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Normed �upper interval� algebraswithout nontrivial losed subalgebrasbyC. J. Read (Leeds)
Abstrat. It is a long standing open problem whether there is any in�nite-dimen-sional ommutative Banah algebra without nontrivial losed ideals. This is in some sensethe Banah algebraists' ounterpart to the invariant subspae problem for Banah spaes.We do not here solve this famous problem, but solve a related problem, that of �nding(neessarily ommutative) in�nite-dimensional normed algebras whih do not even havenontrivial losed subalgebras. Our examples are inomplete normed algebras rather thanBanah algebras. The problem of �nding suh algebras, posed by W. Żelazko, was untilnow open not only for normed algebras but for more general topologial algebras. Ouronstrution here is kept short beause it uses a key lemma involved in the onstrutionof the �LRRW algebra� of Loy, Read, Runde and Willis. The algebras we �nd are densesubalgebras of ertain ommutative Banah algebras with ompat multipliation.1. Introdution. The author would �rst like to express his gratitudeto W. Żelazko for muh kind hospitality, and for introduing him to thispartiular problem. Żelazko [13℄ produed examples of in�nite-dimensionalsemitopologial omplex algebras without nontrivial losed subalgebras, andhe asked if one ould have in�nite-dimensional topologial algebras withoutnontrivial losed subalgebras. Here we produe normed algebras with thatproperty, making fundamental use of ideas found in [10℄.The normed algebras we use are dense subalgebras of ertain singly gen-erated radial Banah algebras, the subalgebra onsisting of polynomials inthe generator S. For suh an algebra to solve our problem, it is lear that thestandard ideals (that is, the losed prinipal ideals generated by Sk, k ∈ N)of the Banah algebras in question must all be trivial. This is a propertythat our Banah algebras share with the original �LRRW algebra� desribedin [10℄. The LRRW algebra is very similar to the ones desribed here; butin the LRRW algebra, the dense subalgebra generated by S does have non-trivial relatively losed subalgebras, for a reason we will explain in �6 below.2000 Mathematis Subjet Classi�ation: Primary 46J45; Seondary 46J20, 47A15.Key words and phrases: Banah algebra, subalgebra, radial, ideal, invariant subspae.[295℄



296 C. J. ReadSo although our present onstrution an be very similar to that of [10℄, itannot be quite the same. The matter of standard versus nonstandard idealsin singly generated radial Banah algebras has been extensively disussed(see e.g. Domar [4℄, Grabiner and Thomas [8℄, Dales and MClure [3℄ and thegeneral exposition in �4.6 of Dales [2℄), the high point in the investigationprobably being Mar Thomas' disovery [12℄ of nonstandard ideals in theBanah algebra l1(ω), for ertain radial weights ω.Conerning the invariant subspae problem, ounterexamples were �rstfound independently by En�o [5℄ and Read [11℄. Read further found oun-terxamples on a number of well known Banah spaes, but never yet on anyre�exive Banah spae. Lomonosov's onjeture that every nontrivial weaklyompat operator has hyperinvariant subspaes therefore remains open. Iftrue, it would have the orollary that any nontrivial ommutative Banahalgebra with weakly ompat multipliation has nontrivial losed ideals.Now the ompletions of the normed algebras in our present onstrutionare ommutative Banah algebras with ompat multipliation, whih musttherefore have nontrivial losed ideals by Lomonosov's theorem [9℄. (Thereis a proof in �4 of [10℄ that the LRRW algebra has ompat multiplia-tion; we do not repeat it here, but nonetheless our algebras will have om-pat multipliation for similar reasons.) Indeed, sine the algebras are singlygenerated the earlier theorem of Aronszajn and Smith [1℄ would su�e toshow that suh losed ideals must exist. Therefore, we are fairly on�dentthat our example annot, by any small perturbation, be turned into a oun-terexample for the losed ideals problem for ommutative Banah algebras.When one takes the ompletion of our algebras, one introdues not onlynontrivial losed subalgebras, but nontrivial losed ideals as well. In a forth-oming paper with F. Ghahramani and G. A. Willis [7℄, we will harateriseall the ideals of the LRRW algebra, and investigate its ohomology morethoroughly.2. �Upper interval� funtions. As with many mathematial onstru-tions, our present work has an underlying sequene whih must satisfy growthonditions�it must �inrease su�iently rapidly�. For this paper it is onve-nient for us to emphasise that we are not really onstruting just one normedalgebra; we are onstruting a funtion whih takes a sequene d ⊂ N sat-isfying growth onditions and returns a normed algebra with interestingproperties.2.1. Definition. Let D = N
N be the olletion of all sequenes of pos-itive integers. Let f0 ∈ N and fi : N

i → N be arbitrary funtions. Write ffor the sequene (fi)
∞

i=0. We de�ne the upper interval Df to be the olle-tion of all sequenes d ∈ D satisfying the growth onditions d1 ≥ f0 and



Algebras without nontrivial losed subalgebras 297
di+1 ≥ fi(d1, . . . , di) for all i ∈ N. An upper interval funtion is a funtionfrom an upper interval into some set X; an upper interval algebra is an upperinterval funtion A : Df → X where X is a set of algebras in the ategoryof omplex normed algebras. So for eah d ∈ Df we get a omplex normedalgebra A (d).In this paper our algebras A (d) will be of ountable dimension, generatedby an element S, in suh a way that the linear span lin{Si : 1 ≤ i ≤ n} isisometrially isomorphi to ln1 for all n.Now if Df ⊂ D is an upper interval, and P (d) a proposition dependingon the element d ∈ Df , we say P (d) is true �provided d inreases su�ientlyrapidly� if there is a subinterval Dg ⊂ Df suh that P (d) is true for all
d ∈ Dg.If M : Df → N and N : Df → N are positive-integer-valued intervalfuntions, we say M ≫ N (with onstant m ∈ N) if N(d) is a funtionof d1, . . . , dm−1 alone, M(d) is a funtion of d1, . . . , dm alone, and for �xed
d1, . . . , dm−1 one has M(d1, . . . , dm) → ∞ as dm → ∞. If so, it is easily seenthat for any �xed funtion F : N → N, one has

M(d) > F (N(d))provided d inreases su�iently rapidly; for the only extra growth onditionwe need is that(2.1) M(d1, . . . , dm) > F (N(d1, . . . , dm−1)),whih (for �xed d1, . . . , dm−1) is true for large enough dm.Likewise if M : Df → D and N : Df → D are interval funtions we saythat M ≫ N if, writing Mi (resp. Ni) for the ith element of the sequene
M(d) (resp. N(d)) one has Mi ≫ Ni for all i, with onstants mi tendingto in�nity as i → ∞. If M ≫ N , and F : N

2 → N is any funtion, thenprovided d inreases su�iently rapidly one has(2.2) Mi(d) > F (i, Ni(d))for all i ∈ N.3. The method of proof3.1. Definition. Now let A = A (d) be an upper interval algebrade�ned for sequenes d in the upper interval Df ⊂ D. We say A has propertyA if for all d ∈ Df , A (d) onsists of all polynomials Sp(S) (p ∈ C[S]) in agenerator S, and has the further properties:(i) ‖S‖ = 1, and there is a bounded approximate identity for S onsist-ing of normalised powers S1+ni/‖S1+ni‖ of the generator.



298 C. J. Read(ii) This bounded approximate identity is �good enough� that, writing
ηi = ‖S2+ni/‖S1+ni‖−S‖, the sequenes (ni)

∞

i=1 and (η−1
i )∞i=1, bothdepending on d, satisfy(3.1) (η−1

i )∞i=1 ≫ (ni)
∞

i=1.(iii) Writing ζi = ‖S1+ni‖, we have(3.2) (ζ−1
i )∞i=1 ≫ (ni)

∞

i=1.(iv) The sequene ni is stritly inreasing; and for all k ∈ N, the numberof i suh that 1 + ni is not oprime to k is �nite.Now it is a fairly straightforward onsequene of [10℄ that there is anupper interval algebra with property A. The main result of this paper is thefollowing:3.2. Theorem. Let A be an upper interval algebra with property A.Then provided d inreases su�iently rapidly , the normed algebra A (d) hasno losed subalgebra exept {0} and A (d).Let us note in passing that (3.2) ensures that, provided d inreases suf-�iently rapidly, the normed algebras obtained from our onstrution willbe radial (for provided d inreases su�iently rapidly, we an assume that(say) ‖S1+ni‖ ≤ n−ni

i for all i).4. Proof of Theorem 3.2. Let x ∈ A (d) be nonzero; we laim thelosed subalgebra generated by x is A itself. We may assume that
x = q(S) = Sk(1 + p(S))where k > 0 and t divides the nonzero polynomial p(t). Write M = 1 + |p|,where |p| denotes the sum of the absolute values of the oe�ients of thepolynomial p; and write d = d(p), the degree of p. Let I be large enough that

1 + ni is oprime to k for all i ≥ I. For eah i ≥ I, pik integers (li,j)
ni

j=1,
1 ≤ li,j ≤ ni, with the property that kli,j is ongruent to j mod 1 + ni(j = 1, . . . , ni). Write

kli,j = j + qi,j(1 + ni),where qi,j ∈ N0 and, obviously, qi,j ≤ k. For eah i ≤ I and 1 ≤ j ≤ ni,let us de�ne polynomials pi,j by pi,j(t) = (1 + p(t))li,j − 1, so that t divides
pi,j(t), and the degree d(pi,j) ≤ dni. We will have(4.1) xli,j = Skli,j (1 + p(S))li,j = Sj+qi,j(1+ni)(1 + pi,j(S)).For n ∈ N, let τn : A → A be the (neessarily disontinuous) trunationoperator with τn(Si) = Si (i ≤ n) or zero (i > n). Let us de�ne

πi,j(S) = τni
(Sj(1 + pi,j(S))).Let pi,j(t) =

∑dni

r=1λi,j,rt
r.



Algebras without nontrivial losed subalgebras 299Now the vetors (πi,j(S))ni

j=1 are linearly independent and span the sub-spae lin{Sj : 1 ≤ j ≤ ni}. So for eah i ≥ I, there are omplex numbers
(µ1, . . . , µni

) ∈ C
ni suh that

ni
∑

j=1

µjπi,j(S) = S.

In fat the vetor µ is equal to (1, 0, . . . , 0)(I + L)−1 where L is the ni by
ni square matrix with entries Lj,r = λi,j,r (r > j) or zero (r ≤ j). Sine L isnilpotent, (I + L)−1 =

∑ni−1
j=0 Lj ; if ‖ · ‖2 denotes the l2 norm on vetors in(or operators on) C

ni , we have(4.2) ‖µ‖2 ≤
ni−1
∑

j=0

‖Lj‖2 ≤
ni−1
∑

j=0

‖L‖j
2.The jth row of L has entries Lj,r with ∑

r |Lj,r| ≤ |pi,j | ≤ (1 + |p|)li,j − 1 =
M li,j − 1. So the Hilbert�Shmidt norm of L is at most √ni · (M li,j − 1) ≤√

ni · (Mni − 1). Hene,(4.3) ‖µ‖2 ≤
ni−1
∑

j=0

‖L‖j
HS ≤

ni−1
∑

j=0

(
√

ni · (Mni − 1))j ≤ Mn2
i n

(1+ni)/2
i .We laim the vetor

yi =

ni
∑

j=1

µj
xli,j

‖S1+ni‖qi,jis a good approximation to S. For by (4.1), the norm ‖yi − S‖ is equal to
∥

∥

∥

∥

ni
∑

j=1

µj
xj+qi,j(1+ni)

‖S1+ni‖qi,j
− S

∥

∥

∥

∥

=

∥

∥

∥

∥

ni
∑

j=1

µj
Sj+qi,j(1+ni)(1 + pi,j(S))

‖S1+ni‖qi,j
− S

∥

∥

∥

∥

(4.4)
≤ ε1 + ε2where

ε1 =

∥

∥

∥

∥

ni
∑

j=1

µj

(

Sj+qi,j(1+ni)

‖S1+ni‖qi,j
− Sj

)

(1 + pi,j(S))

∥

∥

∥

∥

,

ε2 =
∥

∥

∥

ni
∑

j=1

µjS
j(1 + pi,j(S)) − S

∥

∥

∥
.

Now ‖S‖ = 1 and ‖S2+ni/‖S1+ni‖ − S‖ = ηi, hene(4.5) ∥

∥

∥

∥

Sj+qi,j(1+ni)

‖S1+ni‖qi,j
− Sj

∥

∥

∥

∥

≤ qi,jηi ≤ kηifor all i, j. Hene
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ε1 ≤ kηi ·

ni
∑

j=1

|µj| · |1 + pi,j | ≤ kηi · ni · ‖µ‖2 ·
ni

∑

j=1

|1 + pi,j |(4.6)
≤ kηi · Mn2

i n
2+ni/2
i ·

ni
∑

j=1

M li,j ≤ kηi · M2n2
i n

3+ni/2
i .

Now we have hosen the vetor µ so that ∑ni

j=1µjτni
(Sj(1 + pi,j(S))) = S.Aordingly

(4.7) ε2 =
∥

∥

∥

ni
∑

j=1

µj(1− τni
)(Sj(1 + pi,j(S)))

∥

∥

∥
≤

ni
∑

j=1

|µj| · |1 + pi,j | · ‖S1+ni‖

beause ‖S‖ = 1, hene ‖(1 − τni
)q(S)‖ ≤ ‖S1+ni‖ · |q| for any polyno-mial q. Now we have ‖S1+ni‖ = ζi and |1 + pi,j | ≤ M li,j ≤ Mni and

|µi| ≤ Mn2
i n

(1+ni)/2
i . So,(4.8) ε2 ≤ ζi · M2n2

i n
(3+ni)/2
i .Putting (4.6) and (4.8) into (4.4), we an be sure that the vetors yi tendto S as i → ∞ (and so the losed algebra generated by x is indeed the wholeof A (d)) provided that for eah �xed R > 0, we have

Rn2
i (ηi + ζi) → 0as i → ∞. It is enough, for example, that min(η−1

i , ζ−1
i ) ≥ in

2
i for all i ∈ N;and sine we know (η−1

i )∞i=1 ≫ (ni)
∞

i=1 and (ζ−1
i )∞i=1 ≫ (ni)

∞

i=1, that willertainly happen provided d inreases su�iently rapidly. So provided dinreases su�iently rapidly, the normed algebra A (d) has no nontriviallosed subalgebra.5. Obtaining property A from [10℄. In this setion we make The-orem 3.2 useful by using the methods of [10℄ to obtain an upper intervalalgebra A with property A. We an then use the theorem to dedue that(provided d inreases su�iently rapidly) the normed algebra A (d) has nonontrivial losed subalgebra.We begin by realling some notation from [10℄ (more spei�ally, from�4 of [10℄). Reall that a valid partial basis for the algebra SC[S] is a �nitesequene of polynomials (pi(S))n
i=1 suh that deg pi = i, and one obtains analgebra seminorm ‖ · ‖n on SC[S] if one de�nes(5.1) ∥

∥

∥

n
∑

i=1

λipi(S)
∥

∥

∥

n
=

n
∑

i=1

|λi|,and for a general polynomial p ∈ SC[S],(5.2) ‖p(S)‖n = ‖τnp(S)‖n,



Algebras without nontrivial losed subalgebras 301where τn is the trunation operator. The partial basis is onsidered �valid�only if the seminorm is submultipliative with �room to spare�, that is,
‖pi(S)pj(S)‖n < 1 (strit inequality) for all 1 ≤ i, j ≤ n.Obviously the use of notation ‖ · ‖n for the norm hints that we are goingto extend things to a larger value of n; and indeed it is a lemma of [10℄(Lemma 4.1) that if (pi(S))n

i=1 is a valid partial basis with p1(S) = S, and if
η > 0, then one an �nd an extended valid partial basis (pi(S))N

i=1, for some
N > n, with good properties.The main good property is that for some m ∈ (n, N) the element
Sm/‖Sm‖N is a �good� approximate identity: one has(5.3) ‖Sm+1/‖Sm‖N − S‖N < η.Another good property for the longer valid partial basis is that ‖Sn+1‖N <
η‖Sn‖N , in partiular ‖Sn+1‖N < η (for p1(S) = S gives us ‖S‖N = 1). Thelemma of [10℄ gives other properties, but these two are the ones we shall usein this paper. In [10℄, the statement of the lemma does not speify what thevalue of m is; but in the proof given there, one in fat has m = n + 1. Thisturns out to be important for our purposes, so let us state our own lemma,in the form we are going to use in this paper.5.1. Lemma. Let (pi(S))n

i=1 be a valid partial basis of SC[S], and let
η > 0. Then there is an N > n and a valid partial basis (pi(S))N

i=1, extendingthe original one, suh that
‖Sn+1‖N < η and ‖Sn+2/‖Sn+1‖N − S‖N < η.As a trivial orollary we note that it is always possible to extend a validpartial basis (pi(S))n

i=1 to a larger one (pi(S))N
i=1 for arbitrarily large N ; onean piture oneself repeatedly using Lemma 5.1 until a large enough N isobtained (or better still, onvine oneself that given (pi(S))n

i=1, if one piks alarge enough C > 0 and de�nes pi(S) = Ci−1Si for i > n, then the sequene
(pi(S))N

i=1 is �valid� for all N ≥ n). If (pi(S))N
i=1 is �valid�, so is (pi(S))m

i=1for any 1 ≤ m < N , so we have the following result:5.2. Lemma. Let (pi(S))n
i=1 be a valid partial basis and let m be anyinteger greater than n. Then there is a valid partial basis (pi(S))m

i=1 extendingthe original one.Let us now onstrut an upper interval algebra with property A. We willde�ne a normed algebra A (d) for eah d ∈ D.Let d ∈ D be given. We reursively de�ne sequenes (ni)
∞

i=1 ⊂ N andpolynomials (pi)
∞

i=1 suh that for eah i, (pi(S))ni

i=1 is a valid partial basis.We begin with n1 = 1 and p1(S) = S. Given k ∈ N, the sequene (ni)
k
i=1 anda valid partial basis (pi(S))nk

i=1, we �rst �nd an N ≥ nk, as small as possible,



302 C. J. Readand pik an extended valid partial basis (pi(S))N
i=1 with(5.4) ‖S1+nk‖N < 1/dkand(5.5) ‖S2+nk/‖S1+nk‖N − S‖N < 1/dk.Suh an extended valid partial basis exists by Lemma 5.1. We then pik theleast integer nk+1 > N with the property that nk+1 is divisible by k!; andwe extend our valid partial basis in an arbitrary manner to a valid partialbasis (pi(S))

nk+1

i=1 . This an be done by Lemma 5.2.Continuing in this manner we end up with a sequene (pi(S))∞i=1 with theproperty that for i ≤ nk, the polynomial pi(S) is determined by the elements
(di)

k−1
i=1 of the sequene d, as also is the integer nk itself. In view of (5.4) onehas

ηk = ‖S1+nk‖nk+1
< 1/dk,so(5.6) (η−1

k )∞k=1 ≫ (nk)
∞

k=1.In view of (5.5) one has
ζk = ‖S2+nk/‖S1+nk‖nk+1

− S‖nk+1
< 1/dkand so(5.7) (ζ−1

k )∞k=1 ≫ (nk)
∞

k=1.Furthermore, sine k! divides nk+1 for all k, for eah �xed r the number of
k suh that 1 + nk is not oprime to r is �nite.De�ne the upper interval algebra A (d) to be SC[S] equipped with theunique norm suh that ‖∑N

i=1λipi(S)‖ =
∑N

i=1|λi| for all N . Plainly thisnorm agrees (for eah k) with ‖·‖nk
on the subspae onsisting of polynomialsof degree less than or equal to nk; and in view of (5.6) and (5.7), the normedalgebra A (d) has property A.6. Conlusion. It remains to point out the way in whih our presentonstrution di�ers from the LRRW algebra as de�ned in [10℄. The di�er-ene is small but signi�ant; in the LRRW algebra one de�nes sequenes ofintegers (ni)

∞

i=1 and of polynomials (pi)
∞

i=1 very muh along the lines of thisonstrution, and one uses them, as here, to de�ne an l1 norm. But in theLRRW onstrution, the sequene (ni)
∞

i=1 does not have the property thatfor eah �xed k, the number of i with 1 + ni not oprime to k is �nite. Onthe ontrary, in the LRRW onstrution one has 1 + ni | 1 + ni+1 for all i.Consequently, the proof given here that there are no nontrivial losed sub-algebras (for the normed algebra of polynomials in S) would break down for



Algebras without nontrivial losed subalgebras 303the LRRW algebra. Indeed, one may hek that in that algebra, the subal-gebra onsisting of polynomials in S1+ni is (for eah i) relatively losed inthe dense subalgebra onsisting of polynomials in S.
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