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Normed �upper interval� algebraswithout nontrivial 
losed subalgebrasbyC. J. Read (Leeds)
Abstra
t. It is a long standing open problem whether there is any in�nite-dimen-sional 
ommutative Bana
h algebra without nontrivial 
losed ideals. This is in some sensethe Bana
h algebraists' 
ounterpart to the invariant subspa
e problem for Bana
h spa
es.We do not here solve this famous problem, but solve a related problem, that of �nding(ne
essarily 
ommutative) in�nite-dimensional normed algebras whi
h do not even havenontrivial 
losed subalgebras. Our examples are in
omplete normed algebras rather thanBana
h algebras. The problem of �nding su
h algebras, posed by W. Żelazko, was untilnow open not only for normed algebras but for more general topologi
al algebras. Our
onstru
tion here is kept short be
ause it uses a key lemma involved in the 
onstru
tionof the �LRRW algebra� of Loy, Read, Runde and Willis. The algebras we �nd are densesubalgebras of 
ertain 
ommutative Bana
h algebras with 
ompa
t multipli
ation.1. Introdu
tion. The author would �rst like to express his gratitudeto W. Żelazko for mu
h kind hospitality, and for introdu
ing him to thisparti
ular problem. Żelazko [13℄ produ
ed examples of in�nite-dimensionalsemitopologi
al 
omplex algebras without nontrivial 
losed subalgebras, andhe asked if one 
ould have in�nite-dimensional topologi
al algebras withoutnontrivial 
losed subalgebras. Here we produ
e normed algebras with thatproperty, making fundamental use of ideas found in [10℄.The normed algebras we use are dense subalgebras of 
ertain singly gen-erated radi
al Bana
h algebras, the subalgebra 
onsisting of polynomials inthe generator S. For su
h an algebra to solve our problem, it is 
lear that thestandard ideals (that is, the 
losed prin
ipal ideals generated by Sk, k ∈ N)of the Bana
h algebras in question must all be trivial. This is a propertythat our Bana
h algebras share with the original �LRRW algebra� des
ribedin [10℄. The LRRW algebra is very similar to the ones des
ribed here; butin the LRRW algebra, the dense subalgebra generated by S does have non-trivial relatively 
losed subalgebras, for a reason we will explain in �6 below.2000 Mathemati
s Subje
t Classi�
ation: Primary 46J45; Se
ondary 46J20, 47A15.Key words and phrases: Bana
h algebra, subalgebra, radi
al, ideal, invariant subspa
e.[295℄



296 C. J. ReadSo although our present 
onstru
tion 
an be very similar to that of [10℄, it
annot be quite the same. The matter of standard versus nonstandard idealsin singly generated radi
al Bana
h algebras has been extensively dis
ussed(see e.g. Domar [4℄, Grabiner and Thomas [8℄, Dales and M
Clure [3℄ and thegeneral exposition in �4.6 of Dales [2℄), the high point in the investigationprobably being Mar
 Thomas' dis
overy [12℄ of nonstandard ideals in theBana
h algebra l1(ω), for 
ertain radi
al weights ω.Con
erning the invariant subspa
e problem, 
ounterexamples were �rstfound independently by En�o [5℄ and Read [11℄. Read further found 
oun-terxamples on a number of well known Bana
h spa
es, but never yet on anyre�exive Bana
h spa
e. Lomonosov's 
onje
ture that every nontrivial weakly
ompa
t operator has hyperinvariant subspa
es therefore remains open. Iftrue, it would have the 
orollary that any nontrivial 
ommutative Bana
halgebra with weakly 
ompa
t multipli
ation has nontrivial 
losed ideals.Now the 
ompletions of the normed algebras in our present 
onstru
tionare 
ommutative Bana
h algebras with 
ompa
t multipli
ation, whi
h musttherefore have nontrivial 
losed ideals by Lomonosov's theorem [9℄. (Thereis a proof in �4 of [10℄ that the LRRW algebra has 
ompa
t multipli
a-tion; we do not repeat it here, but nonetheless our algebras will have 
om-pa
t multipli
ation for similar reasons.) Indeed, sin
e the algebras are singlygenerated the earlier theorem of Aronszajn and Smith [1℄ would su�
e toshow that su
h 
losed ideals must exist. Therefore, we are fairly 
on�dentthat our example 
annot, by any small perturbation, be turned into a 
oun-terexample for the 
losed ideals problem for 
ommutative Bana
h algebras.When one takes the 
ompletion of our algebras, one introdu
es not onlynontrivial 
losed subalgebras, but nontrivial 
losed ideals as well. In a forth-
oming paper with F. Ghahramani and G. A. Willis [7℄, we will 
hara
teriseall the ideals of the LRRW algebra, and investigate its 
ohomology morethoroughly.2. �Upper interval� fun
tions. As with many mathemati
al 
onstru
-tions, our present work has an underlying sequen
e whi
h must satisfy growth
onditions�it must �in
rease su�
iently rapidly�. For this paper it is 
onve-nient for us to emphasise that we are not really 
onstru
ting just one normedalgebra; we are 
onstru
ting a fun
tion whi
h takes a sequen
e d ⊂ N sat-isfying growth 
onditions and returns a normed algebra with interestingproperties.2.1. Definition. Let D = N
N be the 
olle
tion of all sequen
es of pos-itive integers. Let f0 ∈ N and fi : N

i → N be arbitrary fun
tions. Write ffor the sequen
e (fi)
∞

i=0. We de�ne the upper interval Df to be the 
olle
-tion of all sequen
es d ∈ D satisfying the growth 
onditions d1 ≥ f0 and
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di+1 ≥ fi(d1, . . . , di) for all i ∈ N. An upper interval fun
tion is a fun
tionfrom an upper interval into some set X; an upper interval algebra is an upperinterval fun
tion A : Df → X where X is a set of algebras in the 
ategoryof 
omplex normed algebras. So for ea
h d ∈ Df we get a 
omplex normedalgebra A (d).In this paper our algebras A (d) will be of 
ountable dimension, generatedby an element S, in su
h a way that the linear span lin{Si : 1 ≤ i ≤ n} isisometri
ally isomorphi
 to ln1 for all n.Now if Df ⊂ D is an upper interval, and P (d) a proposition dependingon the element d ∈ Df , we say P (d) is true �provided d in
reases su�
ientlyrapidly� if there is a subinterval Dg ⊂ Df su
h that P (d) is true for all
d ∈ Dg.If M : Df → N and N : Df → N are positive-integer-valued intervalfun
tions, we say M ≫ N (with 
onstant m ∈ N) if N(d) is a fun
tionof d1, . . . , dm−1 alone, M(d) is a fun
tion of d1, . . . , dm alone, and for �xed
d1, . . . , dm−1 one has M(d1, . . . , dm) → ∞ as dm → ∞. If so, it is easily seenthat for any �xed fun
tion F : N → N, one has

M(d) > F (N(d))provided d in
reases su�
iently rapidly; for the only extra growth 
onditionwe need is that(2.1) M(d1, . . . , dm) > F (N(d1, . . . , dm−1)),whi
h (for �xed d1, . . . , dm−1) is true for large enough dm.Likewise if M : Df → D and N : Df → D are interval fun
tions we saythat M ≫ N if, writing Mi (resp. Ni) for the ith element of the sequen
e
M(d) (resp. N(d)) one has Mi ≫ Ni for all i, with 
onstants mi tendingto in�nity as i → ∞. If M ≫ N , and F : N

2 → N is any fun
tion, thenprovided d in
reases su�
iently rapidly one has(2.2) Mi(d) > F (i, Ni(d))for all i ∈ N.3. The method of proof3.1. Definition. Now let A = A (d) be an upper interval algebrade�ned for sequen
es d in the upper interval Df ⊂ D. We say A has propertyA if for all d ∈ Df , A (d) 
onsists of all polynomials Sp(S) (p ∈ C[S]) in agenerator S, and has the further properties:(i) ‖S‖ = 1, and there is a bounded approximate identity for S 
onsist-ing of normalised powers S1+ni/‖S1+ni‖ of the generator.



298 C. J. Read(ii) This bounded approximate identity is �good enough� that, writing
ηi = ‖S2+ni/‖S1+ni‖−S‖, the sequen
es (ni)

∞

i=1 and (η−1
i )∞i=1, bothdepending on d, satisfy(3.1) (η−1

i )∞i=1 ≫ (ni)
∞

i=1.(iii) Writing ζi = ‖S1+ni‖, we have(3.2) (ζ−1
i )∞i=1 ≫ (ni)

∞

i=1.(iv) The sequen
e ni is stri
tly in
reasing; and for all k ∈ N, the numberof i su
h that 1 + ni is not 
oprime to k is �nite.Now it is a fairly straightforward 
onsequen
e of [10℄ that there is anupper interval algebra with property A. The main result of this paper is thefollowing:3.2. Theorem. Let A be an upper interval algebra with property A.Then provided d in
reases su�
iently rapidly , the normed algebra A (d) hasno 
losed subalgebra ex
ept {0} and A (d).Let us note in passing that (3.2) ensures that, provided d in
reases suf-�
iently rapidly, the normed algebras obtained from our 
onstru
tion willbe radi
al (for provided d in
reases su�
iently rapidly, we 
an assume that(say) ‖S1+ni‖ ≤ n−ni

i for all i).4. Proof of Theorem 3.2. Let x ∈ A (d) be nonzero; we 
laim the
losed subalgebra generated by x is A itself. We may assume that
x = q(S) = Sk(1 + p(S))where k > 0 and t divides the nonzero polynomial p(t). Write M = 1 + |p|,where |p| denotes the sum of the absolute values of the 
oe�
ients of thepolynomial p; and write d = d(p), the degree of p. Let I be large enough that

1 + ni is 
oprime to k for all i ≥ I. For ea
h i ≥ I, pi
k integers (li,j)
ni

j=1,
1 ≤ li,j ≤ ni, with the property that kli,j is 
ongruent to j mod 1 + ni(j = 1, . . . , ni). Write

kli,j = j + qi,j(1 + ni),where qi,j ∈ N0 and, obviously, qi,j ≤ k. For ea
h i ≤ I and 1 ≤ j ≤ ni,let us de�ne polynomials pi,j by pi,j(t) = (1 + p(t))li,j − 1, so that t divides
pi,j(t), and the degree d(pi,j) ≤ dni. We will have(4.1) xli,j = Skli,j (1 + p(S))li,j = Sj+qi,j(1+ni)(1 + pi,j(S)).For n ∈ N, let τn : A → A be the (ne
essarily dis
ontinuous) trun
ationoperator with τn(Si) = Si (i ≤ n) or zero (i > n). Let us de�ne

πi,j(S) = τni
(Sj(1 + pi,j(S))).Let pi,j(t) =

∑dni

r=1λi,j,rt
r.
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tors (πi,j(S))ni

j=1 are linearly independent and span the sub-spa
e lin{Sj : 1 ≤ j ≤ ni}. So for ea
h i ≥ I, there are 
omplex numbers
(µ1, . . . , µni

) ∈ C
ni su
h that

ni
∑

j=1

µjπi,j(S) = S.

In fa
t the ve
tor µ is equal to (1, 0, . . . , 0)(I + L)−1 where L is the ni by
ni square matrix with entries Lj,r = λi,j,r (r > j) or zero (r ≤ j). Sin
e L isnilpotent, (I + L)−1 =

∑ni−1
j=0 Lj ; if ‖ · ‖2 denotes the l2 norm on ve
tors in(or operators on) C

ni , we have(4.2) ‖µ‖2 ≤
ni−1
∑

j=0

‖Lj‖2 ≤
ni−1
∑

j=0

‖L‖j
2.The jth row of L has entries Lj,r with ∑

r |Lj,r| ≤ |pi,j | ≤ (1 + |p|)li,j − 1 =
M li,j − 1. So the Hilbert�S
hmidt norm of L is at most √ni · (M li,j − 1) ≤√

ni · (Mni − 1). Hen
e,(4.3) ‖µ‖2 ≤
ni−1
∑

j=0

‖L‖j
HS ≤

ni−1
∑

j=0

(
√

ni · (Mni − 1))j ≤ Mn2
i n

(1+ni)/2
i .We 
laim the ve
tor

yi =

ni
∑

j=1

µj
xli,j

‖S1+ni‖qi,jis a good approximation to S. For by (4.1), the norm ‖yi − S‖ is equal to
∥

∥

∥

∥

ni
∑

j=1

µj
xj+qi,j(1+ni)

‖S1+ni‖qi,j
− S

∥

∥

∥

∥

=

∥

∥

∥

∥

ni
∑

j=1

µj
Sj+qi,j(1+ni)(1 + pi,j(S))

‖S1+ni‖qi,j
− S

∥

∥

∥

∥

(4.4)
≤ ε1 + ε2where

ε1 =

∥

∥

∥

∥

ni
∑

j=1

µj

(

Sj+qi,j(1+ni)

‖S1+ni‖qi,j
− Sj

)

(1 + pi,j(S))

∥

∥

∥

∥

,

ε2 =
∥

∥

∥

ni
∑

j=1

µjS
j(1 + pi,j(S)) − S

∥

∥

∥
.

Now ‖S‖ = 1 and ‖S2+ni/‖S1+ni‖ − S‖ = ηi, hen
e(4.5) ∥

∥

∥

∥

Sj+qi,j(1+ni)

‖S1+ni‖qi,j
− Sj

∥

∥

∥

∥

≤ qi,jηi ≤ kηifor all i, j. Hen
e
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ε1 ≤ kηi ·

ni
∑

j=1

|µj| · |1 + pi,j | ≤ kηi · ni · ‖µ‖2 ·
ni

∑

j=1

|1 + pi,j |(4.6)
≤ kηi · Mn2

i n
2+ni/2
i ·

ni
∑

j=1

M li,j ≤ kηi · M2n2
i n

3+ni/2
i .

Now we have 
hosen the ve
tor µ so that ∑ni

j=1µjτni
(Sj(1 + pi,j(S))) = S.A

ordingly

(4.7) ε2 =
∥

∥

∥

ni
∑

j=1

µj(1− τni
)(Sj(1 + pi,j(S)))

∥

∥

∥
≤

ni
∑

j=1

|µj| · |1 + pi,j | · ‖S1+ni‖

be
ause ‖S‖ = 1, hen
e ‖(1 − τni
)q(S)‖ ≤ ‖S1+ni‖ · |q| for any polyno-mial q. Now we have ‖S1+ni‖ = ζi and |1 + pi,j | ≤ M li,j ≤ Mni and

|µi| ≤ Mn2
i n

(1+ni)/2
i . So,(4.8) ε2 ≤ ζi · M2n2

i n
(3+ni)/2
i .Putting (4.6) and (4.8) into (4.4), we 
an be sure that the ve
tors yi tendto S as i → ∞ (and so the 
losed algebra generated by x is indeed the wholeof A (d)) provided that for ea
h �xed R > 0, we have

Rn2
i (ηi + ζi) → 0as i → ∞. It is enough, for example, that min(η−1

i , ζ−1
i ) ≥ in

2
i for all i ∈ N;and sin
e we know (η−1

i )∞i=1 ≫ (ni)
∞

i=1 and (ζ−1
i )∞i=1 ≫ (ni)

∞

i=1, that will
ertainly happen provided d in
reases su�
iently rapidly. So provided din
reases su�
iently rapidly, the normed algebra A (d) has no nontrivial
losed subalgebra.5. Obtaining property A from [10℄. In this se
tion we make The-orem 3.2 useful by using the methods of [10℄ to obtain an upper intervalalgebra A with property A. We 
an then use the theorem to dedu
e that(provided d in
reases su�
iently rapidly) the normed algebra A (d) has nonontrivial 
losed subalgebra.We begin by re
alling some notation from [10℄ (more spe
i�
ally, from�4 of [10℄). Re
all that a valid partial basis for the algebra SC[S] is a �nitesequen
e of polynomials (pi(S))n
i=1 su
h that deg pi = i, and one obtains analgebra seminorm ‖ · ‖n on SC[S] if one de�nes(5.1) ∥

∥

∥

n
∑

i=1

λipi(S)
∥

∥

∥

n
=

n
∑

i=1

|λi|,and for a general polynomial p ∈ SC[S],(5.2) ‖p(S)‖n = ‖τnp(S)‖n,
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ation operator. The partial basis is 
onsidered �valid�only if the seminorm is submultipli
ative with �room to spare�, that is,
‖pi(S)pj(S)‖n < 1 (stri
t inequality) for all 1 ≤ i, j ≤ n.Obviously the use of notation ‖ · ‖n for the norm hints that we are goingto extend things to a larger value of n; and indeed it is a lemma of [10℄(Lemma 4.1) that if (pi(S))n

i=1 is a valid partial basis with p1(S) = S, and if
η > 0, then one 
an �nd an extended valid partial basis (pi(S))N

i=1, for some
N > n, with good properties.The main good property is that for some m ∈ (n, N) the element
Sm/‖Sm‖N is a �good� approximate identity: one has(5.3) ‖Sm+1/‖Sm‖N − S‖N < η.Another good property for the longer valid partial basis is that ‖Sn+1‖N <
η‖Sn‖N , in parti
ular ‖Sn+1‖N < η (for p1(S) = S gives us ‖S‖N = 1). Thelemma of [10℄ gives other properties, but these two are the ones we shall usein this paper. In [10℄, the statement of the lemma does not spe
ify what thevalue of m is; but in the proof given there, one in fa
t has m = n + 1. Thisturns out to be important for our purposes, so let us state our own lemma,in the form we are going to use in this paper.5.1. Lemma. Let (pi(S))n

i=1 be a valid partial basis of SC[S], and let
η > 0. Then there is an N > n and a valid partial basis (pi(S))N

i=1, extendingthe original one, su
h that
‖Sn+1‖N < η and ‖Sn+2/‖Sn+1‖N − S‖N < η.As a trivial 
orollary we note that it is always possible to extend a validpartial basis (pi(S))n

i=1 to a larger one (pi(S))N
i=1 for arbitrarily large N ; one
an pi
ture oneself repeatedly using Lemma 5.1 until a large enough N isobtained (or better still, 
onvin
e oneself that given (pi(S))n

i=1, if one pi
ks alarge enough C > 0 and de�nes pi(S) = Ci−1Si for i > n, then the sequen
e
(pi(S))N

i=1 is �valid� for all N ≥ n). If (pi(S))N
i=1 is �valid�, so is (pi(S))m

i=1for any 1 ≤ m < N , so we have the following result:5.2. Lemma. Let (pi(S))n
i=1 be a valid partial basis and let m be anyinteger greater than n. Then there is a valid partial basis (pi(S))m

i=1 extendingthe original one.Let us now 
onstru
t an upper interval algebra with property A. We willde�ne a normed algebra A (d) for ea
h d ∈ D.Let d ∈ D be given. We re
ursively de�ne sequen
es (ni)
∞

i=1 ⊂ N andpolynomials (pi)
∞

i=1 su
h that for ea
h i, (pi(S))ni

i=1 is a valid partial basis.We begin with n1 = 1 and p1(S) = S. Given k ∈ N, the sequen
e (ni)
k
i=1 anda valid partial basis (pi(S))nk

i=1, we �rst �nd an N ≥ nk, as small as possible,
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k an extended valid partial basis (pi(S))N
i=1 with(5.4) ‖S1+nk‖N < 1/dkand(5.5) ‖S2+nk/‖S1+nk‖N − S‖N < 1/dk.Su
h an extended valid partial basis exists by Lemma 5.1. We then pi
k theleast integer nk+1 > N with the property that nk+1 is divisible by k!; andwe extend our valid partial basis in an arbitrary manner to a valid partialbasis (pi(S))

nk+1

i=1 . This 
an be done by Lemma 5.2.Continuing in this manner we end up with a sequen
e (pi(S))∞i=1 with theproperty that for i ≤ nk, the polynomial pi(S) is determined by the elements
(di)

k−1
i=1 of the sequen
e d, as also is the integer nk itself. In view of (5.4) onehas

ηk = ‖S1+nk‖nk+1
< 1/dk,so(5.6) (η−1

k )∞k=1 ≫ (nk)
∞

k=1.In view of (5.5) one has
ζk = ‖S2+nk/‖S1+nk‖nk+1

− S‖nk+1
< 1/dkand so(5.7) (ζ−1

k )∞k=1 ≫ (nk)
∞

k=1.Furthermore, sin
e k! divides nk+1 for all k, for ea
h �xed r the number of
k su
h that 1 + nk is not 
oprime to r is �nite.De�ne the upper interval algebra A (d) to be SC[S] equipped with theunique norm su
h that ‖∑N

i=1λipi(S)‖ =
∑N

i=1|λi| for all N . Plainly thisnorm agrees (for ea
h k) with ‖·‖nk
on the subspa
e 
onsisting of polynomialsof degree less than or equal to nk; and in view of (5.6) and (5.7), the normedalgebra A (d) has property A.6. Con
lusion. It remains to point out the way in whi
h our present
onstru
tion di�ers from the LRRW algebra as de�ned in [10℄. The di�er-en
e is small but signi�
ant; in the LRRW algebra one de�nes sequen
es ofintegers (ni)

∞

i=1 and of polynomials (pi)
∞

i=1 very mu
h along the lines of this
onstru
tion, and one uses them, as here, to de�ne an l1 norm. But in theLRRW 
onstru
tion, the sequen
e (ni)
∞

i=1 does not have the property thatfor ea
h �xed k, the number of i with 1 + ni not 
oprime to k is �nite. Onthe 
ontrary, in the LRRW 
onstru
tion one has 1 + ni | 1 + ni+1 for all i.Consequently, the proof given here that there are no nontrivial 
losed sub-algebras (for the normed algebra of polynomials in S) would break down for
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he
k that in that algebra, the subal-gebra 
onsisting of polynomials in S1+ni is (for ea
h i) relatively 
losed inthe dense subalgebra 
onsisting of polynomials in S.
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