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Asymptotic behavior of a steady flow
in a two-dimensional pipe

by

Piotr Bogusław Mucha (Warszawa)

Abstract. The paper investigates the asymptotic behavior of a steady flow of an
incompressible viscous fluid in a two-dimensional infinite pipe with slip boundary condi-
tions and large flux. The convergence of the solutions to data at infinities is examined.
The technique enables computing optimal factors of exponential decay at the outlet and
inlet of the pipe which are unsymmetric for nonzero fluxes of the flow. As a corollary, the
asymptotic structure of the solutions is obtained. The results show strong dependence on
the magnitude of the Reynolds number.

1. Introduction. In this paper we study a steady flow of a viscous in-
compressible Newtonian fluid governed by the steady Navier–Stokes equa-
tions in a two-dimensional pipe-like domain with slip boundary conditions.
The motion is described by the following system:

(1.1)

v · ∇v − ν∆v +∇p = f in Ω,

div v = 0 in Ω,

n · v = 0, n · T(v, p) · τ = 0 on ∂Ω,

v → (v∞, 0) as |x| → ∞,
where v = (v1, v2) is the velocity of the fluid, p the pressure, f the exter-
nal force, n and τ the normal and tangent vectors to the boundary ∂Ω, ν
the constant positive viscous coefficient, (v∞, 0) the constant velocity at the
inlet and outlet of the pipe, and T the stress tensor for Newtonian fluids,
i.e.

(1.2) T(v, p) = νD(v)− p Id = {ν(vi,j + vj,i)− pδij}i,j=1,2.

The domain Ω is a straight pipe with a local obstacle inside—see the picture
on the next page.
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We assume that

(1.3) Ω = W \ O,
where W = R × (0,H) and O is a closed set consisting of obstacles and
satisfying

(1.4) O ⊂ [−D,D]× [0,H].

The aim of the paper is to analyze the asymptotic behavior of the so-
lutions. We want to get precise information about the velocity as x1 → ∞
and as x1 → −∞, and also about the quantities which define the flow.
We concentrate on the vorticity which, as we will see, is very sensitive to
the magnitude of the flux of the flow. The convergence is connected with
the properties of fundamental solutions of problems arising from the Oseen
system for the straight pipe.

Since we are interested only in behavior for large |x1| we may modify
the boundary conditions (1.1)3. Our method does not require simple con-
nectedness of the domain, hence in general we may split the boundary into
connected elements as follows:

(1.5) ∂Ω = Γ ↑ ∪ Γ ↓ ∪
K0⋃

k=1

Γ k,

where Γ ↑ and Γ ↓ are the unbounded parts (connected), and Γ k are the
boundaries of holes in the pipe, K0 being the total number of holes. Thus,
instead of (1.1)3, we may put the following conditions:

(1.1)′3
n · v = 0, n · T(v, p) · τ = 0 on Γ ↑ ∪ Γ ↓,

n · v= 0, n · T(v, p) · τ + fkv · τ = 0 on Γ k for k= 1, . . . ,K0,

where fk is the friction coefficient on the boundary of the ith hole; fk may
be equal to infinity, then ((1.1)′3)2 becomes the zero Dirichlet condition.

The slip boundary condition (1.1)3 describes phenomena when the fric-
tion between the fluid and the boundary is negligible. This type of problem
can also be treated as an approximation of an external problem—a flow
around an obstacle or an approximation of an Eulerian flow, if the viscous
coefficient is small and so is the action of the fluid on the boundary (see [8]).
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The key element of our approach is a reformulation of the original prob-
lem. We use here a special feature of the two-dimensional case as well as an
interesting property of the slip boundary condition. From problem (1.1) we
obtain a system for the vorticity of the velocity:

(1.6)

v · ∇α− ν∆α = rot f in Ω,

α = 2v · τχ on ∂Ω,

α→ 0 as |x| → ∞,
where χ is the curvature of ∂Ω and

(1.7) α = rot v = v2
,1 − v1

,2

is the vorticity of the velocity of the fluid. Equation (1.6)1 has the above form
only for 2D, in 3D there appears an extra term α · ∇v which causes worse
properties of this equation: we lose the maximum principle. The bound-
ary datum (1.6)2 is calculated from condition (1.1)3. It is worth pointing
out that this interesting feature also holds for the 3D case (not exactly
the same, because α in 3D is a vector; this property has been noted by
Zajączkowski [10]).

To complete the reformulation we add to (1.6) the following problem for
the velocity:

(1.8)

rot v = α in Ω,

div v = 0 in Ω,

n · v = 0 on ∂Ω,

v1 → v∞ as x1 → ±∞.
Thus, instead of (1.1), we investigate (1.6) and (1.8).

Since we plan to examine the behavior of solutions to problem (1.1), we
need to ensure their existence. We assume the following properties.

The Existence Hypothesis. Let f ∈ H2(Ω), ∂Ω ∈ C2 and v∞ ≥ 0.
Then there exists at least one regular solution of problem (1.1) such that

(1.9) ‖v − (v∞, 0)‖H4(Ω) ≤ S0(‖f‖H2(Ω), v∞).

The above assumption is reasonable, because a similar existence theorem
for solutions to problem (1.1) has been proved in [7]. The essential infor-
mation conveyed by the Existence Hypothesis is the sufficient smoothness
of the solutions and vanishing of the perturbation, here in the L2-norm (we
will need the boundedness of the gradient of the vorticity, hence we need
v ∈ H4(Ω)). There is no restriction on the size of data. The assumption
about nonnegativity of v∞ determines only the system of coordinates. Hav-
ing such a standard existence assumption we give a precise spatial asymp-
totics, which is the main result of our paper.
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Theorem 1.1. Suppose that

(1.10)
∇f(x)e(σ1+af )|x1| ∈ L2(Ω ∩ {x : x1 ≤ 0}),
∇f(x)e(π1+af )|x1| ∈ L2(Ω ∩ {x : x1 > 0})

for some number af > 0. Then the solutions to problem (1.1) given by the
Existence Hypothesis satisfy

(1.11)
α(x)eσ1|x1| ∈ C(Ω ∩ {x : x1 ≤ 0}),
α(x)eπ1|x1| ∈ C(Ω ∩ {x : x1 > 0}).

Furthermore, if v∞ > 0 then

(1.12)
(v(x)− (v∞, 0))eλ1|x1| ∈ C(Ω ∩ {x : x1 ≤ 0}),
(v(x)− (v∞, 0))eπ1|x1| ∈ C(Ω ∩ {x : x1 > 0}),

and if v∞ = 0 then

(1.13) v(x)
eλ1|x1|

1 + |x1|
∈ C(Ω),

where

(1.14) π1 =

√(
v∞
2ν

)2

+
(
π

H

)2

− v∞
2ν
≤ λ1 =

π

H

≤ σ1 =

√(
v∞
2ν

)2

+
(
π

H

)2

+
v∞
2ν
.

Moreover ,

(1.15) |α(x)| ≤
{
Z−α e

−σ1|x1| for x1 < 0,

Z+
α e
−π1|x1| for x1 > 0,

if v∞ > 0 then

(1.16) |v(x)− (v∞, 0)| ≤
{
Z−v e

−λ1|x1| for x1 < 0,

Z+
v e
−π1|x1| for x1 > 0,

and if v∞ = 0 then

(1.17) |v(x)| ≤ Z0
v (1 + |x1|)e−λ1|x1| for x1 ∈ R,

where the constants Z−α , Z+
α , Z−v , Z+

v and Z0
v depend only on S0 and norms

of the function f .

The result shows the crucial role of the vorticity. Since in 2D it is a
scalar, it describes precisely the behavior of the flow under the influence
of an obstacle. The information about the velocity is just a consequence of
the analysis of problem (1.8). This is the reason why decay rates in front
of the obstacle are different for the velocity and vorticity. A quantity which
describes the decay factors of the perturbation is v∞/ν. If v∞/ν →∞, then
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π1 → 0 and σ1 → ∞. Hence for large v∞/ν the perturbation behind the
obstacle will be vanishing more slowly, but in front of the obstacle the very
vorticity will be less perturbed, but the velocity will be vanishing with factor
λ1 independently of v∞/ν. Note that v∞/ν is proportional to the Reynolds
number of our flow: Re = v∞H/ν.

In the special case of v∞ = 0, we have λ1 = π1 = σ1. This symmetry
leads to a slightly weaker convergence for the velocity. It is worth noting
that for the external problem for the same system, if v∞ 6= 0, then the
decay is proportional to a negative power of |x| (O(|x|−1/2), see [4]), and if
v∞ = 0, then the velocity may vanish more slowly than any negative power of
|x| [3, Chap. X].

Similar studies in the literature concentrate on Leray’s problem. This
classical system describes the flow in a pipe with no slip boundary data.
The present knowledge regarding existence concerns only small data [2, 9].
The results about spatial asymptotic behavior give symmetric exponential
decay [1; 3, Chap. XI]. See also [5, 6].

In our case, the slip boundary conditions (1.1)3 together with the refor-
mulation enable us to analyze precisely the structure of solutions of (1.1)
for large |x1|. The main tools to examine the behavior of solutions of prob-
lems (1.6) and (1.8) are the Fourier series expansions with respect to x2 and
fundamental solutions for ordinary differential equations arising from the
systems after the transformation. The estimates are found in nonstandard
weighted Banach spaces connected with a representation of functions given
by the Fourier series, such as l2(0,H)(mσ,π(R)) defined by (2.6) in Section 2.
This approach makes it possible to compute optimal factors of decay, (1.14),
as well as the asymptotic structure of the solutions, which is the second main
result of this note.

Theorem 1.2. Let af , defined as in Theorem 1.1, be greater than λ1. If
v∞ > 0, then

α(x) = Σ+e−π1x1 sinλ1x2 +O(e−2π1x1) as x1 →∞,(1.18)

α(x) = Σ−1 e
−σ1|x1| sinλ1x2 +Σ−2 e

−σ2|x1| sinλ2x2(1.19)

+ . . .+Σ−Bαe
−σBα |x1| sinλBαx2

+O(e−(λ1+σ1)|x1|) as x1 → −∞,
where

λk =
kπ

H
, σk =

√(
v∞
2ν

)2

+
(
kπ

2H

)2

+
v∞
2ν
,

and Bα is defined as follows: σBα < λ1 + σ1 and σBα+1 ≥ λ1 + σ1.
If v∞ = 0, then

(1.20) α(x) = Σe−λ1|x1| sinλ1x2 +O(|x1|e−2λ1|x1|) as |x1| → ∞.
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Moreover , if v∞ > 0 then

v(x) = (v∞, 0) + V +e−π1x1(λ1 cosλ1x2, π1 sinλ1x2)(1.21)

+O(e−2π1x1) as x1 →∞,

and

v(x) = (v∞, 0) + V −1 e−λ1|x1|(cosλ1x2, sinλ1x2) + . . .+(1.22)

+ V −Bve
−λBv |x1|(cosλBvx2, sinλBvx2)

+ V −Bv+1e
−σ1|x1|(λ1 cosλ1x2, σ1 sinλ1x2)

+ . . .+ V −Bv+Bαe
−σBα |x1|(λBα cosλBαx2, σBα sinλBαx2)

+O(e−(λ1+σ1)|x1|) as x1 → −∞,

where Bv is defined as follows: λBv < λ1 + σ1 and λBv+1 ≥ λ1 + σ1; and if
v∞ = 0 then

v(x) = V |x1|e−λ1|x1|(cosλ1x2, sinλ1x2)(1.23)

+O(|x1|e−2λ1|x1|) as |x1| → ∞.

The constants Σ+, Σ−k , Σ, V
+, V −k , V depend on the solution.

The above result describes precisely the form of the solutions for large
|x1| in dependence on the flux of the flow. The structure of the solutions
is connected with the magnitude of the quantities Bα and Bv which are
increasing functions of the Reynolds number Re = v∞H/ν, since πk and σk
can be written as follows:

πk =
H

2
(
√

Re2 +4π2k2 − Re), σk =
H

2
(
√

Re2 +4π2k2 + Re).

Note that the information is more precise in front of the obstacle and shows
a laminar character of the flow on this side, even for large v∞. And behind
the obstacle the information we obtain is poorer.

We underline that our results are obtained under assumptions (1.10) and
af > λ1, which, in some sense, neglects the influence of the external force.
This way the coefficients describing the asymptotic behavior of the solutions
depend only on the Reynolds number and the height of the pipe. Such a
restriction enables us to show the natural structure of the flow. Otherwise,
if the gradient of the force f did not decay sufficiently fast, the rates would
depend on the behavior of the force at infinity. It would add only technical
difficulties with no new interesting features. That is why we omit this case.

The paper is organized as follows. In Section 2 the necessary notations
and definitions of function spaces with elementary properties are introduced.
Next, we reformulate the problem and prove a basic result about decay of
solutions. In Section 4 we prove Theorem 1.1, and at the end Theorem 1.2.



Steady flow in a two-dimensional pipe 45

2. Notation. We denote by Lp(Ω) the standard Lebesgue space of p-
integrable functions. Our technique requires introducing weighted Banach
spaces with different behavior at ∞ and −∞. We use exponential weights
guaranteeing fast decay of functions at infinity.

For σ, π ≥ 0, let

(2.1) mσ,π(R) := {f ∈ L∞(R) : there is M > 0 such that

|f(t)| ≤Me−σ|t| for t < 0 and |f(t)| ≤Me−π|t| for t > 0}.
This is a Banach space with the norm ‖f‖mσ,π(R) = inf{M : M as in (2.1)}.

Similarly, for Ω ⊂ R2 we define

(2.2) Mσ,π(Ω) := {f ∈ L∞(Ω) : there is M > 0 such that

|f(x)| ≤Me−σ|x1| for x1 < 0 and |f(x)| ≤Me−π|x1| for x1 > 0},
with the norm ‖f‖Mσ,π(Ω) = inf{M : M as in (2.2)}.

Also we need the weighted Hilbert spaces

(2.3) L2
σ(Ω) = {f ∈ L2(Ω) : ‖feσ|x1|‖L2(Ω) <∞}

with the norm ‖f‖L2
σ(Ω) = ‖feσ|x1|‖L2(Ω), and

(2.4) L2
σ,π(R) := {f ∈ L2(R) : f(t)eσ|t| ∈ L2(−∞, 0)

and f(t)eπ|t| ∈ L2(0,∞)}
with the norm

‖f‖L2
σ,π(R) = (‖f(t)eσ|t|‖2L2(−∞,0) + ‖f(t)eπ|t|‖2L2(0,∞))

1/2.

Our main considerations concern a straight pipe W = R × (0,H). We
need a special type of L2 spaces which arise from the Fourier transform with
respect to x2.

Let f ∈ L2(0,H;L2(R)). We introduce

(2.5) fk(x1) = 〈f(x), vk〉 =
H�

0

f(x)vk(x2) dx2,

where vk =
√

2/H sin kπ
H x2 for k = 1, 2, . . . Then we define the Banach

space

(2.6) l2(0,H)(mσ,π(R)) :=
{
f ∈ L2(W ) :

∞∑

k=1

‖fk‖2mσ,π(R) <∞
}

with the norm

(2.7) ‖f‖l2(0,H)(mσ,π(R)) =
( ∞∑

k=1

‖fk‖2mσ,π(R)

)1/2
.
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It is worth noting that l2(0,H)(mσ,π(R)) 6= L2(0,H;mσ,π(R)), since one easily
sees that sin(x1x2) 6∈ l2(0,H)(m0,0(R)).

Proposition 2.1. The following relation holds:

(2.8) ‖∇f‖l2(0,H)(mσ,π(R)) ≡
( ∞∑

k=1

(‖ḟk‖2mσ,π(R) + ‖kfk‖2mσ,π(R))
)1/2

,

where the dot denotes differentiation with respect to x1.

Proposition 2.2. If ∇f ∈ l2(0,H)(mσ,π(R)), then f ∈Mσ,π(W ) with the
estimate

(2.9) ‖f‖Mσ,π(W ) ≤ c‖∇f‖l2(0,H)(mσ,π(R)).

Proposition 2.3. Let 0 < τ < min{σ, π}. Then l2(0,H)(mσ,π(R)) ⊂
L2
σ−τ,π−τ (W ) with the estimate

(2.10) ‖f‖L2
σ−τ,π−τ (W ) ≤ c(τ)‖f‖l2(0,H)(mσ,π(R)),

where c(τ)→∞ as τ → 0.

In this paper, the symbol π is used as a parameter of various spaces,
but also sometimes as the 3.14 . . . constant. The author hopes that this will
cause no misunderstanding.

By c we denote a generic constant. Also in the proofs of lemmas we use S
for constants which depend only on S0 from (1.9) and norms of the force f .

3. Preliminaries. We consider the velocity as the sum of a constant
flow and a perturbation:

(3.1) v = (v∞, 0) + u.

Since rot(v∞, 0) = 0, the vorticity stays the same. By (3.1), problem (1.6)
takes the following form:

(3.2)

v∞∂x1α− ν∆α = −u · ∇α+ rot f in Ω,

α = 2(u+ (v∞, 0)) · τχ on ∂Ω,

α→ 0 as |x| → ∞,
where χ is the curvature of the boundary and by (1.8) we have

(3.3)

rotu = α in Ω,

div u = 0 in Ω,

u · n = −(v∞, 0) · n on ∂Ω,

u1 → 0 as |x| → ∞.
Although the domain Ω may not be simply connected, the boundary con-
dition v · n = 0 (see (1.8)3) and (3.1) guarantee the existence of a potential
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(stream function) for the velocity:

(3.4) u = (−∂x2ϕ, ∂x1ϕ).

If Ω is not simply connected the kernel of the elliptic operator (rot-div)
generated by problem (3.3) is nontrivial. We take a potential which is or-
thogonal to the kernel. This way from (3.3) we get the Dirichlet problem for
the system

(3.5)

∆ϕ = α in Ω,

ϕ = b on ∂Ω,

ϕ→ 0 as |x| → ∞,
where b can be obtained from condition (3.3)3 such that b = 0 for |x1| > D.
This feature of the Dirichlet data follows from (1.8)3 and the fact that the
potential of (v∞, 0) is constant on the unbounded parts Γ ↑ and Γ ↓ (recall
that (v∞, 0) = (−∂x2(−v∞x2), ∂x1(−v∞x2))).

Introduce a smooth function η : R→ [0, 1] such that

(3.6) η(x1) =
{

1 for |x1| > D + 2,

0 for |x1| < D,

and |∇η| ≤ 1. Put

(3.7) β = ηα, ψ = ηϕ.

By the properties of η and Ω, the new functions β and ψ are well defined
in W = R × (0,H), since they vanish for |x| < D. By (3.2), β satisfies the
following problem:

(3.8)
v∞∂x1β − ν∆β = −∇⊥ψ · ∇β +G in W,

β = 0 on ∂W,

β → 0 as |x| → ∞,
where G = G1 +G2 and

G1 = − (ϕ∇⊥(1− η) + (1− η)∇⊥ϕ) · ∇(ηα)− 2ν∇η · ∇α− ν(∆η)α,

G2 = η rot g.

Note that suppG1 ⊂ [−D,D]×[0,H] and since the L∞-bound for α is given,
G1 ∈Mα,β for all α, β ∈ R+.

From problem (3.5), the function ψ satisfies the following system:

(3.9)

∆ψ = β +G3 in W,

ψ = 0 on ∂W,

ψ → 0 as |x| → ∞,
where G3 = 2∇η · ∇ϕ+ (∆η)ϕ. Just as for G1, suppG3 ⊂ [−D,D]× [0,H]
and by the boundedness of ϕ, we also have G3 ∈Mα,β for any α, β ∈ R+.
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The structure of the domain together with the boundary data (3.8)2
and (3.9)2 allows us to apply the Fourier series expansion with respect to x2.
Introduce

(3.10) β =
∞∑

k=1

bk(x1)vk(x2), ψ =
∞∑

k=1

qk(x1)vk(x2),

where

(3.11) vk(x2) =

√
2
H

sin
kπ

H
x2 for k = 1, 2, . . .

The functions vk are eigenvectors of the following problem:

(3.12) −∂2
x2
vk = λ2

kvk, vk(0) = vk(H) = 0, with λk =
kπ

H
.

By the Existence Hypothesis, the series are well defined, since β, ψ ∈ L2(W ).
Since, by assumption, the r.h.s. of (3.8) and (3.9) are known we rewrite

these problems as follows:

(3.13)
v∞ḃk − νb̈k + νλ2

kbk = 〈−∇⊥ψ · ∇β, vk〉+ 〈G, vk〉 on R,
q̈k − λ2

kqk = bk + 〈G3, vk〉 on R,
for k = 1, 2, . . . , remembering that bk and qk vanish at infinity.

Equations (3.13) are one-dimensional, which simplifies our considera-
tions. The mail tools for examining the spatial asymptotics are the funda-
mental solutions for the operators on the l.h.s. of (3.13).

Proposition 3.1. The fundamental solution to problem (3.13)1 satisfies

(3.14) v∞Ėk − νËk + νλ2
kEk = δ in R,

where δ is the Dirac delta and

(3.15) Ek(t) = nk

{
eσkt for t < 0,

e−πkt for t > 0,
with

(3.16)
σk =

√
v2∞ + 4ν2λ2

k + v∞

2ν
, nk =

1√
v2∞ + 4ν2λk

,

πk =

√
v2∞ + 4ν2λ2

k − v∞
2ν

.

Proposition 3.2. The fundamental solution to problem (3.13)2 satisfies

(3.17) D̈k − λ2
kDk = δ in R

and

(3.18) Dk(t) = − 1
2λk

{
eλkt for t < 0,

e−λkt for t > 0.
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Remark. Since the quantities λk, πk, σk and nk are important in our
considerations, note that for all k,

(3.19) πk ≤ λk ≤ σk,
(3.20) nkλk + nkπk + nkσk ≤ c(v∞, ν),

where the constant in (3.20) is independent of k.

First we show some basic estimates in weighted spaces which follow from
the energy approach.

Lemma 3.1. The solutions given by the Existence Hypothesis satisfy

(3.21) ‖∇β|x1| ‖L2(W ) + ‖∇ψ|x1| ‖L2(W ) ≤ S.
Moreover , for any L > 1,

(3.22) ‖∇ψ‖L∞((−∞,−L)∪(L,∞))×(0,H)) ≤ L−aS
for some a > 0.

Proof. Multiplying (3.8)1 by βx2
1, integrating over W , and remembering

that β ∈ L2(W ) and ∇f ∈ L2
σ,π(W ) we obtain

(3.23) ‖∇β|x1| ‖L2(W ) ≤ S,
since

(3.24)
∣∣∣

�

W

∇⊥ψ · ∇ββx2
1 dx

∣∣∣ ≤ ε‖∇β|x1| ‖2L2(W ) + S.

Similarly from (3.9) we get

(3.25) ‖∇ψ|x1| ‖L2(W ) ≤ S.
Hence by the interpolation theorem from (3.25) and the C1-bound of u we
get estimate (3.22). Lemma 3.1 is proved.

Lemma 3.2. The vorticity satisfies the following bound :

(3.26) ‖∇β‖L2
σ0,π0

(W ) ≤ S,
where

(3.27) σ0 =

√(
v∞
4ν

)2

+
λ2

1

8
+
v∞
4ν
, π0 =

√(
v∞
4ν

)2

+
λ2

1

8
− v∞

4ν
.

Proof. From (3.13)1,

(3.28)
v∞
ν
ḃk − b̈k + λ2

kbk =
1
ν
Nk,

where Nk = 〈−∇⊥ψ · ∇β + G, vk〉. Since supp bk ⊂ (−∞,−L] ∪ [L,∞) we
consider the problem for x1 > 0; the case of x1 < 0 can be treated similarly.
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Multiply (3.28) by bke2π0x1 and integrate over R+ to get

(3.29)
∞�

0

(
ḃ2ke

2π0x1 +
(
λ2
k−

v∞
ν
π0−2π2

0

)
b2ke

2π0x1

)
dx1 =

∞�

0

Nkbke
2π0x1 dx1.

To control the whole norm of ∇β (see Proposition 2.1), we split the coeffi-
cient as

(3.30) λ2
k −

v∞
ν
π0 − 2π2

0 =
λ2
k

2
+
λ2

1

4
+
(
λ2
k

2
− λ2

1

4
− v∞

ν
π0 − 2π2

0

)
.

Now, we find π0. We require that

(3.31)
λ2
k

2
− λ2

1

4
− v∞

ν
π0 − 2π2

0 ≥ 0

for all k ≥ 1. Since λk ≥ λ1 it is enough to take for π0 the positive root of
the equation λ2

1
4 − v∞

ν π0 − 2π2
0 = 0, i.e. π0 as in (3.27). Then, applying the

Schwarz inequality to the r.h.s. of (3.29) we get

(3.32)
∞�

0

(
ḃ2k +

λ2
k

2
b2k

)
e2π0x1 dx1 +

∞�

0

λ2
1

4
b2ke

2π0x1 dx1

≤ c
∞�

0

N2
ke

2π0x1 dx1 +
∞�

0

λ2
1

4
b2ke

2π0x1 dx1.

This way we obtain

(3.33) ‖∇β‖L2
π0

(R+×(0,H)) ≤ c‖−∇⊥ψ · ∇β +G‖L2
π0

(R+×(0,H)).

By Lemma 3.1 we choose L so large that

(3.34) c‖∇ψ‖L∞((L,∞)×(0,H)) ≤ 1/2,

where the constant c is the same as in (3.33); and by (3.33) we get

(3.35) ‖∇β‖L2
π0

(R+×(0,H)) ≤ S.

We repeat the same procedure for (−∞, 0) with weight eσ|x1| to obtain

(3.36) ‖∇β‖L2
σ0

(R−×(0,H)) ≤ S
with σ0 as in (3.27). Estimates (3.35) and (3.36) give (3.26). Lemma 3.2 is
proved.

Lemma 3.3. The velocity satisfies the following bounds:

(3.37) ‖∇2ψ‖l2(0,H)(mσ0/2,π0/2
(R)) ≤ S, ‖∇ψ‖Mσ0/2,π0/2

≤ S.

Proof. By (3.13)2,

(3.38) q̈k − λ2
kqk = Bk,
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where Bk = bk + 〈G3, vk〉. By Lemma 3.2 and the definition of G3 we get∑∞
k=1Bkvk ∈ L2

σ0,π0
(W ). Hence, using Proposition 3.2 we have

(3.39) q̇k(t) =
�

R
Ḋk(t− y)Bk(y) dy =

0�

−∞
+
t�

0

+
∞�

t

= K1 +K2 +K3.

If t > 0, then

K2
1(t) ≤ c

( 0�

−∞
e−λk(t−y)Bk(y) dy

)2

≤ c
0�

−∞
e−2λk(t−y)e2σ0y dy ‖Bk‖2L2

σ0,π0
(R) ≤ ce−2λkt‖Bk‖2L2

σ0,π0
(R),

K2
2(t) ≤ c

( t�

0

e−2λk(t−y)e−2π0y dy
)
‖Bk‖2L2

σ0,π0
(R) ≤ cte−2π0t‖Bk‖2L2

σ0,π0
(R),

where we used π0 ≤ λ1, σ0; hence by the boundedness of te−π0t we obtain

K2
2(t) ≤ ce−π0t‖Bk‖2L2

σ0,π0
(R).

Finally,

K2
3(t) ≤ c

(∞�

t

e−2λk(y−t)e−2π0y dy
)
‖Bk‖2L2

σ0,π0
(R) ≤ ce−2π0t‖Bk‖2L2

σ0,π0
(R).

By (3.39) and the estimates for Ki, we conclude that

(3.40) q̇2
k(t) ≤ ce−π0t‖Bk‖2L2

σ0,π0
(R).

For x1 < 0 with weight eσ0|x1| as well as for the derivative with respect
to x2 analogous estimates can be obtained. Thus we have proved

(3.41) ‖∇ψ‖l2(0,H)(mσ0/2,π0/2
(R)) ≤ S.

Since, by Lemma 3.2, ∇β ∈ L2
σ0,π0

(W ), we can also obtain

(3.42) ‖∇2ψ‖l2(0,H)(mσ0/2,π0/2
(R)) ≤ S,

which, by Proposition 2.2, guarantees ∇ψ ∈Mσ0/2,π0/2 with the bound

(3.43) ‖∇ψ‖Mσ0/2,π0/2
≤ S.

Lemma 3.3 is proved.

4. Proof of Theorem 1.1. The goal of this section is to show that

∇β ∈ l2(0,H)(mπ1,σ1(R)).

If we have this information the rest of Theorem 1.1 will be a corollary
from Proposition 2.2. At the beginning we assume ∇β ∈ l2(0,H)(mσ,π(R))
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for some σ, π > 0. Next, we examine ∇⊥ψ · ∇β. By Lemma 3.3 we have
∇⊥ψ ∈Mσ0/2,π0/2(W ), hence by Proposition 2.3 for 0 < τ < π0/2 it follows
that

∇⊥ψ · ∇β ∈ L2(0,H;L2
σ+τ,π+τ (R))

with the estimate

(4.1) ‖∇⊥ψ · ∇β‖L2(0,H;L2
σ+τ,π+τ (R))

≤ c(π0/2− τ)‖∇ψ‖Mσ0/2,π0/2
‖∇β‖l2(0,H)(mσ,π(R)),

where c(π0/2− τ) is well defined for 0 < τ < π0/2.
Since G ∈ L2(0,H;L2

σ+τ,π+τ (R)), assuming that τ < af , where af is as
in (1.10), we introduce the coefficients

(4.2) 〈−∇⊥ψ · ∇β +G, vk〉 ·
{
e(σ+τ)|x1| for x1 ≤ 0

e(π+τ)|x1| for x1 > 0

}
= Ak(x1)

such that {‖Ak‖L2(R)}∞k=1 = {ak}∞k=1 ∈ l2 with

(4.3)
( ∞∑

k=1

a2
k

)1/2
= ‖−∇⊥ψ · ∇β +G‖L2(0,H;L2

σ+τ,π+τ (R)).

Moreover, by (4.1) we have

(4.4)
( ∞∑

k=1

a2
k

)1/2
≤ S‖∇β‖l2(0,H)(mσ,π(R)) + S,

where the constants depend on the quantities already given by Lemmas 3.2
and 3.3.

Take t > L (the parameter L will be defined later). Then

(4.5) ḃk(t) =
�

R
Ėk(t− y)Nk(y) dy =

∞�

t

+
t�

−∞
= I1(t) + I2(t).

For I1, we have t− y < 0, hence by (3.15),

I2
1 (t) ≤

(
nk

∞�

t

σke
−σk(y−t)e−(π+τ)y|Ak(y)| dy

)2

≤ ce2σkt
(∞�

t

e−2(σk+π+τ)y dy
)
a2
k ≤

ca2
k

σk + π + τ
e−2τte−2πt.

For I2, we have t− y > 0, hence by (3.15),

(4.6) I2(t) =
0�

−∞
+
t�

0

= I21(t) + I22(t),
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and

I2
21(t) ≤ (nkπk)2

( 0�

−∞
e−πk(t−y)|Nk(y)| dy

)2

≤ ce−2πkt
( 0�

−∞
e2πky dy

)( 0�

−∞
N2
k (y) dy

)
≤ c

πk
e−2πkt

0�

−∞
N2
k (y) dy.

To get more precise information we divide I22(t) into two terms

(4.7) I22(t) =
L�

0

+
t�

L

= I221(t) + I222(t).

For I221(t) we have

I2
221(t) ≤ c

( L�

0

e−πk(t−y)Nk(y) dy
)2
≤ ce−2πkt

( L�

0

e2πky dy
)( L�

0

N2
k (y) dy

)

≤ c

πk
e−2π1te2π1L

L�

0

N2
k (y) dy.

Finally,

I2
222(t) ≤ c

( t�

L

e−πk(t−y)e−(π+τ)y|Ak(y)| dy
)2

≤ ce−2πkt
( t�

L

e2(πk−π−τ)y dy
)
a2
k ≤ ca2

ke
−2πte−2(πk−π)t

t�

L

e2(πk−π)ye−2τy dy;

but we remember that πk − π ≥ 0, hence

I2
222(t) ≤ ca2

ke
−2πt

t�

L

e2(πk−π)(y−t)e−2τy dy;

but 2(πk − π)(y − t) ≤ 0, which implies e2(πk−π)(y−t) ≤ 1, and so

I2
222(t) ≤ ca2

ke
−2πt

t�

L

e−2τy dy ≤ ca2
k

τ
e−2τLe−2πt.

Since |ḃk(t)|2 ≤ c(I2
1 (t) + I2

21(t) + I2
221(t) + I2

222(t)), from the above esti-
mations we conclude that

|ḃk(t)|2 ≤
ca2
k

σk + π + τ
e−2τt e−2πt +

c

πk
e−2πkt

0�

−∞
N2
k (y) dy(4.8)

+
c

πk
e−2π1t e2π1L

L�

0

N2
k (y) dy +

ca2
k

τ
e−2τLe−2πt.
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Therefore
∞∑

k=1

|ḃk(t)|2e2πt ≤ ce−2τL
∞∑

k=1

a2
k(4.9)

+ c(1 + e2π1L)
∞∑

k=1

( ∞�

−∞
N2
k (y) dy

)
e−2(π1−π)t.

Thus, we see that the optimal factor of decay for positive x1 is π = π1. Next,
note that

(4.10)
∞∑

k=1

∞�

−∞
N2
k (y) dy = ‖−∇⊥ψ · ∇β +G‖2L2(W ) ≤ S.

Similar considerations for the derivative with respect to x2 show that for
x1 > L,

(4.11)
∞∑

k=1

(|ḃk(x1)|2 + λk|bk(t)|2)e2π1x1

≤ Ce−2τL
∞∑

k=1

(|ḃk(x1)|2 + λk|bk(t)|2)e2π1x1 + S.

Taking L so large that Ce−2τL < 1/2, we get

(4.12)
∞∑

k=1

(|ḃk(t)|2 + |λkbk(t)|2)e2π1x1 ≤ S.

We repeat the same analysis for x1 < −L (maybe for larger L) to obtain

(4.13)
∞∑

k=1

(|ḃk(t)|2 + |λkbk(t)|2)e2σ1|x1| ≤ S.

From (4.12) and (4.13) we conclude

(4.14) ‖∇β‖l2(0,H)(mσ1,π1 (R)) ≤ S.

By Proposition 2.2, this estimate gives us the inclusion

(4.15) β ∈Mσ1,π1 .

But (4.15) is valid only for x1 ∈ (−∞,−L) ∪ (L,∞). To fill the gap it is
enough to note that by the Existence Hypothesis ∇α is bounded in the
L∞-norm in the whole domain, so in particular for x1 ∈ [−L,L]. By the
definition of β we conclude that α ∈ Mσ1,π1 with a suitable estimate (1.15)
as in the statement of Theorem 1.1.

Next, we prove the second part of Theorem 1.1 concerning the behavior
of the velocity. Since u = ∇⊥ϕ, we analyze the equation for ψ. By Proposi-
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tion 3.2, as in Lemma 3.3, we recall

(4.16) q̇k(t) =
�

R
Ḋk(t− y)(bk + 〈G3, vk〉) dy = J1(t) + J2(t),

where J1 and J2 are connected with bk and G3, respectively. Since, by the
definition, G3 belongs to L2

σ,π(W ) together with its derivatives for any σ, π,
but not to l2(0,H)(mσ,π(R)), we analyze these terms separately.

Take t > 1. Then

(4.17) J1(t) =
0�

−∞
+
t�

0

+
∞�

t

= J11(t) + J12(t) + J13(t).

We estimate

|J11(t)| ≤ c
0�

−∞
e−λk(t−y)e−σ1|y|‖bk‖mσ1,π1 (R) dy ≤ ce−λkt‖bk‖mσ1,π1(R),

|J13(t)| ≤ c
∞�

t

e−λk(y−t)e−π1y‖bk‖mσ1,π1(R) dy ≤ ce−π1t‖bk‖mσ1,π1 (R),

|J12(t)| ≤ c‖bk‖mσ1,π1 (R)e
−λkt

t�

0

e−(π1−λk)y dy

≤ c‖bk‖mσ1,π1 (R)

{
|λk − π1|−1e−min{π1,λk}t for π1 6= λk,

te−π1t for π1 = λk.
But the condition π1 6= λk, by the definition of these quantities, is equivalent
to v∞ > 0. Hence for t > 1,

(4.18) |J1(t)| ≤ c‖bk‖mσ1,π1

{
e−π1t if v∞ > 0,

te−λ1t if v∞ = 0.
For J2, just as for the vorticity we obtain

(4.19) |J2(t)| ≤ c‖〈G3, vk〉‖L2
2λ1,2λ1

(R)e
−λ1t.

The considerations for t < −1 lead to the estimate

(4.20) |J1(t)| ≤ c‖bk‖mσ1,π1

{
e−λ1|t| if v∞ > 0,

|t|e−λ1|t| if v∞ = 0.

To see (4.20), it is enough to note that σ1 > λ1 for v∞ > 0.
Hence for v∞ > 0 we obtain

(4.21) ‖∇ψ‖l2(0,H)(mλ1,π1 (R)) ≤ c‖β‖l2(0,H)(mσ1,π1 (R)) + S.

To finish the proof of Theorem 1.1 we recall that (4.14) gives a bound
on ∇β, hence we can also get

(4.22) ‖∇2ψ‖l2(0,H)(mλ1,π1 (R)) ≤ S.
And by Proposition 2.2 and the boundedness of ϕ we obtain
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(4.23) v − (v∞, 0) ∈Mλ1,π1

with estimates (1.16).
If v∞ = 0, from (4.18) and (4.19) we conclude that

(4.24)

∥∥∥∥
∇2ψ

1 + |x1|

∥∥∥∥
l2(0,H)(mλ1,λ1(R))

≤ S,

which together with Proposition 2.2 for |x1| > 1 gives

(4.25) |∇ψ| ≤ c|x1|e−λ1|x1|.

Estimate (4.25) implies (1.17). Theorem 1.1 is proved.

5. Asymptotic structure. We now prove Theorem 1.2. We assume
that af > λ1 to neglect the influence of the external force. To analyze
the asymptotic structure we apply the forms (3.10). First, we consider the
behavior of the vorticity. By Proposition 3.1,

(5.1) bk(t) =
∞�

−∞
Ek(t− y)Nk(y) dy,

where Nk(·) is as in (3.28). Consider the case x1 →∞. Then

lim
t→∞

bk(t) = lim
t→∞

t�

−∞
Ek(t− y)Nk(y) dy(5.2)

= lim
t→∞

( 0�

−∞
+
t�

0

)
= lim

t→∞
(H+

1 (t) +H+
2 (t)).

We see that

(5.3) H+
1 (t) = nke

−πkt
0�

−∞
eπkyNy(y) dy.

This leads to the first term of the expansion for k = 1; we get a nonzero
element with decay e−π1x1 . The terms with k ≥ 2 decay at least with fac-
tor π2.

By the results of Theorem 1.1 we get the following behavior of Nk:

(5.4) Nk(y) ∼ e−2π1y for y � 1.
Hence

(5.5) H+
2 (t) = nke

−πkt
t�

0

eπkye−2π1yθ(y) dy,

where θ(·) is in L∞. And again a term with decay e−π1t appears only for
k = 1; for k ≥ 2 we get (just as for J1 in Section 4) the behavior

(5.6) H+
2 (t) ∼

{
e−2π1t if v∞ > 0,

te−λ2t if v∞ = 0.
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Note that π2 > 2π1 for v∞ > 0 and π2 = λ2 = 2π1 = 2λ1 if v∞ = 0.
Relation (5.6) yields suitable estimates which guarantee the convergence of
the series β, by Theorem 1.1. Finally, one can easily check that

e2π1t
∞�

t

Ek(t− y)Nk(y) dy = O(1).

Thus for x1 →∞ we have

(5.7) α(x) = Σ+e−π1x1 sinλ1x1 +
{
O(e−2π1x1) if v∞ > 0,

O(x1e
−2λ1x1) if v∞ = 0.

For x1 < 0 we investigate

lim
t→−∞

bk(t) = lim
t→−∞

∞�

t

Ek(t− y)Nk(y) dy(5.8)

= lim
t→−∞

( 0�

t

+
∞�

0

)
= lim

t→−∞
(H−1 (t) +H−2 (t)).

The analysis of

(5.9) H−2 (t) = nke
σkt
∞�

0

e−σkyNk(y) dy

gives elements with decay e−σk|x1|. Next, by Theorem 1.1,

(5.10) H−1 (t) = nke
σkt

0�

t

e−σkye(λ1+σ1)yθ(y) dy

decays with speed e−σk|t| for k ≤ Bα, where

(5.11) σBα < λ1 + σ1, σBα+1 ≥ λ1 + σ1.

And for k > Bα,

(5.12) H−2 (t) ∼
{
e−(λ1+σ1)|t| if v∞ > 0,

|t|e−λ2|t| if v∞ = 0.

Note that σ2 < λ1 + σ1 if v∞ > 0. And in general Bα →∞ as v∞/ν →∞.
Then we write the asymptotic behavior for x1 → −∞ as follows: if v∞ > 0
then

α(x) = Σ−1 e
−σ1|x1|v1 +Σ−2 e

−σ2|x1|v2 + . . .+Σ−Bαe
−σBα |x1|vBα(5.13)

+O(e−(λ1+σ1)|x1|),

and if v∞ = 0 then
(5.14) α(x) = Σe−λ1|x1|v1 +O(|x1|e−2λ1|x1|),

where vk are the eigenvectors defined as in (3.10). The behavior of the rest� t
−∞Ek(t− y)Nk(y) dy is as desired.

We omit the proof of the part of Theorem 1.2 concerning the velocity,
since it follows from calculations similar to those for the vorticity. To get
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the expansions (1.21), (1.22) and (1.23) it is enough to repeat the analysis
from the second part of the proof of Theorem 1.1, for the velocity given as
the solution of (3.13)2, applying the obtained structure of the vorticity.
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