DN —g) IkFALEFleven kISN,
0 otherwise.

We begin by calculating an upper bound for all Fy, N € N. Obviously
summing along columns we get

N
2
< <k <N.
lE_O |Fn (k1) < N 1 for0<k<N
Hence
N N
8(N +1)

< < < ——7<60.
1Fxll < D 1En (ke DI(k)R() <43 [Fx(k,1)] < N1 =6

k,1=0 k,1=0
To check condition (i) we state that
T(l,O)FN(kal) :T(OJ)FN(]{:?l) lfl S k’,l S N— 1

In fact, comparing the direct neighbours of entry (k, () in its column and row
we see immediately that

1 1
T En(k, 1) = 3 Fn(k—=1,0) + 3 Fy(k+1,1)

1 1
= B Fy(k,l—1)+ 3 Fn(k,l+1)= T(Oyl)FN(k?,l)
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whenever 1 < k,I < N — 1. For row [ = 0 we obtain, for 0 < £k < N — 1,

k£,
T(I,O)FN(I{;: 0) - T(O,I)FN(I{;: 0) =0,

and
1 1
T(l,O)FN(l’O) - T(O,l)FN(lv 0) = 5 FN(Oa 0) + 5 FN(Q’O) - FN(lv 1)
—N
(2N +1)(2N —2)°

For N > 2 we consider column k£ = N. Once again, comparing the neighbours
along the column and row we get

1 1
T(I,O)FN(NaN)_T(O,I)FN(NvN):§FN(N_17N)_§FN(NaN_1):O
and

Ta,0)FN(N,N —1) =T 1)FN(N,N — 1)
1 1 1
1 1
2 (2N +1)(2N —-2)°
For 1 =0,..., N — 2 we have
Ti1,0)FN (N, 1) — T,y Fn (N, 1)

1 1 1

1 1
TENIS BN Y 1)(2N —2)
Finally, for column &k = N + 1 it follows that

1
where wy; = 5(1 + ()N,

1 1 1
TaoFN(N+1,N) =TonFn(N+1,N) = §FN<N7N) = AN

1
T(LO)FN(N—I- 1, N — 1) —T(O’l)FN(N—}-l,N— 1) = EFN(N’N_ 1) =0.
Ifl=0,...,N —2, then

T(l,[))FN(N"‘ 1,[) — T(071)FN(N+ 1,1) = —FN(N+ 1,[)

TUNIS BN YN —2)

Furthermore, we note the following symmetry. From Fy(l, k) = Fn(k,l) it
follows that

Ti1,0)Fn (k1) = Tio ) Fn(k, 1) = Tio ) En (k) = T Fn (L k)
= —[Ta0En( k) = TonEn(, k)]
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Summing up,

ITaoFy — TonFnlh <8 > |1 TaoFn(k, 1) — Ty Fn (k. )|

0<I<E<N+1
. N 1 N 1 N
= ((2]\7 +1)(2N - 2) T3 (2N +1)(2N —2) i) (2N 4+ 1)(2N — 2))

16N
(2N +1)(2N —2)°
Selecting N large enough we see that

1T1,00FNn — Tio,) Fvlli < e

It remains to verify (ii). We have

N
m(Fx)(0) = > Fy(n,n)h(n) =1
n=0

and w(Fxn)(2j —1) = 0 for all j € N. Furthermore,
T(FN)(2) = Fn(2,0) + (Fn(1,1) + Fn(3,1))

N-2

+ > (Fn(k—2,k)+ Fy(k +2,k))
k=2

+ Fy(N —3,N —1) 4 Fy(N —2,N)

N-1

1 2
TON+1 ; (2N +1)(2N —2) =0

For m = 2j, we assume that N > m. A straightforward counting of the
relevant entries in the Fy(k,l) matrix shows that

Hence limy .o, 7(Fy)(2j) = 0 for every j € N, and so I'(h) is amenable. =

REMARK.

(i) That I'(h) is amenable for polynomial hypergroups induced by the
Chebyshev polynomials is already contained in the thesis of S. Wol-
fenstetter (1984) at the Technische Universitdt Miinchen [10]. How-
ever, this result was never published. Our construction of the
(FN)nNen, differs in some points from that of [10].

(ii) Obviously amenability implies weak amenability, and hence Corol-
lary 3 implies Corollary 2. However, the proof of Corollary 2 does
not use the tensor product of I*(h). Only x,, o, € I*(h) are applied,
which might be useful for other polynomial hypergroups.
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