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Normed “upper interval” algebras
without nontrivial closed subalgebras

by

C. J. READ (Leeds)

Abstract. It is a long standing open problem whether there is any infinite-dimen-
sional commutative Banach algebra without nontrivial closed ideals. This is in some sense
the Banach algebraists’ counterpart to the invariant subspace problem for Banach spaces.
We do not here solve this famous problem, but solve a related problem, that of finding
(necessarily commutative) infinite-dimensional normed algebras which do not even have
nontrivial closed subalgebras. Our examples are incomplete normed algebras rather than
Banach algebras. The problem of finding such algebras, posed by W. Zelazko, was until
now open not only for normed algebras but for more general topological algebras. Our
construction here is kept short because it uses a key lemma involved in the construction
of the “LRRW algebra” of Loy, Read, Runde and Willis. The algebras we find are dense
subalgebras of certain commutative Banach algebras with compact multiplication.

1. Introduction. The author would first like to express his gratitude
to W. Zelazko for much kind hospitality, and for introducing him to this
particular problem. Zelazko [13] produced examples of infinite-dimensional
semitopological complex algebras without nontrivial closed subalgebras, and
he asked if one could have infinite-dimensional topological algebras without
nontrivial closed subalgebras. Here we produce normed algebras with that
property, making fundamental use of ideas found in [10].

The normed algebras we use are dense subalgebras of certain singly gen-
erated radical Banach algebras, the subalgebra consisting of polynomials in
the generator S. For such an algebra to solve our problem, it is clear that the
standard ideals (that is, the closed principal ideals generated by S*, k € N)
of the Banach algebras in question must all be trivial. This is a property
that our Banach algebras share with the original “LRRW algebra” described
in [10]. The LRRW algebra is very similar to the ones described here; but
in the LRRW algebra, the dense subalgebra generated by S does have non-
trivial relatively closed subalgebras, for a reason we will explain in §6 below.
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So although our present construction can be very similar to that of [10], it
cannot be quite the same. The matter of standard versus nonstandard ideals
in singly generated radical Banach algebras has been extensively discussed
(see e.g. Domar [4], Grabiner and Thomas [8], Dales and McClure [3] and the
general exposition in §4.6 of Dales [2]), the high point in the investigation
probably being Marc Thomas’ discovery [12] of nonstandard ideals in the
Banach algebra [!(w), for certain radical weights w.

Concerning the invariant subspace problem, counterexamples were first
found independently by Enflo [5] and Read [11]. Read further found coun-
terxamples on a number of well known Banach spaces, but never yet on any
reflexive Banach space. Lomonosov’s conjecture that every nontrivial weakly
compact operator has hyperinvariant subspaces therefore remains open. If
true, it would have the corollary that any nontrivial commutative Banach
algebra with weakly compact multiplication has nontrivial closed ideals.

Now the completions of the normed algebras in our present construction
are commutative Banach algebras with compact multiplication, which must
therefore have nontrivial closed ideals by Lomonosov’s theorem [9]. (There
is a proof in §4 of [10] that the LRRW algebra has compact multiplica-
tion; we do not repeat it here, but nonetheless our algebras will have com-
pact multiplication for similar reasons.) Indeed, since the algebras are singly
generated the earlier theorem of Aronszajn and Smith [1] would suffice to
show that such closed ideals must exist. Therefore, we are fairly confident
that our example cannot, by any small perturbation, be turned into a coun-
terexample for the closed ideals problem for commutative Banach algebras.
When one takes the completion of our algebras, one introduces not only
nontrivial closed subalgebras, but nontrivial closed ideals as well. In a forth-
coming paper with F. Ghahramani and G. A. Willis [7], we will characterise
all the ideals of the LRRW algebra, and investigate its cohomology more
thoroughly.

2. “Upper interval” functions. As with many mathematical construc-
tions, our present work has an underlying sequence which must satisfy growth
conditions—it must “increase sufficiently rapidly”. For this paper it is conve-
nient for us to emphasise that we are not really constructing just one normed
algebra; we are constructing a function which takes a sequence d C N sat-
isfying growth conditions and returns a normed algebra with interesting
properties.

2.1. DEFINITION. Let D = NN be the collection of all sequences of pos-
itive integers. Let fo € N and f; : N© — N be arbitrary functions. Write f
for the sequence (f;)72,. We define the upper interval D¢ to be the collec-
tion of all sequences d € D satisfying the growth conditions d; > fy and
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dit1 > fi(dy,...,d;) for all i € N. An upper interval function is a function
from an upper interval into some set X; an upper interval algebra is an upper
interval function &/ : D¢ — X where X is a set of algebras in the category
of complex normed algebras. So for each d € Dy we get a complex normed
algebra o7(d).

In this paper our algebras <7 (d) will be of countable dimension, generated
by an element S, in such a way that the linear span lin{S? : 1 <i < n} is
isometrically isomorphic to [} for all n.

Now if D¢ C D is an upper interval, and P(d) a proposition depending
on the element d € D¢, we say P(d) is true “provided d increases sufficiently
rapidly” if there is a subinterval Dg C Dy such that P(d) is true for all
de Dg.

If M : Df — Nand N : Dy — N are positive-integer-valued interval
functions, we say M > N (with constant m € N) if N(d) is a function
of dy,...,dn—1 alone, M(d) is a function of dy, ..., d,, alone, and for fixed
dy,...,dpn—1 one has M(dy,...,dy) — oo as d,, — 0. If so, it is easily seen
that for any fixed function F' : N — N, one has

M(d) > F(N(d))
provided d increases sufficiently rapidly; for the only extra growth condition
we need is that
(21) M(dl,,dm) >F(N(d1,,dm,1)),

which (for fixed dy,...,d;,—1) is true for large enough d,,.

Likewise if M : D¢ — D and N : Dy — D are interval functions we say
that M > N if, writing M; (resp. ;) for the ith element of the sequence
M(d) (resp. N(d)) one has M; > N; for all i, with constants m; tending
to infinity as i — oo. If M > N, and F : N> — N is any function, then
provided d increases sufficiently rapidly one has

(2.2) M;(d) > F(i, Ni(d))
for all 7 € N.

3. The method of proof

3.1. DEFINITION. Now let &/ = &/(d) be an upper interval algebra
defined for sequences d in the upper interval D¢ C D. We say & has property
A if for all d € D¢, <7(d) consists of all polynomials Sp(S) (p € C[S]) in a
generator S, and has the further properties:

(i) |IS]| = 1, and there is a bounded approximate identity for S consist-
ing of normalised powers S+ /||S1+%|| of the generator.
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(ii) This bounded approximate identity is “good enough” that, writing
n; = ||S2+7 /|| S+ || — S||, the sequences (n;)32; and (n; 1)32,, both
depending on d, satisfy

(3.1) (17 1)1 > ()2
(iii) Writing ¢; = ||S**"||, we have
(3.2) (G2 > ()2

(iv) The sequence n; is strictly increasing; and for all £ € N, the number
of 4 such that 1 4+ n; is not coprime to k is finite.

Now it is a fairly straightforward consequence of [10] that there is an
upper interval algebra with property A. The main result of this paper is the
following:

3.2. THEOREM. Let &/ be an upper interval algebra with property A.
Then provided d increases sufficiently rapidly, the normed algebra <7 (d) has
no closed subalgebra except {0} and <7 (d).

Let us note in passing that (3.2) ensures that, provided d increases suf-
ficiently rapidly, the normed algebras obtained from our construction will
be radical (for provided d increases sufficiently rapidly, we can assume that
(say) [|S*7i|| < n; ™ for all 7).

4. Proof of Theorem 3.2. Let x € </(d) be nonzero; we claim the
closed subalgebra generated by x is o itself. We may assume that

z=q(S) = S*(1+p(S))
where k > 0 and ¢ divides the nonzero polynomial p(t). Write M = 1+ |p|,
where |p| denotes the sum of the absolute values of the coefficients of the
polynomial p; and write d = d(p), the degree of p. Let I be large enough that
1 + n; is coprime to k for all ¢ > I. For each 7 > I, pick integers (lm)?;l,
1 < l;; < ng, with the property that kl; ; is congruent to j mod 1 + n;
(7 =1,...,n;). Write

klij =J + (1 +ns),

where ¢; ; € Ny and, obviously, ¢; ; < k. For each ¢ < I and 1 < j < ny,
let us define polynomials p; ; by p; ;(t) = (1 + p(t))s — 1, so that ¢ divides
pij(t), and the degree d(p; ;) < dn;. We will have

(41) s = M (14 p(8))h = ST (11 p (S)).

For n € N, let 7, : &/ — &/ be the (necessarily discontinuous) truncation
operator with 7,,(S*) = S (i < n) or zero (i > n). Let us define

7i5(S) = 70, (S (1 + pi(9)))-
Let p; j(t) = ngl)\i,j,rtr-
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Now the vectors (; ;(S))}~, are linearly independent and span the sub-

space lin{S7 : 1 < j < n;}. So for each i > I, there are complex numbers
(1, -, fn;) € C™ such that

> i g(S) =
j=1

In fact the vector p is equal to (1,0,...,0)(I + L)~! where L is the n; by
n; square matrix with entries L;, = A j,» (1 > j) or zero (r < j). Since L is
nilpotent, (I + L)~! = Z?;Ble; if || - ||]2 denotes the lo norm on vectors in
(or operators on) C™, we have

TLi—l ni—l

(4.2) iz < DI 12 < D IILIE.
j=0 j=0

The jth row of L has entries L;, with >, |L;.| < |pij| < (1+|p|)ti —1=
M5 — 1. So the Hilbert-Schmidt norm of L is at most Vi (Ml —1) <
Vi - (M™ —1). Hence,

n;—1 n;—1

(43)  ullz< Y ILls < Z (M™ — 1)) < Mmp(n)/2,

We claim the vector
11’]

n;
x
Y = Zﬂj HSl+nini’j
j=1
is a good approximation to S. For by (4.1), the norm |y; — S| is equal to

o~ ST (14 py(S))
Z“J Rl

i m]+q7, j(1+nz H

Z“J [STFmias

-9

§€1+€2

where

i S]+[hj 1+n2) ]
< |S1+7’lz |q2] S )<1+pz’](5)) ’

g9 = HZM]’S‘j(l + pij(S)) — SH
im1

Now ||S|| =1 and [|S2™ /|| S1+7i|| — S|| = n;, hence
H S’J""h i 1+n1

(4.5) T

SjH < qi ni < kn;

for all ¢, j. Hence
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n; n;
(46) v <hni- D> |l 11+ pigl <kmieni- el |1+ pigl
i=1 =1

g
< k- MMipZ02 S Mb < k- M2,
7j=1
Now we have chosen the vector p so that Z?Llﬂani(Sj(l _|_pl,7j(5))) _g
Accordingly

n; n;
(A7) e2 = ||D w1 = 1) (S A+ pig(SD)| £ Dl 11+ pigl- 157+
j=1 j=1
because ||S|| = 1, hence ||(1 — 7,)q(9)| < ||S**"]| - |q| for any polyno-
mial ¢. Now we have ||S1+"%|| = ¢; and |1 + p;j| < M% < M™ and
i) < M"?ngHm)/Q. So

(48) £9 S CZ . MQn?TL,E?H—M)/Q.

Putting (4.6) and (4.8) into (4.4), we can be sure that the vectors y; tend
to S as ¢ — oo (and so the closed algebra generated by x is indeed the whole
of o7/ (d)) provided that for each fixed R > 0, we have

R (mi+¢G)—0

as ¢ — oo. It is enough, for example, that min(n{l, C;l) > " for all i € N;
and since we know (n; )2, > (n,)2, and (¢ 12, > (n;)2,, that will
certainly happen provided d increases sufficiently rapidly. So provided d
increases sufficiently rapidly, the normed algebra 7 (d) has no nontrivial
closed subalgebra.

5. Obtaining property A from [10]. In this section we make The-
orem 3.2 useful by using the methods of [10] to obtain an upper interval
algebra < with property A. We can then use the theorem to deduce that
(provided d increases sufficiently rapidly) the normed algebra 7 (d) has no
nontrivial closed subalgebra.

We begin by recalling some notation from [10] (more specifically, from
§4 of [10]). Recall that a valid partial basis for the algebra SC[S] is a finite

sequence of polynomials (p;(5))7"_; such that degp; = ¢, and one obtains an
algebra seminorm || - ||, on SC[S] if one defines
(5.1) > 2mis)| = DI,

i=1 i=1

and for a general polynomial p € SC[S],
(5.2) () lln = [ITnp(S) I,
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where 7, is the truncation operator. The partial basis is considered “valid”
only if the seminorm is submultiplicative with “room to spare”, that is,
lpi(S)p;(S)|ln < 1 (strict inequality) for all 1 <i,j < n.

Obviously the use of notation || - ||,, for the norm hints that we are going
to extend things to a larger value of n; and indeed it is a lemma of [10]
(Lemma 4.1) that if (p;(S))?_, is a valid partial basis with p;(S) = S, and if
n > 0, then one can find an extended valid partial basis (p;(S))%;, for some
N > n, with good properties.

The main good property is that for some m € (n,N) the element
S™/]|S™| v is a “good” approximate identity: one has

(5-3) 1S™ 1 /1S™ v = Sliv <.

Another good property for the longer valid partial basis is that ||[S""!|y <
n||S™|| v, in particular [|S™ ||y < n (for p1(S) = S gives us ||S||x = 1). The
lemma of [10] gives other properties, but these two are the ones we shall use
in this paper. In [10], the statement of the lemma does not specify what the
value of m is; but in the proof given there, one in fact has m = n + 1. This
turns out to be important for our purposes, so let us state our own lemma,
in the form we are going to use in this paper.

5.1. LEMMA. Let (p;i(S))’, be a valid partial basis of SC[S], and let
n > 0. Then there is an N > n and a valid partial basis (p;(S))Y.,, extending
the original one, such that

IS" v <n and [|S"2/|[S"H|x — Sl <.

As a trivial corollary we note that it is always possible to extend a valid
partial basis (p;(S))™; to a larger one (p;(S))X; for arbitrarily large N; one
can picture oneself repeatedly using Lemma 5.1 until a large enough N is
obtained (or better still, convince oneself that given (p;(S))i,, if one picks a
large enough C' > 0 and defines p;(S) = C*~1S? for i > n, then the sequence
(pi(S))N, is “valid” for all N > n). If (p;(S))X, is “valid”, so is (p;(S))™,
for any 1 < m < N, so we have the following result:

5.2. LEMMA. Let (p;(S)), be a valid partial basis and let m be any
integer greater than n. Then there is a valid partial basis (p;(S)), extending
the original one.

Let us now construct an upper interval algebra with property A. We will
define a normed algebra .o7(d) for each d € D.

Let d € D be given. We recursively define sequences (n;)?°; C N and
polynomials (p;)$°; such that for each ¢, (p;(S5));; is a valid partial basis.
We begin with n; = 1 and p1(S) = S. Given k € N, the sequence (n;)¥_; and
a valid partial basis (p;(S))}*,, we first find an N > ny, as small as possible,

=1
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and pick an extended valid partial basis (p;(9))Y, with

(5.4) ST ||y < 1/dy,
and
(5.5) | S2 7 /(| ST ||y — S||n < 1/dg.

Such an extended valid partial basis exists by Lemma 5.1. We then pick the
least integer ngy1 > N with the property that ng,, is divisible by k!; and
we extend our valid partial basis in an arbitrary manner to a valid partial
basis (pi(S));*1". This can be done by Lemma 5.2.

Continuing in this manner we end up with a sequence (p;(.5))52; with the
property that for i < ny, the polynomial p;(.S) is determined by the elements
(di)¥=! of the sequence d, as also is the integer ny, itself. In view of (5.4) one
has

M = |’Sl+nk|’nk+1 < 1/dk’

SO
(5.6) (1 )Ry > (n)2y-
In view of (5.5) one has
Ck = ||S2+nk/”51+nk‘|nk+1 - S||nk+1 < 1/dk

and so

(57) (G DR > ()i
Furthermore, since k! divides ny, for all k, for each fixed r the number of
k such that 1 + n; is not coprime to r is finite.

Define the upper interval algebra o7 (d) to be SC[S] equipped with the
unique norm such that HZZ]\;1)‘ZPZ(S)|| = Zfiﬂ)‘z’ for all N. Plainly this
norm agrees (for each k) with [|-||,, on the subspace consisting of polynomials
of degree less than or equal to ny; and in view of (5.6) and (5.7), the normed
algebra <7 (d) has property A.

6. Conclusion. It remains to point out the way in which our present
construction differs from the LRRW algebra as defined in [10]. The differ-
ence is small but significant; in the LRRW algebra one defines sequences of
integers (n;)5°; and of polynomials (p;)7°; very much along the lines of this
construction, and one uses them, as here, to define an /; norm. But in the
LRRW construction, the sequence (n;):°; does not have the property that
for each fixed k, the number of ¢ with 1 4+ n; not coprime to k is finite. On
the contrary, in the LRRW construction one has 1+ n; |1 + n;4q for all .
Consequently, the proof given here that there are no nontrivial closed sub-
algebras (for the normed algebra of polynomials in S) would break down for
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the LRRW algebra. Indeed, one may check that in that algebra, the subal-
gebra consisting of polynomials in S'*" is (for each i) relatively closed in
the dense subalgebra consisting of polynomials in S.
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